Strain induced electrochemical behaviors of ionic liquid electrolytes in an electrochemical double layer capacitor: Insights from molecular dynamics simulations

Electrochemical Double Layer Capacitors (EDLCs) with ionic liquid electrolytes outperform conventional ones using aqueous and organic electrolytes in energy density and safety. However, understanding the electrochemical behaviors of ionic liquid electrolytes under compressive/tensile strain is essen...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of chemical physics Vol. 159; no. 24
Main Authors Roy, Tribeni, Goel, Saurav, Costa, Luciano T., Titirici, Maria-Magdalena, Offer, Gregory J., Marinescu, Monica, Wang, Huizhi
Format Journal Article
LanguageEnglish
Published United States American Institute of Physics 28.12.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Electrochemical Double Layer Capacitors (EDLCs) with ionic liquid electrolytes outperform conventional ones using aqueous and organic electrolytes in energy density and safety. However, understanding the electrochemical behaviors of ionic liquid electrolytes under compressive/tensile strain is essential for the design of flexible EDLCs as well as normal EDLCs, which are subject to external forces during assembly. Despite many experimental studies, the compression/stretching effects on the performance of ionic liquid EDLCs remain inconclusive and controversial. In addition, there is hardly any evidence of prior theoretical work done in this area, which makes the literature on this topic scarce. Herein, for the first time, we developed an atomistic model to study the processes underlying the electrochemical behaviors of ionic liquids in an EDLC under strain. Constant potential non-equilibrium molecular dynamics simulations are conducted for EMIM BF4 placed between two graphene walls as electrodes. Compared to zero strain, low compression of the EDLC resulted in compromised performance as the electrode charge density dropped by 29%, and the performance reduction deteriorated significantly with a further increase in compression. In contrast, stretching is found to enhance the performance by increasing the charge storage in the electrodes by 7%. The performance changes with compression and stretching are due to changes in the double-layer structure. In addition, an increase in the value of the applied potential during the application of strain leads to capacity retention with compression revealed by the newly performed simulations.
AbstractList Electrochemical Double Layer Capacitors (EDLCs) with ionic liquid electrolytes outperform conventional ones using aqueous and organic electrolytes in energy density and safety. However, understanding the electrochemical behaviors of ionic liquid electrolytes under compressive/tensile strain is essential for the design of flexible EDLCs as well as normal EDLCs, which are subject to external forces during assembly. Despite many experimental studies, the compression/stretching effects on the performance of ionic liquid EDLCs remain inconclusive and controversial. In addition, there is hardly any evidence of prior theoretical work done in this area, which makes the literature on this topic scarce. Herein, for the first time, we developed an atomistic model to study the processes underlying the electrochemical behaviors of ionic liquids in an EDLC under strain. Constant potential non-equilibrium molecular dynamics simulations are conducted for EMIM BF4 placed between two graphene walls as electrodes. Compared to zero strain, low compression of the EDLC resulted in compromised performance as the electrode charge density dropped by 29%, and the performance reduction deteriorated significantly with a further increase in compression. In contrast, stretching is found to enhance the performance by increasing the charge storage in the electrodes by 7%. The performance changes with compression and stretching are due to changes in the double-layer structure. In addition, an increase in the value of the applied potential during the application of strain leads to capacity retention with compression revealed by the newly performed simulations.
