Disinfection applications of ozone micro- and nanobubbles
Micro- and nanobubbles (MNBs) are microscopic gas bodies sized at micro (<100 μm) and nanoscale (<1 μm), that have a long lifetime in aqueous solutions and large specific surface area due to their small size. Recently, scientific interest has been focused on ozone micro- and nanobubbles (OMNBs...
Saved in:
Published in | Environmental science. Nano Vol. 8; no. 12; pp. 3493 - 351 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Cambridge
Royal Society of Chemistry
09.12.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 2051-8153 2051-8161 |
DOI | 10.1039/d1en00700a |
Cover
Loading…
Abstract | Micro- and nanobubbles (MNBs) are microscopic gas bodies sized at micro (<100 μm) and nanoscale (<1 μm), that have a long lifetime in aqueous solutions and large specific surface area due to their small size. Recently, scientific interest has been focused on ozone micro- and nanobubbles (OMNBs) used in disinfection processes since research findings support the idea that ozone micro and nanosized bubbles can significantly improve the disinfection capacity and the residual activity of ozone. The aim of this critical review is to present recent studies which investigate the feasibility of ozone-based disinfection processes by exploiting the strong oxidizing ability of ozone and the noteworthy longevity of MNBs in aqueous solutions. Properties of MNBs and generation techniques are briefly discussed besides the monitoring methods for their characterization in terms of size and number. In this critical review, we provide recent research related to the application of OMNBs in disinfection of drinking water, as well as in aquaculture, agriculture, and wastewater treatment. Finally, research gaps and limitations of this technology are highlighted and directions for future studies are suggested.
Micro- and nanobubbles (MNBs) are microscopic gas bodies sized at micro (<100 μm) and nanoscale (<1 μm), that have a long lifetime in aqueous solutions and large specific surface area due to their small size. |
---|---|
AbstractList | Micro- and nanobubbles (MNBs) are microscopic gas bodies sized at micro (<100 μm) and nanoscale (<1 μm), that have a long lifetime in aqueous solutions and large specific surface area due to their small size. Recently, scientific interest has been focused on ozone micro- and nanobubbles (OMNBs) used in disinfection processes since research findings support the idea that ozone micro and nanosized bubbles can significantly improve the disinfection capacity and the residual activity of ozone. The aim of this critical review is to present recent studies which investigate the feasibility of ozone-based disinfection processes by exploiting the strong oxidizing ability of ozone and the noteworthy longevity of MNBs in aqueous solutions. Properties of MNBs and generation techniques are briefly discussed besides the monitoring methods for their characterization in terms of size and number. In this critical review, we provide recent research related to the application of OMNBs in disinfection of drinking water, as well as in aquaculture, agriculture, and wastewater treatment. Finally, research gaps and limitations of this technology are highlighted and directions for future studies are suggested. Micro- and nanobubbles (MNBs) are microscopic gas bodies sized at micro (<100 μm) and nanoscale (<1 μm), that have a long lifetime in aqueous solutions and large specific surface area due to their small size. Recently, scientific interest has been focused on ozone micro- and nanobubbles (OMNBs) used in disinfection processes since research findings support the idea that ozone micro and nanosized bubbles can significantly improve the disinfection capacity and the residual activity of ozone. The aim of this critical review is to present recent studies which investigate the feasibility of ozone-based disinfection processes by exploiting the strong oxidizing ability of ozone and the noteworthy longevity of MNBs in aqueous solutions. Properties of MNBs and generation techniques are briefly discussed besides the monitoring methods for their characterization in terms of size and number. In this critical review, we provide recent research related to the application of OMNBs in disinfection of drinking water, as well as in aquaculture, agriculture, and wastewater treatment. Finally, research gaps and limitations of this technology are highlighted and directions for future studies are suggested. Micro- and nanobubbles (MNBs) are microscopic gas bodies sized at micro (<100 μm) and nanoscale (<1 μm), that have a long lifetime in aqueous solutions and large specific surface area due to their small size. |
