Phase formation and mechanical properties of Cu-Zr-Ti bulk metallic glass composites

The effect of the type of the crystalline phase and its volume fraction on the mechanical property of Cu 50 Zr 50-x Ti x alloys (x = 0-10) bulk metallic glass composites has been investigated in this study. Up to 6 at% of Ti, B19’ phase particles distributed in the glassy matrix, while at 8 and 10%...

Full description

Saved in:
Bibliographic Details
Published inMetals and materials international Vol. 22; no. 6; pp. 1026 - 1032
Main Authors Kim, Byoung Jin, Yun, Young Su, Kim, Won Tae, Kim, Do Hyang
Format Journal Article
LanguageEnglish
Published Seoul The Korean Institute of Metals and Materials 01.11.2016
Springer Nature B.V
대한금속·재료학회
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The effect of the type of the crystalline phase and its volume fraction on the mechanical property of Cu 50 Zr 50-x Ti x alloys (x = 0-10) bulk metallic glass composites has been investigated in this study. Up to 6 at% of Ti, B19’ phase particles distributed in the glassy matrix, while at 8 and 10% of Ti, B2 phase particles are retained in the glass matrix due to suppression of the eutectoid transformation of B2 phase and by avoidance of martensitic transformation of B2 into B19’. The volume fraction of crystalline phase is strongly dependent on the cooling rate. The larger volume fraction of the crystalline phases results in the lower yield stress, the higher plastic strain, and the more pronounced work hardening behavior. At the crystalline volume fraction below ~30%, the variation of the yield strength can be described by the rule of mixture model (ROM), while at the crystalline volume fraction higher than ~50% by the load-bearing model (LBM). At the crystal fractions between 30 and 50%, there is a yield strength drop and a transition from the ROM to the LBM. This transition is due to the formation of the crystalline structural framework at higher crystal fraction.
AbstractList The effect of the type of the crystalline phase and its volume fraction on the mechanical property of Cu50Zr50-xTix alloys (x = 0-10) bulk metallic glass composites has been investigated in this study. Up to 6 at% of Ti, B19' phase particles distributed in the glassy matrix, while at 8 and 10% of Ti, B2 phase particles are retained in the glass matrix due to suppression of the eutectoid transformation of B2 phase and by avoidance of martensitic transformation of B2 into B19'. The volume fraction of crystalline phase is strongly dependent on the cooling rate. The larger volume fraction of the crystalline phases results in the lower yield stress, the higher plastic strain, and the more pronounced work hardening behavior. At the crystalline volume fraction below ~30%, the variation of the yield strength can be described by the rule of mixture model (ROM), while at the crystalline volume fraction higher than ~50% by the load-bearing model (LBM). At the crystal fractions between 30 and 50%, there is a yield strength drop and a transition from the ROM to the LBM. This transition is due to the formation of the crystalline structural framework at higher crystal fraction.
The effect of the type of the crystalline phase and its volume fraction on the mechanical property ofCu50Zr50-xTix alloys (x = 0-10) bulk metallic glass composites has been investigated in this study. Up to 6at% of Ti, B19’ phase particles distributed in the glassy matrix, while at 8 and 10% of Ti, B2 phase particlesare retained in the glass matrix due to suppression of the eutectoid transformation of B2 phase and byavoidance of martensitic transformation of B2 into B19’. The volume fraction of crystalline phase is stronglydependent on the cooling rate. The larger volume fraction of the crystalline phases results in the loweryield stress, the higher plastic strain, and the more pronounced work hardening behavior. At the crystallinevolume fraction below ~30%, the variation of the yield strength can be described by the rule of mixturemodel (ROM), while at the crystalline volume fraction higher than ~50% by the load-bearing model (LBM). At the crystal fractions between 30 and 50%, there is a yield strength drop and a transition from the ROMto the LBM. This transition is due to the formation of the crystalline structural framework at higher crystalfraction. KCI Citation Count: 0
The effect of the type of the crystalline phase and its volume fraction on the mechanical property of Cu 50 Zr 50-x Ti x alloys (x = 0-10) bulk metallic glass composites has been investigated in this study. Up to 6 at% of Ti, B19’ phase particles distributed in the glassy matrix, while at 8 and 10% of Ti, B2 phase particles are retained in the glass matrix due to suppression of the eutectoid transformation of B2 phase and by avoidance of martensitic transformation of B2 into B19’. The volume fraction of crystalline phase is strongly dependent on the cooling rate. The larger volume fraction of the crystalline phases results in the lower yield stress, the higher plastic strain, and the more pronounced work hardening behavior. At the crystalline volume fraction below ~30%, the variation of the yield strength can be described by the rule of mixture model (ROM), while at the crystalline volume fraction higher than ~50% by the load-bearing model (LBM). At the crystal fractions between 30 and 50%, there is a yield strength drop and a transition from the ROM to the LBM. This transition is due to the formation of the crystalline structural framework at higher crystal fraction.