Electrochemical Double Layer Capacitors (EDLCs) with ionic liquid electrolytes outperform conventional ones using aqueous and organic electrolytes in energy density and safety. However, understanding the electrochemical behaviors of ionic liquid electrolytes under compressive/tensile strain is essential for the design of flexible EDLCs as well as normal EDLCs, which are subject to external forces during assembly. Despite many experimental studies, the compression/stretching effects on the performance of ionic liquid EDLCs remain inconclusive and controversial. In addition, there is hardly any evidence of prior theoretical work done in this area, which makes the literature on this topic scarce. Herein, for the first time, we developed an atomistic model to study the processes underlying the electrochemical behaviors of ionic liquids in an EDLC under strain. Constant potential non-equilibrium molecular dynamics simulations are conducted for EMIM BF4 placed between two graphene walls as electrodes. Compared to zero strain, low compression of the EDLC resulted in compromised performance as the electrode charge density dropped by 29%, and the performance reduction deteriorated significantly with a further increase in compression. In contrast, stretching is found to enhance the performance by increasing the charge storage in the electrodes by 7%. The performance changes with compression and stretching are due to changes in the double-layer structure. In addition, an increase in the value of the applied potential during the application of strain leads to capacity retention with compression revealed by the newly performed simulations.Electrochemical Double Layer Capacitors (EDLCs) with ionic liquid electrolytes outperform conventional ones using aqueous and organic electrolytes in energy density and safety. However, understanding the electrochemical behaviors of ionic liquid electrolytes under compressive/tensile strain is essential for the design of flexible EDLCs as well as normal EDLCs, which are subject to external forces during assembly. Despite many experimental studies, the compression/stretching effects on the performance of ionic liquid EDLCs remain inconclusive and controversial. In addition, there is hardly any evidence of prior theoretical work done in this area, which makes the literature on this topic scarce. Herein, for the first time, we developed an atomistic model to study the processes underlying the electrochemical behaviors of ionic liquids in an EDLC under strain. Constant potential non-equilibrium molecular dynamics simulations are conducted for EMIM BF4 placed between two graphene walls as electrodes. Compared to zero strain, low compression of the EDLC resulted in compromised performance as the electrode charge density dropped by 29%, and the performance reduction deteriorated significantly with a further increase in compression. In contrast, stretching is found to enhance the performance by increasing the charge storage in the electrodes by 7%. The performance changes with compression and stretching are due to changes in the double-layer structure. In addition, an increase in the value of the applied potential during the application of strain leads to capacity retention with compression revealed by the newly performed simulations.
Author Roy, Tribeni
Titirici, Maria-Magdalena
Goel, Saurav
Marinescu, Monica
Costa, Luciano T.
Offer, Gregory J.
Wang, Huizhi
Author_xml – sequence: 1
  givenname: Tribeni
  surname: Roy
  fullname: Roy, Tribeni
  organization: 6Department of Chemical Engineering, Imperial College London, London SW7 2AZ, United Kingdom
– sequence: 2
  givenname: Saurav
  surname: Goel
  fullname: Goel, Saurav
  organization: 6Department of Chemical Engineering, Imperial College London, London SW7 2AZ, United Kingdom
– sequence: 3
  givenname: Luciano T.
  surname: Costa
  fullname: Costa, Luciano T.
  organization: MolMod-CS, Institute of Chemistry, Universidade Federal Fluminense
– sequence: 4
  givenname: Maria-Magdalena
  surname: Titirici
  fullname: Titirici, Maria-Magdalena
  organization: Department of Chemical Engineering, Imperial College London
– sequence: 5
  givenname: Gregory J.
  surname: Offer
  fullname: Offer, Gregory J.
