Different proportions of C/KCu7S4 hybrid structure for high-performance supercapacitors
KCu7S4 has the channel structure and minor resistance. Its double larger channels ensure that the ions can well exchange with other's, at the same time, can shorten the ionic diffusion path and improve the ionic and electronic transport. So KCu7S4 shows good electrochemical property. The paper...
Saved in:
Published in | Journal of power sources Vol. 263; pp. 175 - 180 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier B.V
01.10.2014
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | KCu7S4 has the channel structure and minor resistance. Its double larger channels ensure that the ions can well exchange with other's, at the same time, can shorten the ionic diffusion path and improve the ionic and electronic transport. So KCu7S4 shows good electrochemical property. The paper reports a novel and high performance supercapacitor based on hybrid carbon particles and KCu7S4 (C/KCu7S4) electrode. For the hybrid structure with different proportions of C and KCu7S4, the C/KCu7S4 (1:10) hybrid supercapacitor shows preferable electrochemical performance and large specific capacitance (469 mF cm−2) at high charge–discharge rate (2 mA), still retaining ∼95% of the capacitance over 5000 cycles by charge–discharge process at a fixed current of 10 mA. Three supercapacitor units in series can light 50 light-emitting diodes (LEDs) for 2.5 min, 10 LEDs for 4 min, one LED for 5.5 min. The much-increased capacity, rate capability, and cycling stability may be attributed to the superionic conductive KCu7S4 nanowires and C/KCu7S4 hybrid structure, which improve ionic and electronic transport, enhance the kinetics of redox reactions through the electrode system.
Three C/KCu7S4 hybrid ECs units in series to light a light-emitting diode (LED) for 5.5 min, 10 light-emitting diodes (LEDs) for 4 min, 50 light-emitting for 2.5 min. The hybrid ECs can deliver the largest specific capacitance of 469 m F cm−2 (∼300 F g−1) at the current of 2 mA, the highest energy density of 8.14 mWh cm−3 and the maximum power density of 664.4 mW cm−3 and cycling stability (95% capacity retention after 5000 cycles), possibly serving as a promising potential for the high-performance supercapacitor. [Display omitted]
•KCu7S4 has the channels structure, minor resistance and good electrochemical property.•The changed KCu7S4 electrode structure improve its electrochemical performance.•Constructing a hybrid C/KCu7S4 for ECs. The hybrid ECs demonstrate outstanding electrochemical performance. |
---|---|
AbstractList | KCu7S4 has the channel structure and minor resistance. Its double larger channels ensure that the ions can well exchange with other's, at the same time, can shorten the ionic diffusion path and improve the ionic and electronic transport. So KCu7S4 shows good electrochemical property. The paper reports a novel and high performance supercapacitor based on hybrid carbon particles and KCu7S4 (C/KCu7S4) electrode. For the hybrid structure with different proportions of C and KCu7S4, the C/KCu7S4 (1:10) hybrid supercapacitor shows preferable electrochemical performance and large specific capacitance (469 mF cm−2) at high charge–discharge rate (2 mA), still retaining ∼95% of the capacitance over 5000 cycles by charge–discharge process at a fixed current of 10 mA. Three supercapacitor units in series can light 50 light-emitting diodes (LEDs) for 2.5 min, 10 LEDs for 4 min, one LED for 5.5 min. The much-increased capacity, rate capability, and cycling stability may be attributed to the superionic conductive KCu7S4 nanowires and C/KCu7S4 hybrid structure, which improve ionic and electronic transport, enhance the kinetics of redox reactions through the electrode system.