The effect of the type of the crystalline phase and its volume fraction on the mechanical property of Cu sub(50)Zr sub(50-x)Ti sub(x) alloys (x = 0-10) bulk metallic glass composites has been investigated in this study. Up to 6 at% of Ti, B19' phase particles distributed in the glassy matrix, while at 8 and 10% of Ti, B2 phase particles are retained in the glass matrix due to suppression of the eutectoid transformation of B2 phase and by avoidance of martensitic transformation of B2 into B19'. The volume fraction of crystalline phase is strongly dependent on the cooling rate. The larger volume fraction of the crystalline phases results in the lower yield stress, the higher plastic strain, and the more pronounced work hardening behavior. At the crystalline volume fraction below ~30%, the variation of the yield strength can be described by the rule of mixture model (ROM), while at the crystalline volume fraction higher than ~50% by the load-bearing model (LBM). At the crystal fractions between 30 and 50%, there is a yield strength drop and a transition from the ROM to the LBM. This transition is due to the formation of the crystalline structural framework at higher crystal fraction.
Author Yun, Young Su
Kim, Byoung Jin
Kim, Do Hyang
Kim, Won Tae
Author_xml – sequence: 1
  givenname: Byoung Jin
  surname: Kim
  fullname: Kim, Byoung Jin
  organization: Department of Materials Science & Engineering, Yonsei University
– sequence: 2
  givenname: Young Su
  surname: Yun
  fullname: Yun, Young Su
  organization: Department of Materials Science & Engineering, Yonsei University
– sequence: 3
  givenname: Won Tae
  surname: Kim
  fullname: Kim, Won Tae
  organization: Department of Laser & Optical Information Engineering, Cheongju University
– sequence: 4
  givenname: Do Hyang
  surname: Kim
  fullname: Kim, Do Hyang
  email: dohkim@yonsei.ac.kr
  organization: Department of Materials Science & Engineering, Yonsei University
BackLink https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002164225$$DAccess content in National Research Foundation of Korea (NRF)
BookMark eNp1kU1LJDEURcPgwLTO_IDZBdyMi2he0qlKLaWZD0FQpN24Can0Sxu7KulJqkD__VRbLmTA1d2ce-Byj8lRTBEJ-Q78HDivLwoIteSMQ8UqqSv2_IksBOeKLWHZHJEFqEazphLyCzku5YnzCiSIBVnfPtqC1Kfc2yGkSG3c0B7do43B2Y7uc9pjHgIWmjxdjewhs3Wg7djtJmywXRcc3Xa2FOpSv08lDFi-ks_edgW_veUJuf_1c736w65vfl-tLq-Zk1oOTLm6Uhv0m1YLXXNuvVK-shI0qtpi3bp20wIqp2tsrEYHrW9t0zpvfe2dkifkbPbG7M3OBZNseM1tMrtsLu_WVwZErXmjJ_bHzE6L_o5YBtOH4rDrbMQ0FgNaKamBi4P29D_0KY05TksmSkohNCwPQpgpl1MpGb3Z59Db_GKAm8MnZv7ETJ-YwyfmeeqIuVMmNm4xvzN_WPoHDZmR6w
CitedBy_id crossref_primary_10_3390_met10070857
crossref_primary_10_1016_j_jallcom_2022_165299
crossref_primary_10_1016_j_pmatsci_2021_100799
crossref_primary_10_1007_s10973_023_12856_0
crossref_primary_10_1016_j_jnoncrysol_2020_119950
crossref_primary_10_1007_s12540_018_0114_7
Cites_doi 10.1016/0001-6160(75)90101-7
10.1016/j.scriptamat.2005.11.074
10.1126/science.267.5206.1947
10.1016/j.actamat.2010.11.027
10.1016/S0921-5093(02)00866-3
10.1557/jmr.2006.0212
10.1016/0956-716X(94)90481-2
10.1016/j.intermet.2015.03.005
10.1016/j.actamat.2013.10.068
10.3365/met.mat.2008.06.297
10.1016/j.scriptamat.2008.11.015
10.1016/j.actamat.2011.08.006
10.1016/j.actamat.2004.05.025
10.9729/AM.2015.45.2.37
10.1007/s11661-013-1947-9
10.3365/KJMM.2015.53.7.451
10.3365/KJMM.2015.53.7.519
10.1016/j.msea.2005.08.207
10.1016/j.jallcom.2011.01.085
10.1063/1.120512
10.1126/science.1136726
10.1016/j.intermet.2009.01.019
10.1016/j.scriptamat.2005.09.051
10.1016/j.actamat.2011.07.017
10.1016/S1359-6454(98)00275-4
10.1016/j.actamat.2009.07.042
10.1146/annurev.matsci.38.060407.130226
10.2320/matertrans.M2009182
10.1557/jmr.2006.0020
10.1007/BF03027480
10.1002/adma.201000482
10.1016/j.actamat.2005.12.020
10.1038/nature06598
10.1016/j.intermet.2011.02.006
ContentType Journal Article
Copyright The Korean Institute of Metals and Materials and Springer Science+Business Media Dordrecht 2016
Copyright_xml – notice: The Korean Institute of Metals and Materials and Springer Science+Business Media Dordrecht 2016
DBID AAYXX
CITATION
7SR
8BQ
8FD
8FE
8FG
ABJCF
AFKRA
BENPR
BGLVJ
CCPQU
D1I
DWQXO
HCIFZ
JG9
KB.
