Strain induced electrochemical behaviors of ionic liquid electrolytes in an electrochemical double layer capacitor: Insights from molecular dynamics simulations
Electrochemical Double Layer Capacitors (EDLCs) with ionic liquid electrolytes outperform conventional ones using aqueous and organic electrolytes in energy density and safety. However, understanding the electrochemical behaviors of ionic liquid electrolytes under compressive/tensile strain is essen...
Saved in:
Published in | The Journal of chemical physics Vol. 159; no. 24 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Institute of Physics
28.12.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Electrochemical Double Layer Capacitors (EDLCs) with ionic liquid electrolytes outperform conventional ones using aqueous and organic electrolytes in energy density and safety. However, understanding the electrochemical behaviors of ionic liquid electrolytes under compressive/tensile strain is essential for the design of flexible EDLCs as well as normal EDLCs, which are subject to external forces during assembly. Despite many experimental studies, the compression/stretching effects on the performance of ionic liquid EDLCs remain inconclusive and controversial. In addition, there is hardly any evidence of prior theoretical work done in this area, which makes the literature on this topic scarce. Herein, for the first time, we developed an atomistic model to study the processes underlying the electrochemical behaviors of ionic liquids in an EDLC under strain. Constant potential non-equilibrium molecular dynamics simulations are conducted for EMIM BF4 placed between two graphene walls as electrodes. Compared to zero strain, low compression of the EDLC resulted in compromised performance as the electrode charge density dropped by 29%, and the performance reduction deteriorated significantly with a further increase in compression. In contrast, stretching is found to enhance the performance by increasing the charge storage in the electrodes by 7%. The performance changes with compression and stretching are due to changes in the double-layer structure. In addition, an increase in the value of the applied potential during the application of strain leads to capacity retention with compression revealed by the newly performed simulations. |
---|---|
AbstractList | Electrochemical Double Layer Capacitors (EDLCs) with ionic liquid electrolytes outperform conventional ones using aqueous and organic electrolytes in energy density and safety. However, understanding the electrochemical behaviors of ionic liquid electrolytes under compressive/tensile strain is essential for the design of flexible EDLCs as well as normal EDLCs, which are subject to external forces during assembly. Despite many experimental studies, the compression/stretching effects on the performance of ionic liquid EDLCs remain inconclusive and controversial. In addition, there is hardly any evidence of prior theoretical work done in this area, which makes the literature on this topic scarce. Herein, for the first time, we developed an atomistic model to study the processes underlying the electrochemical behaviors of ionic liquids in an EDLC under strain. Constant potential non-equilibrium molecular dynamics simulations are conducted for EMIM BF4 placed between two graphene walls as electrodes. Compared