Computation of High-Performance Concrete Compressive Strength Using Standalone and Ensembled Machine Learning Techniques
The current trend in modern research revolves around novel techniques that can predict the characteristics of materials without consuming time, effort, and experimental costs. The adaptation of machine learning techniques to compute the various properties of materials is gaining more attention. This...
Saved in:
Published in | Materials Vol. 14; no. 22; p. 7034 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
19.11.2021
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The current trend in modern research revolves around novel techniques that can predict the characteristics of materials without consuming time, effort, and experimental costs. The adaptation of machine learning techniques to compute the various properties of materials is gaining more attention. This study aims to use both standalone and ensemble machine learning techniques to forecast the 28-day compressive strength of high-performance concrete. One standalone technique (support vector regression (SVR)) and two ensemble techniques (AdaBoost and random forest) were applied for this purpose. To validate the performance of each technique, coefficient of determination (R2), statistical, and k-fold cross-validation checks were used. Additionally, the contribution of input parameters towards the prediction of results was determined by applying sensitivity analysis. It was proven that all the techniques employed showed improved performance in predicting the outcomes. The random forest model was the most accurate, with an R2 value of 0.93, compared to the support vector regression and AdaBoost models, with R2 values of 0.83 and 0.90, respectively. In addition, statistical and k-fold cross-validation checks validated the random forest model as the best performer based on lower error values. However, the prediction performance of the support vector regression and AdaBoost models was also within an acceptable range. This shows that novel machine learning techniques can be used to predict the mechanical properties of high-performance concrete. |
---|---|
AbstractList | The current trend in modern research revolves around novel techniques that can predict the characteristics of materials without consuming time, effort, and experimental costs. The adaptation of machine learning techniques to compute the various properties of materials is gaining more attention. This study aims to use both standalone and ensemble machine learning techniques to forecast the 28-day compressive strength of high-performance concrete. One standalone technique (support vector regression (SVR)) and two ensemble techniques (AdaBoost and random forest) were applied for this purpose. To validate the performance of each technique, coefficient of determination (R2), statistical, and k-fold cross-validation checks were used. Additionally, the contribution of input parameters towards the prediction of results was determined by applying sensitivity analysis. It was proven that all the techniques employed showed improved performance in predicting the outcomes. The random forest model was the most accurate, with an R2 value of 0.93, compared to the support vector regression and AdaBoost models, with R2 values of 0.83 and 0.90, respectively. In addition, statistical and k-fold cross-validation checks validated the random forest model as the best performer based on lower error values. However, the prediction performance of the support vector regression and AdaBoost models was also within an acceptable range. This shows that novel machine learning techniques can be