Computation of High-Performance Concrete Compressive Strength Using Standalone and Ensembled Machine Learning Techniques

The current trend in modern research revolves around novel techniques that can predict the characteristics of materials without consuming time, effort, and experimental costs. The adaptation of machine learning techniques to compute the various properties of materials is gaining more attention. This...

Full description

Saved in:
Bibliographic Details
Published inMaterials Vol. 14; no. 22; p. 7034
Main Authors Xu, Yue, Ahmad, Waqas, Ahmad, Ayaz, Ostrowski, Krzysztof Adam, Dudek, Marta, Aslam, Fahid, Joyklad, Panuwat
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 19.11.2021
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The current trend in modern research revolves around novel techniques that can predict the characteristics of materials without consuming time, effort, and experimental costs. The adaptation of machine learning techniques to compute the various properties of materials is gaining more attention. This study aims to use both standalone and ensemble machine learning techniques to forecast the 28-day compressive strength of high-performance concrete. One standalone technique (support vector regression (SVR)) and two ensemble techniques (AdaBoost and random forest) were applied for this purpose. To validate the performance of each technique, coefficient of determination (R2), statistical, and k-fold cross-validation checks were used. Additionally, the contribution of input parameters towards the prediction of results was determined by applying sensitivity analysis. It was proven that all the techniques employed showed improved performance in predicting the outcomes. The random forest model was the most accurate, with an R2 value of 0.93, compared to the support vector regression and AdaBoost models, with R2 values of 0.83 and 0.90, respectively. In addition, statistical and k-fold cross-validation checks validated the random forest model as the best performer based on lower error values. However, the prediction performance of the support vector regression and AdaBoost models was also within an acceptable range. This shows that novel machine learning techniques can be used to predict the mechanical properties of high-performance concrete.
AbstractList The current trend in modern research revolves around novel techniques that can predict the characteristics of materials without consuming time, effort, and experimental costs. The adaptation of machine learning techniques to compute the various properties of materials is gaining more attention. This study aims to use both standalone and ensemble machine learning techniques to forecast the 28-day compressive strength of high-performance concrete. One standalone technique (support vector regression (SVR)) and two ensemble techniques (AdaBoost and random forest) were applied for this purpose. To validate the performance of each technique, coefficient of determination (R2), statistical, and k-fold cross-validation checks were used. Additionally, the contribution of input parameters towards the prediction of results was determined by applying sensitivity analysis. It was proven that all the techniques employed showed improved performance in predicting the outcomes. The random forest model was the most accurate, with an R2 value of 0.93, compared to the support vector regression and AdaBoost models, with R2 values of 0.83 and 0.90, respectively. In addition, statistical and k-fold cross-validation checks validated the random forest model as the best performer based on lower error values. However, the prediction performance of the support vector regression and AdaBoost models was also within an acceptable range. This shows that novel machine learning techniques can be used to predict the mechanical properties of high-performance concrete.
The current trend in modern research revolves around novel techniques that can predict the characteristics of materials without consuming time, effort, and experimental costs. The adaptation of machine learning techniques to compute the various properties of materials is gaining more attention. This study aims to use both standalone and ensemble machine learning techniques to forecast the 28-day compressive strength of high-performance concrete. One standalone technique (support vector regression (SVR)) and two ensemble techniques (AdaBoost and random forest) were applied for this purpose. To validate the performance of each technique, coefficient of determination (R2), statistical, and k-fold cross-validation checks were used. Additionally, the contribution of input parameters towards the prediction of results was determined by applying sensitivity analysis. It was proven that all the techniques employed showed improved performance in predicting the outcomes. The random forest model was the most accurate, with an R2 value of 0.93, compared to the support vector regression and AdaBoost models, with R2 values of 0.83 and 0.90, respectively. In addition, statistical and k-fold cross-validation checks validated the random forest model as the best performer based on lower error values. However, the prediction performance of the support vector regression and AdaBoost models was also within an acceptable range. This shows that novel machine learning techniques can be used to predict the mechanical properties of high-performance concrete.The current trend in modern research revolves around novel techniques that can predict the characteristics of materials without consuming time, effort, and experimental costs. The adaptation of machine learning techniques to compute the various properties of materials is gaining more attention. This study aims to use both standalone and ensemble machine learning techniques to forecast the 28-day compressive strength of high-performance concrete. One standalone technique (support vector regression (SVR)) and two ensemble techniques (AdaBoost and random forest) were applied for this purpose. To validate the performance of each technique, coefficient of determination (R2), statistical, and k-fold cross-validation checks were used. Additionally, the contribution of input parameters towards the prediction of results was determined by applying sensitivity analysis. It was proven that all the techniques employed showed improved performance in predicting the outcomes. The random forest model was the most accurate, with an R2 value of 0.93, compared to the support vector regression and AdaBoost models, with R2 values of 0.83 and 0.90, respectively. In addition, statistical and k-fold cross-validation checks validated the random forest model as the best performer based on lower error values. However, the prediction performance of the support vector regression and AdaBoost models was also within an acceptable range. This shows that novel machine learning techniques can be used to predict the mechanical properties of high-performance concrete.