to zero strain, low compression of the EDLC resulted in compromised performance as the electrode charge density dropped by 29%, and the performance reduction deteriorated significantly with a further increase in compression. In contrast, stretching is found to enhance the performance by increasing the charge storage in the electrodes by 7%. The performance changes with compression and stretching are due to changes in the double-layer structure. In addition, an increase in the value of the applied potential during the application of strain leads to capacity retention with compression revealed by the newly performed simulations. Electrochemical Double Layer Capacitors (EDLCs) with ionic liquid electrolytes outperform conventional ones using aqueous and organic electrolytes in energy density and safety. However, understanding the electrochemical behaviors of ionic liquid electrolytes under compressive/tensile strain is essential for the design of flexible EDLCs as well as normal EDLCs, which are subject to external forces during assembly. Despite many experimental studies, the compression/stretching effects on the performance of ionic liquid EDLCs remain inconclusive and controversial. In addition, there is hardly any evidence of prior theoretical work done in this area, which makes the literature on this topic scarce. Herein, for the first time, we developed an atomistic model to study the processes underlying the electrochemical behaviors of ionic liquids in an EDLC under strain. Constant potential non-equilibrium molecular dynamics simulations are conducted for EMIM BF4 placed between two graphene walls as electrodes. Compared to zero strain, low compression of the EDLC resulted in compromised performance as the electrode charge density dropped by 29%, and the performance reduction deteriorated significantly with a further increase in compression. In contrast, stretching is found to enhance the performance by increasing the charge storage in the electrodes by 7%. The performance changes with compression and stretching are due to changes in the double-layer structure. In addition, an increase in the value of the applied potential during the application of strain leads to capacity retention with compression revealed by the newly performed simulations.Electrochemical Double Layer Capacitors (EDLCs) with ionic liquid electrolytes outperform conventional ones using aqueous and organic electrolytes in energy density and safety. However, understanding the electrochemical behaviors of ionic liquid electrolytes under compressive/tensile strain is essential for the design of flexible EDLCs as well as normal EDLCs, which are subject to external forces during assembly. Despite many experimental studies, the compression/stretching effects on the performance of ionic liquid EDLCs remain inconclusive and controversial. In addition, there is hardly any evidence of prior theoretical work done in this area, which makes the literature on this topic scarce. Herein, for the first time, we developed an atomistic model to study the processes underlying the electrochemical behaviors of ionic liquids in an EDLC under strain. Constant potential non-equilibrium molecular dynamics simulations are conducted for EMIM BF4 placed between two graphene walls as electrodes. Compared to zero strain, low compression of the EDLC resulted in compromised