used to predict the mechanical properties of high-performance concrete. The current trend in modern research revolves around novel techniques that can predict the characteristics of materials without consuming time, effort, and experimental costs. The adaptation of machine learning techniques to compute the various properties of materials is gaining more attention. This study aims to use both standalone and ensemble machine learning techniques to forecast the 28-day compressive strength of high-performance concrete. One standalone technique (support vector regression (SVR)) and two ensemble techniques (AdaBoost and random forest) were applied for this purpose. To validate the performance of each technique, coefficient of determination (R2), statistical, and k-fold cross-validation checks were used. Additionally, the contribution of input parameters towards the prediction of results was determined by applying sensitivity analysis. It was proven that all the techniques employed showed improved performance in predicting the outcomes. The random forest model was the most accurate, with an R2 value of 0.93, compared to the support vector regression and AdaBoost models, with R2 values of 0.83 and 0.90, respectively. In addition, statistical and k-fold cross-validation checks validated the random forest model as the best performer based on lower error values. However, the prediction performance of the support vector regression and AdaBoost models was also within an acceptable range. This shows that novel machine learning techniques can be used to predict the mechanical properties of high-performance concrete.The current trend in modern research revolves around novel techniques that can predict the characteristics of materials without consuming time, effort, and experimental costs. The adaptation of machine learning techniques to compute the various properties of materials is gaining more attention. This study aims to use both standalone and ensemble machine learning techniques to forecast the 28-day compressive strength of high-performance concrete. One standalone technique (support vector regression (SVR)) and two ensemble techniques (AdaBoost and random forest) were applied for this purpose. To validate the performance of each technique, coefficient of determination (R2), statistical, and k-fold cross-validation checks were used. Additionally, the contribution of input parameters towards the prediction of results was determined by applying sensitivity analysis. It was proven that all the techniques employed showed improved performance in predicting the outcomes. The random forest model was the most accurate, with an R2 value of 0.93, compared to the support vector regression and AdaBoost models, with R2 values of 0.83 and 0.90, respectively. In addition, statistical and k-fold cross-validation checks validated the random forest model as the best performer based on lower error values. However, the prediction performance of the support vector regression and AdaBoost models was also within an acceptable range. This shows that novel machine learning techniques can be used to predict the mechanical properties of high-performance concrete. The current trend in modern research revolves around novel techniques that can predict the characteristics of materials without consuming time, effort, and experimental costs. The adaptation of machine learning techniques to compute the various properties of materials is gaining more attention. This study aims to use both standalone and ensemble machine learning techniques to forecast the 28-day compressive strength of high-performance concrete. One standalone technique (support vector