The current trend in modern research revolves around novel techniques that can predict the characteristics of materials without consuming time, effort, and experimental costs. The adaptation of machine learning techniques to compute the various properties of materials is gaining more attention. This study aims to use both standalone and ensemble machine learning techniques to forecast the 28-day compressive strength of high-performance concrete. One standalone technique (support vector regression (SVR)) and two ensemble techniques (AdaBoost and random forest) were applied for this purpose. To validate the performance of each technique, coefficient of determination (R 2 ), statistical, and k-fold cross-validation checks were used. Additionally, the contribution of input parameters towards the prediction of results was determined by applying sensitivity analysis. It was proven that all the techniques employed showed improved performance in predicting the outcomes. The random forest model was the most accurate, with an R 2 value of 0.93, compared to the support vector regression and AdaBoost models, with R 2 values of 0.83 and 0.90, respectively. In addition, statistical and k-fold cross-validation checks validated the random forest model as the best performer based on lower error values. However, the prediction performance of the support vector regression and AdaBoost models was also within an acceptable range. This shows that novel machine learning techniques can be used to predict the mechanical properties of high-performance concrete.
Author Joyklad, Panuwat
Ostrowski, Krzysztof Adam
Dudek, Marta
Aslam, Fahid
Ahmad, Waqas
Ahmad, Ayaz
Xu, Yue
AuthorAffiliation 2 Department of Civil Engineering, COMSATS University Islamabad, Abbottabad 22060, Pakistan; ayazahmad@cuiatd.edu.pk
4 Department of Civil Engineering, College of Engineering in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia; f.aslam@psau.edu.sa
5 Department of Civil and Environmental Engineering, Faculty of Engineering, Srinakharinwirot University, Nakhonnayok 26120, Thailand; panuwatj@g.swu.ac.th
1 School of Civil Engineering, Southwest Jiaotong University, Chengdu 610031, China
3 Faculty of Civil Engineering, Cracow University of Technology, 24 Warszawska Street, 31-155 Cracow, Poland; krzysztof.ostroski.1@pk.edu.pl (K.A.O.); marta.dudek@pk.edu.pl (M.D.)
AuthorAffiliation_xml – name: 1 School of Civil Engineering, Southwest Jiaotong University, Chengdu 610031, China
– name: 5 Department of Civil and Environmental Engineering, Faculty of Engineering, Srinakharinwirot University, Nakhonnayok 26120, Thailand; panuwatj@g.swu.ac.th
– name: 3 Faculty of Civil Engineering, Cracow University of Technology, 24 Warszawska Street, 31-155 Cracow, Poland; krzysztof.ostroski.1@pk.edu.pl (K.A.O.); marta.dudek@pk.edu.pl (M.D.)
