Phase formation and mechanical properties of Cu-Zr-Ti bulk metallic glass composites
The effect of the type of the crystalline phase and its volume fraction on the mechanical property of Cu 50 Zr 50-x Ti x alloys (x = 0-10) bulk metallic glass composites has been investigated in this study. Up to 6 at% of Ti, B19’ phase particles distributed in the glassy matrix, while at 8 and 10%...
Saved in:
Published in | Metals and materials international Vol. 22; no. 6; pp. 1026 - 1032 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Seoul
The Korean Institute of Metals and Materials
01.11.2016
Springer Nature B.V 대한금속·재료학회 |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The effect of the type of the crystalline phase and its volume fraction on the mechanical property of Cu
50
Zr
50-x
Ti
x
alloys (x = 0-10) bulk metallic glass composites has been investigated in this study. Up to 6 at% of Ti, B19’ phase particles distributed in the glassy matrix, while at 8 and 10% of Ti, B2 phase particles are retained in the glass matrix due to suppression of the eutectoid transformation of B2 phase and by avoidance of martensitic transformation of B2 into B19’. The volume fraction of crystalline phase is strongly dependent on the cooling rate. The larger volume fraction of the crystalline phases results in the lower yield stress, the higher plastic strain, and the more pronounced work hardening behavior. At the crystalline volume fraction below ~30%, the variation of the yield strength can be described by the rule of mixture model (ROM), while at the crystalline volume fraction higher than ~50% by the load-bearing model (LBM). At the crystal fractions between 30 and 50%, there is a yield strength drop and a transition from the ROM to the LBM. This transition is due to the formation of the crystalline structural framework at higher crystal fraction. |
---|---|
AbstractList | The effect of the type of the crystalline phase and its volume fraction on the mechanical property of Cu50Zr50-xTix alloys (x = 0-10) bulk metallic glass composites has been investigated in this study. Up to 6 at% of Ti, B19' phase particles distributed in the glassy matrix, while at 8 and 10% of Ti, B2 phase particles are retained in the glass matrix due to suppression of the eutectoid transformation of B2 phase and by avoidance of martensitic transformation of B2 into B19'. The volume fraction of crystalline phase is strongly dependent on the cooling rate. The larger volume fraction of the crystalline phases results in the lower yield stress, the higher plastic strain, and the more pronounced work hardening behavior. At the crystalline volume fraction below ~30%, the variation of the yield strength can be described by the rule of mixture model (ROM), while at the crystalline volume fraction higher than ~50% by the load-bearing model (LBM). At the crystal fractions between 30 and 50%, there is a yield strength drop and a transition from the ROM to the LBM. This transition is due to the formation of the crystalline structural framework at higher crystal fraction. The effect of the type of the crystalline phase and its volume fraction on the mechanical property ofCu50Zr50-xTix alloys (x = 0-10) bulk metallic glass composites has been investigated in this study. Up to 6at% of Ti, B19’ phase particles distributed in the glassy matrix, while at 8 and 10% of Ti, B2 phase particlesare retained in the glass matrix due to suppression of the eutectoid transformation of B2 phase and byavoidance of martensitic transformation of B2 into B19’. The volume fraction of crystalline phase is stronglydependent on the cooling