regression (SVR)) and two ensemble techniques (AdaBoost and random forest) were applied for this purpose. To validate the performance of each technique, coefficient of determination (R 2 ), statistical, and k-fold cross-validation checks were used. Additionally, the contribution of input parameters towards the prediction of results was determined by applying sensitivity analysis. It was proven that all the techniques employed showed improved performance in predicting the outcomes. The random forest model was the most accurate, with an R 2 value of 0.93, compared to the support vector regression and AdaBoost models, with R 2 values of 0.83 and 0.90, respectively. In addition, statistical and k-fold cross-validation checks validated the random forest model as the best performer based on lower error values. However, the prediction performance of the support vector regression and AdaBoost models was also within an acceptable range. This shows that novel machine learning techniques can be used to predict the mechanical properties of high-performance concrete. |
Author | Joyklad, Panuwat Ostrowski, Krzysztof Adam Dudek, Marta Aslam, Fahid Ahmad, Waqas Ahmad, Ayaz Xu, Yue |
AuthorAffiliation | 2 Department of Civil Engineering, COMSATS University Islamabad, Abbottabad 22060, Pakistan; ayazahmad@cuiatd.edu.pk 4 Department of Civil Engineering, College of Engineering in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia; f.aslam@psau.edu.sa 5 Department of Civil and Environmental Engineering, Faculty of Engineering, Srinakharinwirot University, Nakhonnayok 26120, Thailand; panuwatj@g.swu.ac.th 1 School of Civil Engineering, Southwest Jiaotong University, Chengdu 610031, China 3 Faculty of Civil Engineering, Cracow University of Technology, 24 Warszawska Street, 31-155 Cracow, Poland; krzysztof.ostroski.1@pk.edu.pl (K.A.O.); marta.dudek@pk.edu.pl (M.D.) |
AuthorAffiliation_xml | – name: 1 School of Civil Engineering, Southwest Jiaotong University, Chengdu 610031, China – name: 5 Department of Civil and Environmental Engineering, Faculty of Engineering, Srinakharinwirot University, Nakhonnayok 26120, Thailand; panuwatj@g.swu.ac.th – name: 3 Faculty of Civil Engineering, Cracow University of Technology, 24 Warszawska Street, 31-155 Cracow, Poland; krzysztof.ostroski.1@pk.edu.pl (K.A.O.); marta.dudek@pk.edu.pl (M.D.) – name: 2 Department of Civil Engineering, COMSATS University Islamabad, Abbottabad 22060, Pakistan; ayazahmad@cuiatd.edu.pk – name: 4 Department of Civil Engineering, College of Engineering in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia; f.aslam@psau.edu.sa |
Author_xml | – sequence: 1 givenname: Yue surname: Xu fullname: Xu, Yue – sequence: 2 givenname: Waqas orcidid: 0000-0002-1668-7607 surname: Ahmad fullname: Ahmad, Waqas – sequence: 3 givenname: Ayaz orcidid: 0000-0002-0312-2965 surname: Ahmad fullname: Ahmad, Ayaz – sequence: 4 givenname: Krzysztof Adam surname: Ostrowski fullname: Ostrowski, Krzysztof Adam – sequence: 5 givenname: Marta orcidid: 0000-0003-0658-6922 surname: Dudek fullname: Dudek, Marta – sequence: 6 givenname: Fahid orcidid: 0000-0003-2863-3283 surname: Aslam fullname: Aslam, Fahid – sequence: 7 givenname: Panuwat orcidid: 0000-0003-1069-1653 surname: Joyklad fullname: Joyklad, Panuwat |
BookMark | eNptkV1L5DAYhcOirK56s7-gsDciVPM1neRGkEFXYURBvQ5p-mYaaZMxaUX_vSkj7irmJudNnhxOOL_Qlg8eEPpN8DFjEp_0mnBK55jxH2iXSFmVRHK-9Z_eQQcpPeK8GCOCyp9oh3HBKGd0F70sQr8eBz244Itgi0u3astbiDbEXnsDxSJ4E2GYRL-OkJJ7huJuiOBXQ1s8JOdXedS-0V0OVmRRnPsEfd1BU1xr07p8ugQd_UTeg2m9exoh7aNtq7sEB-_7Hnq4OL9fXJbLm79Xi7NlaZhgQ1kZUTE-09rMGy7AcjMHOcPEzCjX2sqqFkZiIzkzdm4tl4zWLI8gZg3gWrI9dLrxXY91D40BP0TdqXV0vY6vKminPt9416pVeFaiIoLQyeDw3SCGKfigepcMdJ32EMakaIU5piTjGf3zBX0MY_T5exNFCcdETtTRhjIxpBTBfoQhWE2dqn-dZhh_gY3btJXDuu67J2_s66ZD |
