Iso-seco-tanapartholide activates Nrf2 signaling pathway through Keap1 modification and oligomerization to exert anti-inflammatory effects

Covalent modification of Keap1 results in reducing ubiquitination and the accumulation of Nrf2, which subsequently initiates the transcription of cellular anti-oxidant and anti-inflammatory genes. Iso-seco-tanapartholide (IST), a sesquiterpene isolated from the traditional Chinese medicine Artemisia...

Full description

Saved in:
Bibliographic Details
Published inFree radical biology & medicine Vol. 178; pp. 398 - 412
Main Authors Zhu, Dongrong, Xia, Yuanzheng, Li, Shang, Kong, Min, Chen, Chen, Xue, Guimin, Kong, Lingyi, Luo, Jianguang
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.01.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Covalent modification of Keap1 results in reducing ubiquitination and the accumulation of Nrf2, which subsequently initiates the transcription of cellular anti-oxidant and anti-inflammatory genes. Iso-seco-tanapartholide (IST), a sesquiterpene isolated from the traditional Chinese medicine Artemisia argyi, had been reported to possess NF-κB inhibitory activity. However, its deep anti-inflammatory effects and direct target have never been reported. Here we show that IST activated Nrf2 and increased its target gene expression. In particular, LPS-caused inflammation in vitro and in vivo was mitigated by IST-induced Nrf2 activation but aggravated by Nrf2 inhibition. Mechanically, IST targeted Keap1 proteins via alkylating its cysteine residues 151, 273, 288, and so on. Subsequently, the modifying agent IST was displaced by intermolecular sulfhydryl disulfide interchange to lead to a disulfide dimer of Keap1. The resulting conformational change of Keap1 liberated Nrf2 from sequestration and allowed it translocation to the nucleus to activate the transcriptional program. Further studies demonstrated that Keap1 dimer formation contributed to the anti-inflammatory effects of IST. Taken together, our findings reveal a new mechanism for Nrf2 activation and provide a potential lead compound to treat inflammatory diseases through targeting Keap1. [Display omitted] •IST exerts anti-inflammatory effects in vitro and in vivo.•IST activates Nrf2 and its target gene expression.•IST covalently modifies Keap1 and induces its oligomerization.•IST-induced Keap1 dimer is cross-linked by intermolecular disulfide bridges.•Keap1 dimer formation contributes to the anti-inflammatory effects of IST.
AbstractList Covalent modification of Keap1 results in reducing ubiquitination and the accumulation of Nrf2, which subsequently initiates the transcription of cellular anti-oxidant and anti-inflammatory genes. Iso-seco-tanapartholide (IST), a sesquiterpene isolated from the traditional Chinese medicine Artemisia argyi, had been reported to possess NF-κB inhibitory activity. However, its deep anti-inflammatory effects and direct target have never been reported. Here we show that IST activated Nrf2 and increased its target gene expression. In particular, LPS-caused inflammation in vitro and in vivo was mitigated by IST-induced Nrf2 activation but aggravated by Nrf2 inhibition. Mechanically, IST targeted Keap1 proteins via alkylating its cysteine residues 151, 273, 288, and so on. Subsequently, the modifying agent IST was displaced by intermolecular sulfhydryl disulfide interchange to lead to a disulfide dimer of Keap1. The resulting conformational change of Keap1 liberated Nrf2 from sequestration and allowed it translocation to the nucleus to activate the transcriptional program. Further studies demonstrated that Keap1 dimer formation contributed to the anti-inflammatory effects of IST. Taken together, our findings reveal a new mechanism for Nrf2 activation and provide a potential lead compound to treat inflammatory diseases through targeting Keap1.Covalent modification of Keap1 results in reducing ubiquitination and the accumulation of Nrf2, which subsequently initiates the transcription of cellular anti-oxidant and anti-inflammatory genes. Iso-seco-tanapartholide (IST), a sesquiterpene isolated from the traditional Chinese medicine Artemisia argyi, had been reported to possess NF-κB inhibitory activity. However, its deep anti-inflammatory effects and direct target have never been reported. Here we show that IST activated Nrf2 and increased its target gene expression. In particular, LPS-caused inflammation in vitro and in vivo was mitigated by IST-induced Nrf2 activation but aggravated by Nrf2 inhibition. Mechanically, IST targeted Keap1 proteins via alkylating its cysteine residues 151, 273, 288, and so on. Subsequently, the modifying agent IST was displaced by intermolecular sulfhydryl disulfide interchange to lead to a disulfide dimer of Keap1. The resulting conformational change of Keap1 liberated Nrf2 from sequestration and allowed it translocation to the nucleus to activate the transcriptional program. Further studies demonstrated that Keap1 dimer formation contributed to the anti-inflammatory effects of IST. Taken together, our findings reveal a new mechanism for Nrf2 activation and provide a potential lead compound to treat inflammatory diseases through targeting Keap1.
Covalent modification of Keap1 results in reducing ubiquitination and the accumulation of Nrf2, which subsequently initiates the transcription of cellular anti-oxidant and anti-inflammatory genes. Iso-seco-tanapartholide (IST), a sesquiterpene isolated from the traditional Chinese medicine Artemisia argyi, had been reported to possess NF-κB inhibitory activity. However, its deep anti-inflammatory effects and direct target have never been reported. Here we show that IST activated Nrf2 and increased its target gene expression. In particular, LPS-caused inflammation in vitro and in vivo was mitigated by IST-induced Nrf2 activation but aggravated by Nrf2 inhibition. Mechanically, IST targeted Keap1 proteins via alkylating its cysteine residues 151, 273, 288, and so on. Subsequently, the modifying agent IST was displaced by intermolecular sulfhydryl disulfide interchange to lead to a disulfide dimer of Keap1. The resulting conformational change of Keap1 liberated Nrf2 from sequestration and allowed it translocation to the nucleus to activate the transcriptional program. Further studies demonstrated that Keap1 dimer formation contributed to the anti-inflammatory effects of IST. Taken together, our findings reveal a new mechanism for Nrf2 activation and provide a potential lead compound to treat inflammatory diseases through targeting Keap1. [Display omitted] •IST exerts anti-inflammatory effects in vitro and in vivo.•IST activates Nrf2 and its target gene expression.•IST covalently modifies Keap1 and induces its oligomerization.•IST-induced Keap1 dimer is cross-linked by intermolecular disulfide bridges.•Keap1 dimer formation contributes to the anti-inflammatory effects of IST.