  organization: Department of Mechanical Engineering, Imperial College London
– sequence: 6
  givenname: Monica
  surname: Marinescu
  fullname: Marinescu, Monica
  organization: Department of Mechanical Engineering, Imperial College London
– sequence: 7
  givenname: Huizhi
  surname: Wang
  fullname: Wang, Huizhi
  organization: Department of Mechanical Engineering, Imperial College London
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38149932$$D View this record in MEDLINE/PubMed
BookMark eNp90U1rFDEYB_AgFbutHvwCEvCiwrR5n403Kb4UCh7U85CXZ9yUTLJNZoT9Nn5U0-62hyqeAuH3fxKe_wk6SjkBQi8pOaNE8XN5RqhSuldP0IqSte56pckRWhHCaKcVUcfopNZrQgjtmXiGjvmaCq05W6Hf3-ZiQsIh-cWBxxDBzSW7DUzBmYgtbMyvkEvFecQhp-BwDDdLeJBxN0NtcWzSX2GfFxsBR7ODgp3ZGhfmXN7jy1TDz81c8VjyhKfcYks0BftdMi1ZcQ1Tu5jbe_U5ejqaWOHF4TxFPz59_H7xpbv6-vny4sNV5_iaz52UvTQAhkluHWXAiFROeWI4A9V7q6Qbx1557gmlxllqhVCUWKKFF1ZYfore7OduS75ZoM7DFKqDGE2CvNSBaaL6XjLNG339iF7npaT2uzsltRBaNPXqoBY7gR-2JUym7Ib73Tfwdg9cybUWGB8IJcNtr4McDr02e_7ItlXeLei2vvjPxLt9ot7L_4z_A-yttIs
CODEN JCPSA6
CitedBy_id crossref_primary_10_1016_j_carbon_2024_119089
Cites_doi 10.1021/acs.jpcb.6b03433
10.1016/j.mtchem.2020.100356
10.1103/physrevlett.106.046102
10.1016/j.commatsci.2018.04.044
10.1186/s11671-017-2395-z
10.1016/j.electacta.2006.03.016
10.1016/j.jpowsour.2011.02.022
10.1016/j.cej.2021.131904
10.1021/jp0362133
10.1021/acsaelm.3c00476
10.1002/adma.201201587
10.1016/j.cej.2019.123794
10.1016/j.jpowsour.2015.01.153
10.1016/j.egypro.2019.02.033
10.1006/jcph.1995.1039
10.1016/j.est.2015.11.001
10.1016/j.actamat.2015.11.046
10.1039/c3nr01932b
10.1016/j.electacta.2017.08.034
10.1002/er.5473
10.1038/s41467-017-00550-3
10.1039/c8cp07200k
10.1016/j.msea.2014.12.075
10.3389/fchem.2019.00272
10.1016/j.jpowsour.2010.06.022
10.1039/c8cc03375g
10.1063/1.4899176
10.1088/0965-0393/18/2/025016
10.1002/jcc.21224
10.1016/j.nanoen.2021.105837
10.1149/2.0081613jes
10.1016/j.jpowsour.2012.04.046
10.1021/nn101595y
10.1016/j.ijhydene.2009.09.058
10.1002/adma.201900573
ContentType Journal Article
Copyright Author(s)
2023 Author(s). Published under an exclusive license by AIP Publishing.
Copyright_xml – notice: Author(s)
– notice: 2023 Author(s). Published under an exclusive license by AIP Publishing.
DBID AAYXX
CITATION
NPM
8FD
H8D
L7M
7X8
DOI 10.1063/5.0166976
DatabaseName CrossRef
PubMed
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitleList Technology Research Database
CrossRef
MEDLINE - Academic

PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Physics
EISSN 1089-7690
ExternalDocumentID 38149932
10_1063_5_0166976
jcp
Genre Journal Article
GrantInformation_xml – fundername: Imperial College London
  grantid: Computing facility
  funderid: https://doi.org/10.13039/501100000761
– fundername: University of Bristol
  grantid: Isambard Bristol HPC
  funderid: https://doi.org/10.13039/501100000883
– fundername: British Council
  grantid: Hubert Curien Partnership award 2022
  funderid: https://doi.org/10.13039/501100000308
– fundername: Shiv Nadar Foundation
  grantid: Magus2
  funderid: https://doi.org/10.13039/100022928