CitedBy_id | crossref_primary_10_1016_j_jobe_2023_106595 crossref_primary_10_3390_polym14183906 crossref_primary_10_1371_journal_pone_0303101 crossref_primary_10_3390_ma15113762 crossref_primary_10_1080_19648189_2024_2335343 crossref_primary_10_1016_j_jmrt_2023_02_057 crossref_primary_10_1016_j_jmrt_2023_04_223 crossref_primary_10_3390_ma15103478 crossref_primary_10_3390_polym14153065 crossref_primary_10_3390_ma15217800 crossref_primary_10_1016_j_istruc_2024_106285 crossref_primary_10_1016_j_cscm_2023_e02723 crossref_primary_10_3390_polym14010030 crossref_primary_10_3389_fmats_2023_1187094 crossref_primary_10_3390_ma15134512 crossref_primary_10_3389_fmats_2022_1091867 crossref_primary_10_3390_ma15082823 crossref_primary_10_1038_s41598_024_79502_z crossref_primary_10_3390_buildings14123851 crossref_primary_10_3390_ma15103523 crossref_primary_10_1016_j_cscm_2024_e03849 crossref_primary_10_32604_cmes_2023_043384 crossref_primary_10_1016_j_asoc_2024_111956 crossref_primary_10_1016_j_cscm_2022_e01620 crossref_primary_10_3390_ma15196928 crossref_primary_10_1016_j_cscm_2024_e02991 crossref_primary_10_3390_ma16165711 crossref_primary_10_1007_s42107_023_00614_4 crossref_primary_10_3390_polym14102128 crossref_primary_10_1155_adce_3403677 crossref_primary_10_1007_s41939_025_00812_4 crossref_primary_10_3390_ma15207344 crossref_primary_10_1016_j_mtcomm_2024_109922 crossref_primary_10_3390_ma15124194 crossref_primary_10_7717_peerj_cs_1853 crossref_primary_10_1038_s41598_025_92253_9 crossref_primary_10_3390_infrastructures7020024 crossref_primary_10_1016_j_clema_2023_100211 crossref_primary_10_1016_j_heliyon_2024_e39679 crossref_primary_10_1007_s44290_025_00204_0 crossref_primary_10_1007_s12008_024_01812_3 crossref_primary_10_3390_su132413663 crossref_primary_10_1016_j_cose_2023_103511 crossref_primary_10_1016_j_mtcomm_2023_107778 crossref_primary_10_1016_j_mtcomm_2024_108804 crossref_primary_10_1007_s41939_023_00308_z crossref_primary_10_1007_s41024_024_00445_z crossref_primary_10_1016_j_istruc_2023_04_050 crossref_primary_10_1016_j_conbuildmat_2023_133540 crossref_primary_10_1016_j_mtcomm_2023_107894 crossref_primary_10_3390_ma15072400 crossref_primary_10_1016_j_cscm_2022_e01243 crossref_primary_10_3390_ma15124108 crossref_primary_10_1016_j_jobe_2023_107325 crossref_primary_10_1016_j_mtcomm_2024_110558 crossref_primary_10_1016_j_mtcomm_2023_106283 crossref_primary_10_1016_j_jobe_2023_107527 |
Cites_doi | 10.1108/SS-06-2013-0023 10.1016/j.jobe.2021.102544 10.3390/app10207330 10.1016/j.cemconres.2018.04.007 10.1061/(ASCE)0899-1561(2006)18:4(597) 10.1016/j.cemconcomp.2018.07.002 10.1016/j.jclepro.2021.126032 10.1016/j.autcon.2021.103936 10.3390/ma14040794 10.1016/j.engstruct.2019.110122 10.3390/ma14154222 10.1016/j.asej.2011.06.001 10.3390/ma14061472 10.3390/ma14143829 10.1016/j.advengsoft.2015.05.007 10.3390/ma14195762 10.3390/buildings11080324 10.3390/ma14164518 10.1016/0008-8846(94)00128-L 10.1016/j.conbuildmat.2020.119296 10.1016/j.asej.2017.04.005 10.1016/j.jobe.2019.101053 10.3390/ma14092297 10.12989/cac.2015.16.6.919 10.3390/cryst11070779 10.1016/j.conbuildmat.2020.119889 10.1155/2020/8850535 10.1016/j.asej.2021.08.006 10.1016/j.conbuildmat.2016.08.111 10.1016/S0008-8846(98)00165-3 10.1016/j.conbuildmat.2021.125021 10.1016/j.asoc.2020.106552 10.1016/j.engfailanal.2020.104637 10.1016/j.asej.2021.04.008 10.1002/suco.202100213 10.3390/ma13051075 10.1016/j.conbuildmat.2019.01.103 |
ContentType | Journal Article |
Copyright | 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2021 by the authors. 2021 |