Three C/KCu7S4 hybrid ECs units in series to light a light-emitting diode (LED) for 5.5 min, 10 light-emitting diodes (LEDs) for 4 min, 50 light-emitting for 2.5 min. The hybrid ECs can deliver the largest specific capacitance of 469 m F cm−2 (∼300 F g−1) at the current of 2 mA, the highest energy density of 8.14 mWh cm−3 and the maximum power density of 664.4 mW cm−3 and cycling stability (95% capacity retention after 5000 cycles), possibly serving as a promising potential for the high-performance supercapacitor. [Display omitted]
•KCu7S4 has the channels structure, minor resistance and good electrochemical property.•The changed KCu7S4 electrode structure improve its electrochemical performance.•Constructing a hybrid C/KCu7S4 for ECs. The hybrid ECs demonstrate outstanding electrochemical performance. |
Author | Yue, Xule Hu, Chenguo Wang, Guo Xi, Yi Cheng, Lu Dai, Shuge |
Author_xml | – sequence: 1 givenname: Shuge surname: Dai fullname: Dai, Shuge – sequence: 2 givenname: Yi surname: Xi fullname: Xi, Yi email: yxi6@cqu.edu.cn, xiyi.xi@163.com – sequence: 3 givenname: Chenguo surname: Hu fullname: Hu, Chenguo – sequence: 4 givenname: Xule surname: Yue fullname: Yue, Xule – sequence: 5 givenname: Lu surname: Cheng fullname: Cheng, Lu – sequence: 6 givenname: Guo surname: Wang fullname: Wang, Guo |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28509613$$DView record in Pascal Francis |
BookMark | eNqFkE1PwzAMhiM0JLbBX0C9cGyXNG2TSBxA41NM4gCIY5SlCcu0NZXTgvbvSTV24bKTbdmv_fqZoFHjG4PQJcEZwaSarbN163-C7yHLMSkyTDNC-QkaE85omrOyHKExpoynjJX0DE1CWGOMCWF4jD7vnLUGTNMlLfjWQ-d8ExJvk_nsZd6ztyJZ7Zbg6iR00OuuB5NYD8nKfa3S1kDMt6rRJgl9rLRqlXadh3COTq3aBHPxF6fo4-H-ff6ULl4fn-e3i1RTTru0zDkrFOZCUyO4WjJRCqVspXNTLS3WQ59rVonaVgUva0stroniYqkFLrigU3S139uqoNXGQjTjgmzBbRXsZM5LLCpC49z1fk6DDwGMldGnGp7tQLmNJFgOMOVaHmDKAabEVEaYUV79kx8uHBXe7IUmQvh2BmTQzkRgtQOjO1l7d2zFLyF7l1E |
CODEN | JPSODZ |
CitedBy_id | crossref_primary_10_1016_j_vacuum_2024_113080 crossref_primary_10_1039_C7CP07830G crossref_primary_10_20964_2021_02_57 crossref_primary_10_1016_j_nanoen_2015_11_025 crossref_primary_10_1021_acsami_2c08546 crossref_primary_10_1016_j_jallcom_2022_166996 crossref_primary_10_2139_ssrn_4147015 crossref_primary_10_1016_j_nanoen_2014_05_022 crossref_primary_10_1016_j_compositesb_2022_110409 crossref_primary_10_1016_j_jpowsour_2014_10_075 crossref_primary_10_1016_j_electacta_2016_10_060 crossref_primary_10_1016_j_matdes_2020_108992 crossref_primary_10_2139_ssrn_4139199 crossref_primary_10_1016_j_electacta_2017_08_180 crossref_primary_10_1021_acs_jpcc_4c04753 crossref_primary_10_3390_molecules28176432 crossref_primary_10_1016_j_nanoen_2016_08_021 crossref_primary_10_1016_j_jallcom_2020_153866 crossref_primary_10_3389_fchem_2018_00555 crossref_primary_10_1007_s10853_017_1415_9 crossref_primary_10_1039_C7TA04382A crossref_primary_10_1002_ente_201600212 crossref_primary_10_1016_j_jallcom_2020_154056 crossref_primary_10_1142_S179360472151005X |
