Iso-seco-tanapartholide activates Nrf2 signaling pathway through Keap1 modification and oligomerization to exert anti-inflammatory effects
Covalent modification of Keap1 results in reducing ubiquitination and the accumulation of Nrf2, which subsequently initiates the transcription of cellular anti-oxidant and anti-inflammatory genes. Iso-seco-tanapartholide (IST), a sesquiterpene isolated from the traditional Chinese medicine Artemisia...
Saved in:
Published in | Free radical biology & medicine Vol. 178; pp. 398 - 412 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
01.01.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Covalent modification of Keap1 results in reducing ubiquitination and the accumulation of Nrf2, which subsequently initiates the transcription of cellular anti-oxidant and anti-inflammatory genes. Iso-seco-tanapartholide (IST), a sesquiterpene isolated from the traditional Chinese medicine Artemisia argyi, had been reported to possess NF-κB inhibitory activity. However, its deep anti-inflammatory effects and direct target have never been reported. Here we show that IST activated Nrf2 and increased its target gene expression. In particular, LPS-caused inflammation in vitro and in vivo was mitigated by IST-induced Nrf2 activation but aggravated by Nrf2 inhibition. Mechanically, IST targeted Keap1 proteins via alkylating its cysteine residues 151, 273, 288, and so on. Subsequently, the modifying agent IST was displaced by intermolecular sulfhydryl disulfide interchange to lead to a disulfide dimer of Keap1. The resulting conformational change of Keap1 liberated Nrf2 from sequestration and allowed it translocation to the nucleus to activate the transcriptional program. Further studies demonstrated that Keap1 dimer formation contributed to the anti-inflammatory effects of IST. Taken together, our findings reveal a new mechanism for Nrf2 activation and provide a potential lead compound to treat inflammatory diseases through targeting Keap1.
[Display omitted]
•IST exerts anti-inflammatory effects in vitro and in vivo.•IST activates Nrf2 and its target gene expression.•IST covalently modifies Keap1 and induces its oligomerization.•IST-induced Keap1 dimer is cross-linked by intermolecular disulfide bridges.•Keap1 dimer formation contributes to the anti-inflammatory effects of IST. |
---|---|
AbstractList | Covalent modification of Keap1 results in reducing ubiquitination and the accumulation of Nrf2, which subsequently initiates the transcription of cellular anti-oxidant and anti-inflammatory genes. Iso-seco-tanapartholide (IST), a sesquiterpene isolated from the traditional Chinese medicine Artemisia argyi, had been reported to possess NF-κB inhibitory activity. However, its deep anti-inflammatory effects and direct target have never been reported. Here we show that IST activated Nrf2 and increased its target gene expression. In particular, LPS-caused inflammation in vitro and in vivo was mitigated by IST-induced Nrf2 activation but aggravated by Nrf2 inhibition. Mechanically, IST targeted Keap1 proteins via alkylating its cysteine residues 151, 273, 288, and so on. Subsequently, the modifying agent IST was displaced by intermolecular sulfhydryl disulfide interchange to lead to a disulfide dimer of Keap1. The resulting conformational change of Keap1 liberated Nrf2 from sequestration and allowed it translocation to the nucleus to activate the transcriptional program. Further studies demonstrated that Keap1 dimer formation contributed to the anti-inflammatory effects of IST. Taken together, our findings reveal a new mechanism for Nrf2 activation and provide a potential lead compound to treat inflammatory diseases through targeting Keap1.Covalent modification of Keap1 results in reducing ubiquitination and the accumulation of Nrf2, which subsequently initiates the transcription of cellular anti-oxidant and anti-inflammatory genes. Iso-seco-tanapartholide (IST), a sesquiterpene isolated from the traditional Chinese medicine Artemisia argyi, had been reported to possess NF-κB inhibitory activity. However, its deep anti-inflammatory effects and direct target have never been reported. Here we show that IST activated Nrf2 and increased its target gene expression. In particular, LPS-caused inflammation in vitro and in vivo was mitigated by IST-induced Nrf2 activation but aggravated by Nrf2 inhibition. Mechanically, IST targeted Keap1 proteins via alkylating its cysteine residues 151, 273, 288, and so on. Subsequently, the modifying agent IST was displaced by intermolecular sulfhydryl disulfide interchange to lead to a disulfide dimer of Keap1. The resulting conformational change of Keap1 liberated Nrf2 from sequestration and allowed it translocation to the nucleus to activate the transcriptional program. Further studies demonstrated that Keap1 dimer formation contributed to the anti-inflammatory effects of IST. Taken together, our findings reveal a new mechanism for Nrf2 activation and provide a potential lead compound to treat inflammatory diseases through targeting Keap1. Covalent modification of Keap1 results in reducing ubiquitination and the accumulation of Nrf2, which subsequently initiates the transcription of