– fundername: Innovate UK
  grantid: TS/S005811/1
  funderid: https://doi.org/10.13039/501100006041
– fundername: London South Bank University
  grantid: Kittrick
  funderid: https://doi.org/10.13039/501100001261
– fundername: Universidade Federal Fluminense
  grantid: PRINT-UFF/CAPES project
  funderid: https://doi.org/10.13039/501100010435
– fundername: UK Research and Innovation
  grantid: EP/S036180/1; EP/T024607/1; EP/S000933/1
  funderid: https://doi.org/10.13039/100014013
– fundername: Royal Society
  grantid: IEC\NSFC\223536
  funderid: https://doi.org/10.13039/501100000288
– fundername: Science and Engineering Research Board
  grantid: SRG/2021/000741
  funderid: https://doi.org/10.13039/501100001843
GroupedDBID ---
-DZ
-ET
-~X
123
2-P
29K
4.4
5VS
85S
AAAAW
AABDS
AAEUA
AAPUP
AAYIH
ABPPZ
ABZEH
ACBRY
ACLYJ
ACNCT
ACZLF
ADCTM
AEJMO
AENEX
AFATG
AFHCQ
AGKCL
AGLKD
AGMXG
AGTJO
AHSDT
AJJCW
AJQPL
ALEPV
ALMA_UNASSIGNED_HOLDINGS
AQWKA
ATXIE
AWQPM
BPZLN
CS3
D-I
DU5
EBS
ESX
F5P
FDOHQ
FFFMQ
HAM
M6X
M71
M73
N9A
NPSNA
O-B
P2P
RIP
RNS
RQS
TN5
TWZ
UPT
WH7
YQT
YZZ
~02
1UP
53G
AAGWI
AAYXX
ABJGX
ADMLS
BDMKI
CITATION
NPM
8FD
H8D
L7M
7X8
ID FETCH-LOGICAL-c383t-5575aeea253bc12e2056c6d0a32e67db65cff76d3d011acb1b44610b094d4b4b3
ISSN 0021-9606
1089-7690
IngestDate Fri Jul 11 11:20:15 EDT 2025
Mon Jun 30 03:41:36 EDT 2025
Thu Apr 03 07:03:34 EDT 2025
Tue Jul 01 01:12:38 EDT 2025
Thu Apr 24 23:05:10 EDT 2025
Fri Jun 21 00:17:12 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 24
Language English
License Published under an exclusive license by AIP Publishing.
2023 Author(s). Published under an exclusive license by AIP Publishing.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c383t-5575aeea253bc12e2056c6d0a32e67db65cff76d3d011acb1b44610b094d4b4b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-8177-5363
0000-0002-9967-4034
0000-0003-1641-3371
0000-0003-2287-0544
0000-0002-8694-332X
0000-0002-6093-8346
0000-0003-1324-8366
OpenAccessLink https://pubs.aip.org/aip/jcp/article-pdf/doi/10.1063/5.0166976/18277625/244308_1_5.0166976.pdf
PMID 38149932
PQID 2906594494
PQPubID 2050685
PageCount 10
ParticipantIDs proquest_miscellaneous_2906775293
proquest_journals_2906594494
crossref_primary_10_1063_5_0166976
scitation_primary_10_1063_5_0166976
pubmed_primary_38149932
crossref_citationtrail_10_1063_5_0166976
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20231228
2023-12-28
2023-Dec-28
PublicationDateYYYYMMDD 2023-12-28
PublicationDate_xml – month: 12
  year: 2023
  text: 20231228
  day: 28
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Melville
PublicationTitle The Journal of chemical physics
PublicationTitleAlternate J Chem Phys
PublicationYear 2023
Publisher American Institute of Physics
Publisher_xml – name: American Institute of Physics
References Xin (c22) 2023; 5
Sandy Thomas (c2) 2009; 34
Saw (c4) 2019; 158
Bai (c20) 2017; 249
Plimpton (c27) 1995; 117
Gourdin, Jiang, Smith, Qu (c14) 2012; 215
Stukowski, Albe (c28) 2010; 18
Bazant, Storey, Kornyshev (c24) 2011; 106
Wang, Yang, Olmsted, Asta, Laird (c31) 2014; 141
Lv (c15) 2017; 12