Covalent modification of Keap1 results in reducing ubiquitination and the accumulation of Nrf2, which subsequently initiates the transcription of cellular anti-oxidant and anti-inflammatory genes. Iso-seco-tanapartholide (IST), a sesquiterpene isolated from the traditional Chinese medicine Artemisia argyi, had been reported to possess NF-κB inhibitory activity. However, its deep anti-inflammatory effects and direct target have never been reported. Here we show that IST activated Nrf2 and increased its target gene expression. In particular, LPS-caused inflammation in vitro and in vivo was mitigated by IST-induced Nrf2 activation but aggravated by Nrf2 inhibition. Mechanically, IST targeted Keap1 proteins via alkylating its cysteine residues 151, 273, 288, and so on. Subsequently, the modifying agent IST was displaced by intermolecular sulfhydryl disulfide interchange to lead to a disulfide dimer of Keap1. The resulting conformational change of Keap1 liberated Nrf2 from sequestration and allowed it translocation to the nucleus to activate the transcriptional program. Further studies demonstrated that Keap1 dimer formation contributed to the anti-inflammatory effects of IST. Taken together, our findings reveal a new mechanism for Nrf2 activation and provide a potential lead compound to treat inflammatory diseases through targeting Keap1.
Author Xue, Guimin
Chen, Chen
Luo, Jianguang
Kong, Lingyi
Xia, Yuanzheng
Kong, Min
Zhu, Dongrong
Li, Shang
Author_xml – sequence: 1
  givenname: Dongrong
  surname: Zhu
  fullname: Zhu, Dongrong
– sequence: 2
  givenname: Yuanzheng
  surname: Xia
  fullname: Xia, Yuanzheng
– sequence: 3
  givenname: Shang
  surname: Li
  fullname: Li, Shang
– sequence: 4
  givenname: Min
  surname: Kong
  fullname: Kong, Min
– sequence: 5
  givenname: Chen
  surname: Chen
  fullname: Chen, Chen
– sequence: 6
  givenname: Guimin
  surname: Xue
  fullname: Xue, Guimin
– sequence: 7
  givenname: Lingyi
  surname: Kong
  fullname: Kong, Lingyi
  email: lykong@cpu.edu.cn
– sequence: 8
  givenname: Jianguang
  orcidid: 0000-0003-1251-8539
  surname: Luo
  fullname: Luo, Jianguang
  email: luojg@cpu.edu.cn
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34923099$$D View this record in MEDLINE/PubMed
BookMark eNqNkc9u1DAQxi1URLcLr4AsceGS1Hb-OeJUVQWqVnCBszW2x7teJXGwvS3LI_DUpGx7gFNPI3m--c34-87IyRQmJOQdZyVnvD3flS4iRrDahxFtKZjgJRelaPoXZMVlVxV107cnZMVkz4tG1v0pOUtpxxirm0q-IqdV3YuK9f2K_L5OoUhoQpFhghli3obBW6Rgsr-DjIl-iU7Q5DcTDH7a0Bny9h4ONG9j2G-29AZh5nQM1jtvIPswUZgsXSib5bzofx3fcqD4E2NemtkXfnIDjCPkEA8UnUOT02vy0sGQ8M1jXZPvH6--XX4ubr9-ur68uC1MJatctAI7I43TFkWjdVvZqgNhrTbOOY297p20Des0yE522jDtat2iaU3Nai2hWpP3R-4cw489pqxGnwwOA0wY9kmJlgtW92zZtiZvH6V7vVit5uhHiAf15N8iuDgKTAwpRXTK-Pz3wzmCHxRn6iEztVP_ZKYeMlNcqCWzhfHhP8bTmudNXx2ncbHszmNUyXicDFofF1eVDf5ZnD86hMD8
CitedBy_id crossref_primary_10_3389_fnut_2022_964938
crossref_primary_10_1016_j_intimp_2023_109689
crossref_primary_10_1016_j_jep_2022_115401
crossref_primary_10_1093_toxres_tfae080
crossref_primary_10_1016_j_arabjc_2023_105050
crossref_primary_10_1016_j_freeradbiomed_2024_09_035
crossref_primary_10_1016_j_ejphar_2023_175987
crossref_primary_10_1007_s11101_023_09910_y
crossref_primary_10_1016_j_cellsig_2024_111331
crossref_primary_10_1111_bph_15961
crossref_primary_10_1016_j_freeradbiomed_2022_05_009
crossref_primary_10_1016_j_bioorg_2024_107982
crossref_primary_10_1016_j_bcp_2024_116405
Cites_doi 10.1128/MCB.24.24.10941-10953.2004
10.1021/tx500513v
10.1038/ncomms11624
10.1016/j.bbadis.2016.11.005
10.3389/fphar.2020.00402
10.1016/j.freeradbiomed.2017.10.344
10.1038/nature25986
10.1016/j.redox.2020.101453
10.1146/annurev-pathol-012414-040431
10.1016/j.freeradbiomed.2016.01.011
10.1016/j.carbpol.2013.07.018
10.1016/j.phrs.2019.104259
10.1111/ajt.15724
10.1038/nbt.4236
10.2174/1381612823666170413122439
10.1016/j.abb.2019.108156
10.1034/j.1399-6576.2003.00004.x
10.1080/03602530600971974
10.1172/JCI25790
10.1021/acschembio.6b00651
10.1042/BJ20090471
10.1124/jpet.109.160465
10.1186/s13046-018-0897-x
10.1016/j.freeradbiomed.2021.03.038
10.1038/s41573-018-0008-x
10.1038/nprot.2006.468
10.1016/0031-9422(86)80021-8
10.1002/ejoc.200901016
10.1016/j.bbagen.2014.11.021
10.1016/j.jep.2017.07.033
10.1016/j.bioorg.2019.103268
10.1073/pnas.0307301101
10.1016/j.bbrc.2019.06.006
10.1021/tx700302s
10.1016/j.jasms.2007.09.015
10.1016/j.fitote.2018.12.004
10.1016/j.redox.2020.101485
ContentType Journal Article
Copyright 2021 Elsevier Inc.
Copyright © 2021 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2021 Elsevier Inc.
– notice: Copyright © 2021 Elsevier Inc. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.freeradbiomed.2021.12.259
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Biology
EISSN 1873-4596
EndPage 412
ExternalDocumentID 34923099
10_1016_j_freeradbiomed_2021_12_259
S0891584921011114
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
-~X
.GJ
.HR
.~1
0R~
1B1
1RT
1~.