Copyright_xml | – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2021 by the authors. 2021 |
DBID | AAYXX CITATION 7SR 8FD 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU D1I DWQXO HCIFZ JG9 KB. PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM |
DOI | 10.3390/ma14227034 |
DatabaseName | CrossRef Engineered Materials Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Materials Science & Engineering ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One ProQuest Materials Science Collection ProQuest Central SciTech Premium Collection Materials Research Database Materials Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials Materials Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Engineered Materials Abstracts ProQuest Central Korea Materials Science Database ProQuest Central (New) ProQuest Materials Science Collection ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1996-1944 |
ExternalDocumentID | PMC8618129 10_3390_ma14227034 |
GroupedDBID | 29M 2WC 2XV 53G 5GY 5VS 8FE 8FG AADQD AAFWJ AAHBH AAYXX ABDBF ABJCF ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS AOIJS BCNDV BENPR BGLVJ CCPQU CITATION CZ9 D1I E3Z EBS ESX FRP GX1 HCIFZ HH5 HYE I-F IAO ITC KB. KC. KQ8 MK~ MODMG M~E OK1 OVT P2P PDBOC PGMZT PHGZM PHGZT PIMPY PROAC RPM TR2 TUS 7SR 8FD ABUWG AZQEC DWQXO JG9 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM |
ID | FETCH-LOGICAL-c383t-6c86345aac7d48ef4c7e9501c524aaf96b8c90c943cf7ff4932b3c94e85de0b93 |
IEDL.DBID | BENPR |
ISSN | 1996-1944 |
IngestDate | Thu Aug 21 18:25:04 EDT 2025 Fri Jul 11 00:50:58 EDT 2025 Fri Jul 25 11:50:16 EDT 2025 Thu Apr 24 23:01:56 EDT 2025 Tue Jul 01 03:41:55 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 22 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c383t-6c86345aac7d48ef4c7e9501c524aaf96b8c90c943cf7ff4932b3c94e85de0b93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-0658-6922 0000-0003-1069-1653 0000-0002-1668-7607 0000-0002-0312-2965 0000-0003-2863-3283 |
OpenAccessLink | https://www.proquest.com/docview/2602140191?pq-origsite=%requestingapplication% |
PMID | 34832432 |
PQID | 2602140191 |
PQPubID | 2032366 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8618129 proquest_miscellaneous_2604021861 proquest_journals_2602140191 crossref_primary_10_3390_ma14227034 crossref_citationtrail_10_3390_ma14227034 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20211119 |
PublicationDateYYYYMMDD | 2021-11-19 |
PublicationDate_xml | – month: 11 year: 2021 text: 20211119 day: 19 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Materials |
PublicationYear | 2021 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Gandomi (ref_42) 2015; 88 Sun (ref_33) 2021; 43 Ahmad (ref_12) 2021; 15 Yeh (ref_39) 1998; 28 Pedro (ref_17) 2018; 93 DeRousseau (ref_32) 2018; 109 Khan (ref_5) 2019; 203 ref_36 Alexandridis (ref_29) 2015; 16 ref_34 Dalvand (ref_11) 2021; 24 Uva (ref_14) 2014; 32 Ahmad (ref_9) 2021; 15 Li (ref_18) 2020; 255 Shaker (ref_8) 2018; 9 Song (ref_31) 2021; 308 ref_16 ref_38 ref_37 Salimi (ref_13) 2020; 28 Khan (ref_4) 2016; 125 Chaabene (ref_30) 2020; 260 Sangiorgio (ref_15) 2020; 115 Yeh (ref_40) 2003; 15 ref_25 ref_24 ref_46 ref_23 ref_22 Yeh (ref_41) 2006; 18 ref_43 ref_20 Aslam (ref_45) 2020; 2020 Molay (ref_2) 2019; 22 Mangi (ref_1) 2019; 22 ref_3 Abuodeh (ref_35) 2020; 95 ref_27 Ruggieri (ref_28) 2021; 132 ref_26 Semendary (ref_19) 2020; 205 Mohamed (ref_10) 2011; 2 Khatri (ref_21) 1995; 25 Farooq (ref_44) 2021; 292 ref_7 ref_6 |