Noh, Jung (c32) 2019; 21
Liang (c19) 2022; 427
Yu, Chen (c8) 2019; 7
Galiński, Lewandowski, Stepniak (c9) 2006; 51
Romann, Oll, Pikma, Kirsimäe, Lust (c34) 2015; 280
Goel, Kovalchenko, Stukowski, Cross (c35) 2016; 105
Chen, Qin, Cong, Yu (c18) 2019; 31
Park (c10) 2021; 83
Sarwar (c3) 2016; 5
Huang, Zeng, Fan, Liu, Zhang (c7) 2012; 24
Kroupa, Offer, Kosek (c23) 2016; 163
Goel, Beake, Chan, Haque Faisal, Dunne (c33) 2015; 627
Brownson, Kampouris, Banks (c6) 2011; 196
Ko (c21) 2017; 8
Li (c16) 2013; 5
Hu (c12) 2018; 54
Moon, Ki, Oh (c17) 2020; 392
Li, Rong, Wei (c11) 2010; 4
Yu, Lin, Sun, He (c5) 2020; 44
Martinez, Andrade, Birgin, Martínez (c26) 2009; 30
Canongia Lopes, Deschamps, Pádua (c29) 2004; 108
Gourdin, Meehan, Jiang, Smith, Qu (c13) 2011; 196
Goel (c36) 2018; 152
Kazemiabnavi, Zhang, Thornton, Banerjee (c25) 2016; 120
Goel (c30) 2020; 18
(2023122713581691600_c16) 2013; 5
(2023122713581691600_c13) 2011; 196
(2023122713581691600_c2) 2009; 34
(2023122713581691600_c5) 2020; 44
(2023122713581691600_c3) 2016; 5
(2023122713581691600_c19) 2022; 427
(2023122713581691600_c28) 2010; 18
(2023122713581691600_c31) 2014; 141
(2023122713581691600_c11) 2010; 4
(2023122713581691600_c34) 2015; 280
(2023122713581691600_c23) 2016; 163
(2023122713581691600_c12) 2018; 54
(2023122713581691600_c27) 1995; 117
(2023122713581691600_c18) 2019; 31
(2023122713581691600_c22) 2023; 5
(2023122713581691600_c17) 2020; 392
(2023122713581691600_c10) 2021; 83
(2023122713581691600_c30) 2020; 18
(2023122713581691600_c7) 2012; 24
(2023122713581691600_c4) 2019; 158
(2023122713581691600_c20) 2017; 249
(2023122713581691600_c14) 2012; 215
(2023122713581691600_c32) 2019; 21
(2023122713581691600_c24) 2011; 106
(2023122713581691600_c9) 2006; 51
(2023122713581691600_c21) 2017; 8
(2023122713581691600_c15) 2017; 12
(2023122713581691600_c6) 2011; 196
(2023122713581691600_c29) 2004; 108
(2023122713581691600_c33) 2015; 627
(2023122713581691600_c36) 2018; 152
(2023122713581691600_c25) 2016; 120
(2023122713581691600_c26) 2009; 30
2023122713581691600_c1
(2023122713581691600_c8) 2019; 7
(2023122713581691600_c35) 2016; 105
References_xml – volume: 83
  start-page: 105837
  year: 2021
  ident: c10
  publication-title: Nano Energy
– volume: 44
  start-page: 7495
  year: 2020
  ident: c5
  publication-title: Int. J. Energy Res.
– volume: 117
  start-page: 1
  year: 1995
  ident: c27
  publication-title: J. Comput. Phys.
– volume: 158
  start-page: 2750
  year: 2019
  ident: c4
  publication-title: Energy Procedia
– volume: 51
  start-page: 5567
  year: 2006
  ident: c9
  publication-title: Electrochim. Acta
– volume: 120
  start-page: 5691
  year: 2016
  ident: c25
  publication-title: J. Phys. Chem. B
– volume: 5
  start-page: 8472
  year: 2013
  ident: c16
  publication-title: Nanoscale
– volume: 5
  start-page: 3756
  year: 2023
  ident: c22
  publication-title: ACS Appl. Electron. Mater.
– volume: 5
  start-page: 10
  year: 2016
  ident: c3
  publication-title: J. Power Sources
– volume: 163
  start-page: A2475
  year: 2016
  ident: c23
  publication-title: J. Electrochem. Soc.