– name: 2 Department of Civil Engineering, COMSATS University Islamabad, Abbottabad 22060, Pakistan; ayazahmad@cuiatd.edu.pk
– name: 4 Department of Civil Engineering, College of Engineering in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia; f.aslam@psau.edu.sa
Author_xml – sequence: 1
  givenname: Yue
  surname: Xu
  fullname: Xu, Yue
– sequence: 2
  givenname: Waqas
  orcidid: 0000-0002-1668-7607
  surname: Ahmad
  fullname: Ahmad, Waqas
– sequence: 3
  givenname: Ayaz
  orcidid: 0000-0002-0312-2965
  surname: Ahmad
  fullname: Ahmad, Ayaz
– sequence: 4
  givenname: Krzysztof Adam
  surname: Ostrowski
  fullname: Ostrowski, Krzysztof Adam
– sequence: 5
  givenname: Marta
  orcidid: 0000-0003-0658-6922
  surname: Dudek
  fullname: Dudek, Marta
– sequence: 6
  givenname: Fahid
  orcidid: 0000-0003-2863-3283
  surname: Aslam
  fullname: Aslam, Fahid
– sequence: 7
  givenname: Panuwat
  orcidid: 0000-0003-1069-1653
  surname: Joyklad
  fullname: Joyklad, Panuwat
BookMark eNptkV1L5DAYhcOirK56s7-gsDciVPM1neRGkEFXYURBvQ5p-mYaaZMxaUX_vSkj7irmJudNnhxOOL_Qlg8eEPpN8DFjEp_0mnBK55jxH2iXSFmVRHK-9Z_eQQcpPeK8GCOCyp9oh3HBKGd0F70sQr8eBz244Itgi0u3astbiDbEXnsDxSJ4E2GYRL-OkJJ7huJuiOBXQ1s8JOdXedS-0V0OVmRRnPsEfd1BU1xr07p8ugQd_UTeg2m9exoh7aNtq7sEB-_7Hnq4OL9fXJbLm79Xi7NlaZhgQ1kZUTE-09rMGy7AcjMHOcPEzCjX2sqqFkZiIzkzdm4tl4zWLI8gZg3gWrI9dLrxXY91D40BP0TdqXV0vY6vKminPt9416pVeFaiIoLQyeDw3SCGKfigepcMdJ32EMakaIU5piTjGf3zBX0MY_T5exNFCcdETtTRhjIxpBTBfoQhWE2dqn-dZhh_gY3btJXDuu67J2_s66ZD
CitedBy_id crossref_primary_10_1016_j_jobe_2023_106595
crossref_primary_10_3390_polym14183906
crossref_primary_10_1371_journal_pone_0303101
crossref_primary_10_3390_ma15113762
crossref_primary_10_1080_19648189_2024_2335343
crossref_primary_10_1016_j_jmrt_2023_02_057
crossref_primary_10_1016_j_jmrt_2023_04_223
crossref_primary_10_3390_ma15103478
crossref_primary_10_3390_polym14153065
crossref_primary_10_3390_ma15217800
crossref_primary_10_1016_j_istruc_2024_106285
crossref_primary_10_1016_j_cscm_2023_e02723
crossref_primary_10_3390_polym14010030
crossref_primary_10_3389_fmats_2023_1187094
crossref_primary_10_3390_ma15134512
crossref_primary_10_3389_fmats_2022_1091867
crossref_primary_10_3390_ma15082823
crossref_primary_10_1038_s41598_024_79502_z
crossref_primary_10_3390_buildings14123851
crossref_primary_10_3390_ma15103523
crossref_primary_10_1016_j_cscm_2024_e03849
crossref_primary_10_32604_cmes_2023_043384
crossref_primary_10_1016_j_asoc_2024_111956
crossref_primary_10_1016_j_cscm_2022_e01620
crossref_primary_10_3390_ma15196928
crossref_primary_10_1016_j_cscm_2024_e02991
crossref_primary_10_3390_ma16165711
crossref_primary_10_1007_s42107_023_00614_4
crossref_primary_10_3390_polym14102128
crossref_primary_10_1155_adce_3403677
crossref_primary_10_1007_s41939_025_00812_4
crossref_primary_10_3390_ma15207344
crossref_primary_10_1016_j_mtcomm_2024_109922
crossref_primary_10_3390_ma15124194
crossref_primary_10_7717_peerj_cs_1853
crossref_primary_10_1038_s41598_025_92253_9
crossref_primary_10_3390_infrastructures7020024
crossref_primary_10_1016_j_clema_2023_100211
crossref_primary_10_1016_j_heliyon_2024_e39679