References_xml | – volume: 32 start-page: 189 year: 2014 ident: ref_14 article-title: The assessment of structural concretes during construction phases publication-title: Struct. Surv. doi: 10.1108/SS-06-2013-0023 – volume: 43 start-page: 102544 year: 2021 ident: ref_33 article-title: Machine learning-aided design and prediction of cementitious composites containing graphite and slag powder publication-title: J. Build. Eng. doi: 10.1016/j.jobe.2021.102544 – ident: ref_46 doi: 10.3390/app10207330 – volume: 15 start-page: e00683 year: 2021 ident: ref_9 article-title: A scientometric review of waste material utilization in concrete for sustainable construction publication-title: Case Stud. Constr. Mater. – volume: 109 start-page: 42 year: 2018 ident: ref_32 article-title: Computational design optimization of concrete mixtures: A review publication-title: Cem. Concr. Res. doi: 10.1016/j.cemconres.2018.04.007 – volume: 18 start-page: 597 year: 2006 ident: ref_41 article-title: Analysis of strength of concrete using design of experiments and neural networks publication-title: J. Mater. Civ. Eng. doi: 10.1061/(ASCE)0899-1561(2006)18:4(597) – volume: 93 start-page: 63 year: 2018 ident: ref_17 article-title: Durability performance of high-performance concrete made with recycled aggregates, fly ash and densified silica fume publication-title: Cem. Concr. Compos. doi: 10.1016/j.cemconcomp.2018.07.002 – volume: 292 start-page: 126032 year: 2021 ident: ref_44 article-title: Predictive modeling for sustainable high-performance concrete from industrial wastes: A comparison and optimization of models using ensemble learners publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2021.126032 – volume: 132 start-page: 103936 year: 2021 ident: ref_28 article-title: Machine-learning based vulnerability analysis of existing buildings publication-title: Autom. Constr. doi: 10.1016/j.autcon.2021.103936 – ident: ref_22 doi: 10.3390/ma14040794 – ident: ref_16 – volume: 205 start-page: 110122 year: 2020 ident: ref_19 article-title: Shear friction performance between high strength concrete (HSC) and ultra high performance concrete (UHPC) for bridge connection applications publication-title: Eng. Struct. doi: 10.1016/j.engstruct.2019.110122 – ident: ref_24 doi: 10.3390/ma14154222 – volume: 2 start-page: 79 year: 2011 ident: ref_10 article-title: Effect of fly ash and silica fume on compressive strength of self-compacting concrete under different curing conditions publication-title: Ain Shams Eng. J. doi: 10.1016/j.asej.2011.06.001 – ident: ref_20 doi: 10.3390/ma14061472 – ident: ref_37 doi: 10.3390/ma14143829 – volume: 22 start-page: 1116 year: 2019 ident: ref_2 article-title: Mechanical and physical performances of concretes made from crushed sands of different geological nature subjected to high temperatures publication-title: Eng. Sci. Technol. Int. J. – volume: 88 start-page: 63 year: 2015 ident: ref_42 article-title: Assessment of artificial neural network and genetic programming as predictive tools publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2015.05.007 – ident: ref_6 doi: 10.3390/ma14195762 – ident: ref_36 doi: 10.3390/buildings11080324 – ident: ref_34 doi: 10.3390/ma14164518 – volume: 25 start-page: 209 year: 1995 ident: ref_21 article-title: Effect of different supplementary cementitious materials on mechanical properties of high performance concrete publication-title: Cem. Concr. Res. doi: 10.1016/0008-8846(94)00128-L – volume: 255 start-page: 119296 year: 2020 ident: ref_18 article-title: Durability of ultra-high performance concrete—A review publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2020.119296 – volume: 9 start-page: 2301 year: 2018 ident: ref_8 article-title: Properties of concrete incorporating locally produced Portland limestone cement publication-title: Ain Shams