1~5
29H
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JM
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABBQC
ABFNM
ABFRF
ABGSF
ABJNI
ABLJU
ABLVK
ABMAC
ABMZM
ABUDA
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACRLP
ADBBV
ADEZE
ADMUD
ADUVX
AEBSH
AEFWE
AEHWI
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGRDE
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJRQY
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ANZVX
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
C45
CS3
DOVZS
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HEA
HLW
HMK
HMO
HVGLF
HX~
HZ~
IHE
J1W
KOM
LCYCR
LX3
LZ2
M29
M41
MO0
N9A
O-L
O9-
OAUVE
OVD
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAE
SBG
SCC
SDF
SDG
SDP
SES
SEW
SPCBC
SSH
SSU
SSZ
T5K
TEORI
WUQ
XPP
ZGI
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACIEU
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
CGR
CUY
CVF
ECM
EFKBS
EIF
NPM
7X8
ID FETCH-LOGICAL-c383t-62e7c8cfbde25bb63d37a2ddbcfffbe9b9f8d507ba8787bc0bf4b6ec6c404b8a3
IEDL.DBID .~1
ISSN 0891-5849
1873-4596
IngestDate Fri Jul 11 07:54:06 EDT 2025
Mon Jul 21 05:22:51 EDT 2025
Thu Apr 24 23:11:51 EDT 2025
Tue Jul 01 01:11:35 EDT 2025
Fri Feb 23 02:40:33 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords NO
Oligomerization
DTT
H&E
βME
DARTS
IST
LPS
CETSA
NAC
RNA-seq
ARE
Nrf2
DEX
Keap1 dimer
ROS
Iso-seco-tanapartholide
Keap1
Anti-inflammatory
GSH
ELISA
Language English
License Copyright © 2021 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c383t-62e7c8cfbde25bb63d37a2ddbcfffbe9b9f8d507ba8787bc0bf4b6ec6c404b8a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-1251-8539
PMID 34923099
PQID 2612049038
PQPubID 23479
PageCount 15
ParticipantIDs proquest_miscellaneous_2612049038
pubmed_primary_34923099
crossref_citationtrail_10_1016_j_freeradbiomed_2021_12_259
crossref_primary_10_1016_j_freeradbiomed_2021_12_259
elsevier_sciencedirect_doi_10_1016_j_freeradbiomed_2021_12_259
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2022
2022-01-00
20220101
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 01
  year: 2022
  text: January 2022
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Free radical biology & medicine
PublicationTitleAlternate Free Radic Biol Med
PublicationYear 2022
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Eggler, Small, Hannink, Mesecar (bib4) 2009; 422
Chen, Evankovich, Lear, Tuncer, Kennerdell, Camarco, Shishido, Liu, Chen (bib16) 2020; 32
Wakabayashi, Dinkova-Kostova, Holtzclaw, Il Kang, Kobayashi, Yamamoto, Kensler, Talalay (bib8) 2004; 101
Cheng, Rong (bib11) 2017; 23
Singh, Venkannagari, Oh, Zhang, Rohde, Liu, Nimmagadda, Sudini, Brimacombe, Gajghate, Ma, Wang, Xu, Shahane, Xia, Woo, Mensah, Wang, Ferrer, Gabrielson, Li, Rastinejad, Shen, Boxer, Biswal (bib33) 2016; 11
Pei, Zhang, Chen (bib36) 2019; 516
Mills, Ryan, Prag, Dikovskaya, Menon, Zaslona, Jedrychowski, Costa, Higgins, Hams, Szpyt, Runtsch, King, McGouran, Fischer, Kessler, McGettrick, Hughes, Carroll, Booty, Knatko, Meakin, Ashford, Modis, Brunori, Sévin, Fallon, Caldwell, Kunji, Chouchani, Frezza, Dinkova-Kostova, Hartley, Murphy, O'Neill (bib14) 2018; 556
Huneck, Zdero, Bohlmann (bib24) 1986; 25
Kim, Kang, Suh, Choi (bib30) 2019; 145
Kobayashi, Suzuki, Funayama, Nagashima, Hayashi, Sekine, Tanaka, Moriguchi, Motohashi, Nakayama, Yamamoto (bib15) 2016; 7
Thimmulappa, Lee, Rangasamy, Reddy, Yamamoto, Kensler, Biswal (bib17) 2006; 116
Shevchenko, Tomas, Havliš, Olsen, Mann (bib27) 2007; 1
Ahmed, Luo, Namani, Wang, Tang (bib34) 2017; 1863
Jamil, Kim, Yum, Kim, Kim, Kim, Cho, Na, Surh (bib29) 2020; 679
Manuscript (bib38) 2009; 76
Xiaoqing, Qiang (bib6) 2010; 332
Chi, Liu, Yang, Zeng, Wu, Zhou, Wang, Niu, Ding, Zhang, Wang, Chen, Sun, Liu, Tan, Dong, Xu, Zhang, He (bib28) 2018; 36
Zhang, Lo, Cross, Templeton, Hannink (bib1) 2004; 24
Luo, Eggler, Liu, Liu, Mesecar, van Breemen (bib2) 2007; 18
Xiao, Liu, peng Sun, Li, Koike, Kikuchi, Yamada, Li, Feng, Zhang (bib23) 2019; 92
Makiyi, Frade, Lebl, Jaffray, Cobb, Harvey, Slawin, Hay, Westwood (bib25) 2009
Cuadrado, Rojo, Wells, Hayes, Cousin, Rumsey, Attucks, Franklin, Levonen, Kensler, Dinkova-Kostova (bib13) 2019; 18
Rachakonda, Xiong, Sekhar, Stamer, Liebler, Freeman (bib5) 2008; 21
Fukunaga, Kawajiri, Badiwala, Butany, ke Li, Billia, Rao (bib32) 2020; 20
Su, Zhang, Song, Shi, Fu, Xia, Bai, Hu, Xu, Song, Song (bib7) 2015; 28
Broderick, De Nardo, Franklin, Hoffman, Latz (bib9) 2015; 10
Casaril, Ignasiak, Chuang, Vieira, Padilha, Carroll, Lenardão, Savegnago, Davies (bib10) 2017; 113
Xue, Zhu, Zhu, Wang, Luo, Kong (bib22) 2019; 132
Qin, Du, Huang, Yin, Yang, Qin, Cao (bib31) 2016; 92
Yun, Jung, Chun, Yang, Ryu, Lim, Kim, Kim, Cho (bib19) 2016