performance as the electrode charge density dropped by 29%, and the performance reduction deteriorated significantly with a further increase in compression. In contrast, stretching is found to enhance the performance by increasing the charge storage in the electrodes by 7%. The performance changes with compression and stretching are due to changes in the double-layer structure. In addition, an increase in the value of the applied potential during the application of strain leads to capacity retention with compression revealed by the newly performed simulations. |
Author | Roy, Tribeni Titirici, Maria-Magdalena Goel, Saurav Marinescu, Monica Costa, Luciano T. Offer, Gregory J. Wang, Huizhi |
Author_xml | – sequence: 1 givenname: Tribeni surname: Roy fullname: Roy, Tribeni organization: 6Department of Chemical Engineering, Imperial College London, London SW7 2AZ, United Kingdom – sequence: 2 givenname: Saurav surname: Goel fullname: Goel, Saurav organization: 6Department of Chemical Engineering, Imperial College London, London SW7 2AZ, United Kingdom – sequence: 3 givenname: Luciano T. surname: Costa fullname: Costa, Luciano T. organization: MolMod-CS, Institute of Chemistry, Universidade Federal Fluminense – sequence: 4 givenname: Maria-Magdalena surname: Titirici fullname: Titirici, Maria-Magdalena organization: Department of Chemical Engineering, Imperial College London – sequence: 5 givenname: Gregory J. surname: Offer fullname: Offer, Gregory J. organization: Department of Mechanical Engineering, Imperial College London – sequence: 6 givenname: Monica surname: Marinescu fullname: Marinescu, Monica organization: Department of Mechanical Engineering, Imperial College London – sequence: 7 givenname: Huizhi surname: Wang fullname: Wang, Huizhi organization: Department of Mechanical Engineering, Imperial College London |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38149932$$D View this record in MEDLINE/PubMed |
BookMark | eNp90U1rFDEYB_AgFbutHvwCEvCiwrR5n403Kb4UCh7U85CXZ9yUTLJNZoT9Nn5U0-62hyqeAuH3fxKe_wk6SjkBQi8pOaNE8XN5RqhSuldP0IqSte56pckRWhHCaKcVUcfopNZrQgjtmXiGjvmaCq05W6Hf3-ZiQsIh-cWBxxDBzSW7DUzBmYgtbMyvkEvFecQhp-BwDDdLeJBxN0NtcWzSX2GfFxsBR7ODgp3ZGhfmXN7jy1TDz81c8VjyhKfcYks0BftdMi1ZcQ1Tu5jbe_U5ejqaWOHF4TxFPz59_H7xpbv6-vny4sNV5_iaz52UvTQAhkluHWXAiFROeWI4A9V7q6Qbx1557gmlxllqhVCUWKKFF1ZYfore7OduS75ZoM7DFKqDGE2CvNSBaaL6XjLNG339iF7npaT2uzsltRBaNPXqoBY7gR-2JUym7Ib73Tfwdg9cybUWGB8IJcNtr4McDr02e_7ItlXeLei2vvjPxLt9ot7L_4z_A-yttIs |
CODEN | JCPSA6 |
CitedBy_id | crossref_primary_10_1016_j_carbon_2024_119089 |
Cites_doi | 10.1021/acs.jpcb.6b03433 10.1016/j.mtchem.2020.100356 10.1103/physrevlett.106.046102 10.1016/j.commatsci.2018.04.044 10.1186/s11671-017-2395-z 10.1016/j.electacta.2006.03.016 10.1016/j.jpowsour.2011.02.022 10.1016/j.cej.2021.131904 10.1021/jp0362133 10.1021/acsaelm.3c00476 10.1002/adma.201201587 10.1016/j.cej.2019.123794 10.1016/j.jpowsour.2015.01.153 10.1016/j.egypro.2019.02.033 10.1006/jcph.1995.1039 10.1016/j.est.2015.11.001 10.1016/j.actamat.2015.11.046 10.1039/c3nr01932b 10.1016/j.electacta.2017.08.034 10.1002/er.5473 10.1038/s41467-017-00550-3 10.1039/c8cp07200k 10.1016/j.msea.2014.12.075 10.3389/fchem.2019.00272 10.1016/j.jpowsour.2010.06.022 10.1039/c8cc03375g 10.1063/1.4899176 10.1088/0965-0393/18/2/025016 10.1002/jcc.21224 10.1016/j.nanoen.2021.105837 10.1149/2.0081613jes 10.1016/j.jpowsour.2012.04.046 10.1021/nn101595y 10.1016/j.ijhydene.2009.09.058 10.1002/adma.201900573 |