Cites_doi | 10.1021/cm9705395 10.1021/nl2013828 10.1021/cm980233d 10.1039/c3ta12839c 10.1021/nn306044d 10.1021/ja068365s 10.1002/adma.201104113 10.1021/nn1010182 10.1038/nmat2023 10.1088/0034-4885/67/7/R05 10.1021/cm203697w 10.1021/nn100592d 10.1039/c1ee01399h 10.1002/adma.201203410 10.1038/nmat3066 10.1039/C1CS15060J 10.1021/nn400731g |
ContentType | Journal Article |
Copyright | 2014 Elsevier B.V. 2015 INIST-CNRS |
Copyright_xml | – notice: 2014 Elsevier B.V. – notice: 2015 INIST-CNRS |
DBID | AAYXX CITATION IQODW |
DOI | 10.1016/j.jpowsour.2014.03.138 |
DatabaseName | CrossRef Pascal-Francis |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Applied Sciences |
EISSN | 1873-2755 |
EndPage | 180 |
ExternalDocumentID | 28509613 10_1016_j_jpowsour_2014_03_138 S0378775314004716 |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AARLI AAXUO ABFNM ABMAC ABXDB ABXRA ABYKQ ACDAQ ACGFS ACRLP ADBBV ADECG ADEZE AEBSH AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHIDL AIEXJ AIKHN AITUG AJBFU AJOXV AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W JARJE KOM LX7 LY6 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SSK SSM SSR SSZ T5K XPP ZMT ~G- 29L AAQXK AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BBWZM BNPGV CITATION EJD FEDTE FGOYB G-2 HLY HVGLF HZ~ NDZJH R2- SAC SCB SCE SEW SSH T9H VH1 VOH WUQ IQODW |
ID | FETCH-LOGICAL-c383t-52874a089c3e98ab7959aaf6c2e6bf0c52878c769df6485df3f0d1a89bc904893 |
IEDL.DBID | .~1 |
ISSN | 0378-7753 |
IngestDate | Wed Apr 02 07:18:34 EDT 2025 Tue Jul 01 04:23:04 EDT 2025 Thu Apr 24 23:02:51 EDT 2025 Fri Feb 23 02:31:20 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Different proportions Supercapacitors C/KCu7S4 Hybrid structure High performance S C/KCU Supercapacitor Electrolytic capacitor Structure |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c383t-52874a089c3e98ab7959aaf6c2e6bf0c52878c769df6485df3f0d1a89bc904893 |
PageCount | 6 |
ParticipantIDs | pascalfrancis_primary_28509613 crossref_citationtrail_10_1016_j_jpowsour_2014_03_138 crossref_primary_10_1016_j_jpowsour_2014_03_138 elsevier_sciencedirect_doi_10_1016_j_jpowsour_2014_03_138 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-10-01 |
PublicationDateYYYYMMDD | 2014-10-01 |
PublicationDate_xml | – month: 10 year: 2014 text: 2014-10-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam |
PublicationTitle | Journal of power sources |