– volume: 141
  start-page: 184102
  year: 2014
  ident: c31
  publication-title: J. Chem. Phys.
– volume: 392
  start-page: 123794
  year: 2020
  ident: c17
  publication-title: Chem. Eng. J.
– volume: 215
  start-page: 179
  year: 2012
  ident: c14
  publication-title: J. Power Sources
– volume: 31
  start-page: 1900573
  year: 2019
  ident: c18
  publication-title: Adv. Mater.
– volume: 196
  start-page: 523
  year: 2011
  ident: c13
  publication-title: J. Power Sources
– volume: 34
  start-page: 9279
  year: 2009
  ident: c2
  publication-title: Int. J. Hydrogen Energy
– volume: 427
  start-page: 131904
  year: 2022
  ident: c19
  publication-title: Chem. Eng. J.
– volume: 30
  start-page: 2157
  year: 2009
  ident: c26
  publication-title: J. Comput. Chem.
– volume: 21
  start-page: 6790
  year: 2019
  ident: c32
  publication-title: Phys. Chem. Chem. Phys.
– volume: 24
  start-page: 5979
  year: 2012
  ident: c7
  publication-title: Adv. Mater.
– volume: 4
  start-page: 6039
  year: 2010
  ident: c11
  publication-title: ACS Nano
– volume: 152
  start-page: 196
  year: 2018
  ident: c36
  publication-title: Comput. Mater. Sci.
– volume: 7
  start-page: 272
  year: 2019
  ident: c8
  publication-title: Front. Chem.
– volume: 12
  start-page: 630
  year: 2017
  ident: c15
  publication-title: Nanoscale Res. Lett.
– volume: 108
  start-page: 2038
  year: 2004
  ident: c29
  publication-title: J. Phys. Chem. B
– volume: 54
  start-page: 6200
  year: 2018
  ident: c12
  publication-title: Chem. Commun.
– volume: 18
  start-page: 100356
  year: 2020
  ident: c30
  publication-title: Mater. Today Chem.
– volume: 105
  start-page: 464
  year: 2016
  ident: c35
  publication-title: Acta Mater.
– volume: 249
  start-page: 360
  year: 2017
  ident: c20
  publication-title: Electrochim. Acta
– volume: 106
  start-page: 046102
  year: 2011
  ident: c24
  publication-title: Phys. Rev. Lett.
– volume: 196
  start-page: 4873
  year: 2011
  ident: c6
  publication-title: J. Power Sources
– volume: 280
  start-page: 606
  year: 2015
  ident: c34
  publication-title: J. Power Sources
– volume: 627
  start-page: 249
  year: 2015
  ident: c33
  publication-title: Mater. Sci. Eng.: A
– volume: 8
  start-page: 536
  year: 2017
  ident: c21
  publication-title: Nat. Commun.
– volume: 18
  start-page: 025016
  year: 2010
  ident: c28
  publication-title: Modell. Simul. Mater. Sci. Eng.
– volume: 120
  start-page: 5691
  year: 2016
  ident: 2023122713581691600_c25
  publication-title: J. Phys. Chem. B
  doi: 10.1021/acs.jpcb.6b03433
– volume: 18
  start-page: 100356
  year: 2020
  ident: 2023122713581691600_c30
  publication-title: Mater. Today Chem.
  doi: 10.1016/j.mtchem.2020.100356
– volume: 106
  start-page: 046102
  year: 2011
  ident: 2023122713581691600_c24
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/physrevlett.106.046102
– volume: 152
  start-page: 196
  year: 2018
  ident: 2023122713581691600_c36
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/j.commatsci.2018.04.044
– volume: 12
  start-page: 630
  year: 2017
  ident: 2023122713581691600_c15
  publication-title: Nanoscale Res. Lett.