PDBOC
PQEST
PQQKQ
PQUKI
PRINS
ACYCR
DOI 10.1007/s12540-016-6386-x
DatabaseName CrossRef
Engineered Materials Abstracts
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
AUTh Library subscriptions: ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central
SciTech Premium Collection (Proquest) (PQ_SDU_P3)
Materials Research Database
ProQuest Materials Science Database
Materials Science Collection
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Korean Citation Index (Open Access)
DatabaseTitle CrossRef
ProQuest Materials Science Collection
Materials Research Database
Technology Collection
Technology Research Database
ProQuest One Academic Eastern Edition
Materials Science Collection
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
METADEX
ProQuest Central
Engineered Materials Abstracts
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
Materials Science Database
ProQuest One Academic
DatabaseTitleList ProQuest Materials Science Collection


Materials Research Database
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2005-4149
EndPage 1032
ExternalDocumentID oai_kci_go_kr_ARTI_1278098
4231725071
10_1007_s12540_016_6386_x
GroupedDBID -EM
06D
0R~
0VY
123
1N0
2.D
203
29M
2JY
2KG
2VQ
30V
4.4
406
408
40D
5VS
67Z
8FE
8FG
96X
9ZL
AAAVM
AABYN
AAFGU
AAGCJ
AAHNG
AAIAL
AAIKT
AAJKR
AANZL
AAPBV
AARHV
AARTL
AATNV
AATVU
AAUCO
AAUYE
AAWCG
AAYFA
AAYIU
AAYQN
AAYTO
AAZMS
ABDZT
ABECU
ABFGW
ABFTD
ABFTV
ABJCF
ABJNI
ABJOX
ABKAS
ABKCH
ABMQK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABXPI
ACBMV
ACBRV
ACBYP
ACGFS
ACHSB
ACIGE
ACIPQ
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACTTH
ACVWB
ACWMK
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADMDM
ADOXG
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEEQQ
AEFTE
AEGNC
AEJHL
AEJRE
AEKMD
AENEX
AEOHA
AEPYU
AESKC
AESTI
AETCA
AEVLU
AEVTX
AEXYK
AFGCZ
AFKRA
AFLOW
AFNRJ
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGBP
AGJBK
AGMZJ
AGQMX
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AIMYW
AITGF
AJBLW
AJDOV
AJGSW
AJRNO
AJZVZ
AKQUC
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
AOCGG
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
BA0
BENPR
BGLVJ
CAG
CCPQU
COF
CS3
CSCUP
D1I
DDRTE
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FYJPI
GGCAI
GGRSB
GJIRD
GQ6
GQ7
HCIFZ
HF~
HG6
HMJXF
HRMNR
HVGLF
HZB
HZ~
I0C
IKXTQ
IWAJR
IXC
IXD
I~X
J-C
J0Z
JBSCW
JZLTJ
KB.