PublicationYear | 2014 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Wang, Xu, Kohandehghan, Li, Cui, Tan, Stephenson, Mitlin (bib10) 2013; 7 Schoen, Xie, Cui (bib3) 2007; 129 Kamaya, Homma, Yamakawa, Hirayama, Kanno, Yonemura, Kamiyama, Kato, Hama, Kawamoto, Mitsui (bib7) 2011; 10 Dong, Chen, Gu, Zhou, Li, Liu, Han, Xu, Yao, Wang (bib13) 2011; 4 Lu, Zhai, Zhang, Shen, Yuan, Hu, Gong, Chen, Gao, Zhou, Tong, Wang (bib12) 2012; 24 He, Mackay, Hwu, Kuo, Skove, Yokota, Ohtani (bib5) 1998; 10 Yan, Khoo, Sumboja, Lee (bib14) 2010; 4 Wang, Zhang, Zhang (bib1) 2012; 41 Hull (bib2) 2004; 67 Hwu, He, Mackay, Kuo, Skove, Mahapatro, Bucher, Halladay, Hayes (bib6) 1998; 10 Waser, Aono (bib4) 2007; 6 Liu, Duay, Lee (bib16) 2010; 4 Lee, Hall, Kim, Mallouk (bib17) 2012; 24 Dai, Xi, Hu, Liu, Zhang, Yue, Chen (bib8) 2013; 1 Lu, Yu, Wang, Zhai, Tong, Ling, Li (bib15) 2013; 25 Yang, Xiao, Li, Dong, Qiang, Tan, Mai, Lin, Wu, Li, Jin, Liu, Zhou, Wong, Wang (bib11) 2013; 7 Yu, Hu, Vosgueritchian, Wang, Xie, McDonough, Cui, Cui, Bao (bib9) 2011; 11 Lee (10.1016/j.jpowsour.2014.03.138_bib17) 2012; 24 Waser (10.1016/j.jpowsour.2014.03.138_bib4) 2007; 6 Hwu (10.1016/j.jpowsour.2014.03.138_bib6) 1998; 10 Kamaya (10.1016/j.jpowsour.2014.03.138_bib7) 2011; 10 Lu (10.1016/j.jpowsour.2014.03.138_bib15) 2013; 25 Dai (10.1016/j.jpowsour.2014.03.138_bib8) 2013; 1 Yan (10.1016/j.jpowsour.2014.03.138_bib14) 2010; 4 Hull (10.1016/j.jpowsour.2014.03.138_bib2) 2004; 67 Liu (10.1016/j.jpowsour.2014.03.138_bib16) 2010; 4 Wang (10.1016/j.jpowsour.2014.03.138_bib1) 2012; 41 Yu (10.1016/j.jpowsour.2014.03.138_bib9) 2011; 11 Yang (10.1016/j.jpowsour.2014.03.138_bib11) 2013; 7 Wang (10.1016/j.jpowsour.2014.03.138_bib10) 2013; 7 Lu (10.1016/j.jpowsour.2014.03.138_bib12) 2012; 24 He (10.1016/j.jpowsour.2014.03.138_bib5) 1998; 10 Dong (10.1016/j.jpowsour.2014.03.138_bib13) 2011; 4 Schoen (10.1016/j.jpowsour.2014.03.138_bib3) 2007; 129 |
References_xml | – volume: 24 start-page: 1158 year: 2012 end-page: 1164 ident: bib17 publication-title: Chem. Mater. – volume: 4 start-page: 3502 year: 2011 end-page: 3508 ident: bib13 publication-title: Energy Environ. Sci. – volume: 10 start-page: 6 year: 1998 end-page: 9 ident: bib6 publication-title: Chem. Mater. – volume: 7 start-page: 2617 year: 2013 end-page: 2626 ident: bib11 publication-title: ACS Nano – volume: 4 start-page: 4247 year: 2010 end-page: 4255 ident: bib14 publication-title: ACS Nano – volume: 24 start-page: 938 year: 2012 end-page: 944 ident: bib12 publication-title: Adv. Mater. – volume: 7 start-page: 5131 year: 2013 end-page: 5141 ident: bib10 publication-title: ACS Nano – volume: 1 start-page: 15530 year: 2013 end-page: 15534 ident: bib8 publication-title: J. Mater. Chem. A. – volume: 67 start-page: 1233 year: 2004 end-page: 1314 ident: bib2 publication-title: Rep. Progr. Phys. – volume: 129 start-page: 4116 year: 2007 end-page: 4117 ident: bib3 publication-title: J. Am. Chem. Soc. – volume: 10 start-page: 3172 year: 1998 end-page: 3183 ident: bib5 publication-title: Chem. Mater. – volume: 10 start-page: 682 year: 2011 