cellular anti-oxidant and anti-inflammatory genes. Iso-seco-tanapartholide (IST), a sesquiterpene isolated from the traditional Chinese medicine Artemisia argyi, had been reported to possess NF-κB inhibitory activity. However, its deep anti-inflammatory effects and direct target have never been reported. Here we show that IST activated Nrf2 and increased its target gene expression. In particular, LPS-caused inflammation in vitro and in vivo was mitigated by IST-induced Nrf2 activation but aggravated by Nrf2 inhibition. Mechanically, IST targeted Keap1 proteins via alkylating its cysteine residues 151, 273, 288, and so on. Subsequently, the modifying agent IST was displaced by intermolecular sulfhydryl disulfide interchange to lead to a disulfide dimer of Keap1. The resulting conformational change of Keap1 liberated Nrf2 from sequestration and allowed it translocation to the nucleus to activate the transcriptional program. Further studies demonstrated that Keap1 dimer formation contributed to the anti-inflammatory effects of IST. Taken together, our findings reveal a new mechanism for Nrf2 activation and provide a potential lead compound to treat inflammatory diseases through targeting Keap1. [Display omitted] •IST exerts anti-inflammatory effects in vitro and in vivo.•IST activates Nrf2 and its target gene expression.•IST covalently modifies Keap1 and induces its oligomerization.•IST-induced Keap1 dimer is cross-linked by intermolecular disulfide bridges.•Keap1 dimer formation contributes to the anti-inflammatory effects of IST. Covalent modification of Keap1 results in reducing ubiquitination and the accumulation of Nrf2, which subsequently initiates the transcription of cellular anti-oxidant and anti-inflammatory genes. Iso-seco-tanapartholide (IST), a sesquiterpene isolated from the traditional Chinese medicine Artemisia argyi, had been reported to possess NF-κB inhibitory activity. However, its deep anti-inflammatory effects and direct target have never been reported. Here we show that IST activated Nrf2 and increased its target gene expression. In particular, LPS-caused inflammation in vitro and in vivo was mitigated by IST-induced Nrf2 activation but aggravated by Nrf2 inhibition. Mechanically, IST targeted Keap1 proteins via alkylating its cysteine residues 151, 273, 288, and so on. Subsequently, the modifying agent IST was displaced by intermolecular sulfhydryl disulfide interchange to lead to a disulfide dimer of Keap1. The resulting conformational change of Keap1 liberated Nrf2 from sequestration and allowed it translocation to the nucleus to activate the transcriptional program. Further studies demonstrated that Keap1 dimer formation contributed to the anti-inflammatory effects of IST. Taken together, our findings reveal a new mechanism for Nrf2 activation and provide a potential lead compound to treat inflammatory diseases through targeting Keap1. |
Author | Xue, Guimin Chen, Chen Luo, Jianguang Kong, Lingyi Xia, Yuanzheng Kong, Min Zhu, Dongrong Li, Shang |
Author_xml | – sequence: 1 givenname: Dongrong surname: Zhu fullname: Zhu, Dongrong – sequence: 2 givenname: Yuanzheng surname: Xia fullname: Xia, Yuanzheng – sequence: 3 givenname: Shang surname: Li fullname: Li, Shang – sequence: 4 givenname: Min surname: Kong fullname: Kong, Min – sequence: 5 givenname: Chen surname: Chen fullname: Chen, Chen – sequence: 6 givenname: Guimin surname: Xue fullname: Xue, Guimin – sequence: 7 givenname: Lingyi surname: Kong fullname: Kong, Lingyi email: lykong@cpu.edu.cn – sequence: 8 givenname: Jianguang orcidid: 0000-0003-1251-8539 surname: Luo fullname: Luo, Jianguang email: luojg@cpu.edu.cn |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34923099$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkc9u1DAQxi1URLcLr4AsceGS1Hb-OeJUVQWqVnCBszW2x7teJXGwvS3LI_DUpGx7gFNPI3m--c34-87IyRQmJOQdZyVnvD3flS4iRrDahxFtKZjgJRelaPoXZMVlVxV107cnZMVkz4tG1v0pOUtpxxirm0q-IqdV3YuK9f2K_L5OoUhoQpFhghli3obBW6Rgsr-DjIl-iU7Q5DcTDH7a0Bny9h4ONG9j2G-29AZh5nQM1jtvIPswUZgsXSib5bzofx3fcqD4E2NemtkXfnIDjCPkEA8UnUOT02vy0sGQ8M1jXZPvH6--XX4ubr9-ur68uC1MJatctAI7I43TFkWjdVvZqgNhrTbOOY297p20Des0yE522jDtat2iaU3Nai2hWpP3R-4cw489pqxGnwwOA0wY9kmJlgtW92zZtiZvH6V7vVit5uhHiAf15N8iuDgKTAwpRXTK-Pz3wzmCHxRn6iEztVP_ZKYeMlNcqCWzhfHhP8bTmudNXx2ncbHszmNUyXicDFofF1eVDf5ZnD86hMD8 |
CitedBy_id | crossref_primary_10_3389_fnut_2022_964938 crossref_primary_10_1016_j_intimp_2023_109689 crossref_primary_10_1016_j_jep_2022_115401 crossref_primary_10_1093_toxres_tfae080 crossref_primary_10_1016_j_arabjc_2023_105050 crossref_primary_10_1016_j_freeradbiomed_2024_09_035 crossref_primary_10_1016_j_ejphar_2023_175987 crossref_primary_10_1007_s11101_023_09910_y crossref_primary_10_1016_j_cellsig_2024_111331 crossref_primary_10_1111_bph_15961 crossref_primary_10_1016_j_freeradbiomed_2022_05_009 crossref_primary_10_1016_j_bioorg_2024_107982 crossref_primary_10_1016_j_bcp_2024_116405 |