rate. The larger volume fraction of the crystalline phases results in the loweryield stress, the higher plastic strain, and the more pronounced work hardening behavior. At the crystallinevolume fraction below ~30%, the variation of the yield strength can be described by the rule of mixturemodel (ROM), while at the crystalline volume fraction higher than ~50% by the load-bearing model (LBM). At the crystal fractions between 30 and 50%, there is a yield strength drop and a transition from the ROMto the LBM. This transition is due to the formation of the crystalline structural framework at higher crystalfraction. KCI Citation Count: 0 The effect of the type of the crystalline phase and its volume fraction on the mechanical property of Cu 50 Zr 50-x Ti x alloys (x = 0-10) bulk metallic glass composites has been investigated in this study. Up to 6 at% of Ti, B19’ phase particles distributed in the glassy matrix, while at 8 and 10% of Ti, B2 phase particles are retained in the glass matrix due to suppression of the eutectoid transformation of B2 phase and by avoidance of martensitic transformation of B2 into B19’. The volume fraction of crystalline phase is strongly dependent on the cooling rate. The larger volume fraction of the crystalline phases results in the lower yield stress, the higher plastic strain, and the more pronounced work hardening behavior. At the crystalline volume fraction below ~30%, the variation of the yield strength can be described by the rule of mixture model (ROM), while at the crystalline volume fraction higher than ~50% by the load-bearing model (LBM). At the crystal fractions between 30 and 50%, there is a yield strength drop and a transition from the ROM to the LBM. This transition is due to the formation of the crystalline structural framework at higher crystal fraction. The effect of the type of the crystalline phase and its volume fraction on the mechanical property of Cu sub(50)Zr sub(50-x)Ti sub(x) alloys (x = 0-10) bulk metallic glass composites has been investigated in this study. Up to 6 at% of Ti, B19' phase particles distributed in the glassy matrix, while at 8 and 10% of Ti, B2 phase particles are retained in the glass matrix due to suppression of the eutectoid transformation of B2 phase and by avoidance of martensitic transformation of B2 into B19'. The volume fraction of crystalline phase is strongly dependent on the cooling rate. The larger volume fraction of the crystalline phases results in the lower yield stress, the higher plastic strain, and the more pronounced work hardening behavior. At the crystalline volume fraction below ~30%, the variation of the yield strength can be described by the rule of mixture model (ROM), while at the crystalline volume fraction higher than ~50% by the load-bearing model (LBM). At the crystal fractions between 30 and 50%, there is a yield strength drop and a transition from the ROM to the LBM. This transition is due to the formation of the crystalline structural framework at higher crystal fraction. |
Author | Yun, Young Su Kim, Byoung Jin Kim, Do Hyang Kim, Won Tae |
Author_xml | – sequence: 1 givenname: Byoung Jin surname: Kim fullname: Kim, Byoung Jin organization: Department of Materials Science & Engineering, Yonsei University – sequence: 2 givenname: Young Su surname: Yun fullname: Yun, Young Su organization: Department of Materials Science & Engineering, Yonsei University – sequence: 3 givenname: Won Tae surname: Kim fullname: Kim, Won Tae organization: Department of Laser & Optical Information Engineering, Cheongju University – sequence: 4 givenname: Do Hyang surname: Kim fullname: Kim, Do Hyang email: dohkim@yonsei.ac.kr organization: Department of Materials Science & Engineering, Yonsei University |