end-page: 686 ident: bib7 publication-title: Nat. Mater. – volume: 25 start-page: 267 year: 2013 end-page: 272 ident: bib15 publication-title: Adv. Mater. – volume: 41 start-page: 797 year: 2012 end-page: 828 ident: bib1 publication-title: Chem. Soc. Rev. – volume: 6 start-page: 833 year: 2007 end-page: 840 ident: bib4 publication-title: Nat. Mater. – volume: 11 start-page: 2905 year: 2011 end-page: 2911 ident: bib9 publication-title: Nano Lett. – volume: 4 start-page: 4299 year: 2010 end-page: 4307 ident: bib16 publication-title: ACS Nano – volume: 10 start-page: 6 year: 1998 ident: 10.1016/j.jpowsour.2014.03.138_bib6 publication-title: Chem. Mater. doi: 10.1021/cm9705395 – volume: 11 start-page: 2905 year: 2011 ident: 10.1016/j.jpowsour.2014.03.138_bib9 publication-title: Nano Lett. doi: 10.1021/nl2013828 – volume: 10 start-page: 3172 year: 1998 ident: 10.1016/j.jpowsour.2014.03.138_bib5 publication-title: Chem. Mater. doi: 10.1021/cm980233d – volume: 1 start-page: 15530 year: 2013 ident: 10.1016/j.jpowsour.2014.03.138_bib8 publication-title: J. Mater. Chem. A. doi: 10.1039/c3ta12839c – volume: 7 start-page: 2617 year: 2013 ident: 10.1016/j.jpowsour.2014.03.138_bib11 publication-title: ACS Nano doi: 10.1021/nn306044d – volume: 129 start-page: 4116 year: 2007 ident: 10.1016/j.jpowsour.2014.03.138_bib3 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja068365s – volume: 24 start-page: 938 year: 2012 ident: 10.1016/j.jpowsour.2014.03.138_bib12 publication-title: Adv. Mater. doi: 10.1002/adma.201104113 – volume: 4 start-page: 4299 year: 2010 ident: 10.1016/j.jpowsour.2014.03.138_bib16 publication-title: ACS Nano doi: 10.1021/nn1010182 – volume: 6 start-page: 833 year: 2007 ident: 10.1016/j.jpowsour.2014.03.138_bib4 publication-title: Nat. Mater. doi: 10.1038/nmat2023 – volume: 67 start-page: 1233 year: 2004 ident: 10.1016/j.jpowsour.2014.03.138_bib2 publication-title: Rep. Progr. Phys. doi: 10.1088/0034-4885/67/7/R05 – volume: 24 start-page: 1158 year: 2012 ident: 10.1016/j.jpowsour.2014.03.138_bib17 publication-title: Chem. Mater. doi: 10.1021/cm203697w – volume: 4 start-page: 4247 year: 2010 ident: 10.1016/j.jpowsour.2014.03.138_bib14 publication-title: ACS Nano doi: 10.1021/nn100592d – volume: 4 start-page: 3502 year: 2011 ident: 10.1016/j.jpowsour.2014.03.138_bib13 publication-title: Energy Environ. Sci. doi: 10.1039/c1ee01399h – volume: 25 start-page: 267 year: 2013 ident: 10.1016/j.jpowsour.2014.03.138_bib15 publication-title: Adv. Mater. doi: 10.1002/adma.201203410 – volume: 10 start-page: 682 year: 2011 ident: 10.1016/j.jpowsour.2014.03.138_bib7 publication-title: Nat. Mater. doi: 10.1038/nmat3066 – volume: 41 start-page: 797 year: 2012 ident: 10.1016/j.jpowsour.2014.03.138_bib1 publication-title: Chem. Soc. Rev. doi: 10.1039/C1CS15060J – volume: 7 start-page: 5131 year: 2013 ident: 10.1016/j.jpowsour.2014.03.138_bib10 publication-title: ACS Nano doi: 10.1021/nn400731g |