Cites_doi | 10.1128/MCB.24.24.10941-10953.2004 10.1021/tx500513v 10.1038/ncomms11624 10.1016/j.bbadis.2016.11.005 10.3389/fphar.2020.00402 10.1016/j.freeradbiomed.2017.10.344 10.1038/nature25986 10.1016/j.redox.2020.101453 10.1146/annurev-pathol-012414-040431 10.1016/j.freeradbiomed.2016.01.011 10.1016/j.carbpol.2013.07.018 10.1016/j.phrs.2019.104259 10.1111/ajt.15724 10.1038/nbt.4236 10.2174/1381612823666170413122439 10.1016/j.abb.2019.108156 10.1034/j.1399-6576.2003.00004.x 10.1080/03602530600971974 10.1172/JCI25790 10.1021/acschembio.6b00651 10.1042/BJ20090471 10.1124/jpet.109.160465 10.1186/s13046-018-0897-x 10.1016/j.freeradbiomed.2021.03.038 10.1038/s41573-018-0008-x 10.1038/nprot.2006.468 10.1016/0031-9422(86)80021-8 10.1002/ejoc.200901016 10.1016/j.bbagen.2014.11.021 10.1016/j.jep.2017.07.033 10.1016/j.bioorg.2019.103268 10.1073/pnas.0307301101 10.1016/j.bbrc.2019.06.006 10.1021/tx700302s 10.1016/j.jasms.2007.09.015 10.1016/j.fitote.2018.12.004 10.1016/j.redox.2020.101485 |
ContentType | Journal Article |
Copyright | 2021 Elsevier Inc. Copyright © 2021 Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2021 Elsevier Inc. – notice: Copyright © 2021 Elsevier Inc. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1016/j.freeradbiomed.2021.12.259 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Biology |
EISSN | 1873-4596 |
EndPage | 412 |
ExternalDocumentID | 34923099 10_1016_j_freeradbiomed_2021_12_259 S0891584921011114 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K --M -~X .GJ .HR .~1 0R~ 1B1 1RT 1~. 1~5 29H 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JM AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABBQC ABFNM ABFRF ABGSF ABJNI ABLJU ABLVK ABMAC ABMZM ABUDA ABXDB ABYKQ ACDAQ ACGFO ACGFS ACIUM ACRLP ADBBV ADEZE ADMUD ADUVX AEBSH AEFWE AEHWI AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGRDE AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV AJRQY ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ANZVX ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV C45 CS3 DOVZS DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HEA HLW HMK HMO HVGLF HX~ HZ~ IHE J1W KOM LCYCR LX3 LZ2 M29 M41 MO0 N9A O-L O9- OAUVE OVD OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAE SBG SCC SDF SDG SDP SES SEW SPCBC SSH SSU SSZ T5K TEORI WUQ XPP ZGI ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACIEU ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION CGR CUY CVF ECM EFKBS EIF NPM 7X8 |
ID | FETCH-LOGICAL-c383t-62e7c8cfbde25bb63d37a2ddbcfffbe9b9f8d507ba8787bc0bf4b6ec6c404b8a3 |
IEDL.DBID | .~1 |
ISSN | 0891-5849 1873-4596 |
IngestDate | Fri Jul 11 07:54:06 EDT 2025 Mon Jul 21 05:22:51 EDT 2025 Thu Apr 24 23:11:51 EDT 2025 Tue Jul 01 01:11:35 EDT 2025 Fri Feb 23 02:40:33 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | NO Oligomerization DTT H&E βME DARTS IST LPS CETSA NAC RNA-seq ARE Nrf2 DEX Keap1 dimer ROS Iso-seco-tanapartholide Keap1 Anti-inflammatory GSH ELISA |
Language | English |
License | Copyright © 2021 Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c383t-62e7c8cfbde25bb63d37a2ddbcfffbe9b9f8d507ba8787bc0bf4b6ec6c404b8a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-1251-8539 |
PMID | 34923099 |
PQID | 2612049038 |
PQPubID | 23479 |
PageCount | 15 |
ParticipantIDs | proquest_miscellaneous_2612049038 pubmed_primary_34923099 crossref_citationtrail_10_1016_j_freeradbiomed_2021_12_259 crossref_primary_10_1016_j_freeradbiomed_2021_12_259 elsevier_sciencedirect_doi_10_1016_j_freeradbiomed_2021_12_259 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2022 2022-01-00 20220101 |
PublicationDateYYYYMMDD | 2022-01-01 |
PublicationDate_xml | – month: 01 year: 2022 text: January 2022 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Free radical biology & medicine |
PublicationTitleAlternate | Free Radic Biol Med |
PublicationYear | 2022 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Eggler, Small, Hannink, Mesecar (bib4) 2009; 422 Chen, Evankovich, Lear, Tuncer, Kennerdell, Camarco, Shishido, Liu, Chen (bib16) 2020; 32 Wakabayashi, Dinkova-Kostova, Holtzclaw, Il Kang, Kobayashi, Yamamoto, Kensler, Talalay (bib8) 2004; 101 Cheng, Rong (bib11) 2017; 23 Singh, Venkannagari, Oh, Zhang, Rohde, Liu, Nimmagadda, Sudini, Brimacombe, Gajghate, Ma, Wang, Xu, Shahane, Xia, Woo, Mensah, Wang, Ferrer, Gabrielson, Li, Rastinejad, Shen, Boxer, Biswal (bib33) 2016; 11 Pei, Zhang, Chen (bib36) 2019; 516 Mills, Ryan, Prag, Dikovskaya, Menon, Zaslona, Jedrychowski, Costa, Higgins, Hams, Szpyt, Runtsch, King, McGouran, Fischer, Kessler, McGettrick, Hughes, Carroll, Booty, Knatko, Meakin, Ashford, Modis, Brunori, Sévin, Fallon, Caldwell, Kunji, Chouchani, Frezza, Dinkova-Kostova, Hartley, Murphy, O'Neill (bib14) 2018; 556 Huneck, Zdero, Bohlmann (bib24) 1986; 25 Kim, Kang, Suh, Choi (bib30) 2019; 145 Kobayashi, Suzuki, Funayama, Nagashima, Hayashi, Sekine, Tanaka, Moriguchi, Motohashi, Nakayama, Yamamoto (bib15) 2016; 7 Thimmulappa, Lee, Rangasamy, Reddy, Yamamoto, Kensler, Biswal (bib17) 2006; 116 Shevchenko, Tomas, Havliš, Olsen, Mann (bib27) 2007; 1 Ahmed, Luo, Namani, Wang, Tang (bib34) 2017; 1863 Jamil, Kim, Yum, Kim, Kim, Kim, Cho, Na, Surh (bib29) 2020; 679 Manuscript (bib38) 2009; 76 Xiaoqing, Qiang (bib6) 2010; 332 Chi, Liu, Yang, Zeng, Wu, Zhou, Wang, Niu, Ding, Zhang, Wang, Chen, Sun, Liu, Tan, Dong, Xu, Zhang, He (bib28) 2018; 36 Zhang, Lo, Cross, Templeton, Hannink (bib1) 2004; 24 Luo, Eggler, Liu, Liu, Mesecar, van Breemen (bib2) 2007; 18 Xiao, Liu, peng