Bao, Yuan, Wang, Liu, Lan (bib20) 2013; 98
Loisa, Rinne, Laine, Hurme, Kaukinen (bib35) 2003; 47
Zhang, Cheng, Sha, Chen, Yu, Lv, Ji, Wu, Ma, Cheng, Shi (bib39) 2021; 168
Zhang (bib3) 2006; 38
Liu, Wang, Qi, Zhou, Zeng, Tao, Da Zhou, Zhang, Chen, Peng (bib26) 2018; 37
Zimmermann-Klemd, Reinhardt, Morath, Schamel, Steinberger, Leitner, Huber, Hamburger, Gründemann (bib21) 2020; 11
Shin, Ryu, Ko, Park, Yuk, Kim, Kim, Jeong, Shin (bib18) 2017; 209
Kovac, Angelova, Holmström, Zhang, Dinkova-Kostova, Abramov (bib12) 2015; 1850
Deng, Essandoh, Wang, Li, Huang, Chen, Peng, Jiang, Mu, Wang, Peng, Guan, Wang, Jegga, Huang, Fan (bib37) 2020; 32
Bao (10.1016/j.freeradbiomed.2021.12.259_bib20) 2013; 98
Luo (10.1016/j.freeradbiomed.2021.12.259_bib2) 2007; 18
Xue (10.1016/j.freeradbiomed.2021.12.259_bib22) 2019; 132
Cuadrado (10.1016/j.freeradbiomed.2021.12.259_bib13) 2019; 18
Xiaoqing (10.1016/j.freeradbiomed.2021.12.259_bib6) 2010; 332
Broderick (10.1016/j.freeradbiomed.2021.12.259_bib9) 2015; 10
Zimmermann-Klemd (10.1016/j.freeradbiomed.2021.12.259_bib21) 2020; 11
Kim (10.1016/j.freeradbiomed.2021.12.259_bib30) 2019; 145
Chen (10.1016/j.freeradbiomed.2021.12.259_bib16) 2020; 32
Thimmulappa (10.1016/j.freeradbiomed.2021.12.259_bib17) 2006; 116
Ahmed (10.1016/j.freeradbiomed.2021.12.259_bib34) 2017; 1863
Shevchenko (10.1016/j.freeradbiomed.2021.12.259_bib27) 2007; 1
Wakabayashi (10.1016/j.freeradbiomed.2021.12.259_bib8) 2004; 101
Mills (10.1016/j.freeradbiomed.2021.12.259_bib14) 2018; 556
Huneck (10.1016/j.freeradbiomed.2021.12.259_bib24) 1986; 25
Makiyi (10.1016/j.freeradbiomed.2021.12.259_bib25) 2009
Su (10.1016/j.freeradbiomed.2021.12.259_bib7) 2015; 28
Kobayashi (10.1016/j.freeradbiomed.2021.12.259_bib15) 2016; 7
Rachakonda (10.1016/j.freeradbiomed.2021.12.259_bib5) 2008; 21
Qin (10.1016/j.freeradbiomed.2021.12.259_bib31) 2016; 92
Zhang (10.1016/j.freeradbiomed.2021.12.259_bib1) 2004; 24
Eggler (10.1016/j.freeradbiomed.2021.12.259_bib4) 2009; 422
Yun (10.1016/j.freeradbiomed.2021.12.259_bib19) 2016
Loisa (10.1016/j.freeradbiomed.2021.12.259_bib35) 2003; 47
Zhang (10.1016/j.freeradbiomed.2021.12.259_bib3) 2006; 38
Xiao (10.1016/j.freeradbiomed.2021.12.259_bib23) 2019; 92
Deng (10.1016/j.freeradbiomed.2021.12.259_bib37) 2020; 32
Casaril (10.1016/j.freeradbiomed.2021.12.259_bib10) 2017; 113
Chi (10.1016/j.freeradbiomed.2021.12.259_bib28) 2018; 36
Shin (10.1016/j.freeradbiomed.2021.12.259_bib18) 2017; 209
Singh (10.1016/j.freeradbiomed.2021.12.259_bib33) 2016; 11
Zhang (10.1016/j.freeradbiomed.2021.12.259_bib39) 2021; 168
Cheng (10.1016/j.freeradbiomed.2021.12.259_bib11) 2017; 23
Fukunaga (10.1016/j.freeradbiomed.2021.12.259_bib32) 2020; 20
Kovac (10.1016/j.freeradbiomed.2021.12.259_bib12) 2015; 1850
Pei (10.1016/j.freeradbiomed.2021.12.259_bib36) 2019; 516
Jamil (10.1016/j.freeradbiomed.2021.12.259_bib29) 2020; 679
Manuscript (10.1016/j.freeradbiomed.2021.12.259_bib38) 2009; 76
Liu (10.1016/j.freeradbiomed.2021.12.259_bib26) 2018; 37
References_xml – volume: 132
  start-page: 94
  year: 2019
  end-page: 100
  ident: bib22
  article-title: Lactone ring-opening seco-guaianolide involved heterodimers linked via an ester bond from Artemisia argyi with NO inhibitory activity
  publication-title: Fitoterapia
– volume: 556
  start-page: 113
  year: 2018
  end-page: 117
  ident: bib14
  article-title: Itaconate is an anti-inflammatory metabolite that activates Nrf2 via alkylation of KEAP1
  publication-title: Nature
– volume: 1863
  start-page: 585
  year: 2017
  end-page: 597
  ident: bib34
  article-title: Nrf2 signaling pathway: pivotal roles in inflammation
  publication-title: Biochim. Biophys. Acta (BBA) - Mol. Basis Dis.
– volume: 422
  start-page: 171
  year: 2009
  end-page: 180
  ident: bib4
  article-title: Cul3-mediated Nrf2 ubiquitination and antioxidant response element (ARE) activation are dependent on the partial molar volume at position 151 of Keap1
  publication-title: Biochem. J.
– volume: 11
  start-page: 3214
  year: 2016
  end-page: 3225
  ident: bib33
  article-title: Small molecule inhibitor of NRF2 selectively intervenes therapeutic resistance in KEAP1-deficient NSCLC tumors
  publication-title: ACS Chem. Biol.
– volume: 25
  start-page: 883
  year: 1986
  end-page: 889
  ident: bib24
  article-title: Seco-guaianolides and other constituents from Artemisia species
  publication-title: Phytochemistry
– volume: 516
  start-page: 270
  year: 2019
  end-page: 277
  ident: bib36
  article-title: Bardoxolone treatment alleviates lipopolysaccharide (LPS)-induced acute lung injury through suppressing inflammation and oxidative stress regulated by Nrf2 signaling
  publication-title: Biochem. Biophys. Res. Commun.