  doi: 10.1186/s11671-017-2395-z
– volume: 51
  start-page: 5567
  year: 2006
  ident: 2023122713581691600_c9
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2006.03.016
– volume: 196
  start-page: 4873
  year: 2011
  ident: 2023122713581691600_c6
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2011.02.022
– volume: 427
  start-page: 131904
  year: 2022
  ident: 2023122713581691600_c19
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2021.131904
– volume: 108
  start-page: 2038
  year: 2004
  ident: 2023122713581691600_c29
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp0362133
– volume: 5
  start-page: 3756
  year: 2023
  ident: 2023122713581691600_c22
  publication-title: ACS Appl. Electron. Mater.
  doi: 10.1021/acsaelm.3c00476
– volume: 24
  start-page: 5979
  year: 2012
  ident: 2023122713581691600_c7
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201201587
– volume: 392
  start-page: 123794
  year: 2020
  ident: 2023122713581691600_c17
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.123794
– volume: 280
  start-page: 606
  year: 2015
  ident: 2023122713581691600_c34
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2015.01.153
– volume: 158
  start-page: 2750
  year: 2019
  ident: 2023122713581691600_c4
  publication-title: Energy Procedia
  doi: 10.1016/j.egypro.2019.02.033
– volume: 117
  start-page: 1
  year: 1995
  ident: 2023122713581691600_c27
  publication-title: J. Comput. Phys.
  doi: 10.1006/jcph.1995.1039
– volume: 5
  start-page: 10
  year: 2016
  ident: 2023122713581691600_c3
  publication-title: J. Power Sources
  doi: 10.1016/j.est.2015.11.001
– volume: 105
  start-page: 464
  year: 2016
  ident: 2023122713581691600_c35
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2015.11.046
– volume: 5
  start-page: 8472
  year: 2013
  ident: 2023122713581691600_c16
  publication-title: Nanoscale
  doi: 10.1039/c3nr01932b
– volume: 249
  start-page: 360
  year: 2017
  ident: 2023122713581691600_c20
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2017.08.034
– volume: 44
  start-page: 7495
  year: 2020
  ident: 2023122713581691600_c5
  publication-title: Int. J. Energy Res.
  doi: 10.1002/er.5473
– volume: 8
  start-page: 536
  year: 2017
  ident: 2023122713581691600_c21
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-00550-3
– volume: 21
  start-page: 6790
  year: 2019
  ident: 2023122713581691600_c32
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/c8cp07200k
– ident: 2023122713581691600_c1
– volume: 627
  start-page: 249
  year: 2015
  ident: 2023122713581691600_c33
  publication-title: Mater. Sci. Eng.: A
  doi: 10.1016/j.msea.2014.12.075
– volume: 7
  start-page: 272
  year: 2019
  ident: 2023122713581691600_c8
  publication-title: Front. Chem.
  doi: 10.3389/fchem.2019.00272
– volume: 196
  start-page: 523
  year: 2011
  ident: 2023122713581691600_c13
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2010.06.022
– volume: 54
  start-page: 6200
  year: 2018
  ident: 2023122713581691600_c12
  publication-title: Chem. Commun.
  doi: 10.1039/c8cc03375g
– volume: 141
  start-page: 184102
  year: 2014
  ident: 2023122713581691600_c31
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4899176
– volume: 18
  start-page: 025016
  year: 2010
  ident: 2023122713581691600_c28
  publication-title: Modell. Simul. Mater. Sci. Eng.
  doi: 10.1088/0965-0393/18/2/025016
– volume: 30
  start-page: 2157
  year: 2009
  ident: 2023122713581691600_c26
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.21224
– volume: 83
  start-page: 105837
  year: 2021
  ident: 2023122713581691600_c10
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2021.105837
– volume: 163
  start-page: A2475
  year: 2016
  ident: 2023122713581691600_c23
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.0081613jes
– volume: 215
  start-page: 179
  year: 2012
  ident: 2023122713581691600_c14
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2012.04.046
– volume: 4
  start-page: 6039
  year: 2010
  ident: 2023122713581691600_c11
  publication-title: ACS Nano
  doi: 10.1021/nn101595y
– volume: 34
  start-page: 9279
  year: 2009
  ident: 2023122713581691600_c2
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2009.09.058
– volume: 31
  start-page: 1900573
  year: 2019
  ident: 2023122713581691600_c18
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201900573
SSID ssj0001724
Score 2.4500349
Snippet Electrochemical Double Layer Capacitors (EDLCs) with ionic liquid electrolytes outperform conventional ones using aqueous and organic electrolytes in energy...