crossref_primary_10_1007_s44290_025_00204_0
crossref_primary_10_1007_s12008_024_01812_3
crossref_primary_10_3390_su132413663
crossref_primary_10_1016_j_cose_2023_103511
crossref_primary_10_1016_j_mtcomm_2023_107778
crossref_primary_10_1016_j_mtcomm_2024_108804
crossref_primary_10_1007_s41939_023_00308_z
crossref_primary_10_1007_s41024_024_00445_z
crossref_primary_10_1016_j_istruc_2023_04_050
crossref_primary_10_1016_j_conbuildmat_2023_133540
crossref_primary_10_1016_j_mtcomm_2023_107894
crossref_primary_10_3390_ma15072400
crossref_primary_10_1016_j_cscm_2022_e01243
crossref_primary_10_3390_ma15124108
crossref_primary_10_1016_j_jobe_2023_107325
crossref_primary_10_1016_j_mtcomm_2024_110558
crossref_primary_10_1016_j_mtcomm_2023_106283
crossref_primary_10_1016_j_jobe_2023_107527
Cites_doi 10.1108/SS-06-2013-0023
10.1016/j.jobe.2021.102544
10.3390/app10207330
10.1016/j.cemconres.2018.04.007
10.1061/(ASCE)0899-1561(2006)18:4(597)
10.1016/j.cemconcomp.2018.07.002
10.1016/j.jclepro.2021.126032
10.1016/j.autcon.2021.103936
10.3390/ma14040794
10.1016/j.engstruct.2019.110122
10.3390/ma14154222
10.1016/j.asej.2011.06.001
10.3390/ma14061472
10.3390/ma14143829
10.1016/j.advengsoft.2015.05.007
10.3390/ma14195762
10.3390/buildings11080324
10.3390/ma14164518
10.1016/0008-8846(94)00128-L
10.1016/j.conbuildmat.2020.119296
10.1016/j.asej.2017.04.005
10.1016/j.jobe.2019.101053
10.3390/ma14092297
10.12989/cac.2015.16.6.919
10.3390/cryst11070779
10.1016/j.conbuildmat.2020.119889
10.1155/2020/8850535
10.1016/j.asej.2021.08.006
10.1016/j.conbuildmat.2016.08.111
10.1016/S0008-8846(98)00165-3
10.1016/j.conbuildmat.2021.125021
10.1016/j.asoc.2020.106552
10.1016/j.engfailanal.2020.104637
10.1016/j.asej.2021.04.008
10.1002/suco.202100213
10.3390/ma13051075
10.1016/j.conbuildmat.2019.01.103
ContentType Journal Article
Copyright 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2021 by the authors. 2021
Copyright_xml – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2021 by the authors. 2021
DBID AAYXX
CITATION
7SR
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
D1I
DWQXO
HCIFZ
JG9
KB.
PDBOC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
DOI 10.3390/ma14227034
DatabaseName CrossRef
Engineered Materials Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Materials Science & Engineering
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One
ProQuest Materials Science Collection
ProQuest Central
SciTech Premium Collection
Materials Research Database
Materials Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Materials Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
ProQuest Central Korea
Materials Science Database
ProQuest Central (New)
ProQuest Materials Science Collection
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE - Academic

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1996-1944
ExternalDocumentID PMC8618129
10_3390_ma14227034
GroupedDBID 29M
2WC
2XV
53G
5GY
5VS
8FE
8FG
AADQD
AAFWJ
AAHBH
AAYXX
ABDBF
ABJCF
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
CZ9
D1I
E3Z
EBS
ESX
FRP
GX1
HCIFZ
HH5
HYE
I-F
IAO
ITC
KB.
KC.