– volume: 21
  start-page: 705
  year: 2008
  end-page: 710
  ident: bib5
  article-title: Covalent modification at Cys151 dissociates the electrophile sensor Keap1 from the ubiquitin ligase CUL3
  publication-title: Chem. Res. Toxicol.
– volume: 168
  start-page: 247
  year: 2021
  end-page: 257
  ident: bib39
  article-title: Rosmarinic acid prevents refractory bacterial pneumonia through regulating Keap1/Nrf2-mediated autophagic pathway and mitochondrial oxidative stress
  publication-title: Free Radic. Biol. Med.
– volume: 116
  start-page: 984
  year: 2006
  end-page: 995
  ident: bib17
  article-title: Nrf2 is a critical regulator of the innate immune response and survival during experimental sepsis
  publication-title: J. Clin. Invest.
– year: 2016
  ident: bib19
  article-title: Anti-Inflammatory Effects of Artemisia Leaf Extract in Mice with Contact Dermatitis in Vitro and in Vivo, Mediators of Inflammation
– volume: 332
  start-page: 66
  year: 2010
  end-page: 75
  ident: bib6
  article-title: Critical cysteine residues of Kelch-like ECH-associated protein 1 in arsenic sensing and suppression of nuclear factor erythroid 2-related factor 2
  publication-title: J. Pharmacol. Exp. Therapeut.
– volume: 98
  start-page: 1236
  year: 2013
  end-page: 1243
  ident: bib20
  article-title: Antitumor and immunomodulatory activities of a polysaccharide from Artemisia argyi
  publication-title: Carbohydr. Polym.
– volume: 209
  start-page: 108
  year: 2017
  end-page: 115
  ident: bib18
  article-title: Artemisia argyi attenuates airway inflammation in ovalbumin-induced asthmatic animals
  publication-title: J. Ethnopharmacol.
– volume: 1
  start-page: 2856
  year: 2007
  end-page: 2860
  ident: bib27
  article-title: In-gel digestion for mass spectrometric characterization of proteins and proteomes
  publication-title: Nat. Protoc.
– volume: 38
  start-page: 769
  year: 2006
  end-page: 789
  ident: bib3
  article-title: Mechanistic studies of the Nrf2-Keap1 signaling pathway
  publication-title: Drug Metabol. Rev.
– volume: 47
  start-page: 319
  year: 2003
  end-page: 325
  ident: bib35
  article-title: Anti-inflammatory cytokine response and the development of multiple organ failure in severe sepsis
  publication-title: Acta Anaesthesiol. Scand.
– volume: 28
  start-page: 765
  year: 2015
  end-page: 774
  ident: bib7
  article-title: Tetrachlorobenzoquinone activates NRF2 signaling by keap1 cross-linking and ubiquitin translocation but not keap1-cullin3 complex dissociation
  publication-title: Chem. Res. Toxicol.
– volume: 10
  start-page: 395
  year: 2015
  end-page: 424
  ident: bib9
  article-title: The inflammasomes and autoinflammatory syndromes
  publication-title: Annu. Rev. Pathol.
– volume: 20
  start-page: 1262
  year: 2020
  end-page: 1271
  ident: bib32
  article-title: Protective role of Nrf2 against ischemia reperfusion injury and cardiac allograft vasculopathy
  publication-title: Am. J. Transplant.
– volume: 11
  start-page: 1
  year: 2020
  end-page: 13
  ident: bib21
  article-title: Immunosuppressive activity of Artemisia argyi extract and isolated compounds
  publication-title: Front. Pharmacol.
– volume: 101
  year: 2004
  ident: bib8
  article-title: Protection against electrophile and oxidant stress by induction of the phase 2 response: fate of cysteines of the Keap1 sensor modified by inducers
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
– volume: 7
  start-page: 1
  year: 2016
  end-page: 14
  ident: bib15
  article-title: Nrf2 suppresses macrophage inflammatory response by blocking proinflammatory cytokine transcription
  publication-title: Nat. Commun.
– volume: 32
  start-page: 101485
  year: 2020
  ident: bib16
  article-title: A small molecule NRF2 activator BC-1901S ameliorates inflammation through DCAF1/NRF2 axis
  publication-title: Redox Biol.
– volume: 92
  start-page: 90
  year: 2016
  end-page: 99
  ident: bib31
  article-title: Sinomenine activation of Nrf2 signaling prevents hyperactive inflammation and kidney injury in a mouse model of obstructive nephropathy
  publication-title: Free Radic. Biol. Med.
– volume: 24
  start-page: 10941
  year: 2004
  end-page: 10953
  ident: bib1
  article-title: Keap1 is a redox-regulated substrate adaptor protein for a cul3-dependent ubiquitin ligase complex
  publication-title: Mol. Cell Biol.
– volume: 18
  start-page: 2226
  year: 2007
  end-page: 2232
  ident: bib2
  article-title: Sites of alkylation of human keap1 by natural chemoprevention agents
  publication-title: J. Am. Soc. Mass Spectrom.
– start-page: 5711
  year: 2009
  end-page: 5715
  ident: bib25
  article-title: Iso-seco-tanapartholides: isolation, synthesis and biological evaluation
  publication-title: Eur. J. Org Chem.
– volume: 37
  start-page: 1
  year: 2018
  end-page: 16
  ident: bib26
  article-title: Vitexin compound 1, a novel extraction from a Chinese herb, suppresses melanoma cell growth through DNA damage by increasing ROS levels
  publication-title: J. Exp. Clin. Cancer Res.
– volume: 32
  start-page: 101453
  year: 2020
  ident: bib37
  article-title: Tsg101 positively regulates P62-Keap1-Nrf2 pathway to protect hearts against oxidative damage
  publication-title: Redox Biol.
– volume: 23
  start-page: 3884
  year: 2017
  end-page: 3898
  ident: bib11
  article-title: Therapeutic potential of heme oxygenase-1/carbon monoxide system Against ischemia-reperfusion injury
  publication-title: Curr. Pharmaceut. Des.
– volume: 92
  year: 2019
  ident: bib23
  article-title: Bioactivity-based analysis and chemical characterization of hypoglycemic and antioxidant components from Artemisia argyi
  publication-title: Bioorg. Chem.
