Influence of the fluid structure on the binding potential: Comparing liquid drop profiles from density functional theory with results from mesoscopic theory

For a film of liquid on a solid surface, the binding potential g(h) gives the free energy as a function of the film thickness h and also the closely related (structural) disjoining pressure Π=-∂g/∂h. The wetting behaviour of the liquid is encoded in the binding potential and the equilibrium film thi...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of chemical physics Vol. 146; no. 6; p. 064705
Main Authors Hughes, Adam P, Thiele, Uwe, Archer, Andrew J
Format Journal Article
LanguageEnglish
Published United States 14.02.2017
Online AccessGet more information

Cover

Loading…
Abstract For a film of liquid on a solid surface, the binding potential g(h) gives the free energy as a function of the film thickness h and also the closely related (structural) disjoining pressure Π=-∂g/∂h. The wetting behaviour of the liquid is encoded in the binding potential and the equilibrium film thickness corresponds to the value at the minimum of g(h). Here, the method we developed in the work of Hughes et al. [J. Chem. Phys. 142, 074702 (2015)], and applied with a simple discrete lattice-gas model, is used with continuum density functional theory (DFT) to calculate the binding potential for a Lennard-Jones fluid and other simple liquids. The DFT used is based on fundamental measure theory and so incorporates the influence of the layered packing of molecules at the surface and the corresponding oscillatory density profile. The binding potential is frequently input in mesoscale models from which liquid drop shapes and even dynamics can be calculated. Here we show that the equilibrium droplet profiles calculated using the mesoscale theory are in good agreement with the profiles calculated directly from the microscopic DFT. For liquids composed of particles where the range of the attraction is much less than the diameter of the particles, we find that at low temperatures g(h) decays in an oscillatory fashion with increasing h, leading to highly structured terraced liquid droplets.
AbstractList For a film of liquid on a solid surface, the binding potential g(h) gives the free energy as a function of the film thickness h and also the closely related (structural) disjoining pressure Π=-∂g/∂h. The wetting behaviour of the liquid is encoded in the binding potential and the equilibrium film thickness corresponds to the value at the minimum of g(h). Here, the method we developed in the work of Hughes et al. [J. Chem. Phys. 142, 074702 (2015)], and applied with a simple discrete lattice-gas model, is used with continuum density functional theory (DFT) to calculate the binding potential for a Lennard-Jones fluid and other simple liquids. The DFT used is based on fundamental measure theory and so incorporates the influence of the layered packing of molecules at the surface and the corresponding oscillatory density profile. The binding potential is frequently input in mesoscale models from which liquid drop shapes and even dynamics can be calculated. Here we show that the equilibrium droplet profiles calculated using the mesoscale theory are in good agreement with the profiles calculated directly from the microscopic DFT. For liquids composed of particles where the range of the attraction is much less than the diameter of the particles, we find that at low temperatures g(h) decays in an oscillatory fashion with increasing h, leading to highly structured terraced liquid droplets.
Author Archer, Andrew J
Thiele, Uwe
Hughes, Adam P
Author_xml – sequence: 1
  givenname: Adam P
  surname: Hughes
  fullname: Hughes, Adam P
  organization: Department of Mathematical Sciences, Loughborough University, Loughborough LE11 3TU, United Kingdom
– sequence: 2
  givenname: Uwe
  orcidid: 0000000179899271
  surname: Thiele
  fullname: Thiele, Uwe
  organization: Institut für Theoretische Physik, Westfälische Wilhelms-Universität Münster, Wilhelm Klemm Str. 9, 48149 Münster, Germany
– sequence: 3
  givenname: Andrew J
  orcidid: 0000000247062204
  surname: Archer
  fullname: Archer, Andrew J
  organization: Department of Mathematical Sciences, Loughborough University, Loughborough LE11 3TU, United Kingdom
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28201880$$D View this record in MEDLINE/PubMed