ContentType | Journal Article |
Copyright | Author(s) 2023 Author(s). Published under an exclusive license by AIP Publishing. |
Copyright_xml | – notice: Author(s) – notice: 2023 Author(s). Published under an exclusive license by AIP Publishing. |
DBID | AAYXX CITATION NPM 8FD H8D L7M 7X8 |
DOI | 10.1063/5.0166976 |
DatabaseName | CrossRef PubMed Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitleList | Technology Research Database CrossRef MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Physics |
EISSN | 1089-7690 |
ExternalDocumentID | 38149932 10_1063_5_0166976 jcp |
Genre | Journal Article |
GrantInformation_xml | – fundername: Imperial College London grantid: Computing facility funderid: https://doi.org/10.13039/501100000761 – fundername: University of Bristol grantid: Isambard Bristol HPC funderid: https://doi.org/10.13039/501100000883 – fundername: British Council grantid: Hubert Curien Partnership award 2022 funderid: https://doi.org/10.13039/501100000308 – fundername: Shiv Nadar Foundation grantid: Magus2 funderid: https://doi.org/10.13039/100022928 – fundername: Innovate UK grantid: TS/S005811/1 funderid: https://doi.org/10.13039/501100006041 – fundername: London South Bank University grantid: Kittrick funderid: https://doi.org/10.13039/501100001261 – fundername: Universidade Federal Fluminense grantid: PRINT-UFF/CAPES project funderid: https://doi.org/10.13039/501100010435 – fundername: UK Research and Innovation grantid: EP/S036180/1; EP/T024607/1; EP/S000933/1 funderid: https://doi.org/10.13039/100014013 – fundername: Royal Society grantid: IEC\NSFC\223536 funderid: https://doi.org/10.13039/501100000288 – fundername: Science and Engineering Research Board grantid: SRG/2021/000741 funderid: https://doi.org/10.13039/501100001843 |
GroupedDBID | --- -DZ -ET -~X 123 2-P 29K 4.4 5VS 85S AAAAW AABDS AAEUA AAPUP AAYIH ABPPZ ABZEH ACBRY ACLYJ ACNCT ACZLF ADCTM AEJMO AENEX AFATG AFHCQ AGKCL AGLKD AGMXG AGTJO AHSDT AJJCW AJQPL ALEPV ALMA_UNASSIGNED_HOLDINGS AQWKA ATXIE AWQPM BPZLN CS3 D-I DU5 EBS ESX F5P FDOHQ FFFMQ HAM M6X M71 M73 N9A NPSNA O-B P2P RIP RNS RQS TN5 TWZ UPT WH7 YQT YZZ ~02 1UP 53G AAGWI AAYXX ABJGX ADMLS BDMKI CITATION NPM 8FD H8D L7M 7X8 |
ID | FETCH-LOGICAL-c383t-5575aeea253bc12e2056c6d0a32e67db65cff76d3d011acb1b44610b094d4b4b3 |
ISSN | 0021-9606 1089-7690 |
IngestDate | Fri Jul 11 11:20:15 EDT 2025 Mon Jun 30 03:41:36 EDT 2025 Thu Apr 03 07:03:34 EDT 2025 Tue Jul 01 01:12:38 EDT 2025 Thu Apr 24 23:05:10 EDT 2025 Fri Jun 21 00:17:12 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 24 |
Language | English |
License | Published under an exclusive license by AIP Publishing. 2023 Author(s). Published under an exclusive license by AIP Publishing. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c383t-5575aeea253bc12e2056c6d0a32e67db65cff76d3d011acb1b44610b094d4b4b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-8177-5363 0000-0002-9967-4034 0000-0003-1641-3371 0000-0003-2287-0544 0000-0002-8694-332X 0000-0002-6093-8346 0000-0003-1324-8366 |
OpenAccessLink | https://pubs.aip.org/aip/jcp/article-pdf/doi/10.1063/5.0166976/18277625/244308_1_5.0166976.pdf |
PMID | 38149932 |
PQID | 2906594494 |