BackLink | https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002164225$$DAccess content in National Research Foundation of Korea (NRF) |
BookMark | eNp1kU1LJDEURcPgwLTO_IDZBdyMi2he0qlKLaWZD0FQpN24Can0Sxu7KulJqkD__VRbLmTA1d2ce-Byj8lRTBEJ-Q78HDivLwoIteSMQ8UqqSv2_IksBOeKLWHZHJEFqEazphLyCzku5YnzCiSIBVnfPtqC1Kfc2yGkSG3c0B7do43B2Y7uc9pjHgIWmjxdjewhs3Wg7djtJmywXRcc3Xa2FOpSv08lDFi-ks_edgW_veUJuf_1c736w65vfl-tLq-Zk1oOTLm6Uhv0m1YLXXNuvVK-shI0qtpi3bp20wIqp2tsrEYHrW9t0zpvfe2dkifkbPbG7M3OBZNseM1tMrtsLu_WVwZErXmjJ_bHzE6L_o5YBtOH4rDrbMQ0FgNaKamBi4P29D_0KY05TksmSkohNCwPQpgpl1MpGb3Z59Db_GKAm8MnZv7ETJ-YwyfmeeqIuVMmNm4xvzN_WPoHDZmR6w |
CitedBy_id | crossref_primary_10_3390_met10070857 crossref_primary_10_1016_j_jallcom_2022_165299 crossref_primary_10_1016_j_pmatsci_2021_100799 crossref_primary_10_1007_s10973_023_12856_0 crossref_primary_10_1016_j_jnoncrysol_2020_119950 crossref_primary_10_1007_s12540_018_0114_7 |
Cites_doi | 10.1016/0001-6160(75)90101-7 10.1016/j.scriptamat.2005.11.074 10.1126/science.267.5206.1947 10.1016/j.actamat.2010.11.027 10.1016/S0921-5093(02)00866-3 10.1557/jmr.2006.0212 10.1016/0956-716X(94)90481-2 10.1016/j.intermet.2015.03.005 10.1016/j.actamat.2013.10.068 10.3365/met.mat.2008.06.297 10.1016/j.scriptamat.2008.11.015 10.1016/j.actamat.2011.08.006 10.1016/j.actamat.2004.05.025 10.9729/AM.2015.45.2.37 10.1007/s11661-013-1947-9 10.3365/KJMM.2015.53.7.451 10.3365/KJMM.2015.53.7.519 10.1016/j.msea.2005.08.207 10.1016/j.jallcom.2011.01.085 10.1063/1.120512 10.1126/science.1136726 10.1016/j.intermet.2009.01.019 10.1016/j.scriptamat.2005.09.051 10.1016/j.actamat.2011.07.017 10.1016/S1359-6454(98)00275-4 10.1016/j.actamat.2009.07.042 10.1146/annurev.matsci.38.060407.130226 10.2320/matertrans.M2009182 10.1557/jmr.2006.0020 10.1007/BF03027480 10.1002/adma.201000482 10.1016/j.actamat.2005.12.020 10.1038/nature06598 10.1016/j.intermet.2011.02.006 |
ContentType | Journal Article |
Copyright | The Korean Institute of Metals and Materials and Springer Science+Business Media Dordrecht 2016 |
Copyright_xml | – notice: The Korean Institute of Metals and Materials and Springer Science+Business Media Dordrecht 2016 |
DBID | AAYXX CITATION 7SR 8BQ 8FD 8FE 8FG ABJCF AFKRA BENPR BGLVJ CCPQU D1I DWQXO HCIFZ JG9 KB. PDBOC PQEST PQQKQ PQUKI PRINS ACYCR |
DOI | 10.1007/s12540-016-6386-x |
DatabaseName | CrossRef Engineered Materials Abstracts METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central UK/Ireland AUTh Library subscriptions: ProQuest Central Technology Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central SciTech Premium Collection (Proquest) (PQ_SDU_P3) Materials Research Database ProQuest Materials Science Database Materials Science Collection ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Korean Citation Index (Open Access) |
DatabaseTitle | CrossRef ProQuest Materials Science Collection Materials Research Database Technology Collection Technology Research Database ProQuest One Academic Eastern Edition Materials Science Collection SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China METADEX ProQuest Central Engineered Materials Abstracts ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection Materials Science Database ProQuest One Academic |
DatabaseTitleList | ProQuest Materials Science Collection Materials Research Database |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2005-4149 |
EndPage | 1032 |
ExternalDocumentID | oai_kci_go_kr_ARTI_1278098 4231725071 10_1007_s12540_016_6386_x |