– volume: 145
  start-page: 104259
  year: 2019
  ident: bib30
  article-title: Parthenolide, a feverfew-derived phytochemical, ameliorates obesity and obesity-induced inflammatory responses via the Nrf2/Keap1 pathway
  publication-title: Pharmacol. Res.
– volume: 1850
  start-page: 794
  year: 2015
  end-page: 801
  ident: bib12
  article-title: Nrf2 regulates ROS production by mitochondria and NADPH oxidase
  publication-title: Biochim. Biophys. Acta Gen. Subj.
– volume: 113
  start-page: 395
  year: 2017
  end-page: 405
  ident: bib10
  article-title: Selenium-containing indolyl compounds: kinetics of reaction with inflammation-associated oxidants and protective effect against oxidation of extracellular matrix proteins
  publication-title: Free Radic. Biol. Med.
– volume: 18
  start-page: 295
  year: 2019
  end-page: 317
  ident: bib13
  article-title: Therapeutic targeting of the NRF2 and KEAP1 partnership in chronic diseases
  publication-title: Nat. Rev. Drug Discov.
– volume: 36
  start-page: 1059
  year: 2018
  end-page: 1066
  ident: bib28
  article-title: Comprehensive identification of peptides in tandem mass spectra using an efficient open search engine
  publication-title: Nat. Biotechnol.
– volume: 679
  start-page: 108156
  year: 2020
  ident: bib29
  article-title: 17-Oxo-docosahexaenoic acid induces Nrf2-mediated expression of heme oxygenase-1 in mouse skin in vivo and in cultured murine epidermal cells
  publication-title: Arch. Biochem. Biophys.
– volume: 76
  start-page: 1485
  year: 2009
  end-page: 1489
  ident: bib38
  article-title: Nrf2 attenuates NF-κB (2008).pdf
  publication-title: Biochem. Pharmacol.
– volume: 24
  start-page: 10941
  year: 2004
  ident: 10.1016/j.freeradbiomed.2021.12.259_bib1
  article-title: Keap1 is a redox-regulated substrate adaptor protein for a cul3-dependent ubiquitin ligase complex
  publication-title: Mol. Cell Biol.
  doi: 10.1128/MCB.24.24.10941-10953.2004
– volume: 28
  start-page: 765
  year: 2015
  ident: 10.1016/j.freeradbiomed.2021.12.259_bib7
  article-title: Tetrachlorobenzoquinone activates NRF2 signaling by keap1 cross-linking and ubiquitin translocation but not keap1-cullin3 complex dissociation
  publication-title: Chem. Res. Toxicol.
  doi: 10.1021/tx500513v
– volume: 7
  start-page: 1
  year: 2016
  ident: 10.1016/j.freeradbiomed.2021.12.259_bib15
  article-title: Nrf2 suppresses macrophage inflammatory response by blocking proinflammatory cytokine transcription
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms11624
– volume: 1863
  start-page: 585
  year: 2017
  ident: 10.1016/j.freeradbiomed.2021.12.259_bib34
  article-title: Nrf2 signaling pathway: pivotal roles in inflammation
  publication-title: Biochim. Biophys. Acta (BBA) - Mol. Basis Dis.
  doi: 10.1016/j.bbadis.2016.11.005
– volume: 11
  start-page: 1
  year: 2020
  ident: 10.1016/j.freeradbiomed.2021.12.259_bib21
  article-title: Immunosuppressive activity of Artemisia argyi extract and isolated compounds
  publication-title: Front. Pharmacol.
  doi: 10.3389/fphar.2020.00402
– volume: 113
  start-page: 395
  year: 2017
  ident: 10.1016/j.freeradbiomed.2021.12.259_bib10
  article-title: Selenium-containing indolyl compounds: kinetics of reaction with inflammation-associated oxidants and protective effect against oxidation of extracellular matrix proteins
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/j.freeradbiomed.2017.10.344
– volume: 556
  start-page: 113
  year: 2018
  ident: 10.1016/j.freeradbiomed.2021.12.259_bib14
  article-title: Itaconate is an anti-inflammatory metabolite that activates Nrf2 via alkylation of KEAP1
  publication-title: Nature
  doi: 10.1038/nature25986
– volume: 32
  start-page: 101453
  year: 2020
  ident: 10.1016/j.freeradbiomed.2021.12.259_bib37
  article-title: Tsg101 positively regulates P62-Keap1-Nrf2 pathway to protect hearts against oxidative damage
  publication-title: Redox Biol.
  doi: 10.1016/j.redox.2020.101453
– volume: 10
  start-page: 395
  year: 2015
  ident: 10.1016/j.freeradbiomed.2021.12.259_bib9
  article-title: The inflammasomes and autoinflammatory syndromes
  publication-title: Annu. Rev. Pathol.
  doi: 10.1146/annurev-pathol-012414-040431
– volume: 92
  start-page: 90
  year: 2016
  ident: 10.1016/j.freeradbiomed.2021.12.259_bib31
  article-title: Sinomenine activation of Nrf2 signaling prevents hyperactive inflammation and kidney injury in a mouse model of obstructive nephropathy
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/j.freeradbiomed.2016.01.011
– volume: 98
  start-page: 1236
  year: 2013
  ident: 10.1016/j.freeradbiomed.2021.12.259_bib20
  article-title: Antitumor and immunomodulatory activities of a polysaccharide from Artemisia argyi
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2013.07.018
– volume: 145
  start-page: 104259
  year: 2019
  ident: 10.1016/j.freeradbiomed.2021.12.259_bib30
  article-title: Parthenolide, a feverfew-derived phytochemical, ameliorates obesity and obesity-induced inflammatory responses via the Nrf2/Keap1 pathway
  publication-title: Pharmacol. Res.
  doi: 10.1016/j.phrs.2019.104259
– volume: 20
  start-page: 1262
  year: 2020
  ident: 10.1016/j.freeradbiomed.2021.12.259_bib32
  article-title: Protective role of Nrf2 against ischemia reperfusion injury and cardiac allograft vasculopathy
  publication-title: Am. J. Transplant.
  doi: 10.1111/ajt.15724
– volume: 36
  start-page: 1059
  year: 2018
  ident: 10.1016/j.freeradbiomed.2021.12.259_bib28
  article-title: Comprehensive identification of peptides in tandem mass spectra using an efficient open search engine
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.4236
– volume: 23
  start-page: 3884
  year: 2017
  ident: 10.1016/j.freeradbiomed.2021.12.259_bib11
  article-title: Therapeutic potential of heme oxygenase-1/carbon monoxide system Against ischemia-reperfusion injury
  publication-title: Curr. Pharmaceut. Des.