Eng. J. doi: 10.1016/j.asej.2017.04.005 – volume: 28 start-page: 101053 year: 2020 ident: ref_13 article-title: Studying the effect of low reactivity metakaolin on free and restrained shrinkage of high performance concrete publication-title: J. Build. Eng. doi: 10.1016/j.jobe.2019.101053 – ident: ref_23 doi: 10.3390/ma14092297 – volume: 16 start-page: 919 year: 2015 ident: ref_29 article-title: Non-destructive assessment of the three-point-bending strength of mortar beams using radial basis function neural networks publication-title: Comput. Concr. doi: 10.12989/cac.2015.16.6.919 – ident: ref_25 doi: 10.3390/cryst11070779 – volume: 260 start-page: 119889 year: 2020 ident: ref_30 article-title: Machine learning prediction of mechanical properties of concrete: Critical review publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2020.119889 – volume: 2020 start-page: 8850535 year: 2020 ident: ref_45 article-title: Applications of gene expression programming for estimating compressive strength of high-strength concrete publication-title: Adv. Civ. Eng. doi: 10.1155/2020/8850535 – volume: 15 start-page: 659 year: 2003 ident: ref_40 article-title: Prediction of strength of fly ash and slag concrete by the use of artificial neural networks publication-title: J. Chin. Inst. Civil Hydraul. Eng. – ident: ref_7 doi: 10.1016/j.asej.2021.08.006 – volume: 125 start-page: 800 year: 2016 ident: ref_4 article-title: Use of glass and nylon fibers in concrete for controlling early age micro cracking in bridge decks publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2016.08.111 – volume: 28 start-page: 1797 year: 1998 ident: ref_39 article-title: Modeling of strength of high-performance concrete using artificial neural networks publication-title: Cem. Concr. Res. doi: 10.1016/S0008-8846(98)00165-3 – volume: 15 start-page: e00698 year: 2021 ident: ref_12 article-title: Sustainable approach of using sugarcane bagasse ash in cement-based composites: A systematic review publication-title: Case Stud. Constr. Mater. – volume: 308 start-page: 125021 year: 2021 ident: ref_31 article-title: Predicting the compressive strength of concrete with fly ash admixture using machine learning algorithms publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2021.125021 – volume: 95 start-page: 106552 year: 2020 ident: ref_35 article-title: Assessment of compressive strength of Ultra-high Performance Concrete using deep machine learning techniques publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2020.106552 – volume: 115 start-page: 104637 year: 2020 ident: ref_15 article-title: Failure analysis of reinforced concrete elevated storage tanks publication-title: Eng. Fail. Anal. doi: 10.1016/j.engfailanal.2020.104637 – ident: ref_38 – ident: ref_27 doi: 10.1016/j.asej.2021.04.008 – ident: ref_43 – ident: ref_26 doi: 10.1002/suco.202100213 – volume: 24 start-page: 736 year: 2021 ident: ref_11 article-title: Impact failure mechanism and mechanical characteristics of steel fiber reinforced self-compacting cementitious composites containing silica fume publication-title: Eng. Sci. Technol. Int. J. – ident: ref_3 doi: 10.3390/ma13051075 – volume: 22 start-page: 929 year: 2019 ident: ref_1 article-title: Performances of concrete containing coal bottom ash with different fineness as a supplementary cementitious material exposed to seawater publication-title: Eng. Sci. Technol. Int. J. – volume: 203 start-page: 174 year: 2019 ident: ref_5 article-title: Improvement in concrete behavior with fly ash, silica-fume and coconut fibres publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2019.01.103 |
SSID | ssj0000331829 |
Score | 2.5355184 |