PQPubID | 2050685 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_2906775293 proquest_journals_2906594494 crossref_primary_10_1063_5_0166976 scitation_primary_10_1063_5_0166976 pubmed_primary_38149932 crossref_citationtrail_10_1063_5_0166976 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20231228 2023-12-28 2023-Dec-28 |
PublicationDateYYYYMMDD | 2023-12-28 |
PublicationDate_xml | – month: 12 year: 2023 text: 20231228 day: 28 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Melville |
PublicationTitle | The Journal of chemical physics |
PublicationTitleAlternate | J Chem Phys |
PublicationYear | 2023 |
Publisher | American Institute of Physics |
Publisher_xml | – name: American Institute of Physics |
References | Xin (c22) 2023; 5 Sandy Thomas (c2) 2009; 34 Saw (c4) 2019; 158 Bai (c20) 2017; 249 Plimpton (c27) 1995; 117 Gourdin, Jiang, Smith, Qu (c14) 2012; 215 Stukowski, Albe (c28) 2010; 18 Bazant, Storey, Kornyshev (c24) 2011; 106 Wang, Yang, Olmsted, Asta, Laird (c31) 2014; 141 Lv (c15) 2017; 12 Noh, Jung (c32) 2019; 21 Liang (c19) 2022; 427 Yu, Chen (c8) 2019; 7 Galiński, Lewandowski, Stepniak (c9) 2006; 51 Romann, Oll, Pikma, Kirsimäe, Lust (c34) 2015; 280 Goel, Kovalchenko, Stukowski, Cross (c35) 2016; 105 Chen, Qin, Cong, Yu (c18) 2019; 31 Park (c10) 2021; 83 Sarwar (c3) 2016; 5 Huang, Zeng, Fan, Liu, Zhang (c7) 2012; 24 Kroupa, Offer, Kosek (c23) 2016; 163 Goel, Beake, Chan, Haque Faisal, Dunne (c33) 2015; 627 Brownson, Kampouris, Banks (c6) 2011; 196 Ko (c21) 2017; 8 Li (c16) 2013; 5 Hu (c12) 2018; 54 Moon, Ki, Oh (c17) 2020; 392 Li, Rong, Wei (c11) 2010; 4 Yu, Lin, Sun, He (c5) 2020; 44 Martinez, Andrade, Birgin, Martínez (c26) 2009; 30 Canongia Lopes, Deschamps, Pádua (c29) 2004; 108 Gourdin, Meehan, Jiang, Smith, Qu (c13) 2011; 196 Goel (c36) 2018; 152 Kazemiabnavi, Zhang, Thornton, Banerjee (c25) 2016; 120 Goel (c30) 2020; 18 (2023122713581691600_c16) 2013; 5 (2023122713581691600_c13) 2011; 196 (2023122713581691600_c2) 2009; 34 (2023122713581691600_c5) 2020; 44 (2023122713581691600_c3) 2016; 5 (2023122713581691600_c19) 2022; 427 (2023122713581691600_c28) 2010; 18 (2023122713581691600_c31) 2014; 141 (2023122713581691600_c11) 2010; 4 (2023122713581691600_c34) 2015; 280 (2023122713581691600_c23) 2016; 163 (2023122713581691600_c12) 2018; 54 (2023122713581691600_c27) 1995; 117 (2023122713581691600_c18) 2019; 31 (2023122713581691600_c22) 2023; 5 (2023122713581691600_c17) 2020; 392 (2023122713581691600_c10) 2021; 83 (2023122713581691600_c30) 2020; 18 (2023122713581691600_c7) 2012; 24 (2023122713581691600_c4) 2019; 158 (2023122713581691600_c20) 2017; 249 (2023122713581691600_c14) 2012; 215 (2023122713581691600_c32) 2019; 21 (2023122713581691600_c24) 2011; 106 (2023122713581691600_c9) 2006; 51 (2023122713581691600_c21) 2017; 8 (2023122713581691600_c15) 2017; 12 (2023122713581691600_c6) 2011; 196 (2023122713581691600_c29) 2004; 108 (2023122713581691600_c33) 2015; 627 (2023122713581691600_c36) 2018; 152 (2023122713581691600_c25) 2016; 120 (2023122713581691600_c26) 2009; 30 2023122713581691600_c1 (2023122713581691600_c8) 2019; 7 (2023122713581691600_c35) 2016; 105 |