  doi: 10.2174/1381612823666170413122439
– volume: 679
  start-page: 108156
  year: 2020
  ident: 10.1016/j.freeradbiomed.2021.12.259_bib29
  article-title: 17-Oxo-docosahexaenoic acid induces Nrf2-mediated expression of heme oxygenase-1 in mouse skin in vivo and in cultured murine epidermal cells
  publication-title: Arch. Biochem. Biophys.
  doi: 10.1016/j.abb.2019.108156
– volume: 47
  start-page: 319
  year: 2003
  ident: 10.1016/j.freeradbiomed.2021.12.259_bib35
  article-title: Anti-inflammatory cytokine response and the development of multiple organ failure in severe sepsis
  publication-title: Acta Anaesthesiol. Scand.
  doi: 10.1034/j.1399-6576.2003.00004.x
– volume: 38
  start-page: 769
  year: 2006
  ident: 10.1016/j.freeradbiomed.2021.12.259_bib3
  article-title: Mechanistic studies of the Nrf2-Keap1 signaling pathway
  publication-title: Drug Metabol. Rev.
  doi: 10.1080/03602530600971974
– volume: 116
  start-page: 984
  year: 2006
  ident: 10.1016/j.freeradbiomed.2021.12.259_bib17
  article-title: Nrf2 is a critical regulator of the innate immune response and survival during experimental sepsis
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI25790
– volume: 11
  start-page: 3214
  year: 2016
  ident: 10.1016/j.freeradbiomed.2021.12.259_bib33
  article-title: Small molecule inhibitor of NRF2 selectively intervenes therapeutic resistance in KEAP1-deficient NSCLC tumors
  publication-title: ACS Chem. Biol.
  doi: 10.1021/acschembio.6b00651
– volume: 422
  start-page: 171
  year: 2009
  ident: 10.1016/j.freeradbiomed.2021.12.259_bib4
  article-title: Cul3-mediated Nrf2 ubiquitination and antioxidant response element (ARE) activation are dependent on the partial molar volume at position 151 of Keap1
  publication-title: Biochem. J.
  doi: 10.1042/BJ20090471
– volume: 332
  start-page: 66
  year: 2010
  ident: 10.1016/j.freeradbiomed.2021.12.259_bib6
  article-title: Critical cysteine residues of Kelch-like ECH-associated protein 1 in arsenic sensing and suppression of nuclear factor erythroid 2-related factor 2
  publication-title: J. Pharmacol. Exp. Therapeut.
  doi: 10.1124/jpet.109.160465
– volume: 37
  start-page: 1
  year: 2018
  ident: 10.1016/j.freeradbiomed.2021.12.259_bib26
  article-title: Vitexin compound 1, a novel extraction from a Chinese herb, suppresses melanoma cell growth through DNA damage by increasing ROS levels
  publication-title: J. Exp. Clin. Cancer Res.
  doi: 10.1186/s13046-018-0897-x
– volume: 168
  start-page: 247
  year: 2021
  ident: 10.1016/j.freeradbiomed.2021.12.259_bib39
  article-title: Rosmarinic acid prevents refractory bacterial pneumonia through regulating Keap1/Nrf2-mediated autophagic pathway and mitochondrial oxidative stress
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/j.freeradbiomed.2021.03.038
– volume: 18
  start-page: 295
  year: 2019
  ident: 10.1016/j.freeradbiomed.2021.12.259_bib13
  article-title: Therapeutic targeting of the NRF2 and KEAP1 partnership in chronic diseases
  publication-title: Nat. Rev. Drug Discov.
  doi: 10.1038/s41573-018-0008-x
– volume: 1
  start-page: 2856
  year: 2007
  ident: 10.1016/j.freeradbiomed.2021.12.259_bib27
  article-title: In-gel digestion for mass spectrometric characterization of proteins and proteomes
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2006.468
– volume: 25
  start-page: 883
  year: 1986
  ident: 10.1016/j.freeradbiomed.2021.12.259_bib24
  article-title: Seco-guaianolides and other constituents from Artemisia species
  publication-title: Phytochemistry
  doi: 10.1016/0031-9422(86)80021-8
– start-page: 5711
  year: 2009
  ident: 10.1016/j.freeradbiomed.2021.12.259_bib25
  article-title: Iso-seco-tanapartholides: isolation, synthesis and biological evaluation
  publication-title: Eur. J. Org Chem.
  doi: 10.1002/ejoc.200901016
– volume: 1850
  start-page: 794
  year: 2015
  ident: 10.1016/j.freeradbiomed.2021.12.259_bib12
  article-title: Nrf2 regulates ROS production by mitochondria and NADPH oxidase
  publication-title: Biochim. Biophys. Acta Gen. Subj.
  doi: 10.1016/j.bbagen.2014.11.021
– volume: 209
  start-page: 108
  year: 2017
  ident: 10.1016/j.freeradbiomed.2021.12.259_bib18
  article-title: Artemisia argyi attenuates airway inflammation in ovalbumin-induced asthmatic animals
  publication-title: J. Ethnopharmacol.
  doi: 10.1016/j.jep.2017.07.033
– year: 2016
  ident: 10.1016/j.freeradbiomed.2021.12.259_bib19
– volume: 92
  year: 2019
  ident: 10.1016/j.freeradbiomed.2021.12.259_bib23
  article-title: Bioactivity-based analysis and chemical characterization of hypoglycemic and antioxidant components from Artemisia argyi
  publication-title: Bioorg. Chem.
  doi: 10.1016/j.bioorg.2019.103268
– volume: 101
  year: 2004
  ident: 10.1016/j.freeradbiomed.2021.12.259_bib8
  article-title: Protection against electrophile and oxidant stress by induction of the phase 2 response: fate of cysteines of the Keap1 sensor modified by inducers
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.0307301101
– volume: 516
  start-page: 270
  year: 2019
  ident: 10.1016/j.freeradbiomed.2021.12.259_bib36
  article-title: Bardoxolone treatment alleviates lipopolysaccharide (LPS)-induced acute lung injury through suppressing inflammation and oxidative stress regulated by Nrf2 signaling
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2019.06.006
– volume: 21
  start-page: 705
  year: 2008
  ident: 10.1016/j.freeradbiomed.2021.12.259_bib5
  article-title: Covalent modification at Cys151 dissociates the electrophile sensor Keap1 from the ubiquitin ligase CUL3
  publication-title: Chem. Res. Toxicol.