SourceID proquest
pubmed
crossref
scitation
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
SubjectTerms Aqueous electrolytes
Capacitors
Charge density
Compressive properties
Electrodes
Electrolytes
Graphene
Ionic liquids
Molecular dynamics
Nonaqueous electrolytes
Simulation
Stretching
Tensile strain
Title Strain induced electrochemical behaviors of ionic liquid electrolytes in an electrochemical double layer capacitor: Insights from molecular dynamics simulations
URI http://dx.doi.org/10.1063/5.0166976
https://www.ncbi.nlm.nih.gov/pubmed/38149932
https://www.proquest.com/docview/2906594494
https://www.proquest.com/docview/2906775293
Volume 159
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwGLVKJzR4QDBuhYHM5QGpymhtx0l4q8amCXUDqa20t8iXFEXqElgTJPgxiJ_K5zh2y1qkwYtVpXYS5Zx8Pna-C0KvY0G0iDgLGAuh0SwKEmEyI8ZqPqdDbSyk8bY44ycz9uE8PO90fq55LdWVPFA_tsaV_A-qcAxwNVGy_4CsPykcgN-AL7SAMLTXwnjSFHjow7K6Np_x25I2yuUAcCH4Nq1sU-pmkX-tc99z8b1q_LH68JJfHazL2gRVLQRo8r6CKVXlZnufjox_gVnRL21oyoWrr9vXtrj9sr_ML9qiYMt17buKQmv0r7-S3VxZ-dzb3UGT0iQrcu8fVFp3gomoL8U3_-WkbNXvuDa7M-XK5XuaVzmY-LyNR8pFcCo-G-dpWy3cbXQQapxGyLptHsRJEHFbXfQg23LMGfQ2x7hlrg3R3pgpQJoBvCZnK-dJtCUb99nH9Hg2HqfTo_PpDbRDYBlCumhn9P50PPFzPcg_ZkM47G243FWcvvWn_lPxbCxjbqNdEDvW72JN2kzvojstJnhkCXYPdbJiD-0eulKAe-jmJwvRffTLUg63lMNXWIM95XA5xw3lsKUcXqccDMei2BhsKYcbymFPuXfYEQ4bwmFPOOwIh9cI9wDNjo-mhydBW-QjUDSmVRDCekFkmSAhlWpIMgKKXHE9EJRkPNKSh2A0Iq6phplIKDmUzJQIkIMEDItkkj5E3aIssscIc6INSrGQkjAdUxnP5wr06kAJHQqV9NAbB0Tqnrh5aIu08cTgNA3TFrMeeum7frFpX7Z12ndopq1VWKamfEKYMJawHnrh_wa8zIc4UWRlbftEUQhKu4ceWRb4q4CCZrBmID30ytPi77fw5BrXeIpurV6nfdStLuvsGSjpSj5v6fwb1SPS7g
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Strain+induced+electrochemical+behaviors+of+ionic+liquid+electrolytes+in+an+electrochemical+double+layer+capacitor%3A+Insights+from+molecular+dynamics+simulations&rft.jtitle=The+Journal+of+chemical+physics&rft.au=Roy%2C+Tribeni&rft.au=Goel%2C+Saurav&rft.au=Costa%2C+Luciano+T&rft.au=Titirici%2C+Maria-Magdalena&rft.date=2023-12-28&rft.issn=1089-7690&rft.eissn=1089-7690&rft.volume=159&rft.issue=24&rft_id=info:doi/10.1063%2F5.0166976&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9606&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9606&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9606&client=summon