KOV
KVFHK
LLZTM
MA-
MZR
N2Q
NDZJH
NPVJJ
NQJWS
O9-
O93
O9G
O9I
O9J
P19
P2P
P9N
PDBOC
PT4
PT5
Q2X
R89
R9I
RLLFE
RSV
S1Z
S26
S27
S28
S3B
SCLPG
SCM
SDH
SHX
SISQX
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SQXTU
SRMVM
SSLCW
STPWE
T13
T16
TSG
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
W4F
WK8
Z45
Z5O
Z7R
Z7S
Z7V
Z7X
Z7Y
Z7Z
Z83
Z85
Z88
ZMTXR
ZZE
~A9
AACDK
AAEOY
AAJBT
AASML
AAYXX
ABAKF
ACAOD
ACDTI
ACZOJ
AEFQL
AEMSY
AFBBN
AGJZZ
AGQEE
AGRTI
AIGIU
CITATION
H13
ROL
SJYHP
7SR
8BQ
8FD
DWQXO
JG9
PQEST
PQQKQ
PQUKI
PRINS
AAYZH
ACYCR
ID FETCH-LOGICAL-c383t-5c765defdb828700af55f6a318e57ae7bcbdb1e5c87e9a8ec1bfba9bcfaf7fc53
IEDL.DBID AGYKE
ISSN 1598-9623
IngestDate Tue Nov 21 21:21:21 EST 2023
Fri Oct 25 01:55:46 EDT 2024
Thu Oct 10 20:52:50 EDT 2024
Thu Sep 12 17:02:05 EDT 2024
Sat Dec 16 12:02:54 EST 2023
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords compression test
bulk metallic glass composites
b2 phase
mechanical properties
crystal plasticity
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c383t-5c765defdb828700af55f6a318e57ae7bcbdb1e5c87e9a8ec1bfba9bcfaf7fc53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
G704-000797.2016.22.6.002
PQID 1833228148
PQPubID 326276
PageCount 7
ParticipantIDs nrf_kci_oai_kci_go_kr_ARTI_1278098
proquest_miscellaneous_1855381025
proquest_journals_1833228148
crossref_primary_10_1007_s12540_016_6386_x
springer_journals_10_1007_s12540_016_6386_x
PublicationCentury 2000
PublicationDate 2016-11-01
PublicationDateYYYYMMDD 2016-11-01
PublicationDate_xml – month: 11
  year: 2016
  text: 2016-11-01
  day: 01
PublicationDecade 2010
PublicationPlace Seoul
PublicationPlace_xml – name: Seoul
PublicationTitle Metals and materials international
PublicationTitleAbbrev Met. Mater. Int
PublicationYear 2016
Publisher The Korean Institute of Metals and Materials
Springer Nature B.V
대한금속·재료학회
Publisher_xml – name: The Korean Institute of Metals and Materials
– name: Springer Nature B.V
– name: 대한금속·재료학회
References CastelleroA.BaserT. A.DasJ.MatteisP.EckertJ.BattezzatiL.BariccoM.J. Alloy. Compd.2011509S9910.1016/j.jallcom.2011.01.085
PaulyS.DasJ.BednarcikJ.MatternN.KimK. B.KimD. H.EckertJ.Scripta Mater.20096043110.1016/j.scriptamat.2008.11.015
LiuY. H.WangG.WangR. J.ZhaoD. Q.PanM. X.WangW. H.Science2007315138510.1126/science.1136726
HongS. H.KimJ. T.ParkH. J.KimY. S.ParkJ. M.KimK. B.Appl. Microsc.2015453710.9729/AM.2015.45.2.37
YuP.BaiH. Y.WangW. H.J. Mater. Res.200621167410.1557/jmr.2006.0212
DuX. H.HuangJ. C.ChenH. M.ChouH. S.LaiY. H.LiawP. K.Intermetallics20091760710.1016/j.intermet.2009.01.019
AshbyM. F.GreerA. L.Scripta Mater.20065432110.1016/j.scriptamat.2005.09.051
HongS. H.KimJ. T.ParkH. J.SuhJ. Y.LimK. R.NaY. S.ParkJ. M.KimK. B.Intermetallics2015623610.1016/j.intermet.2015.03.005
Choi-YimH.JohnsonW. L.Appl. Phys. Lett.199771380810.1063/1.120512
OhY. S.KimC. P.LeeS.KimN. J.Acta Mater.201159727710.1016/j.actamat.2011.08.006
LiR.PangS.MenH.MaC.ZhangT.Scripta Mater.200654112310.1016/j.scriptamat.2005.11.074
JangB.-T.KimY.-I.YiS.-H.Korean J. Met. Mater.20155351910.3365/KJMM.2015.53.7.519
KovalY. N.FirstovG. S.DelaeyL.HumbeeckJ. V.Scripta Metall. Mater.19943179910.1016/0956-716X(94)90481-2
PaulyS.LiuG.WangG.KühnU.MatternN.EckertJ.Acta Mater.200957544510.1016/j.actamat.2009.07.042
ChenM.Annu. Rev. Mater. Res.20083844510.1146/annurev.matsci.38.060407.130226
NamT.-H.JangJ.-Y.KimE.-S.Korean J. Met. Mater.20155345110.3365/KJMM.2015.53.7.451
ConnerR. D.DandlikerR. B.JohnsonW. L.Acta Mater.199846608910.1016/S1359-6454(98)00275-4