KQ8
MK~
MODMG
M~E
OK1
OVT
P2P
PDBOC
PGMZT
PHGZM
PHGZT
PIMPY
PROAC
RPM
TR2
TUS
7SR
8FD
ABUWG
AZQEC
DWQXO
JG9
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c383t-6c86345aac7d48ef4c7e9501c524aaf96b8c90c943cf7ff4932b3c94e85de0b93
IEDL.DBID BENPR
ISSN 1996-1944
IngestDate Thu Aug 21 18:25:04 EDT 2025
Fri Jul 11 00:50:58 EDT 2025
Fri Jul 25 11:50:16 EDT 2025
Thu Apr 24 23:01:56 EDT 2025
Tue Jul 01 03:41:55 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 22
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c383t-6c86345aac7d48ef4c7e9501c524aaf96b8c90c943cf7ff4932b3c94e85de0b93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-0658-6922
0000-0003-1069-1653
0000-0002-1668-7607
0000-0002-0312-2965
0000-0003-2863-3283
OpenAccessLink https://www.proquest.com/docview/2602140191?pq-origsite=%requestingapplication%
PMID 34832432
PQID 2602140191
PQPubID 2032366
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8618129
proquest_miscellaneous_2604021861
proquest_journals_2602140191
crossref_primary_10_3390_ma14227034
crossref_citationtrail_10_3390_ma14227034
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20211119
PublicationDateYYYYMMDD 2021-11-19
PublicationDate_xml – month: 11
  year: 2021
  text: 20211119
  day: 19
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Materials
PublicationYear 2021
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Gandomi (ref_42) 2015; 88
Sun (ref_33) 2021; 43
Ahmad (ref_12) 2021; 15
Yeh (ref_39) 1998; 28
Pedro (ref_17) 2018; 93
DeRousseau (ref_32) 2018; 109
Khan (ref_5) 2019; 203
ref_36
Alexandridis (ref_29) 2015; 16
ref_34
Dalvand (ref_11) 2021; 24
Uva (ref_14) 2014; 32
Ahmad (ref_9) 2021; 15
Li (ref_18) 2020; 255
Shaker (ref_8) 2018; 9
Song (ref_31) 2021; 308
ref_16
ref_38
ref_37
Salimi (ref_13) 2020; 28
Khan (ref_4) 2016; 125
Chaabene (ref_30) 2020; 260
Sangiorgio (ref_15) 2020; 115
Yeh (ref_40) 2003; 15
ref_25
ref_24
ref_46
ref_23
ref_22
Yeh (ref_41) 2006; 18
ref_43
ref_20
Aslam (ref_45) 2020; 2020
Molay (ref_2) 2019; 22
Mangi (ref_1) 2019; 22
ref_3
Abuodeh (ref_35) 2020; 95
ref_27
Ruggieri (ref_28) 2021; 132
ref_26
Semendary (ref_19) 2020; 205
Mohamed (ref_10) 2011; 2
Khatri (ref_21) 1995; 25
Farooq (ref_44) 2021; 292
ref_7
ref_6
References_xml – volume: 32
  start-page: 189
  year: 2014
  ident: ref_14
  article-title: The assessment of structural concretes during construction phases
  publication-title: Struct. Surv.
  doi: 10.1108/SS-06-2013-0023
– volume: 43
  start-page: 102544
  year: 2021
  ident: ref_33
  article-title: Machine learning-aided design and prediction of cementitious composites containing graphite and slag powder
  publication-title: J. Build. Eng.
  doi: 10.1016/j.jobe.2021.102544
– ident: ref_46
  doi: 10.3390/app10207330
– volume: 15
  start-page: e00683
  year: 2021
  ident: ref_9
  article-title: A scientometric review of waste material utilization in concrete for sustainable construction
  publication-title: Case Stud. Constr. Mater.
– volume: 109
  start-page: 42
  year: 2018
  ident: ref_32
  article-title: Computational design optimization of concrete mixtures: A review
  publication-title: Cem. Concr. Res.
  doi: 10.1016/j.cemconres.2018.04.007
– volume: 18
  start-page: 597
  year: 2006
  ident: ref_41
  article-title: Analysis of strength of concrete using design of experiments and neural networks
  publication-title: J. Mater. Civ. Eng.
  doi: 10.1061/(ASCE)0899-1561(2006)18:4(597)
– volume: 93
  start-page: 63
  year: 2018
  ident: ref_17
  article-title: Durability performance of high-performance concrete made with recycled aggregates, fly ash and densified silica fume
  publication-title: Cem. Concr. Compos.