GroupedDBID | -EM 06D 0R~ 0VY 123 1N0 2.D 203 29M 2JY 2KG 2VQ 30V 4.4 406 408 40D 5VS 67Z 8FE 8FG 96X 9ZL AAAVM AABYN AAFGU AAGCJ AAHNG AAIAL AAIKT AAJKR AANZL AAPBV AARHV AARTL AATNV AATVU AAUCO AAUYE AAWCG AAYFA AAYIU AAYQN AAYTO AAZMS ABDZT ABECU ABFGW ABFTD ABFTV ABJCF ABJNI ABJOX ABKAS ABKCH ABMQK ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABXPI ACBMV ACBRV ACBYP ACGFS ACHSB ACIGE ACIPQ ACIWK ACKNC ACMDZ ACMLO ACOKC ACTTH ACVWB ACWMK ADHHG ADHIR ADINQ ADKNI ADKPE ADMDM ADOXG ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEEQQ AEFTE AEGNC AEJHL AEJRE AEKMD AENEX AEOHA AEPYU AESKC AESTI AETCA AEVLU AEVTX AEXYK AFGCZ AFKRA AFLOW AFNRJ AFQWF AFWTZ AFZKB AGAYW AGDGC AGGBP AGJBK AGMZJ AGQMX AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIIXL AILAN AIMYW AITGF AJBLW AJDOV AJGSW AJRNO AJZVZ AKQUC ALFXC ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AMYQR ANMIH AOCGG ASPBG AVWKF AXYYD AYJHY AZFZN BA0 BENPR BGLVJ CAG CCPQU COF CS3 CSCUP D1I DDRTE DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FYJPI GGCAI GGRSB GJIRD GQ6 GQ7 HCIFZ HF~ HG6 HMJXF HRMNR HVGLF HZB HZ~ I0C IKXTQ IWAJR IXC IXD I~X J-C J0Z JBSCW JZLTJ KB. KOV KVFHK LLZTM MA- MZR N2Q NDZJH NPVJJ NQJWS O9- O93 O9G O9I O9J P19 P2P P9N PDBOC PT4 PT5 Q2X R89 R9I RLLFE RSV S1Z S26 S27 S28 S3B SCLPG SCM SDH SHX SISQX SNE SNPRN SNX SOHCF SOJ SPISZ SQXTU SRMVM SSLCW STPWE T13 T16 TSG U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 W4F WK8 Z45 Z5O Z7R Z7S Z7V Z7X Z7Y Z7Z Z83 Z85 Z88 ZMTXR ZZE ~A9 AACDK AAEOY AAJBT AASML AAYXX ABAKF ACAOD ACDTI ACZOJ AEFQL AEMSY AFBBN AGJZZ AGQEE AGRTI AIGIU CITATION H13 ROL SJYHP 7SR 8BQ 8FD DWQXO JG9 PQEST PQQKQ PQUKI PRINS AAYZH ACYCR |
ID | FETCH-LOGICAL-c383t-5c765defdb828700af55f6a318e57ae7bcbdb1e5c87e9a8ec1bfba9bcfaf7fc53 |
IEDL.DBID | AGYKE |
ISSN | 1598-9623 |
IngestDate | Tue Nov 21 21:21:21 EST 2023 Fri Oct 25 01:55:46 EDT 2024 Thu Oct 10 20:52:50 EDT 2024 Thu Sep 12 17:02:05 EDT 2024 Sat Dec 16 12:02:54 EST 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | compression test bulk metallic glass composites b2 phase mechanical properties crystal plasticity |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c383t-5c765defdb828700af55f6a318e57ae7bcbdb1e5c87e9a8ec1bfba9bcfaf7fc53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 G704-000797.2016.22.6.002 |
PQID | 1833228148 |
PQPubID | 326276 |
PageCount | 7 |
ParticipantIDs | nrf_kci_oai_kci_go_kr_ARTI_1278098 proquest_miscellaneous_1855381025 proquest_journals_1833228148 crossref_primary_10_1007_s12540_016_6386_x springer_journals_10_1007_s12540_016_6386_x |
PublicationCentury | 2000 |
PublicationDate | 2016-11-01 |
PublicationDateYYYYMMDD | 2016-11-01 |
PublicationDate_xml | – month: 11 year: 2016 text: 2016-11-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Seoul |
PublicationPlace_xml | – name: Seoul |
PublicationTitle | Metals and materials international |
PublicationTitleAbbrev | Met. Mater. Int |
PublicationYear | 2016 |
Publisher | The Korean Institute of Metals and Materials Springer Nature B.V 대한금속·재료학회 |
Publisher_xml | – name: The Korean Institute of Metals and Materials – name: Springer Nature B.V – name: 대한금속·재료학회 |