Snippet | The current trend in modern research revolves around novel techniques that can predict the characteristics of materials without consuming time, effort, and... |
SourceID | pubmedcentral proquest crossref |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database |
StartPage | 7034 |
SubjectTerms | Accuracy Algorithms Cement Compressive strength Concrete Decision trees Machine learning Material properties Mechanical properties Parameter sensitivity Performance evaluation Performance prediction Regression Sensitivity analysis Software Statistical analysis Support vector machines Variables |
Title | Computation of High-Performance Concrete Compressive Strength Using Standalone and Ensembled Machine Learning Techniques |
URI | https://www.proquest.com/docview/2602140191 https://www.proquest.com/docview/2604021861 https://pubmed.ncbi.nlm.nih.gov/PMC8618129 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS8MwED90vuiD-InTKRF98aG4pWmbPInKpgiK-AF7K0maqLC16jrxz_fSZpsD8akJSUm5XJK7y6-_AzhW1Co81UUgaMbRQbE2EA7kaGJKhaIxPl284_Yuvn5mN_2o7wNuIw-rnOyJ1UadFdrFyE_R7qbOGRCds_ePwGWNcrerPoXGIizhFsx5A5Yuunf3D9MoSztEnaWi5iUN0b8_HUoX9UA9Z_Mn0cy8nAdH_jptemuw6s1Ecl7P6zosmHwDVn6RB27Cd52QoZIsKSxxiI3gfvYfALkscjQJS1cY1nDXL0PcLXT-Ur6SCitAHqtIwqDIDcEC6eYjM1QDk5HbCmRpiOdffSFPE7LX0RY897pPl9eBz6MQaPQ_yyDWPA5ZJKVOMsaNZToxImp3dESZlFbEimvR1oKF2ibWMjTpVIhVw6PMtJUIt6GR44fsAMmSUCojqJSJZWGCD5bFWURxFXPLmW7CyUSmqfYk4y7XxSBFZ8PJP53JvwlH077vNbXGn71ak6lJ_fIapTNlaMLhtBkXhrvtkLkpxlUfVmXcwj7J3JROR3PU2vMt-dtrRbGNb6HlI3b_H3wPlqmDuDhUoGhBo_wcm320UUp1AIu8d3Xg1RFrV_3OD_Nw7W4 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fTxQxEJ4QfFAfjIrGU5Qa4MGHDUu3-6MPhhDgPIQjJh4Jb2vbbcHkbhe9ReGf4m9kprt7xyXGN57aTbvZzbTTzky_fgOwobnTuKvLQPIiQwfFuUASyNEmnEvNEywp3jE8SQan4utZfLYEt91dGIJVdmuiX6iLylCMfAvtbk7OgNzeufwVUNYoOl3tUmg00-LI3vxFl236-XAfx3eT8_7BaG8QtFkFAoPeWB0kJksiEStl0kJk1gmTWhmH2ybmQiknE50ZGRopIuNS5wQaODrCR5vFhQ01kS_hkv9IRLiT0830_pdZTCeMUEO4bFhQsT3cmiiKsaBWicV9b27MLkIx7-1t_efwrDVK2W4zi17Aki1fwtN7VIUrcN2kf_DjyCrHCB8SfJvfOmB7VYkGaE2VSQOu_WMZnXmX5_UF88gE9t3HLcZVaRlW2EE5tRM9tgUbekinZS3b6zkbddSy01dw-iDyfQ3LJf7IG2BFGiltJVcqdSJKsRBFUsQc14zMZcL04FMn09y0lOaUWWOco2tD8s_n8u_B-qzvZUPk8c9eq93Q5K0yT_P51OvBx1kzqiGdrajSVle-j_D5vbBPujCks68RkfdiS_nzwhN641toZ8m3___4GjwejIbH-fHhydE7eMIJXEN4RLkKy_XvK_seraNaf_BTksGPh9aBO2efJ-w |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB6hRaraA6IvdSlQV20PPUQbHOfhQ4Uo7ApKWa1akLiltmMD0m5C2VDgr_HrOpPHLitVvXGyIztKZM_YM-PP3wB81Nxp3NWlJ3mWoIPinCcJ5GgjzqXmEZYU7zgaRvsn4ttpeLoE9-1dGIJVtmtitVBnhaEYeQ_tbk7OgNzquQYWMdobbF_-9iiDFJ20tuk0ahE5tHc36L5Nvxzs4Vx_4nzQP97d95oMA55Bz6z0IpNEgQiVMnEmEuuEia0M_S0TcqGUk5FOjPSNFIFxsXMCjR0d4KNNwsz6moiYcPlfjskr6sDy1_5w9GMW4fED1Bcua07UIJB-b6Io4oI6JhZ3wblpuwjMfLDTDVZhpTFR2U4tU89hyeYv4NkD4sKXcFsng6hmlRWOEVrEG83vILDdIkdztKTKpIba_rGMTsDzs_KcVTgF9rOKYoyL3DKssH4-tRM9thk7qgCeljXcr2fsuCWanb6Ck0cZ4dfQyfFH3gDL4kBpK7lSsRNBjIXIoizkuIIkLhGmC5_bMU1NQ3BOeTbGKTo6NP7pfPy78GHW97Km9fhnr_V2atJGtafpXBC78H7WjEpJJy0qt8V11UdU2b6wT7wwpbOvEa33Ykt-cV7Re-NbaHXJtf9__B08QflPvx8MD9_CU05IGwInynXolFfXdgNNpVJvNjLJ4Ndjq8FfoWItfg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Computation+of+High-Performance+Concrete+Compressive+Strength+Using+Standalone+and+Ensembled+Machine+Learning+Techniques&rft.jtitle=Materials&rft.au=Xu%2C+Yue&rft.au=Ahmad%2C+Waqas&rft.au=Ayaz%2C+Ahmad&rft.au=Ostrowski%2C+Krzysztof+Adam&rft.date=2021-11-19&rft.pub=MDPI+AG&rft.eissn=1996-1944&rft.volume=14&rft.issue=22&rft.spage=7034&rft_id=info:doi/10.3390%2Fma14227034&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1996-1944&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1996-1944&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1996-1944&client=summon |