MenH.PangS. J.ZhangT.Mat. Sci. Eng. A200540832610.1016/j.msea.2005.08.207
ChouC. P. P.SpaepenF.Acta Metall.19752360910.1016/0001-6160(75)90101-7
WuY.XiaoY.ChenG.LiuC. T.LuZ.Adv. Mater.201022277010.1002/adma.201000482
GreerA. L.Science1995267194710.1126/science.267.5206.1947
GargarellaP.PaulyS.Samadi KhoshkhooM.KühnU.EckertJ.Acta Mater.20146525910.1016/j.actamat.2013.10.068
MatsudaM.HayashiK.NishidaM.Mater. Trans.200950233510.2320/matertrans.M2009182
SongK. K.PaulyS.ZhangY.GargarellaP.LiR.EckertJ.Acta Mater.201159662010.1016/j.actamat.2011.07.017
ParkE. S.KimD. H.Met. Mater. Int.2005111910.1007/BF03027480
JunH.-J.LeeK. S.KimC. P.ChangY. W.Met. Mater. Int.20081429710.3365/met.mat.2008.06.297
HongS. H.KimJ. T.LeeM. W.ParkJ. M.LeeM. H.KimK. B.Metall. Mater. Trans. A201445237610.1007/s11661-013-1947-9
HofmannD. C.SuhJ. Y.WiestA.DuanG.LindM. L.DemetriouM. D.JohnsonW. L.Nature2008451108510.1038/nature06598
LeeM. L.LiY.SchuhC. A.Acta Mater.200452412110.1016/j.actamat.2004.05.025
MatsudaM.NishimotoT.MorizonoY.TsurekawaS.NishidaM.Intermetallics20111989410.1016/j.intermet.2011.02.006
ParkE. S.KimD. H.Acta Mater.200654259710.1016/j.actamat.2005.12.020
InoueA.TakeuchiA.Acta Mater.201159224310.1016/j.actamat.2010.11.027
HeG.LöserW.EckertJ.SchultzL.Mat. Sci. Eng. A200335217910.1016/S0921-5093(02)00866-3
ZhangW.InoueA.J. Mater. Res.20062123410.1557/jmr.2006.0020
E. S. Park (6386_CR12) 2006; 54
R. Li (6386_CR8) 2006; 54
M. Chen (6386_CR13) 2008; 38
P. Yu (6386_CR24) 2006; 21
M. L. Lee (6386_CR14) 2004; 52
C. P. P. Chou (6386_CR6) 1975; 23
M. F. Ashby (6386_CR2) 2006; 54
Y. H. Liu (6386_CR20) 2007; 315
A. Castellero (6386_CR30) 2011; 509
S. Pauly (6386_CR31) 2009; 57
Y. N. Koval (6386_CR29) 1994; 31
P. Gargarella (6386_CR32) 2014; 65
E. S. Park (6386_CR19) 2005; 11
S. Pauly (6386_CR21) 2009; 60
G. He (6386_CR7) 2003; 352
H. Choi-Yim (6386_CR9) 1997; 71
M. Matsuda (6386_CR34) 2011; 19
R. D. Conner (6386_CR10) 1998; 46
X. H. Du (6386_CR5) 2009; 17
B.-T. Jang (6386_CR3) 2015; 53
Y. S. Oh (6386_CR11) 2011; 59
D. C. Hofmann (6386_CR17) 2008; 451
H.-J. Jun (6386_CR27) 2008; 14
M. Matsuda (6386_CR33) 2009; 50
T.-H. Nam (6386_CR28) 2015; 53
S. H. Hong (6386_CR15) 2014; 45
W. Zhang (6386_CR26) 2006; 21
A. Inoue (6386_CR4) 2011; 59
H. Men (6386_CR25) 2005; 408
S. H. Hong (6386_CR16) 2015; 45
S. H. Hong (6386_CR18) 2015; 62
K. K. Song (6386_CR22) 2011; 59
A. L. Greer (6386_CR1) 1995; 267
Y. Wu (6386_CR23) 2010; 22
References_xml – volume: 23
  start-page: 609
  year: 1975
  ident: 6386_CR6
  publication-title: Acta Metall.
  doi: 10.1016/0001-6160(75)90101-7
  contributor:
    fullname: C. P. P. Chou
– volume: 54
  start-page: 1123
  year: 2006
  ident: 6386_CR8
  publication-title: Scripta Mater.
  doi: 10.1016/j.scriptamat.2005.11.074
  contributor:
    fullname: R. Li
– volume: 267
  start-page: 1947
  year: 1995
  ident: 6386_CR1
  publication-title: Science
  doi: 10.1126/science.267.5206.1947
  contributor:
    fullname: A. L. Greer
– volume: 59
  start-page: 2243
  year: 2011
  ident: 6386_CR4
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2010.11.027
  contributor:
    fullname: A. Inoue
– volume: 352
  start-page: 179
  year: 2003
  ident: 6386_CR7
  publication-title: Mat. Sci. Eng. A
  doi: 10.1016/S0921-5093(02)00866-3
  contributor:
    fullname: G. He
– volume: 21
  start-page: 1674
  year: 2006
  ident: 6386_CR24
  publication-title: J. Mater. Res.
  doi: 10.1557/jmr.2006.0212
  contributor:
    fullname: P. Yu
– volume: 31
  start-page: 799
  year: 1994
  ident: 6386_CR29
  publication-title: Scripta Metall. Mater.