  doi: 10.1016/j.cemconcomp.2018.07.002
– volume: 292
  start-page: 126032
  year: 2021
  ident: ref_44
  article-title: Predictive modeling for sustainable high-performance concrete from industrial wastes: A comparison and optimization of models using ensemble learners
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2021.126032
– volume: 132
  start-page: 103936
  year: 2021
  ident: ref_28
  article-title: Machine-learning based vulnerability analysis of existing buildings
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2021.103936
– ident: ref_22
  doi: 10.3390/ma14040794
– ident: ref_16
– volume: 205
  start-page: 110122
  year: 2020
  ident: ref_19
  article-title: Shear friction performance between high strength concrete (HSC) and ultra high performance concrete (UHPC) for bridge connection applications
  publication-title: Eng. Struct.
  doi: 10.1016/j.engstruct.2019.110122
– ident: ref_24
  doi: 10.3390/ma14154222
– volume: 2
  start-page: 79
  year: 2011
  ident: ref_10
  article-title: Effect of fly ash and silica fume on compressive strength of self-compacting concrete under different curing conditions
  publication-title: Ain Shams Eng. J.
  doi: 10.1016/j.asej.2011.06.001
– ident: ref_20
  doi: 10.3390/ma14061472
– ident: ref_37
  doi: 10.3390/ma14143829
– volume: 22
  start-page: 1116
  year: 2019
  ident: ref_2
  article-title: Mechanical and physical performances of concretes made from crushed sands of different geological nature subjected to high temperatures
  publication-title: Eng. Sci. Technol. Int. J.
– volume: 88
  start-page: 63
  year: 2015
  ident: ref_42
  article-title: Assessment of artificial neural network and genetic programming as predictive tools
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2015.05.007
– ident: ref_6
  doi: 10.3390/ma14195762
– ident: ref_36
  doi: 10.3390/buildings11080324
– ident: ref_34
  doi: 10.3390/ma14164518
– volume: 25
  start-page: 209
  year: 1995
  ident: ref_21
  article-title: Effect of different supplementary cementitious materials on mechanical properties of high performance concrete
  publication-title: Cem. Concr. Res.
  doi: 10.1016/0008-8846(94)00128-L
– volume: 255
  start-page: 119296
  year: 2020
  ident: ref_18
  article-title: Durability of ultra-high performance concrete—A review
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2020.119296
– volume: 9
  start-page: 2301
  year: 2018
  ident: ref_8
  article-title: Properties of concrete incorporating locally produced Portland limestone cement
  publication-title: Ain Shams Eng. J.
  doi: 10.1016/j.asej.2017.04.005
– volume: 28
  start-page: 101053
  year: 2020
  ident: ref_13
  article-title: Studying the effect of low reactivity metakaolin on free and restrained shrinkage of high performance concrete
  publication-title: J. Build. Eng.
  doi: 10.1016/j.jobe.2019.101053
– ident: ref_23
  doi: 10.3390/ma14092297
– volume: 16
  start-page: 919
  year: 2015
  ident: ref_29
  article-title: Non-destructive assessment of the three-point-bending strength of mortar beams using radial basis function neural networks
  publication-title: Comput. Concr.
  doi: 10.12989/cac.2015.16.6.919
– ident: ref_25
  doi: 10.3390/cryst11070779
– volume: 260
  start-page: 119889
  year: 2020
  ident: ref_30
  article-title: Machine learning prediction of mechanical properties of concrete: Critical review
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2020.119889
– volume: 2020
  start-page: 8850535
  year: 2020
  ident: ref_45
  article-title: Applications of gene expression programming for estimating compressive strength of high-strength concrete
  publication-title: Adv. Civ. Eng.
  doi: 10.1155/2020/8850535
– volume: 15
  start-page: 659
  year: 2003
  ident: ref_40
  article-title: Prediction of strength of fly ash and slag concrete by the use of artificial neural networks
  publication-title: J. Chin. Inst. Civil Hydraul. Eng.