References | CastelleroA.BaserT. A.DasJ.MatteisP.EckertJ.BattezzatiL.BariccoM.J. Alloy. Compd.2011509S9910.1016/j.jallcom.2011.01.085 PaulyS.DasJ.BednarcikJ.MatternN.KimK. B.KimD. H.EckertJ.Scripta Mater.20096043110.1016/j.scriptamat.2008.11.015 LiuY. H.WangG.WangR. J.ZhaoD. Q.PanM. X.WangW. H.Science2007315138510.1126/science.1136726 HongS. H.KimJ. T.ParkH. J.KimY. S.ParkJ. M.KimK. B.Appl. Microsc.2015453710.9729/AM.2015.45.2.37 YuP.BaiH. Y.WangW. H.J. Mater. Res.200621167410.1557/jmr.2006.0212 DuX. H.HuangJ. C.ChenH. M.ChouH. S.LaiY. H.LiawP. K.Intermetallics20091760710.1016/j.intermet.2009.01.019 AshbyM. F.GreerA. L.Scripta Mater.20065432110.1016/j.scriptamat.2005.09.051 HongS. H.KimJ. T.ParkH. J.SuhJ. Y.LimK. R.NaY. S.ParkJ. M.KimK. B.Intermetallics2015623610.1016/j.intermet.2015.03.005 Choi-YimH.JohnsonW. L.Appl. Phys. Lett.199771380810.1063/1.120512 OhY. S.KimC. P.LeeS.KimN. J.Acta Mater.201159727710.1016/j.actamat.2011.08.006 LiR.PangS.MenH.MaC.ZhangT.Scripta Mater.200654112310.1016/j.scriptamat.2005.11.074 JangB.-T.KimY.-I.YiS.-H.Korean J. Met. Mater.20155351910.3365/KJMM.2015.53.7.519 KovalY. N.FirstovG. S.DelaeyL.HumbeeckJ. V.Scripta Metall. Mater.19943179910.1016/0956-716X(94)90481-2 PaulyS.LiuG.WangG.KühnU.MatternN.EckertJ.Acta Mater.200957544510.1016/j.actamat.2009.07.042 ChenM.Annu. Rev. Mater. Res.20083844510.1146/annurev.matsci.38.060407.130226 NamT.-H.JangJ.-Y.KimE.-S.Korean J. Met. Mater.20155345110.3365/KJMM.2015.53.7.451 ConnerR. D.DandlikerR. B.JohnsonW. L.Acta Mater.199846608910.1016/S1359-6454(98)00275-4 MenH.PangS. J.ZhangT.Mat. Sci. Eng. A200540832610.1016/j.msea.2005.08.207 ChouC. P. P.SpaepenF.Acta Metall.19752360910.1016/0001-6160(75)90101-7 WuY.XiaoY.ChenG.LiuC. T.LuZ.Adv. Mater.201022277010.1002/adma.201000482 GreerA. L.Science1995267194710.1126/science.267.5206.1947 GargarellaP.PaulyS.Samadi KhoshkhooM.KühnU.EckertJ.Acta Mater.20146525910.1016/j.actamat.2013.10.068 MatsudaM.HayashiK.NishidaM.Mater. Trans.200950233510.2320/matertrans.M2009182 SongK. K.PaulyS.ZhangY.GargarellaP.LiR.EckertJ.Acta Mater.201159662010.1016/j.actamat.2011.07.017 ParkE. S.KimD. H.Met. Mater. Int.2005111910.1007/BF03027480 JunH.-J.LeeK. S.KimC. P.ChangY. W.Met. Mater. Int.20081429710.3365/met.mat.2008.06.297 HongS. H.KimJ. T.LeeM. W.ParkJ. M.LeeM. H.KimK. B.Metall. Mater. Trans. A201445237610.1007/s11661-013-1947-9 HofmannD. C.SuhJ. Y.WiestA.DuanG.LindM. L.DemetriouM. D.JohnsonW. L.Nature2008451108510.1038/nature06598 LeeM. L.LiY.SchuhC. A.Acta Mater.200452412110.1016/j.actamat.2004.05.025 MatsudaM.NishimotoT.MorizonoY.TsurekawaS.NishidaM.Intermetallics20111989410.1016/j.intermet.2011.02.006 ParkE. S.KimD. H.Acta Mater.200654259710.1016/j.actamat.2005.12.020 InoueA.TakeuchiA.Acta Mater.201159224310.1016/j.actamat.2010.11.027 HeG.LöserW.EckertJ.SchultzL.Mat. Sci. Eng. A200335217910.1016/S0921-5093(02)00866-3 ZhangW.InoueA.J. Mater. Res.20062123410.1557/jmr.2006.0020 E. S. Park (6386_CR12) 2006; 54 R. Li (6386_CR8) 2006; 54 M. Chen (6386_CR13) 2008; 38 P. Yu (6386_CR24) 2006; 21 M. L. Lee (6386_CR14) 2004; 52 C. P. P. Chou (6386_CR6) 1975; 23 M. F. Ashby (6386_CR2) 2006; 54 Y. H. Liu (6386_CR20) 2007; 315 A. Castellero (6386_CR30) 2011; 509 S. Pauly (6386_CR31) 2009; 57 Y. N. Koval (6386_CR29) 1994; 31 P. Gargarella (6386_CR32) 2014; 65 E. S. Park (6386_CR19) 2005; 11 S. Pauly (6386_CR21) 2009; 60 G. He (6386_CR7) 2003; 352 H. Choi-Yim (6386_CR9) 1997; 71 M. Matsuda (6386_CR34) 2011; 19 R. D. Conner (6386_CR10) 1998; 46 X. H. Du (6386_CR5) 2009; 17 B.-T. Jang (6386_CR3) 2015; 53 Y. S. Oh (6386_CR11) 2011; 59 D. C. Hofmann (6386_CR17) 2008; 451 H.-J. Jun (6386_CR27) 2008; 14 M. Matsuda (6386_CR33) 2009; 50 T.-H. Nam (6386_CR28) 2015; 53 S. H. Hong (6386_CR15) 2014; 45 W. Zhang (6386_CR26) 2006; 21 A. Inoue (6386_CR4) 2011; 59 H. Men (6386_CR25) 2005; 408 S. H. Hong (6386_CR16) 2015; 45 S. H. Hong (6386_CR18) 2015; 62 K. K. Song (6386_CR22) 2011; 59 A. L. Greer (6386_CR1) 1995; 267 Y. Wu (6386_CR23) 2010; 22 |