Sun, Li, Koike, Kikuchi, Yamada, Li, Feng, Zhang (bib23) 2019; 92 Makiyi, Frade, Lebl, Jaffray, Cobb, Harvey, Slawin, Hay, Westwood (bib25) 2009 Cuadrado, Rojo, Wells, Hayes, Cousin, Rumsey, Attucks, Franklin, Levonen, Kensler, Dinkova-Kostova (bib13) 2019; 18 Rachakonda, Xiong, Sekhar, Stamer, Liebler, Freeman (bib5) 2008; 21 Fukunaga, Kawajiri, Badiwala, Butany, ke Li, Billia, Rao (bib32) 2020; 20 Su, Zhang, Song, Shi, Fu, Xia, Bai, Hu, Xu, Song, Song (bib7) 2015; 28 Broderick, De Nardo, Franklin, Hoffman, Latz (bib9) 2015; 10 Casaril, Ignasiak, Chuang, Vieira, Padilha, Carroll, Lenardão, Savegnago, Davies (bib10) 2017; 113 Xue, Zhu, Zhu, Wang, Luo, Kong (bib22) 2019; 132 Qin, Du, Huang, Yin, Yang, Qin, Cao (bib31) 2016; 92 Yun, Jung, Chun, Yang, Ryu, Lim, Kim, Kim, Cho (bib19) 2016 Bao, Yuan, Wang, Liu, Lan (bib20) 2013; 98 Loisa, Rinne, Laine, Hurme, Kaukinen (bib35) 2003; 47 Zhang, Cheng, Sha, Chen, Yu, Lv, Ji, Wu, Ma, Cheng, Shi (bib39) 2021; 168 Zhang (bib3) 2006; 38 Liu, Wang, Qi, Zhou, Zeng, Tao, Da Zhou, Zhang, Chen, Peng (bib26) 2018; 37 Zimmermann-Klemd, Reinhardt, Morath, Schamel, Steinberger, Leitner, Huber, Hamburger, Gründemann (bib21) 2020; 11 Shin, Ryu, Ko, Park, Yuk, Kim, Kim, Jeong, Shin (bib18) 2017; 209 Kovac, Angelova, Holmström, Zhang, Dinkova-Kostova, Abramov (bib12) 2015; 1850 Deng, Essandoh, Wang, Li, Huang, Chen, Peng, Jiang, Mu, Wang, Peng, Guan, Wang, Jegga, Huang, Fan (bib37) 2020; 32 Bao (10.1016/j.freeradbiomed.2021.12.259_bib20) 2013; 98 Luo (10.1016/j.freeradbiomed.2021.12.259_bib2) 2007; 18 Xue (10.1016/j.freeradbiomed.2021.12.259_bib22) 2019; 132 Cuadrado (10.1016/j.freeradbiomed.2021.12.259_bib13) 2019; 18 Xiaoqing (10.1016/j.freeradbiomed.2021.12.259_bib6) 2010; 332 Broderick (10.1016/j.freeradbiomed.2021.12.259_bib9) 2015; 10 Zimmermann-Klemd (10.1016/j.freeradbiomed.2021.12.259_bib21) 2020; 11 Kim (10.1016/j.freeradbiomed.2021.12.259_bib30) 2019; 145 Chen (10.1016/j.freeradbiomed.2021.12.259_bib16) 2020; 32 Thimmulappa (10.1016/j.freeradbiomed.2021.12.259_bib17) 2006; 116 Ahmed (10.1016/j.freeradbiomed.2021.12.259_bib34) 2017; 1863 Shevchenko (10.1016/j.freeradbiomed.2021.12.259_bib27) 2007; 1 Wakabayashi (10.1016/j.freeradbiomed.2021.12.259_bib8) 2004; 101 Mills (10.1016/j.freeradbiomed.2021.12.259_bib14) 2018; 556 Huneck (10.1016/j.freeradbiomed.2021.12.259_bib24) 1986; 25 Makiyi (10.1016/j.freeradbiomed.2021.12.259_bib25) 2009 Su (10.1016/j.freeradbiomed.2021.12.259_bib7) 2015; 28 Kobayashi (10.1016/j.freeradbiomed.2021.12.259_bib15) 2016; 7 Rachakonda (10.1016/j.freeradbiomed.2021.12.259_bib5) 2008; 21 Qin (10.1016/j.freeradbiomed.2021.12.259_bib31) 2016; 92 Zhang (10.1016/j.freeradbiomed.2021.12.259_bib1) 2004; 24 Eggler (10.1016/j.freeradbiomed.2021.12.259_bib4) 2009; 422 Yun (10.1016/j.freeradbiomed.2021.12.259_bib19) 2016 Loisa (10.1016/j.freeradbiomed.2021.12.259_bib35) 2003; 47 Zhang (10.1016/j.freeradbiomed.2021.12.259_bib3) 2006; 38 Xiao (10.1016/j.freeradbiomed.2021.12.259_bib23) 2019; 92 Deng (10.1016/j.freeradbiomed.2021.12.259_bib37) 2020; 32 Casaril (10.1016/j.freeradbiomed.2021.12.259_bib10) 2017; 113 Chi (10.1016/j.freeradbiomed.2021.12.259_bib28) 2018; 36 Shin (10.1016/j.freeradbiomed.2021.12.259_bib18) 2017; 209 Singh (10.1016/j.freeradbiomed.2021.12.259_bib33) 2016; 11 Zhang (10.1016/j.freeradbiomed.2021.12.259_bib39) 2021; 168 Cheng (10.1016/j.freeradbiomed.2021.12.259_bib11) 2017; 23 Fukunaga (10.1016/j.freeradbiomed.2021.12.259_bib32) 2020; 20 Kovac (10.1016/j.freeradbiomed.2021.12.259_bib12) 2015; 1850 Pei (10.1016/j.freeradbiomed.2021.12.259_bib36) 2019; 516 Jamil (10.1016/j.freeradbiomed.2021.12.259_bib29) 2020; 679 Manuscript (10.1016/j.freeradbiomed.2021.12.259_bib38) 2009; 76 Liu (10.1016/j.freeradbiomed.2021.12.259_bib26) 2018; 37 |
References_xml | – volume: 132 start-page: 94 year: 2019 end-page: 100 ident: bib22 article-title: Lactone ring-opening seco-guaianolide involved heterodimers linked via an ester bond from Artemisia argyi with NO inhibitory activity publication-title: Fitoterapia – volume: 556 start-page: 113 year: 2018 end-page: 117 ident: bib14 article-title: Itaconate is an anti-inflammatory metabolite that activates Nrf2 via alkylation of KEAP1 publication-title: Nature – volume: 1863 start-page: 585 year: 2017 end-page: 597 ident: bib34 article-title: Nrf2 signaling pathway: pivotal roles in inflammation publication-title: Biochim. Biophys. Acta (BBA) - Mol. Basis Dis. – volume: 422 start-page: 171 year: 2009 end-page: 180 ident: bib4 article-title: Cul3-mediated Nrf2 ubiquitination and antioxidant response element (ARE) activation are dependent on the partial molar volume at position 151 of Keap1 publication-title: Biochem. J. – volume: 11 start-page: 3214 year: 2016 end-page: 3225 ident: bib33 article-title: Small molecule inhibitor of NRF2 selectively intervenes therapeutic resistance in KEAP1-deficient NSCLC tumors publication-title: ACS Chem. Biol. – volume: 25 start-page: 883 year: 1986 end-page: 889 ident: bib24 article-title: Seco-guaianolides and other constituents from Artemisia species publication-title: Phytochemistry – volume: 516 start-page: 270 year: 2019 end-page: 277 ident: bib36 article-title: Bardoxolone treatment alleviates