  doi: 10.1021/tx700302s
– volume: 18
  start-page: 2226
  year: 2007
  ident: 10.1016/j.freeradbiomed.2021.12.259_bib2
  article-title: Sites of alkylation of human keap1 by natural chemoprevention agents
  publication-title: J. Am. Soc. Mass Spectrom.
  doi: 10.1016/j.jasms.2007.09.015
– volume: 132
  start-page: 94
  year: 2019
  ident: 10.1016/j.freeradbiomed.2021.12.259_bib22
  article-title: Lactone ring-opening seco-guaianolide involved heterodimers linked via an ester bond from Artemisia argyi with NO inhibitory activity
  publication-title: Fitoterapia
  doi: 10.1016/j.fitote.2018.12.004
– volume: 32
  start-page: 101485
  year: 2020
  ident: 10.1016/j.freeradbiomed.2021.12.259_bib16
  article-title: A small molecule NRF2 activator BC-1901S ameliorates inflammation through DCAF1/NRF2 axis
  publication-title: Redox Biol.
  doi: 10.1016/j.redox.2020.101485
– volume: 76
  start-page: 1485
  year: 2009
  ident: 10.1016/j.freeradbiomed.2021.12.259_bib38
  article-title: Nrf2 attenuates NF-κB (2008).pdf
  publication-title: Biochem. Pharmacol.
SSID ssj0004538
Score 2.4545798
Snippet Covalent modification of Keap1 results in reducing ubiquitination and the accumulation of Nrf2, which subsequently initiates the transcription of cellular...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 398
SubjectTerms Anti-inflammatory
Anti-Inflammatory Agents - pharmacology
Iso-seco-tanapartholide
Keap1 dimer
Kelch-Like ECH-Associated Protein 1 - genetics
Kelch-Like ECH-Associated Protein 1 - metabolism
NF-E2-Related Factor 2 - genetics
NF-E2-Related Factor 2 - metabolism
NF-kappa B - genetics
NF-kappa B - metabolism
Nrf2
Oligomerization
Signal Transduction
Title Iso-seco-tanapartholide activates Nrf2 signaling pathway through Keap1 modification and oligomerization to exert anti-inflammatory effects
URI https://dx.doi.org/10.1016/j.freeradbiomed.2021.12.259
https://www.ncbi.nlm.nih.gov/pubmed/34923099
https://www.proquest.com/docview/2612049038
Volume 178
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1baxQxFA6lRfFFautlvZSI4lvcnUx2JvFBWIpla3FftNC3kKusuDPL7rRlX_wB_dU9JzNTLSgUfJ1JMkPOSc537oS8LUFIuyAD49znTHCjmHIqsIiyVLlC5hlmI3-ZFdNT8flsfLZFDvtcGAyr7O7-9k5Pt3X3ZNjt5nA5nw-_jqTKQHwqUFrw3GNNUCFK5PL3v7I_KoanbtY4mOHo--TN7xivuAoBXdYp0x2URZ6hbZBj4dK_S6l_odAkjY52ycMORtJJ-6ePyFao9sj-pAIVerGh72gK7EwW8z1yr-03udknV8frmq1B4WQACUFKrtAmOveBYnbDBaJOOltFTjGow2CeOsWGxZdmQ7t2PvQkmGVGF7XHCKNEVGoqT2GV7zX6ftqkTtrUFHs5NfCymTNgYuC7RfLn0y6A5DE5Pfr07XDKumYMzIES27CCh9JJF60PfGxtkfu8NNx762KMNiirovQALq2RcAdYN7JR2CK4womRsNLkT8h2VVfhGaGZsQisCvRICleOlbUiF9baGMs4lmpAPvSbr11XqRwbZvzUfUjaD32LchoppzOugXIDIm4mL9uCHXeb9rGnsr7FfxpEy90WeN3zhoYTim4XU4X6fK2xSBv6V3M5IE9bprn5M6wNmQNIf_6_n39BHnBMzEjGoZdku1mdh1cAlxp7kM7DAdmZHJ9MZ9csLxs_
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-NTjBeEGzAyqcRiDerjeMmMQ9I1cTU0q0vbNLeLNuxpyKaVG0G6r_AX81dPgaTQJrEaxI7lu_s-903wLsUhbTzmedC5DGXwiiunPI8kCxVLsniiLKRT-fJ5Fx-vhhd7MBRlwtDYZXt3d_c6fVt3T4ZtLs5WC0Wgy_DTEUoPhUqLXTu5R3YpepUox7sjqezyfyPouF1Q2v6ntOAe_D2d5hXWHtPXus62R31RRGReVBQ7dK_C6p_AdFaIB0_hActkmTjZrGPYMcX-3AwLlCLXm7Ze1bHdtZG832427Sc3B7Az-mm5BvUOTmiQhSUazKLLnLPKMHhOwFPNl8HwSiuw1CqOqOexT_MlrUdfdjMm1XElmVOQUY1XZkpcoazXJbk_mnyOllVMmrnVOHLasGRj5H1lrVLn7UxJI_h_PjT2dGEt_0YuEM9tuKJ8KnLXLC5FyNrkziPUyPy3LoQgvXKqpDliC-tyfAasG5og7SJd4mTQ2kzEz-BXlEW_hBYZCxhq4ScktKlI2WtjKW1NoQ0jDLVhw_d5mvXFiunnhnfdBeV9lXfoJwmyulIaKRcH-T14FVTs-N2wz52VNY3WFCjdLndBG863tB4SMnzYgpfXm001WkjF2uc9eFpwzTXK6PykDHi9Gf_-_vXsDc5Oz3RJ9P57DncF5SnUduKXkCvWl_5l4ieKvuqPR2_AL58HfA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Iso-seco-tanapartholide+activates+Nrf2+signaling+pathway+through+Keap1+modification+and+oligomerization+to+exert+anti-inflammatory+effects&rft.jtitle=Free+radical+biology+%26+medicine&rft.au=Zhu%2C+Dongrong&rft.au=Xia%2C+Yuanzheng&rft.au=Li%2C+Shang&rft.au=Kong%2C+Min&rft.date=2022-01-01&rft.pub=Elsevier+Inc&rft.issn=0891-5849&rft.eissn=1873-4596&rft.volume=178&rft.spage=398&rft.epage=412&rft_id=info:doi/10.1016%2Fj.freeradbiomed.2021.12.259&rft.externalDocID=S0891584921011114
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0891-5849&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0891-5849&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0891-5849&client=summon