SSID | ssj0001170 |
Score | 2.2644553 |
Snippet | KCu7S4 has the channel structure and minor resistance. Its double larger channels ensure that the ions can well exchange with other's, at the same time, can... |
SourceID | pascalfrancis crossref elsevier |
SourceType | Index Database Enrichment Source Publisher |
StartPage | 175 |
SubjectTerms | Applied sciences C/KCu7S4 Capacitors. Resistors. Filters Different proportions Electrical engineering. Electrical power engineering Exact sciences and technology Hybrid structure Supercapacitors Various equipment and components |
Title | Different proportions of C/KCu7S4 hybrid structure for high-performance supercapacitors |
URI | https://dx.doi.org/10.1016/j.jpowsour.2014.03.138 |
Volume | 263 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF5KvSgiPrE-yh68ptm8N0epSlXspRZ7C_vEFmlDH4gXf7szTWJbEHrwuEk2CbPDzjfJzPcRciNYqoXkzAHswZ0w9Y0jIbV2hC-tjbQEFI2J4ks37vTDp0E0qJF21QuDZZXl3l_s6cvdujziltZ08-HQ7bEAnA3QtoduCLAfO9jDBL289b0q80BlleWfBMiW8Oq1LuFRa5RPPvEjOZZ4hUh26mGfyt8Baj8XMzCbLfQu1oLQwyE5KNEjvS1e8IjUzPiY7K1xCp6Qt7tS8mROc1RAmC4di04sbbvP7UXSC-n7F7Zp0YI6djE1FIArRd5iJ1-1EdDZAkYKYqkaoiLPKek_3L-2O06pnuAoyDrnkGHyJBSMpyowKRcSRcWFsLHyTSwtU3ieqyROtY1DHmkbWKY9wVOpUoaUNGekPp6MzTmhkdax8blSBsAAsnlraWNPJ5rZMPKSoEGiymSZKqnFUeHiI6tqyEZZZeoMTZ2xIANTN4j7Oy8vyDW2zkirFck23CSDCLB1bnNjCX8f6XPkwPGCi3_c_JLs4qgo87sidVhBcw1wZS6bS39skp3bx-dO9wesWe18 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9tAEB5BOEBVVaWASGnpHrgar9_rIwpFoYFcAJXbap8iEUqsPFTx75mJ7TRIlTj0aFtjW7OjmW_sne8DOFO8tEoLHiD2EEFaxi7Q2FoHKtbeZ1YjiqZG8XaY9x_SX4_Z4xb02lkY2lbZ5P46p6-ydXMmbLwZVqNReMcTDDZE2xGFIcL-bdghdqqsAzsX14P-cJ2QSVxl9TMBGyYy2BgUHp-Pq-kf-k5Ou7xS4juNaFTl3zXqY6Xm6DlfS15s1KGrz_CpAZDson7Hfdhyky_wYYNW8AB-XzaqJwtWkQjCbBVbbOpZLxz0lsVdyp5eaFKL1eyxy5ljiF0ZURcH1d9JAjZf4pHBcmpGJMpzCA9XP-97_aARUAgMNp4LbDJFkSouSpO4UihNuuJK-dzELteeG7ouTJGX1uepyKxPPLeREqU2JSdWmiPoTKYTdwwsszZ3sTDGIR4gQm-rfR7ZwnKfZlGRdCFrXSZNwy5OIhfPst1GNpatqyW5WvJEoqu7EK7tqppf412Lsl0R-SZSJBaBd21P3yzh-pGxIBqcKPn6Hzf_Abv9-9sbeXM9HJzAHl2pd_19gw6upvuO6GWhT5vofAXK8PAt |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Different+proportions+of+C%2FKCu7S4+hybrid+structure+for+high-performance+supercapacitors&rft.jtitle=Journal+of+power+sources&rft.au=Dai%2C+Shuge&rft.au=Xi%2C+Yi&rft.au=Hu%2C+Chenguo&rft.au=Yue%2C+Xule&rft.date=2014-10-01&rft.pub=Elsevier+B.V&rft.issn=0378-7753&rft.eissn=1873-2755&rft.volume=263&rft.spage=175&rft.epage=180&rft_id=info:doi/10.1016%2Fj.jpowsour.2014.03.138&rft.externalDocID=S0378775314004716 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-7753&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-7753&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-7753&client=summon |