lipopolysaccharide (LPS)-induced acute lung injury through suppressing inflammation and oxidative stress regulated by Nrf2 signaling publication-title: Biochem. Biophys. Res. Commun. – volume: 21 start-page: 705 year: 2008 end-page: 710 ident: bib5 article-title: Covalent modification at Cys151 dissociates the electrophile sensor Keap1 from the ubiquitin ligase CUL3 publication-title: Chem. Res. Toxicol. – volume: 168 start-page: 247 year: 2021 end-page: 257 ident: bib39 article-title: Rosmarinic acid prevents refractory bacterial pneumonia through regulating Keap1/Nrf2-mediated autophagic pathway and mitochondrial oxidative stress publication-title: Free Radic. Biol. Med. – volume: 116 start-page: 984 year: 2006 end-page: 995 ident: bib17 article-title: Nrf2 is a critical regulator of the innate immune response and survival during experimental sepsis publication-title: J. Clin. Invest. – year: 2016 ident: bib19 article-title: Anti-Inflammatory Effects of Artemisia Leaf Extract in Mice with Contact Dermatitis in Vitro and in Vivo, Mediators of Inflammation – volume: 332 start-page: 66 year: 2010 end-page: 75 ident: bib6 article-title: Critical cysteine residues of Kelch-like ECH-associated protein 1 in arsenic sensing and suppression of nuclear factor erythroid 2-related factor 2 publication-title: J. Pharmacol. Exp. Therapeut. – volume: 98 start-page: 1236 year: 2013 end-page: 1243 ident: bib20 article-title: Antitumor and immunomodulatory activities of a polysaccharide from Artemisia argyi publication-title: Carbohydr. Polym. – volume: 209 start-page: 108 year: 2017 end-page: 115 ident: bib18 article-title: Artemisia argyi attenuates airway inflammation in ovalbumin-induced asthmatic animals publication-title: J. Ethnopharmacol. – volume: 1 start-page: 2856 year: 2007 end-page: 2860 ident: bib27 article-title: In-gel digestion for mass spectrometric characterization of proteins and proteomes publication-title: Nat. Protoc. – volume: 38 start-page: 769 year: 2006 end-page: 789 ident: bib3 article-title: Mechanistic studies of the Nrf2-Keap1 signaling pathway publication-title: Drug Metabol. Rev. – volume: 47 start-page: 319 year: 2003 end-page: 325 ident: bib35 article-title: Anti-inflammatory cytokine response and the development of multiple organ failure in severe sepsis publication-title: Acta Anaesthesiol. Scand. – volume: 28 start-page: 765 year: 2015 end-page: 774 ident: bib7 article-title: Tetrachlorobenzoquinone activates NRF2 signaling by keap1 cross-linking and ubiquitin translocation but not keap1-cullin3 complex dissociation publication-title: Chem. Res. Toxicol. – volume: 10 start-page: 395 year: 2015 end-page: 424 ident: bib9 article-title: The inflammasomes and autoinflammatory syndromes publication-title: Annu. Rev. Pathol. – volume: 20 start-page: 1262 year: 2020 end-page: 1271 ident: bib32 article-title: Protective role of Nrf2 against ischemia reperfusion injury and cardiac allograft vasculopathy publication-title: Am. J. Transplant. – volume: 11 start-page: 1 year: 2020 end-page: 13 ident: bib21 article-title: Immunosuppressive activity of Artemisia argyi extract and isolated compounds publication-title: Front. Pharmacol. – volume: 101 year: 2004 ident: bib8 article-title: Protection against electrophile and oxidant stress by induction of the phase 2 response: fate of cysteines of the Keap1 sensor modified by inducers publication-title: Proc. Natl. Acad. Sci. U.S.A. – volume: 7 start-page: 1 year: 2016 end-page: 14 ident: bib15 article-title: Nrf2 suppresses macrophage inflammatory response by blocking proinflammatory cytokine transcription publication-title: Nat. Commun. – volume: 32 start-page: 101485 year: 2020 ident: bib16 article-title: A small molecule NRF2 activator BC-1901S ameliorates inflammation through DCAF1/NRF2 axis publication-title: Redox Biol. – volume: 92 start-page: 90 year: 2016 end-page: 99 ident: bib31 article-title: Sinomenine activation of Nrf2 signaling prevents hyperactive inflammation and kidney injury in a mouse model of obstructive nephropathy publication-title: Free Radic. Biol. Med. – volume: 24 start-page: 10941 year: 2004 end-page: 10953 ident: bib1 article-title: Keap1 is a redox-regulated substrate adaptor protein for a cul3-dependent ubiquitin ligase complex publication-title: Mol. Cell Biol. – volume: 18 start-page: 2226 year: 2007 end-page: 2232 ident: bib2 article-title: Sites of alkylation of human keap1 by natural chemoprevention agents publication-title: J. Am. Soc. Mass Spectrom. – start-page: 5711 year: 2009 end-page: 5715 ident: bib25 article-title: Iso-seco-tanapartholides: isolation, synthesis and biological evaluation publication-title: Eur. J. Org Chem. – volume: 37 start-page: 1 year: 2018 end-page: 16 ident: bib26 article-title: Vitexin compound 1, a novel extraction from a Chinese herb, suppresses melanoma cell growth through DNA damage by increasing ROS levels publication-title: J. Exp. Clin. Cancer Res. – volume: 32 start-page: 101453 year: 2020 ident: bib37 article-title: Tsg101 positively regulates P62-Keap1-Nrf2 pathway to protect hearts against oxidative damage publication-title: Redox Biol. – volume: 23 start-page: 3884 year: 2017 end-page: 