  doi: 10.1016/0956-716X(94)90481-2
  contributor:
    fullname: Y. N. Koval
– volume: 62
  start-page: 36
  year: 2015
  ident: 6386_CR18
  publication-title: Intermetallics
  doi: 10.1016/j.intermet.2015.03.005
  contributor:
    fullname: S. H. Hong
– volume: 65
  start-page: 259
  year: 2014
  ident: 6386_CR32
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2013.10.068
  contributor:
    fullname: P. Gargarella
– volume: 14
  start-page: 297
  year: 2008
  ident: 6386_CR27
  publication-title: Met. Mater. Int.
  doi: 10.3365/met.mat.2008.06.297
  contributor:
    fullname: H.-J. Jun
– volume: 60
  start-page: 431
  year: 2009
  ident: 6386_CR21
  publication-title: Scripta Mater.
  doi: 10.1016/j.scriptamat.2008.11.015
  contributor:
    fullname: S. Pauly
– volume: 59
  start-page: 7277
  year: 2011
  ident: 6386_CR11
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2011.08.006
  contributor:
    fullname: Y. S. Oh
– volume: 52
  start-page: 4121
  year: 2004
  ident: 6386_CR14
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2004.05.025
  contributor:
    fullname: M. L. Lee
– volume: 45
  start-page: 37
  year: 2015
  ident: 6386_CR16
  publication-title: Appl. Microsc.
  doi: 10.9729/AM.2015.45.2.37
  contributor:
    fullname: S. H. Hong
– volume: 45
  start-page: 2376
  year: 2014
  ident: 6386_CR15
  publication-title: Metall. Mater. Trans. A
  doi: 10.1007/s11661-013-1947-9
  contributor:
    fullname: S. H. Hong
– volume: 53
  start-page: 451
  year: 2015
  ident: 6386_CR28
  publication-title: Korean J. Met. Mater.
  doi: 10.3365/KJMM.2015.53.7.451
  contributor:
    fullname: T.-H. Nam
– volume: 53
  start-page: 519
  year: 2015
  ident: 6386_CR3
  publication-title: Korean J. Met. Mater.
  doi: 10.3365/KJMM.2015.53.7.519
  contributor:
    fullname: B.-T. Jang
– volume: 408
  start-page: 326
  year: 2005
  ident: 6386_CR25
  publication-title: Mat. Sci. Eng. A
  doi: 10.1016/j.msea.2005.08.207
  contributor:
    fullname: H. Men
– volume: 509
  start-page: S99
  year: 2011
  ident: 6386_CR30
  publication-title: J. Alloy. Compd.
  doi: 10.1016/j.jallcom.2011.01.085
  contributor:
    fullname: A. Castellero
– volume: 71
  start-page: 3808
  year: 1997
  ident: 6386_CR9
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.120512
  contributor:
    fullname: H. Choi-Yim
– volume: 315
  start-page: 1385
  year: 2007
  ident: 6386_CR20
  publication-title: Science
  doi: 10.1126/science.1136726
  contributor:
    fullname: Y. H. Liu
– volume: 17
  start-page: 607
  year: 2009
  ident: 6386_CR5
  publication-title: Intermetallics
  doi: 10.1016/j.intermet.2009.01.019
  contributor:
    fullname: X. H. Du
– volume: 54
  start-page: 321
  year: 2006
  ident: 6386_CR2
  publication-title: Scripta Mater.
  doi: 10.1016/j.scriptamat.2005.09.051
  contributor:
    fullname: M. F. Ashby
– volume: 59
  start-page: 6620
  year: 2011
  ident: 6386_CR22
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2011.07.017
  contributor:
    fullname: K. K. Song
– volume: 46
  start-page: 6089
  year: 1998
  ident: 6386_CR10
  publication-title: Acta Mater.
  doi: 10.1016/S1359-6454(98)00275-4
  contributor:
    fullname: R. D. Conner
– volume: 57
  start-page: 5445
  year: 2009
  ident: 6386_CR31
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2009.07.042
  contributor:
    fullname: S. Pauly
– volume: 38
  start-page: 445
  year: 2008
  ident: 6386_CR13
  publication-title: Annu. Rev. Mater. Res.
  doi: 10.1146/annurev.matsci.38.060407.130226
  contributor:
    fullname: M. Chen
– volume: 50
  start-page: 2335
  year: 2009
  ident: 6386_CR33
  publication-title: Mater. Trans.
  doi: 10.2320/matertrans.M2009182
  contributor:
    fullname: M. Matsuda
– volume: 21
  start-page: 234
  year: 2006
  ident: 6386_CR26
  publication-title: J. Mater. Res.
  doi: 10.1557/jmr.2006.0020
  contributor:
    fullname: W. Zhang
– volume: 11
  start-page: 19
  year: 2005
  ident: 6386_CR19
  publication-title: Met. Mater. Int.