References_xml | – volume: 23 start-page: 609 year: 1975 ident: 6386_CR6 publication-title: Acta Metall. doi: 10.1016/0001-6160(75)90101-7 contributor: fullname: C. P. P. Chou – volume: 54 start-page: 1123 year: 2006 ident: 6386_CR8 publication-title: Scripta Mater. doi: 10.1016/j.scriptamat.2005.11.074 contributor: fullname: R. Li – volume: 267 start-page: 1947 year: 1995 ident: 6386_CR1 publication-title: Science doi: 10.1126/science.267.5206.1947 contributor: fullname: A. L. Greer – volume: 59 start-page: 2243 year: 2011 ident: 6386_CR4 publication-title: Acta Mater. doi: 10.1016/j.actamat.2010.11.027 contributor: fullname: A. Inoue – volume: 352 start-page: 179 year: 2003 ident: 6386_CR7 publication-title: Mat. Sci. Eng. A doi: 10.1016/S0921-5093(02)00866-3 contributor: fullname: G. He – volume: 21 start-page: 1674 year: 2006 ident: 6386_CR24 publication-title: J. Mater. Res. doi: 10.1557/jmr.2006.0212 contributor: fullname: P. Yu – volume: 31 start-page: 799 year: 1994 ident: 6386_CR29 publication-title: Scripta Metall. Mater. doi: 10.1016/0956-716X(94)90481-2 contributor: fullname: Y. N. Koval – volume: 62 start-page: 36 year: 2015 ident: 6386_CR18 publication-title: Intermetallics doi: 10.1016/j.intermet.2015.03.005 contributor: fullname: S. H. Hong – volume: 65 start-page: 259 year: 2014 ident: 6386_CR32 publication-title: Acta Mater. doi: 10.1016/j.actamat.2013.10.068 contributor: fullname: P. Gargarella – volume: 14 start-page: 297 year: 2008 ident: 6386_CR27 publication-title: Met. Mater. Int. doi: 10.3365/met.mat.2008.06.297 contributor: fullname: H.-J. Jun – volume: 60 start-page: 431 year: 2009 ident: 6386_CR21 publication-title: Scripta Mater. doi: 10.1016/j.scriptamat.2008.11.015 contributor: fullname: S. Pauly – volume: 59 start-page: 7277 year: 2011 ident: 6386_CR11 publication-title: Acta Mater. doi: 10.1016/j.actamat.2011.08.006 contributor: fullname: Y. S. Oh – volume: 52 start-page: 4121 year: 2004 ident: 6386_CR14 publication-title: Acta Mater. doi: 10.1016/j.actamat.2004.05.025 contributor: fullname: M. L. Lee – volume: 45 start-page: 37 year: 2015 ident: 6386_CR16 publication-title: Appl. Microsc. doi: 10.9729/AM.2015.45.2.37 contributor: fullname: S. H. Hong – volume: 45 start-page: 2376 year: 2014 ident: 6386_CR15 publication-title: Metall. Mater. Trans. A doi: 10.1007/s11661-013-1947-9 contributor: fullname: S. H. Hong – volume: 53 start-page: 451 year: 2015 ident: 6386_CR28 publication-title: Korean J. Met. Mater. doi: 10.3365/KJMM.2015.53.7.451 contributor: fullname: T.-H. Nam – volume: 53 start-page: 519 year: 2015 ident: 6386_CR3 publication-title: Korean J. Met. Mater. doi: 10.3365/KJMM.2015.53.7.519 contributor: fullname: B.-T. Jang – volume: 408 start-page: 326 year: 2005 ident: 6386_CR25 publication-title: Mat. Sci. Eng. A doi: 10.1016/j.msea.2005.08.207 contributor: fullname: H. Men – volume: 509 start-page: S99 year: 2011 ident: 6386_CR30 publication-title: J. Alloy. Compd. doi: 10.1016/j.jallcom.2011.01.085 contributor: fullname: A. Castellero – volume: 71 start-page: 3808 year: 1997 ident: 6386_CR9 publication-title: Appl. Phys. Lett. doi: 10.1063/1.120512 contributor: fullname: H. Choi-Yim – volume: 315 start-page: 1385 year: 2007 ident: 6386_CR20 publication-title: Science doi: 10.1126/science.1136726 contributor: fullname: Y. H. Liu – volume: 17 start-page: 607 year: 2009 ident: 6386_CR5 publication-title: Intermetallics doi: 10.1016/j.intermet.2009.01.019 contributor: fullname: X. H. Du – volume: 54 start-page: 321 year: 2006 ident: 6386_CR2 publication-title: Scripta Mater. doi: 10.1016/j.scriptamat.2005.09.051 contributor: fullname: M. F. Ashby – volume: 59 start-page: 6620 year: 2011 ident: 6386_CR22 publication-title: Acta Mater. doi: 