3898 ident: bib11 article-title: Therapeutic potential of heme oxygenase-1/carbon monoxide system Against ischemia-reperfusion injury publication-title: Curr. Pharmaceut. Des. – volume: 92 year: 2019 ident: bib23 article-title: Bioactivity-based analysis and chemical characterization of hypoglycemic and antioxidant components from Artemisia argyi publication-title: Bioorg. Chem. – volume: 145 start-page: 104259 year: 2019 ident: bib30 article-title: Parthenolide, a feverfew-derived phytochemical, ameliorates obesity and obesity-induced inflammatory responses via the Nrf2/Keap1 pathway publication-title: Pharmacol. Res. – volume: 1850 start-page: 794 year: 2015 end-page: 801 ident: bib12 article-title: Nrf2 regulates ROS production by mitochondria and NADPH oxidase publication-title: Biochim. Biophys. Acta Gen. Subj. – volume: 113 start-page: 395 year: 2017 end-page: 405 ident: bib10 article-title: Selenium-containing indolyl compounds: kinetics of reaction with inflammation-associated oxidants and protective effect against oxidation of extracellular matrix proteins publication-title: Free Radic. Biol. Med. – volume: 18 start-page: 295 year: 2019 end-page: 317 ident: bib13 article-title: Therapeutic targeting of the NRF2 and KEAP1 partnership in chronic diseases publication-title: Nat. Rev. Drug Discov. – volume: 36 start-page: 1059 year: 2018 end-page: 1066 ident: bib28 article-title: Comprehensive identification of peptides in tandem mass spectra using an efficient open search engine publication-title: Nat. Biotechnol. – volume: 679 start-page: 108156 year: 2020 ident: bib29 article-title: 17-Oxo-docosahexaenoic acid induces Nrf2-mediated expression of heme oxygenase-1 in mouse skin in vivo and in cultured murine epidermal cells publication-title: Arch. Biochem. Biophys. – volume: 76 start-page: 1485 year: 2009 end-page: 1489 ident: bib38 article-title: Nrf2 attenuates NF-κB (2008).pdf publication-title: Biochem. Pharmacol. – volume: 24 start-page: 10941 year: 2004 ident: 10.1016/j.freeradbiomed.2021.12.259_bib1 article-title: Keap1 is a redox-regulated substrate adaptor protein for a cul3-dependent ubiquitin ligase complex publication-title: Mol. Cell Biol. doi: 10.1128/MCB.24.24.10941-10953.2004 – volume: 28 start-page: 765 year: 2015 ident: 10.1016/j.freeradbiomed.2021.12.259_bib7 article-title: Tetrachlorobenzoquinone activates NRF2 signaling by keap1 cross-linking and ubiquitin translocation but not keap1-cullin3 complex dissociation publication-title: Chem. Res. Toxicol. doi: 10.1021/tx500513v – volume: 7 start-page: 1 year: 2016 ident: 10.1016/j.freeradbiomed.2021.12.259_bib15 article-title: Nrf2 suppresses macrophage inflammatory response by blocking proinflammatory cytokine transcription publication-title: Nat. Commun. doi: 10.1038/ncomms11624 – volume: 1863 start-page: 585 year: 2017 ident: 10.1016/j.freeradbiomed.2021.12.259_bib34 article-title: Nrf2 signaling pathway: pivotal roles in inflammation publication-title: Biochim. Biophys. Acta (BBA) - Mol. Basis Dis. doi: 10.1016/j.bbadis.2016.11.005 – volume: 11 start-page: 1 year: 2020 ident: 10.1016/j.freeradbiomed.2021.12.259_bib21 article-title: Immunosuppressive activity of Artemisia argyi extract and isolated compounds publication-title: Front. Pharmacol. doi: 10.3389/fphar.2020.00402 – volume: 113 start-page: 395 year: 2017 ident: 10.1016/j.freeradbiomed.2021.12.259_bib10 article-title: Selenium-containing indolyl compounds: kinetics of reaction with inflammation-associated oxidants and protective effect against oxidation of extracellular matrix proteins publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2017.10.344 – volume: 556 start-page: 113 year: 2018 ident: 10.1016/j.freeradbiomed.2021.12.259_bib14 article-title: Itaconate is an anti-inflammatory metabolite that activates Nrf2 via alkylation of KEAP1 publication-title: Nature doi: 10.1038/nature25986 – volume: 32 start-page: 101453 year: 2020 ident: 10.1016/j.freeradbiomed.2021.12.259_bib37 article-title: Tsg101 positively regulates P62-Keap1-Nrf2 pathway to protect hearts against oxidative damage publication-title: Redox Biol. doi: 10.1016/j.redox.2020.101453 – volume: 10 start-page: 395 year: 2015 ident: 10.1016/j.freeradbiomed.2021.12.259_bib9 article-title: The inflammasomes and autoinflammatory syndromes publication-title: Annu. Rev. Pathol. doi: 10.1146/annurev-pathol-012414-040431 – volume: 92 start-page: 90 year: 2016 ident: 10.1016/j.freeradbiomed.2021.12.259_bib31 article-title: Sinomenine activation of Nrf2 signaling prevents hyperactive inflammation and kidney injury in a mouse model of obstructive nephropathy publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2016.01.011 – volume: 98 start-page: 1236 year: 2013 ident: 10.1016/j.freeradbiomed.2021.12.259_bib20 article-title: Antitumor and immunomodulatory activities of a polysaccharide from Artemisia argyi publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2013.07.018 – volume: 145 start-page: 104259 year: 2019 ident: 10.1016/j.freeradbiomed.2021.12.259_bib30 article-title: Parthenolide, a feverfew-derived phytochemical, ameliorates obesity and obesity-induced inflammatory responses via the Nrf2/Keap1 pathway publication-title: Pharmacol. Res. doi: 10.1016/j.phrs.2019.104259 – volume: 20 start-page: 1262 year: 2020 ident: 10.1016/j.freeradbiomed.2021.12.259_bib32 article-title: Protective role of Nrf2 against ischemia reperfusion injury and cardiac allograft vasculopathy publication-title: Am. J. Transplant. doi: 10.1111/ajt.15724 – volume: 36 start-page: 1059 year: 2018 ident: 10.1016/j.freeradbiomed.2021.12.259_bib28 article-title: Comprehensive identification of peptides in tandem mass spectra using an efficient open search engine publication-title: Nat. Biotechnol. doi: 10.1038/nbt.4236 – volume: 23 start-page: 3884 year: 2017 ident: 10.1016/j.freeradbiomed.2021.12.259_bib11 article-title: Therapeutic potential of heme oxygenase-1/carbon monoxide system Against ischemia-reperfusion injury publication-title: Curr. Pharmaceut. Des. doi: 10.2174/1381612823666170413122439 – volume: 679 start-page: 108156 year: 2020 ident: 10.1016/j.freeradbiomed.2021.12.259_bib29 article-title: 17-Oxo-docosahexaenoic acid induces Nrf2-mediated expression of heme oxygenase-1 in mouse skin in vivo and in cultured murine epidermal cells publication-title: Arch. Biochem. Biophys. doi: 10.1016/j.abb.2019.108156 – volume: 47 start-page: 319 year: 2003 ident: 10.1016/j.freeradbiomed.2021.12.259_bib35 article-title: Anti-inflammatory cytokine response and the development of multiple organ failure in severe sepsis publication-title: Acta Anaesthesiol. Scand. doi: 10.1034/j.1399-6576.2003.00004.x – volume: 38 start-page: 769 year: 2006 ident: 10.1016/j.freeradbiomed.2021.12.259_bib3 article-title: Mechanistic studies of the Nrf2-Keap1 signaling pathway publication-title: Drug Metabol. Rev. doi: 10.1080/03602530600971974 – volume: 116 start-page: 984 year: 2006 ident: 10.1016/j.freeradbiomed.2021.12.259_bib17 article-title: Nrf2 is a critical regulator of the innate immune response and survival during experimental sepsis publication-title: J. Clin. Invest. doi: 10.1172/JCI25790 – volume: 11 start-page: 3214 year: 2016 ident: 10.1016/j.freeradbiomed.2021.12.259_bib33 article-title: Small molecule inhibitor of NRF2 selectively intervenes therapeutic resistance in KEAP1-deficient NSCLC tumors publication-title: ACS Chem. Biol. doi: 10.1021/acschembio.6b00651 – volume: 422 start-page: 171 year: 2009 ident: 10.1016/j.freeradbiomed.2021.12.259_bib4 article-title: Cul3-mediated Nrf2 ubiquitination and antioxidant response element (ARE) activation are dependent on the partial molar volume at position 151 of Keap1 publication-title: Biochem. J. doi: 10.1042/BJ20090471 – volume: 332 start-page: 66 year: 2010 ident: 10.1016/j.freeradbiomed.2021.12.259_bib6 article-title: Critical cysteine residues of Kelch-like ECH-associated protein 1 in arsenic sensing and suppression of nuclear factor erythroid 2-related factor 2 publication-title: J. Pharmacol. Exp. Therapeut. doi: 10.1124/jpet.109.160465 – volume: 37 start-page: 1 year: 2018 ident: 10.1016/j.freeradbiomed.2021.12.259_bib26 article-title: Vitexin compound 1, a novel extraction from a Chinese herb, suppresses melanoma cell growth through DNA damage by increasing ROS levels publication-title: J. Exp. Clin. Cancer Res. doi: 10.1186/s13046-018-0897-x – volume: 168 start-page: 247 year: 2021 ident: 10.1016/j.freeradbiomed.2021.12.259_bib39 article-title: Rosmarinic acid prevents refractory bacterial pneumonia through regulating Keap1/Nrf2-mediated autophagic pathway and mitochondrial oxidative stress publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2021.03.038 – volume: 18 start-page: 295 year: 2019 ident: 10.1016/j.freeradbiomed.2021.12.259_bib13 article-title: Therapeutic targeting of the NRF2 and KEAP1 partnership in chronic diseases publication-title: Nat. Rev. Drug Discov. doi: 10.1038/s41573-018-0008-x – volume: 1 start-page: 2856 year: 2007 ident: 10.1016/j.freeradbiomed.2021.12.259_bib27 article-title: In-gel digestion for mass spectrometric characterization of proteins and proteomes publication-title: Nat. Protoc. doi: 10.1038/nprot.2006.468 – volume: 25 start-page: 883 year: 1986 ident: 10.1016/j.freeradbiomed.2021.12.259_bib24 article-title: Seco-guaianolides and other constituents from Artemisia species publication-title: Phytochemistry doi: 10.1016/0031-9422(86)80021-8 – start-page: 5711 year: 2009 ident: 10.1016/j.freeradbiomed.2021.12.259_bib25 article-title: Iso-seco-tanapartholides: isolation, synthesis and biological evaluation publication-title: Eur. J. Org Chem. doi: 10.1002/ejoc.200901016 – volume: 1850 start-page: 794 year: 2015 ident: 10.1016/j.freeradbiomed.2021.12.259_bib12 article-title: Nrf2 regulates ROS production by mitochondria and NADPH oxidase publication-title: Biochim. Biophys. Acta Gen. Subj. doi: 10.1016/j.bbagen.2014.11.021 – volume: 209 start-page: 108 year: 2017 ident: 10.1016/j.freeradbiomed.2021.12.259_bib18 article-title: Artemisia argyi attenuates airway inflammation in ovalbumin-induced asthmatic animals publication-title: J. Ethnopharmacol. doi: 10.1016/j.jep.2017.07.033 – year: 2016 ident: 10.1016/j.freeradbiomed.2021.12.259_bib19 – volume: 92 year: 2019 ident: 10.1016/j.freeradbiomed.2021.12.259_bib23 article-title: Bioactivity-based analysis and chemical characterization of