– ident: ref_7
  doi: 10.1016/j.asej.2021.08.006
– volume: 125
  start-page: 800
  year: 2016
  ident: ref_4
  article-title: Use of glass and nylon fibers in concrete for controlling early age micro cracking in bridge decks
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2016.08.111
– volume: 28
  start-page: 1797
  year: 1998
  ident: ref_39
  article-title: Modeling of strength of high-performance concrete using artificial neural networks
  publication-title: Cem. Concr. Res.
  doi: 10.1016/S0008-8846(98)00165-3
– volume: 15
  start-page: e00698
  year: 2021
  ident: ref_12
  article-title: Sustainable approach of using sugarcane bagasse ash in cement-based composites: A systematic review
  publication-title: Case Stud. Constr. Mater.
– volume: 308
  start-page: 125021
  year: 2021
  ident: ref_31
  article-title: Predicting the compressive strength of concrete with fly ash admixture using machine learning algorithms
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2021.125021
– volume: 95
  start-page: 106552
  year: 2020
  ident: ref_35
  article-title: Assessment of compressive strength of Ultra-high Performance Concrete using deep machine learning techniques
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2020.106552
– volume: 115
  start-page: 104637
  year: 2020
  ident: ref_15
  article-title: Failure analysis of reinforced concrete elevated storage tanks
  publication-title: Eng. Fail. Anal.
  doi: 10.1016/j.engfailanal.2020.104637
– ident: ref_38
– ident: ref_27
  doi: 10.1016/j.asej.2021.04.008
– ident: ref_43
– ident: ref_26
  doi: 10.1002/suco.202100213
– volume: 24
  start-page: 736
  year: 2021
  ident: ref_11
  article-title: Impact failure mechanism and mechanical characteristics of steel fiber reinforced self-compacting cementitious composites containing silica fume
  publication-title: Eng. Sci. Technol. Int. J.
– ident: ref_3
  doi: 10.3390/ma13051075
– volume: 22
  start-page: 929
  year: 2019
  ident: ref_1
  article-title: Performances of concrete containing coal bottom ash with different fineness as a supplementary cementitious material exposed to seawater
  publication-title: Eng. Sci. Technol. Int. J.
– volume: 203
  start-page: 174
  year: 2019
  ident: ref_5
  article-title: Improvement in concrete behavior with fly ash, silica-fume and coconut fibres
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2019.01.103
SSID ssj0000331829
Score 2.5355184
Snippet The current trend in modern research revolves around novel techniques that can predict the characteristics of materials without consuming time, effort, and...
SourceID pubmedcentral
proquest
crossref
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 7034
SubjectTerms Accuracy
Algorithms
Cement
Compressive strength
Concrete
Decision trees
Machine learning
Material properties
Mechanical properties
Parameter sensitivity
Performance evaluation
Performance prediction
Regression
Sensitivity analysis
Software
Statistical analysis
Support vector machines
Variables