References_xml | – volume: 83 start-page: 105837 year: 2021 ident: c10 publication-title: Nano Energy – volume: 44 start-page: 7495 year: 2020 ident: c5 publication-title: Int. J. Energy Res. – volume: 117 start-page: 1 year: 1995 ident: c27 publication-title: J. Comput. Phys. – volume: 158 start-page: 2750 year: 2019 ident: c4 publication-title: Energy Procedia – volume: 51 start-page: 5567 year: 2006 ident: c9 publication-title: Electrochim. Acta – volume: 120 start-page: 5691 year: 2016 ident: c25 publication-title: J. Phys. Chem. B – volume: 5 start-page: 8472 year: 2013 ident: c16 publication-title: Nanoscale – volume: 5 start-page: 3756 year: 2023 ident: c22 publication-title: ACS Appl. Electron. Mater. – volume: 5 start-page: 10 year: 2016 ident: c3 publication-title: J. Power Sources – volume: 163 start-page: A2475 year: 2016 ident: c23 publication-title: J. Electrochem. Soc. – volume: 141 start-page: 184102 year: 2014 ident: c31 publication-title: J. Chem. Phys. – volume: 392 start-page: 123794 year: 2020 ident: c17 publication-title: Chem. Eng. J. – volume: 215 start-page: 179 year: 2012 ident: c14 publication-title: J. Power Sources – volume: 31 start-page: 1900573 year: 2019 ident: c18 publication-title: Adv. Mater. – volume: 196 start-page: 523 year: 2011 ident: c13 publication-title: J. Power Sources – volume: 34 start-page: 9279 year: 2009 ident: c2 publication-title: Int. J. Hydrogen Energy – volume: 427 start-page: 131904 year: 2022 ident: c19 publication-title: Chem. Eng. J. – volume: 30 start-page: 2157 year: 2009 ident: c26 publication-title: J. Comput. Chem. – volume: 21 start-page: 6790 year: 2019 ident: c32 publication-title: Phys. Chem. Chem. Phys. – volume: 24 start-page: 5979 year: 2012 ident: c7 publication-title: Adv. Mater. – volume: 4 start-page: 6039 year: 2010 ident: c11 publication-title: ACS Nano – volume: 152 start-page: 196 year: 2018 ident: c36 publication-title: Comput. Mater. Sci. – volume: 7 start-page: 272 year: 2019 ident: c8 publication-title: Front. Chem. – volume: 12 start-page: 630 year: 2017 ident: c15 publication-title: Nanoscale Res. Lett. – volume: 108 start-page: 2038 year: 2004 ident: c29 publication-title: J. Phys. Chem. B – volume: 54 start-page: 6200 year: 2018 ident: c12 publication-title: Chem. Commun. – volume: 18 start-page: 100356 year: 2020 ident: c30 publication-title: Mater. Today Chem. – volume: 105 start-page: 464 year: 2016 ident: c35 publication-title: Acta Mater. – volume: 249 start-page: 360 year: 2017 ident: c20 publication-title: Electrochim. Acta – volume: 106 start-page: 046102 year: 2011 ident: c24 publication-title: Phys. Rev. Lett. – volume: 196 start-page: 4873 year: 2011 ident: c6 publication-title: J. Power Sources – volume: 280 start-page: 606 year: 2015 ident: c34 publication-title: J. Power Sources – volume: 627 start-page: 249 year: 2015 ident: c33 publication-title: Mater. Sci. Eng.: A – volume: 8 start-page: 536 year: 2017 ident: c21 publication-title: Nat. Commun. – volume: 18 start-page: 025016 year: 2010 ident: c28 publication-title: Modell. Simul. Mater. Sci. Eng. – volume: 120 start-page: 5691 year: 2016 ident: 2023122713581691600_c25 publication-title: J. Phys. Chem. B doi: 10.1021/acs.jpcb.6b03433 – volume: 18 start-page: 100356 year: 2020 ident: 2023122713581691600_c30 publication-title: Mater. Today Chem. doi: 10.1016/j.mtchem.2020.100356 – volume: 106 start-page: 046102 year: 2011 ident: 2023122713581691600_c24 publication-title: Phys. Rev. Lett. doi: 10.1103/physrevlett.106.046102 – volume: 152 start-page: 196 year: 2018 ident: 2023122713581691600_c36 publication-title: Comput. Mater. Sci. doi: 10.1016/j.commatsci.2018.04.044 – volume: 12 