hypoglycemic and antioxidant components from Artemisia argyi publication-title: Bioorg. Chem. doi: 10.1016/j.bioorg.2019.103268 – volume: 101 year: 2004 ident: 10.1016/j.freeradbiomed.2021.12.259_bib8 article-title: Protection against electrophile and oxidant stress by induction of the phase 2 response: fate of cysteines of the Keap1 sensor modified by inducers publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.0307301101 – volume: 516 start-page: 270 year: 2019 ident: 10.1016/j.freeradbiomed.2021.12.259_bib36 article-title: Bardoxolone treatment alleviates lipopolysaccharide (LPS)-induced acute lung injury through suppressing inflammation and oxidative stress regulated by Nrf2 signaling publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2019.06.006 – volume: 21 start-page: 705 year: 2008 ident: 10.1016/j.freeradbiomed.2021.12.259_bib5 article-title: Covalent modification at Cys151 dissociates the electrophile sensor Keap1 from the ubiquitin ligase CUL3 publication-title: Chem. Res. Toxicol. doi: 10.1021/tx700302s – volume: 18 start-page: 2226 year: 2007 ident: 10.1016/j.freeradbiomed.2021.12.259_bib2 article-title: Sites of alkylation of human keap1 by natural chemoprevention agents publication-title: J. Am. Soc. Mass Spectrom. doi: 10.1016/j.jasms.2007.09.015 – volume: 132 start-page: 94 year: 2019 ident: 10.1016/j.freeradbiomed.2021.12.259_bib22 article-title: Lactone ring-opening seco-guaianolide involved heterodimers linked via an ester bond from Artemisia argyi with NO inhibitory activity publication-title: Fitoterapia doi: 10.1016/j.fitote.2018.12.004 – volume: 32 start-page: 101485 year: 2020 ident: 10.1016/j.freeradbiomed.2021.12.259_bib16 article-title: A small molecule NRF2 activator BC-1901S ameliorates inflammation through DCAF1/NRF2 axis publication-title: Redox Biol. doi: 10.1016/j.redox.2020.101485 – volume: 76 start-page: 1485 year: 2009 ident: 10.1016/j.freeradbiomed.2021.12.259_bib38 article-title: Nrf2 attenuates NF-κB (2008).pdf publication-title: Biochem. Pharmacol. |
SSID | ssj0004538 |
Score | 2.4545798 |
Snippet | Covalent modification of Keap1 results in reducing ubiquitination and the accumulation of Nrf2, which subsequently initiates the transcription of cellular... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 398 |
SubjectTerms | Anti-inflammatory Anti-Inflammatory Agents - pharmacology Iso-seco-tanapartholide Keap1 dimer Kelch-Like ECH-Associated Protein 1 - genetics Kelch-Like ECH-Associated Protein 1 - metabolism NF-E2-Related Factor 2 - genetics NF-E2-Related Factor 2 - metabolism NF-kappa B - genetics NF-kappa B - metabolism Nrf2 Oligomerization Signal Transduction |
Title | Iso-seco-tanapartholide activates Nrf2 signaling pathway through Keap1 modification and oligomerization to exert anti-inflammatory effects |
URI | https://dx.doi.org/10.1016/j.freeradbiomed.2021.12.259 https://www.ncbi.nlm.nih.gov/pubmed/34923099 https://www.proquest.com/docview/2612049038 |
Volume | 178 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1baxQxFA6lRfFFautlvZSI4lvcnUx2JvFBWIpla3FftNC3kKusuDPL7rRlX_wB_dU9JzNTLSgUfJ1JMkPOSc537oS8LUFIuyAD49znTHCjmHIqsIiyVLlC5hlmI3-ZFdNT8flsfLZFDvtcGAyr7O7-9k5Pt3X3ZNjt5nA5nw-_jqTKQHwqUFrw3GNNUCFK5PL3v7I_KoanbtY4mOHo--TN7xivuAoBXdYp0x2URZ6hbZBj4dK_S6l_odAkjY52ycMORtJJ-6ePyFao9sj-pAIVerGh72gK7EwW8z1yr-03udknV8frmq1B4WQACUFKrtAmOveBYnbDBaJOOltFTjGow2CeOsWGxZdmQ7t2PvQkmGVGF7XHCKNEVGoqT2GV7zX6ftqkTtrUFHs5NfCymTNgYuC7RfLn0y6A5DE5Pfr07XDKumYMzIES27CCh9JJF60PfGxtkfu8NNx762KMNiirovQALq2RcAdYN7JR2CK4womRsNLkT8h2VVfhGaGZsQisCvRICleOlbUiF9baGMs4lmpAPvSbr11XqRwbZvzUfUjaD32LchoppzOugXIDIm4mL9uCHXeb9rGnsr7FfxpEy90WeN3zhoYTim4XU4X6fK2xSBv6V3M5IE9bprn5M6wNmQNIf_6_n39BHnBMzEjGoZdku1mdh1cAlxp7kM7DAdmZHJ9MZ9csLxs_ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-NTjBeEGzAyqcRiDerjeMmMQ9I1cTU0q0vbNLeLNuxpyKaVG0G6r_AX81dPgaTQJrEaxI7lu_s-903wLsUhbTzmedC5DGXwiiunPI8kCxVLsniiLKRT-fJ5Fx-vhhd7MBRlwtDYZXt3d_c6fVt3T4ZtLs5WC0Wgy_DTEUoPhUqLXTu5R3YpepUox7sjqezyfyPouF1Q2v6ntOAe_D2d5hXWHtPXus62R31RRGReVBQ7dK_C6p_AdFaIB0_hActkmTjZrGPYMcX-3AwLlCLXm7Ze1bHdtZG832427Sc3B7Az-mm5BvUOTmiQhSUazKLLnLPKMHhOwFPNl8HwSiuw1CqOqOexT_MlrUdfdjMm1XElmVOQUY1XZkpcoazXJbk_mnyOllVMmrnVOHLasGRj5H1lrVLn7UxJI_h_PjT2dGEt_0YuEM9tuKJ8KnLXLC5FyNrkziPUyPy3LoQgvXKqpDliC-tyfAasG5og7SJd4mTQ2kzEz-BXlEW_hBYZCxhq4ScktKlI2WtjKW1NoQ0jDLVhw_d5mvXFiunnhnfdBeV9lXfoJwmyulIaKRcH-T14FVTs-N2wz52VNY3WFCjdLndBG863tB4SMnzYgpfXm001WkjF2uc9eFpwzTXK6PykDHi9Gf_-_vXsDc5Oz3RJ9P57DncF5SnUduKXkCvWl_5l4ieKvuqPR2_AL58HfA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Iso-seco-tanapartholide+activates+Nrf2+signaling+pathway+through+Keap1+modification+and+oligomerization+to+exert+anti-inflammatory+effects&rft.jtitle=Free+radical+biology+%26+medicine&rft.au=Zhu%2C+Dongrong&rft.au=Xia%2C+Yuanzheng&rft.au=Li%2C+Shang&rft.au=Kong%2C+Min&rft.date=2022-01-01&rft.pub=Elsevier+Inc&rft.issn=0891-5849&rft.eissn=1873-4596&rft.volume=178&rft.spage=398&rft.epage=412&rft_id=info:doi/10.1016%2Fj.freeradbiomed.2021.12.259&rft.externalDocID=S0891584921011114 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0891-5849&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0891-5849&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0891-5849&client=summon |