10.1016/j.actamat.2011.07.017 contributor: fullname: K. K. Song – volume: 46 start-page: 6089 year: 1998 ident: 6386_CR10 publication-title: Acta Mater. doi: 10.1016/S1359-6454(98)00275-4 contributor: fullname: R. D. Conner – volume: 57 start-page: 5445 year: 2009 ident: 6386_CR31 publication-title: Acta Mater. doi: 10.1016/j.actamat.2009.07.042 contributor: fullname: S. Pauly – volume: 38 start-page: 445 year: 2008 ident: 6386_CR13 publication-title: Annu. Rev. Mater. Res. doi: 10.1146/annurev.matsci.38.060407.130226 contributor: fullname: M. Chen – volume: 50 start-page: 2335 year: 2009 ident: 6386_CR33 publication-title: Mater. Trans. doi: 10.2320/matertrans.M2009182 contributor: fullname: M. Matsuda – volume: 21 start-page: 234 year: 2006 ident: 6386_CR26 publication-title: J. Mater. Res. doi: 10.1557/jmr.2006.0020 contributor: fullname: W. Zhang – volume: 11 start-page: 19 year: 2005 ident: 6386_CR19 publication-title: Met. Mater. Int. doi: 10.1007/BF03027480 contributor: fullname: E. S. Park – volume: 22 start-page: 2770 year: 2010 ident: 6386_CR23 publication-title: Adv. Mater. doi: 10.1002/adma.201000482 contributor: fullname: Y. Wu – volume: 54 start-page: 2597 year: 2006 ident: 6386_CR12 publication-title: Acta Mater. doi: 10.1016/j.actamat.2005.12.020 contributor: fullname: E. S. Park – volume: 451 start-page: 1085 year: 2008 ident: 6386_CR17 publication-title: Nature doi: 10.1038/nature06598 contributor: fullname: D. C. Hofmann – volume: 19 start-page: 894 year: 2011 ident: 6386_CR34 publication-title: Intermetallics doi: 10.1016/j.intermet.2011.02.006 contributor: fullname: M. Matsuda |
SSID | ssj0061312 |
Score | 2.1491768 |
Snippet | The effect of the type of the crystalline phase and its volume fraction on the mechanical property of Cu
50
Zr
50-x
Ti
x
alloys (x = 0-10) bulk metallic glass... The effect of the type of the crystalline phase and its volume fraction on the mechanical property of Cu50Zr50-xTix alloys (x = 0-10) bulk metallic glass... The effect of the type of the crystalline phase and its volume fraction on the mechanical property of Cu sub(50)Zr sub(50-x)Ti sub(x) alloys (x = 0-10) bulk... The effect of the type of the crystalline phase and its volume fraction on the mechanical property ofCu50Zr50-xTix alloys (x = 0-10) bulk metallic glass... |
SourceID | nrf proquest crossref springer |
SourceType | Open Website Aggregation Database Publisher |
StartPage | 1026 |
SubjectTerms | Alloys Amorphous materials Characterization and Evaluation of Materials Chemistry and Materials Science Cooling rate Copper Crystal structure Deformation Engineering Thermodynamics Eutectoid composition Eutectoids Heat and Mass Transfer Intermetallic phases Machines Magnetic Materials Magnetism Manufacturing Martensitic transformations Materials Science Mathematical models Mechanical properties Metallic glasses Metallic Materials Microscopy Particulate composites Phase transformations Phase transitions Plastic deformation Processes Solid Mechanics Titanium Volume fraction Work hardening Yield strength Yield stress 재료공학 |
SummonAdditionalLinks | – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8MwDI5gXOCAeIrxUkCcQBFr1zTpCaGJ8ZBAHIaEuERJmsC00Y5uk_j52F3LS4JTD43Synbiz7H9hZAjKY2NhfdM8CSBAMUFTEZBxNpOGBHGJpER9g7f3sVXD9HNI3-sDtzGVVllvSeWG3WaWzwjPwXTA9uTgN7PRm8Mb43C7Gp1hcY8WQhCITD4kt3LeicGTzXLdvIEFjX4-TqrWbbOhVgSAICHgQXG7P2HX5rPCv8Dcv7KkpbOp7tClivUSM9nal4lcy5bI0vfuATXSe_-BRwS_WxGpDpL6avDxl7UAx3hqXuB9Kk097QzZU8F6_WpmQ4HMAwg-LBvaYmlKZaZYy2XG2-Qh-5Fr3PFqisTmIVQc8K4FTFPnU8NEtm3Wtpz7mMNC9dxoUH-1qQmcNxK4RItnQ2MNzox1msvvOXtTdLI8sxtEZpYgCaBTY0IfNSGQNm3nYYAxCFfjg9lkxzXAlOjGTOG-uJARukqrB5D6ar3JjkEkaqB7Svks8bnc64GhQLUfq1Ad7KVwIy7tcRVtZLG6kvvTXLw-RrWACY2dObyKY7hHJnKQt4kJ7Wmvk3x119t___BHbIYooGUnYe7pDEppm4PIMjE7Jd29gHZEthq priority: 102 providerName: ProQuest |