Title Computation of High-Performance Concrete Compressive Strength Using Standalone and Ensembled Machine Learning Techniques
URI https://www.proquest.com/docview/2602140191
https://www.proquest.com/docview/2604021861
https://pubmed.ncbi.nlm.nih.gov/PMC8618129
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS8MwED90vuiD-InTKRF98aG4pWmbPInKpgiK-AF7K0maqLC16jrxz_fSZpsD8akJSUm5XJK7y6-_AzhW1Co81UUgaMbRQbE2EA7kaGJKhaIxPl284_Yuvn5mN_2o7wNuIw-rnOyJ1UadFdrFyE_R7qbOGRCds_ePwGWNcrerPoXGIizhFsx5A5Yuunf3D9MoSztEnaWi5iUN0b8_HUoX9UA9Z_Mn0cy8nAdH_jptemuw6s1Ecl7P6zosmHwDVn6RB27Cd52QoZIsKSxxiI3gfvYfALkscjQJS1cY1nDXL0PcLXT-Ur6SCitAHqtIwqDIDcEC6eYjM1QDk5HbCmRpiOdffSFPE7LX0RY897pPl9eBz6MQaPQ_yyDWPA5ZJKVOMsaNZToxImp3dESZlFbEimvR1oKF2ibWMjTpVIhVw6PMtJUIt6GR44fsAMmSUCojqJSJZWGCD5bFWURxFXPLmW7CyUSmqfYk4y7XxSBFZ8PJP53JvwlH077vNbXGn71ak6lJ_fIapTNlaMLhtBkXhrvtkLkpxlUfVmXcwj7J3JROR3PU2vMt-dtrRbGNb6HlI3b_H3wPlqmDuDhUoGhBo_wcm320UUp1AIu8d3Xg1RFrV_3OD_Nw7W4
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fTxQxEJ4QfFAfjIrGU5Qa4MGHDUu3-6MPhhDgPIQjJh4Jb2vbbcHkbhe9ReGf4m9kprt7xyXGN57aTbvZzbTTzky_fgOwobnTuKvLQPIiQwfFuUASyNEmnEvNEywp3jE8SQan4utZfLYEt91dGIJVdmuiX6iLylCMfAvtbk7OgNzeufwVUNYoOl3tUmg00-LI3vxFl236-XAfx3eT8_7BaG8QtFkFAoPeWB0kJksiEStl0kJk1gmTWhmH2ybmQiknE50ZGRopIuNS5wQaODrCR5vFhQ01kS_hkv9IRLiT0830_pdZTCeMUEO4bFhQsT3cmiiKsaBWicV9b27MLkIx7-1t_efwrDVK2W4zi17Aki1fwtN7VIUrcN2kf_DjyCrHCB8SfJvfOmB7VYkGaE2VSQOu_WMZnXmX5_UF88gE9t3HLcZVaRlW2EE5tRM9tgUbekinZS3b6zkbddSy01dw-iDyfQ3LJf7IG2BFGiltJVcqdSJKsRBFUsQc14zMZcL04FMn09y0lOaUWWOco2tD8s_n8u_B-qzvZUPk8c9eq93Q5K0yT_P51OvBx1kzqiGdrajSVle-j_D5vbBPujCks68RkfdiS_nzwhN641toZ8m3___4GjwejIbH-fHhydE7eMIJXEN4RLkKy_XvK_seraNaf_BTksGPh9aBO2efJ-w
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB6hRaraA6IvdSlQV20PPUQbHOfhQ4Uo7ApKWa1akLiltmMD0m5C2VDgr_HrOpPHLitVvXGyIztKZM_YM-PP3wB81Nxp3NWlJ3mWoIPinCcJ5GgjzqXmEZYU7zgaRvsn4ttpeLoE9-1dGIJVtmtitVBnhaEYeQ_tbk7OgNzquQYWMdobbF_-9iiDFJ20tuk0ahE5tHc36L5Nvxzs4Vx_4nzQP97d95oMA55Bz6z0IpNEgQiVMnEmEuuEia0M_S0TcqGUk5FOjPSNFIFxsXMCjR0d4KNNwsz6moiYcPlfjskr6sDy1_5w9GMW4fED1Bcua07UIJB-b6Io4oI6JhZ3wblpuwjMfLDTDVZhpTFR2U4tU89hyeYv4NkD4sKXcFsng6hmlRWOEVrEG83vILDdIkdztKTKpIba_rGMTsDzs_KcVTgF9rOKYoyL3DKssH4-tRM9thk7qgCeljXcr2fsuCWanb6Ck0cZ4dfQyfFH3gDL4kBpK7lSsRNBjIXIoizkuIIkLhGmC5_bMU1NQ3BOeTbGKTo6NP7pfPy78GHW97Km9fhnr_V2atJGtafpXBC78H7WjEpJJy0qt8V11UdU2b6wT7wwpbOvEa33Ykt-cV7Re-NbaHXJtf9__B08QflPvx8MD9_CU05IGwInynXolFfXdgNNpVJvNjLJ4Ndjq8FfoWItfg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Computation+of+High-Performance+Concrete+Compressive+Strength+Using+Standalone+and+Ensembled+Machine+Learning+Techniques&rft.jtitle=Materials&rft.au=Xu%2C+Yue&rft.au=Ahmad%2C+Waqas&rft.au=Ayaz%2C+Ahmad&rft.au=Ostrowski%2C+Krzysztof+Adam&rft.date=2021-11-19&rft.pub=MDPI+AG&rft.eissn=1996-1944&rft.volume=14&rft.issue=22&rft.spage=7034&rft_id=info:doi/10.3390%2Fma14227034&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1996-1944&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1996-1944&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1996-1944&client=summon