  doi: 10.1007/BF03027480
  contributor:
    fullname: E. S. Park
– volume: 22
  start-page: 2770
  year: 2010
  ident: 6386_CR23
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201000482
  contributor:
    fullname: Y. Wu
– volume: 54
  start-page: 2597
  year: 2006
  ident: 6386_CR12
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2005.12.020
  contributor:
    fullname: E. S. Park
– volume: 451
  start-page: 1085
  year: 2008
  ident: 6386_CR17
  publication-title: Nature
  doi: 10.1038/nature06598
  contributor:
    fullname: D. C. Hofmann
– volume: 19
  start-page: 894
  year: 2011
  ident: 6386_CR34
  publication-title: Intermetallics
  doi: 10.1016/j.intermet.2011.02.006
  contributor:
    fullname: M. Matsuda
SSID ssj0061312
Score 2.1491768
Snippet The effect of the type of the crystalline phase and its volume fraction on the mechanical property of Cu 50 Zr 50-x Ti x alloys (x = 0-10) bulk metallic glass...
The effect of the type of the crystalline phase and its volume fraction on the mechanical property of Cu50Zr50-xTix alloys (x = 0-10) bulk metallic glass...
The effect of the type of the crystalline phase and its volume fraction on the mechanical property of Cu sub(50)Zr sub(50-x)Ti sub(x) alloys (x = 0-10) bulk...
The effect of the type of the crystalline phase and its volume fraction on the mechanical property ofCu50Zr50-xTix alloys (x = 0-10) bulk metallic glass...
SourceID nrf
proquest
crossref
springer
SourceType Open Website
Aggregation Database
Publisher
StartPage 1026
SubjectTerms Alloys
Amorphous materials
Characterization and Evaluation of Materials
Chemistry and Materials Science
Cooling rate
Copper
Crystal structure
Deformation
Engineering Thermodynamics
Eutectoid composition
Eutectoids
Heat and Mass Transfer
Intermetallic phases
Machines
Magnetic Materials
Magnetism
Manufacturing
Martensitic transformations
Materials Science
Mathematical models
Mechanical properties
Metallic glasses
Metallic Materials
Microscopy
Particulate composites
Phase transformations
Phase transitions
Plastic deformation
Processes
Solid Mechanics
Titanium
Volume fraction
Work hardening
Yield strength
Yield stress
재료공학
SummonAdditionalLinks – databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8MwDI5gXOCAeIrxUkCcQBFr1zTpCaGJ8ZBAHIaEuERJmsC00Y5uk_j52F3LS4JTD43Synbiz7H9hZAjKY2NhfdM8CSBAMUFTEZBxNpOGBHGJpER9g7f3sVXD9HNI3-sDtzGVVllvSeWG3WaWzwjPwXTA9uTgN7PRm8Mb43C7Gp1hcY8WQhCITD4kt3LeicGTzXLdvIEFjX4-TqrWbbOhVgSAICHgQXG7P2HX5rPCv8Dcv7KkpbOp7tClivUSM9nal4lcy5bI0vfuATXSe_-BRwS_WxGpDpL6avDxl7UAx3hqXuB9Kk097QzZU8F6_WpmQ4HMAwg-LBvaYmlKZaZYy2XG2-Qh-5Fr3PFqisTmIVQc8K4FTFPnU8NEtm3Wtpz7mMNC9dxoUH-1qQmcNxK4RItnQ2MNzox1msvvOXtTdLI8sxtEZpYgCaBTY0IfNSGQNm3nYYAxCFfjg9lkxzXAlOjGTOG-uJARukqrB5D6ar3JjkEkaqB7Svks8bnc64GhQLUfq1Ad7KVwIy7tcRVtZLG6kvvTXLw-RrWACY2dObyKY7hHJnKQt4kJ7Wmvk3x119t___BHbIYooGUnYe7pDEppm4PIMjE7Jd29gHZEthq
  priority: 102
  providerName: ProQuest
Title Phase formation and mechanical properties of Cu-Zr-Ti bulk metallic glass composites
URI https://link.springer.com/article/10.1007/s12540-016-6386-x
https://www.proquest.com/docview/1833228148
https://search.proquest.com/docview/1855381025