start-page: 630 year: 2017 ident: 2023122713581691600_c15 publication-title: Nanoscale Res. Lett. doi: 10.1186/s11671-017-2395-z – volume: 51 start-page: 5567 year: 2006 ident: 2023122713581691600_c9 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2006.03.016 – volume: 196 start-page: 4873 year: 2011 ident: 2023122713581691600_c6 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2011.02.022 – volume: 427 start-page: 131904 year: 2022 ident: 2023122713581691600_c19 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.131904 – volume: 108 start-page: 2038 year: 2004 ident: 2023122713581691600_c29 publication-title: J. Phys. Chem. B doi: 10.1021/jp0362133 – volume: 5 start-page: 3756 year: 2023 ident: 2023122713581691600_c22 publication-title: ACS Appl. Electron. Mater. doi: 10.1021/acsaelm.3c00476 – volume: 24 start-page: 5979 year: 2012 ident: 2023122713581691600_c7 publication-title: Adv. Mater. doi: 10.1002/adma.201201587 – volume: 392 start-page: 123794 year: 2020 ident: 2023122713581691600_c17 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.123794 – volume: 280 start-page: 606 year: 2015 ident: 2023122713581691600_c34 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2015.01.153 – volume: 158 start-page: 2750 year: 2019 ident: 2023122713581691600_c4 publication-title: Energy Procedia doi: 10.1016/j.egypro.2019.02.033 – volume: 117 start-page: 1 year: 1995 ident: 2023122713581691600_c27 publication-title: J. Comput. Phys. doi: 10.1006/jcph.1995.1039 – volume: 5 start-page: 10 year: 2016 ident: 2023122713581691600_c3 publication-title: J. Power Sources doi: 10.1016/j.est.2015.11.001 – volume: 105 start-page: 464 year: 2016 ident: 2023122713581691600_c35 publication-title: Acta Mater. doi: 10.1016/j.actamat.2015.11.046 – volume: 5 start-page: 8472 year: 2013 ident: 2023122713581691600_c16 publication-title: Nanoscale doi: 10.1039/c3nr01932b – volume: 249 start-page: 360 year: 2017 ident: 2023122713581691600_c20 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2017.08.034 – volume: 44 start-page: 7495 year: 2020 ident: 2023122713581691600_c5 publication-title: Int. J. Energy Res. doi: 10.1002/er.5473 – volume: 8 start-page: 536 year: 2017 ident: 2023122713581691600_c21 publication-title: Nat. Commun. doi: 10.1038/s41467-017-00550-3 – volume: 21 start-page: 6790 year: 2019 ident: 2023122713581691600_c32 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/c8cp07200k – ident: 2023122713581691600_c1 – volume: 627 start-page: 249 year: 2015 ident: 2023122713581691600_c33 publication-title: Mater. Sci. Eng.: A doi: 10.1016/j.msea.2014.12.075 – volume: 7 start-page: 272 year: 2019 ident: 2023122713581691600_c8 publication-title: Front. Chem. doi: 10.3389/fchem.2019.00272 – volume: 196 start-page: 523 year: 2011 ident: 2023122713581691600_c13 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2010.06.022 – volume: 54 start-page: 6200 year: 2018 ident: 2023122713581691600_c12 publication-title: Chem. Commun. doi: 10.1039/c8cc03375g – volume: 141 start-page: 184102 year: 2014 ident: 2023122713581691600_c31 publication-title: J. Chem. Phys. doi: 10.1063/1.4899176 – volume: 18 start-page: 025016 year: 2010 ident: 2023122713581691600_c28 publication-title: Modell. Simul. Mater. Sci. Eng. doi: 10.1088/0965-0393/18/2/025016 – volume: 30 start-page: 2157 year: 2009 ident: 2023122713581691600_c26 publication-title: J. Comput. Chem. doi: 10.1002/jcc.21224 – volume: 83 start-page: 105837 year: 2021 ident: 2023122713581691600_c10 publication-title: Nano Energy doi: 10.1016/j.nanoen.2021.105837 – volume: 163 start-page: A2475 year: 2016 ident: 2023122713581691600_c23 publication-title: J. Electrochem. Soc. doi: 10.1149/2.0081613jes – volume: 215 start-page: 179 year: 2012 ident: 2023122713581691600_c14 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2012.04.046 – volume: 4 start-page: 6039 year: 2010 ident: 2023122713581691600_c11 publication-title: ACS Nano doi: 10.1021/nn101595y – volume: 34 start-page: 9279 year: 2009 ident: 2023122713581691600_c2 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2009.09.058 – volume: 31 start-page: 1900573 year: 2019 ident: 2023122713581691600_c18 publication-title: Adv. Mater. doi: 10.1002/adma.201900573 |
SSID | ssj0001724 |
Score | 2.4500349 |
Snippet | Electrochemical Double Layer Capacitors (EDLCs) with ionic liquid electrolytes outperform conventional ones using aqueous and organic electrolytes in energy... |
SourceID | proquest pubmed crossref scitation |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
SubjectTerms | Aqueous electrolytes Capacitors Charge density Compressive properties Electrodes Electrolytes Graphene Ionic liquids Molecular dynamics Nonaqueous electrolytes Simulation Stretching Tensile strain |
Title | Strain induced electrochemical behaviors of ionic liquid electrolytes in an electrochemical double layer capacitor: Insights from molecular dynamics simulations |
URI | http://dx.doi.org/10.1063/5.0166976 https://www.ncbi.nlm.nih.gov/pubmed/38149932 https://www.proquest.com/docview/2906594494 https://www.proquest.com/docview/2906775293 |
Volume | 159 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwGLVKJzR4QDBuhYHM5QGpymhtx0l4q8amCXUDqa20t8iXFEXqElgTJPgxiJ_K5zh2y1qkwYtVpXYS5Zx8Pna-C0KvY0G0iDgLGAuh0SwKEmEyI8ZqPqdDbSyk8bY44ycz9uE8PO90fq55LdWVPFA_tsaV_A-qcAxwNVGy_4CsPykcgN-AL7SAMLTXwnjSFHjow7K6Np_x25I2yuUAcCH4Nq1sU-pmkX-tc99z8b1q_LH68JJfHazL2gRVLQRo8r6CKVXlZnufjox_gVnRL21oyoWrr9vXtrj9sr_ML9qiYMt17buKQmv0r7-S3VxZ-dzb3UGT0iQrcu8fVFp3gomoL8U3_-WkbNXvuDa7M-XK5XuaVzmY-LyNR8pFcCo-G-dpWy3cbXQQapxGyLptHsRJEHFbXfQg23LMGfQ2x7hlrg3R3pgpQJoBvCZnK-dJtCUb99nH9Hg2HqfTo_PpDbRDYBlCumhn9P50PPFzPcg_ZkM47G243FWcvvWn_lPxbCxjbqNdEDvW72JN2kzvojstJnhkCXYPdbJiD-0eulKAe-jmJwvRffTLUg63lMNXWIM95XA5xw3lsKUcXqccDMei2BhsKYcbymFPuXfYEQ4bwmFPOOwIh9cI9wDNjo-mhydBW-QjUDSmVRDCekFkmSAhlWpIMgKKXHE9EJRkPNKSh2A0Iq6phplIKDmUzJQIkIMEDItkkj5E3aIssscIc6INSrGQkjAdUxnP5wr06kAJHQqV9NAbB0Tqnrh5aIu08cTgNA3TFrMeeum7frFpX7Z12ndopq1VWKamfEKYMJawHnrh_wa8zIc4UWRlbftEUQhKu4ceWRb4q4CCZrBmID30ytPi77fw5BrXeIpurV6nfdStLuvsGSjpSj5v6fwb1SPS7g |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Strain+induced+electrochemical+behaviors+of+ionic+liquid+electrolytes+in+an+electrochemical+double+layer+capacitor%3A+Insights+from+molecular+dynamics+simulations&rft.jtitle=The+Journal+of+chemical+physics&rft.au=Roy%2C+Tribeni&rft.au=Goel%2C+Saurav&rft.au=Costa%2C+Luciano+T&rft.au=Titirici%2C+Maria-Magdalena&rft.date=2023-12-28&rft.issn=1089-7690&rft.eissn=1089-7690&rft.volume=159&rft.issue=24&rft_id=info:doi/10.1063%2F5.0166976&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9606&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9606&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9606&client=summon |