BookMark eNo1kMtOAyEYhYnR2IsufAHDC0yFgTLgzjTekiZudN1wtZgZQGBi-i4-rK3W1cn_nfOfxZmB0xCDBeAKowVGjNzgBRUd5aQ9AVOMuGg6JtAEzEr5QAjhrqXnYNLyFmHO0RR8PwfXjzZoC6ODdWvh_vQGlppHXce8x-EXKx-MD-8wxWpD9bK_has4JJkPsPefhyeTY4IpR-d7W6DLcYDGhuLrDrox6OpjkP2hLeYd_PJ1C7MtY1-P2cGWWHRMXh8zF-DMyb7Yy6POwdvD_evqqVm_PD6v7taNJpzUhjGqBFMGiaWkViFOOmYNN0umsaOOSNW5vUGlkMgJqgiTmBMpncFOMsbbObj-602jGqzZpOwHmXeb_5naHzIabc8
CitedBy_id crossref_primary_10_1080_00268976_2018_1471223
crossref_primary_10_1103_PhysRevE_104_034127
crossref_primary_10_1021_acs_langmuir_7b03096
crossref_primary_10_1103_PhysRevFluids_4_104006
crossref_primary_10_1103_PhysRevLett_124_065702
crossref_primary_10_1017_jfm_2020_1167
crossref_primary_10_1103_PhysRevFluids_8_013902
crossref_primary_10_1063_5_0046587
crossref_primary_10_1080_00268976_2021_2011454
crossref_primary_10_1038_s41467_020_20318_6
crossref_primary_10_1088_1361_648X_aa76fd
crossref_primary_10_1016_j_physa_2019_121905
crossref_primary_10_1016_j_colsurfa_2018_05_049
crossref_primary_10_1080_00018732_2020_1854965
crossref_primary_10_1021_acs_langmuir_8b00513
crossref_primary_10_1021_acs_langmuir_8b01985
crossref_primary_10_1063_1_4990702
crossref_primary_10_1088_1361_648X_ab18e8
crossref_primary_10_1016_j_jcis_2022_11_028
crossref_primary_10_1103_PhysRevE_109_024801
crossref_primary_10_3390_ma14237138
crossref_primary_10_1016_j_jcis_2021_01_060
crossref_primary_10_1017_jfm_2023_176
ContentType Journal Article
DBID NPM
DOI 10.1063/1.4974832
DatabaseName PubMed
DatabaseTitle PubMed
DatabaseTitleList PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Chemistry
Physics
EISSN 1089-7690
ExternalDocumentID 28201880
Genre Journal Article
GroupedDBID ---
-DZ
-ET
-~X
123
1UP
2-P
29K
4.4
53G
5VS
85S
AAAAW
AABDS
AAEUA
AAPUP
AAYIH
ABPPZ
ABRJW
ABZEH
ACBRY
ACLYJ
ACNCT
ACZLF
ADCTM
AEJMO
AENEX
AFATG
AFHCQ
AGKCL
AGLKD
AGMXG
AGTJO
AHSDT
AJJCW
AJQPL
ALEPV
ALMA_UNASSIGNED_HOLDINGS
AQWKA
ATXIE
AWQPM
BDMKI
BPZLN
CS3
D-I
DU5
EBS
EJD
ESX
F5P
FDOHQ
FFFMQ
HAM
M6X
M71
M73
N9A
NPM
NPSNA
O-B
P2P
RIP
RNS
RQS
TN5
TWZ
UPT
WH7
YQT
YZZ
~02
ID FETCH-LOGICAL-c383t-664b96bd095a4eb08376ed8d56c1f4f3ab7fa4e4a9a0f94b36a183aafd1fa6682
IngestDate Sat Sep 28 08:47:44 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c383t-664b96bd095a4eb08376ed8d56c1f4f3ab7fa4e4a9a0f94b36a183aafd1fa6682
ORCID 0000000179899271
0000000247062204
PMID 28201880
ParticipantIDs pubmed_primary_28201880
PublicationCentury 2000
PublicationDate 2017-Feb-14
PublicationDateYYYYMMDD 2017-02-14
PublicationDate_xml – month: 02
  year: 2017
  text: 2017-Feb-14
  day: 14
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle The Journal of chemical physics
PublicationTitleAlternate J Chem Phys
PublicationYear 2017
SSID ssj0001724
Score 2.423386
Snippet For a film of liquid on a solid surface, the binding potential g(h) gives the free energy as a function of the film thickness h and also the closely related...
SourceID pubmed
SourceType Index Database
StartPage 064705
Title Influence of the fluid structure on the binding potential: Comparing liquid drop profiles from density functional theory with results from mesoscopic theory
URI https://www.ncbi.nlm.nih.gov/pubmed/28201880
Volume 146
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1Lj9MwEICtLgjBBcHyfskHblWWdOM6DrdVBVqQWHFopb2t7NhmI7VNoVkh8Vv4DfxGZjx2Uu0CAi5RaztRlflqj8fzYOylsGXuKl9lWsGfXEjlMlNKnblcVVrlbqJDUNiHE3m8EO9Pp6ej0Y8dr6WLzhzU334ZV_I_UoU2kCtGyf6DZPuHQgN8BvnCFSQM17-S8btUYSSd9MPXxo4pJyyeDNBJwNg0FLuyaTt0DtJLtAPMqAIhNC-bz3ib_dJuxrGG95biTiy6t6NPJ6x-yTM9BPOT_Ra26hfLLo5duW2LMS5NHcfs6r1DBFrQfeuUpoAMK9sBrk_nNG8dWb0aYs_m5xgHj-2LrzuMJuDIKzOecEUTBiyLWFCFzAiOpl0gIyslFQ7t5-Vom2yuzLIYIBuCta8uAKBxoS3iQMA-SZHldAeEzSqQcIhqj6IKUn_uvZSLO3Xtsb1S4Xx6grahuO6DKihS7ipZvOp_A-abjvdd2rsEHWZ-h92OAuBHRNJdNnLrfXZzlmr-7bMbH0ke99j3ni3eeg4C5YEt3rPF23Vojmzxnq3XvCeLE1kcyeKJLI608EgWH8jiRA1Hsngki8YOZMUx99ni7Zv57DiLlTyyulBFl0kpTCWNBX1eC2dA7S-ls8pOZT3xwhfalB46hK507ithCqlhqdHa24nXUqrDB-zaul27R4xPdGHttDTe4x2gHWtQsEVeYhKjAh74mD2kV3y2oXQtZ-nlP_ltz1N2a8DyGbvuYX5wz0HZ7MyLIOOfYXSIUQ
link.rule.ids 786
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Influence+of+the+fluid+structure+on+the+binding+potential%3A+Comparing+liquid+drop+profiles+from+density+functional+theory+with+results+from+mesoscopic+theory&rft.jtitle=The+Journal+of+chemical+physics&rft.au=Hughes%2C+Adam+P&rft.au=Thiele%2C+Uwe&rft.au=Archer%2C+Andrew+J&rft.date=2017-02-14&rft.eissn=1089-7690&rft.volume=146&rft.issue=6&rft.spage=064705&rft_id=info:doi/10.1063%2F1.4974832&rft_id=info%3Apmid%2F28201880&rft_id=info%3Apmid%2F28201880&rft.externalDocID=28201880