https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002164225
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Metals and Materials International, 2016, 22(6), , pp.1026-1032
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED_t4wUe-EZ0G5NBPIFcNWkcO49lajdATBNqpcGLZTv2qDLSKW0kxF_PXZp0Gx8Pe7KUWFbis-9-57v7GeCNUtalMgQuRZahg-IjrpIo4UMvrYxTm6mEaoc_n6Yns-TjuTjfgnhzdFEW_S4i2Sjq61q3mGL4iFA4LpmUI27cbetOd0fHXz-NO_2L9mkd4xQZbmW07l0s81-D3LJG22UVbgHNP2KjjcmZPFyXAS4bpkLKNCn69cr23a-_eRzv8DeP4EGLQNlovWQew5Yvn8D9G7yET2F69h2NG9sUNjJT5uyHpyJhkim7ohP8iqhY2SKwo5p_q_h0zmx9WWA3hPOXc8caXM4oZZ3ywvzyGcwm4-nRCW-vX-AO3dYVF06mIvcht0SKPxiYIERIDSoBL6RBWTqb28gLp6TPjPIussGazLpgggxODJ_DTrko_QtgmUOYE7ncyigkQ3S6w9AbdGY8ce-EWPXgbScGfbVm2dDXfMo0VZoy0Wiq9M8evEZB6cLNNXFjU3ux0EWl0QP4oKNYqkGGIx50ctTtrlxqVF-ovxR6gD14tXmN-4mCJKb0i5r6CEGsZ7HowbtOdjeG-N9X7d2p9z7ci0n4TVHjAeysqtq_RHSzsoewrSbHh-2ixvb9-PTsCz6dxaPfLzr1Bw
link.rule.ids 315,783,787,12777,21400,27936,27937,33385,33386,33756,33757,41093,41535,42162,42604,43612,43817,52123,52246
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dT9swED8NeBh7mBgbolA2M-2JyVqT1rHzhFgFKhtUCBUJ7cWyHZtVhaSkrcSfv7s04WPS9pSHWE50H76ffXc_A3xRyrpEhsClSFPcoPiIq17U410vrYwTm6oe9Q6fD5PBVe_HtbiuD9xmdVllsyZWC3VWODoj_4amh7anEL0fTu853RpF2dX6Co0VWCOqKtx8rX0_Hl5cNmsxxqplvlOk6NYY6Zu8ZtU8F1NRAEIejjaY8IcXkWklL8ML0PlXnrQKPycb8LbGjexoqeh38Mrnm_DmGZvgexhd_MaQxB7bEZnJM3bnqbWXNMGmdO5eEoEqKwLrL_ivko_GzC5uJzgMQfjt2LEKTTMqNKdqLj_7AFcnx6P-gNeXJnCHm805F04mIvMhs0Rl3-mYIERIDLquF9KgBpzNbOSFU9KnRnkX2WBNal0wQQYnuluwmhe53waWOgQnkcusjAKKV6nQ9Qa3IJ4Yc0KsWnDQCExPl9wY-okFmaSrqX6MpKsfWvAZRaonbqyJ0ZqeN4WelBpx-6mOYqk6Kc7YbiSua1-a6SfNt2D_8TV6AaU2TO6LBY0RgrjKYtGCr42mnk3xr7_a-f8HP8Hrwej8TJ-dDn_uwnpMxlL1IbZhdV4u_B4Ckrn9WFvdH9tI3Ls
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA4-QPQgPrE-o3hSgt1HNtmjqMX6wkML4iUk2URL67ZsW_DnO9N26wM9eNrDhrDMI_PNzswXQo6lNDYR3jPB0xQSFBcwGQcxi5wwIkxMKmOcHb5_SK6b8c0Tf5rcc9ovu93LkuR4pgFZmvLBWS_zZ5-DbyEW9AGuMLCfhAGInIdIFGFPXzM8L49iCFXjcidPwash0Jdlzd-2-BaYZvPCf8OcP8qko-hTWyHLE9hIz8d6XiUzLl8jS1_IBNdJ4_EVIhKdTiNSnWf0zeFkLyqC9vC3e4H8qbTr6cWQPRes0aJm2GnDMsDgnZalIzBNsc8cm7lcf4M0a1eNi2s2uTOBWcg1B4xbkfDM-cwgk321qj3nPtHguY4LDQqwJjOB41YKl2rpbGC80amxXnvhLY82yVzezd0WoakFbBLYzIjAxxFkyj5yGjIQh4Q5PpQVclIKTPXG1BjqkwQZpauwfQylq94r5AhEqtq2pZDQGp8vXdUuFMD2ugpCIasp7LhbSlxNXKmv4MyBQ0dC2lYhh9PX4ARY2dC56w5xDedIVRbyCjktNfVli7--avtfqw_IwuNlTd3VH253yGKIpjMaStwlc4Ni6PYAnQzM_sgCPwDd8dyu
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Phase+Formation+and+Mechanical+Properties+of+Cu-Zr-Ti+Bulk+Metallic+Glass+Composites&rft.jtitle=Metals+and+materials+international&rft.au=Byoung+Jin+Kim&rft.au=Young+Su+Yun&rft.au=Won+Tae+Kim&rft.au=%EA%B9%80%EB%8F%84%ED%96%A5&rft.date=2016-11-01&rft.pub=%EB%8C%80%ED%95%9C%EA%B8%88%EC%86%8D%C2%B7%EC%9E%AC%EB%A3%8C%ED%95%99%ED%9A%8C&rft.issn=1598-9623&rft.eissn=2005-4149&rft.spage=1026&rft.epage=1032&rft_id=info:doi/10.1007%2Fs12540-016-6386-x&rft.externalDBID=n%2Fa&rft.externalDocID=oai_kci_go_kr_ARTI_1278098
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1598-9623&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1598-9623&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1598-9623&client=summon