Title | Phase formation and mechanical properties of Cu-Zr-Ti bulk metallic glass composites |
URI | https://link.springer.com/article/10.1007/s12540-016-6386-x https://www.proquest.com/docview/1833228148 https://search.proquest.com/docview/1855381025 https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002164225 |
Volume | 22 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Metals and Materials International, 2016, 22(6), , pp.1026-1032 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED_t4wUe-EZ0G5NBPIFcNWkcO49lajdATBNqpcGLZTv2qDLSKW0kxF_PXZp0Gx8Pe7KUWFbis-9-57v7GeCNUtalMgQuRZahg-IjrpIo4UMvrYxTm6mEaoc_n6Yns-TjuTjfgnhzdFEW_S4i2Sjq61q3mGL4iFA4LpmUI27cbetOd0fHXz-NO_2L9mkd4xQZbmW07l0s81-D3LJG22UVbgHNP2KjjcmZPFyXAS4bpkLKNCn69cr23a-_eRzv8DeP4EGLQNlovWQew5Yvn8D9G7yET2F69h2NG9sUNjJT5uyHpyJhkim7ohP8iqhY2SKwo5p_q_h0zmx9WWA3hPOXc8caXM4oZZ3ywvzyGcwm4-nRCW-vX-AO3dYVF06mIvcht0SKPxiYIERIDSoBL6RBWTqb28gLp6TPjPIussGazLpgggxODJ_DTrko_QtgmUOYE7ncyigkQ3S6w9AbdGY8ce-EWPXgbScGfbVm2dDXfMo0VZoy0Wiq9M8evEZB6cLNNXFjU3ux0EWl0QP4oKNYqkGGIx50ctTtrlxqVF-ovxR6gD14tXmN-4mCJKb0i5r6CEGsZ7HowbtOdjeG-N9X7d2p9z7ci0n4TVHjAeysqtq_RHSzsoewrSbHh-2ixvb9-PTsCz6dxaPfLzr1Bw |
link.rule.ids | 315,783,787,12777,21400,27936,27937,33385,33386,33756,33757,41093,41535,42162,42604,43612,43817,52123,52246 |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dT9swED8NeBh7mBgbolA2M-2JyVqT1rHzhFgFKhtUCBUJ7cWyHZtVhaSkrcSfv7s04WPS9pSHWE50H76ffXc_A3xRyrpEhsClSFPcoPiIq17U410vrYwTm6oe9Q6fD5PBVe_HtbiuD9xmdVllsyZWC3VWODoj_4amh7anEL0fTu853RpF2dX6Co0VWCOqKtx8rX0_Hl5cNmsxxqplvlOk6NYY6Zu8ZtU8F1NRAEIejjaY8IcXkWklL8ML0PlXnrQKPycb8LbGjexoqeh38Mrnm_DmGZvgexhd_MaQxB7bEZnJM3bnqbWXNMGmdO5eEoEqKwLrL_ivko_GzC5uJzgMQfjt2LEKTTMqNKdqLj_7AFcnx6P-gNeXJnCHm805F04mIvMhs0Rl3-mYIERIDLquF9KgBpzNbOSFU9KnRnkX2WBNal0wQQYnuluwmhe53waWOgQnkcusjAKKV6nQ9Qa3IJ4Yc0KsWnDQCExPl9wY-okFmaSrqX6MpKsfWvAZRaonbqyJ0ZqeN4WelBpx-6mOYqk6Kc7YbiSua1-a6SfNt2D_8TV6AaU2TO6LBY0RgrjKYtGCr42mnk3xr7_a-f8HP8Hrwej8TJ-dDn_uwnpMxlL1IbZhdV4u_B4Ckrn9WFvdH9tI3Ls |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA4-QPQgPrE-o3hSgt1HNtmjqMX6wkML4iUk2URL67ZsW_DnO9N26wM9eNrDhrDMI_PNzswXQo6lNDYR3jPB0xQSFBcwGQcxi5wwIkxMKmOcHb5_SK6b8c0Tf5rcc9ovu93LkuR4pgFZmvLBWS_zZ5-DbyEW9AGuMLCfhAGInIdIFGFPXzM8L49iCFXjcidPwash0Jdlzd-2-BaYZvPCf8OcP8qko-hTWyHLE9hIz8d6XiUzLl8jS1_IBNdJ4_EVIhKdTiNSnWf0zeFkLyqC9vC3e4H8qbTr6cWQPRes0aJm2GnDMsDgnZalIzBNsc8cm7lcf4M0a1eNi2s2uTOBWcg1B4xbkfDM-cwgk321qj3nPtHguY4LDQqwJjOB41YKl2rpbGC80amxXnvhLY82yVzezd0WoakFbBLYzIjAxxFkyj5yGjIQh4Q5PpQVclIKTPXG1BjqkwQZpauwfQylq94r5AhEqtq2pZDQGp8vXdUuFMD2ugpCIasp7LhbSlxNXKmv4MyBQ0dC2lYhh9PX4ARY2dC56w5xDedIVRbyCjktNfVli7--avtfqw_IwuNlTd3VH253yGKIpjMaStwlc4Ni6PYAnQzM_sgCPwDd8dyu |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Phase+Formation+and+Mechanical+Properties+of+Cu-Zr-Ti+Bulk+Metallic+Glass+Composites&rft.jtitle=Metals+and+materials+international&rft.au=Byoung+Jin+Kim&rft.au=Young+Su+Yun&rft.au=Won+Tae+Kim&rft.au=%EA%B9%80%EB%8F%84%ED%96%A5&rft.date=2016-11-01&rft.pub=%EB%8C%80%ED%95%9C%EA%B8%88%EC%86%8D%C2%B7%EC%9E%AC%EB%A3%8C%ED%95%99%ED%9A%8C&rft.issn=1598-9623&rft.eissn=2005-4149&rft.spage=1026&rft.epage=1032&rft_id=info:doi/10.1007%2Fs12540-016-6386-x&rft.externalDBID=n%2Fa&rft.externalDocID=oai_kci_go_kr_ARTI_1278098 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1598-9623&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1598-9623&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1598-9623&client=summon |