Author | Seridou, Petroula Kalogerakis, Nicolas |
AuthorAffiliation | School of Chemical and Environmental Engineering Technical University of Crete |
AuthorAffiliation_xml | – name: School of Chemical and Environmental Engineering – name: Technical University of Crete |
Author_xml | – sequence: 1 givenname: Petroula surname: Seridou fullname: Seridou, Petroula – sequence: 2 givenname: Nicolas surname: Kalogerakis fullname: Kalogerakis, Nicolas |
BookMark | eNptUMtKAzEUDVLBWrtxLwy4E0bvnbymy9LWBxTd6HrIZBJImSZjMl3o1zttRUFc3bM4r3vOycgHbwi5RLhFoLO7Bo0HkADqhIwL4JiXKHD0gzk9I9OUNgCAWHAq5JjMli45b43uXfCZ6rrWabXHKQs2C59DQrZ1OoY8U77JvPKh3tV1a9IFObWqTWb6fSfk7X71unjM1y8PT4v5Ote0pH3OkRW8MZwLwYcaEpgBYYXhDVLFQWprNWXIoVRFg4UEK0uGhZJW1kw2Mzoh10ffLob3nUl9tQm76IfIqhBQomQMy4F1c2QNVVOKxlZddFsVPyqEar9OtcTV82Gd-UCGP2Tt-sPXfVSu_V9ydZTEpH-sfwenX3zscCM |
CitedBy_id | crossref_primary_10_1002_jctb_7385 crossref_primary_10_1016_j_ijfoodmicro_2025_111128 crossref_primary_10_1007_s11356_024_34991_3 crossref_primary_10_1186_s42834_023_00203_9 crossref_primary_10_1016_j_watres_2024_122148 crossref_primary_10_1016_j_bej_2024_109246 crossref_primary_10_3390_horticulturae10121351 crossref_primary_10_3390_w16142030 crossref_primary_10_1016_j_cej_2023_145906 crossref_primary_10_3390_nano12121958 crossref_primary_10_1021_acs_langmuir_2c03085 crossref_primary_10_3390_w16243565 crossref_primary_10_1002_ceat_202300063 crossref_primary_10_1016_j_jclepro_2023_138036 crossref_primary_10_1016_j_resconrec_2024_107500 crossref_primary_10_3390_fermentation11010031 crossref_primary_10_3390_pharmaceutics16050614 crossref_primary_10_1016_j_watres_2023_120613 crossref_primary_10_1016_j_jwpe_2024_106023 crossref_primary_10_3390_pr12061227 crossref_primary_10_1016_j_cej_2024_156236 crossref_primary_10_1021_acsestwater_4c01002 crossref_primary_10_1080_10715762_2025_2483454 crossref_primary_10_1016_j_watres_2024_122295 crossref_primary_10_3390_horticulturae9020284 crossref_primary_10_1016_j_cej_2022_140188 crossref_primary_10_1016_j_jcis_2024_03_080 crossref_primary_10_1016_j_eng_2023_10_013 crossref_primary_10_12677_aep_2024_142053 crossref_primary_10_3390_su15032216 crossref_primary_10_1007_s11356_024_34829_y crossref_primary_10_1016_j_molliq_2024_124625 crossref_primary_10_1061_JOEEDU_EEENG_7428 crossref_primary_10_1680_jenes_23_00043 crossref_primary_10_1016_j_jece_2025_115465 crossref_primary_10_1021_acs_iecr_2c03754 crossref_primary_10_1016_j_scitotenv_2023_164933 crossref_primary_10_3390_su16146104 crossref_primary_10_1016_j_ces_2023_119369 crossref_primary_10_1016_j_cherd_2022_11_013 crossref_primary_10_1016_j_jhazmat_2023_131530 crossref_primary_10_1038_s41598_023_43803_6 crossref_primary_10_3390_plants12010091 crossref_primary_10_1016_j_aquaculture_2023_740390 crossref_primary_10_3390_catal13010188 crossref_primary_10_1088_1361_6463_ad87fd crossref_primary_10_3390_w16050793 crossref_primary_10_1007_s11783_024_1907_1 crossref_primary_10_1021_acs_est_3c07443 crossref_primary_10_1080_17429145_2023_2271492 crossref_primary_10_3390_environments11120292 crossref_primary_10_3390_horticulturae10040416 crossref_primary_10_1016_j_seppur_2024_126657 crossref_primary_10_1080_10643389_2022_2136931 crossref_primary_10_1021_acs_nanolett_3c03052 crossref_primary_10_1016_j_ijfoodmicro_2024_110961 |
Cites_doi | 10.1016/j.ifacol.2015.05.046 10.1016/j.chemosphere.2016.02.055 10.1007/s10499-017-0179-1 10.1089/ees.2019.0497 10.5423/PPJ.NT.11.2017.0234 10.1016/j.colsurfa.2020.125669 10.1016/j.cocis.2021.101470 10.1016/j.jcis.2019.12.093 10.1038/srep23936 10.1016/S0043-1354(02)00569-9 10.1680/jenes.18.00039 10.1016/j.jhazmat.2016.04.045 10.3390/ma6093676 10.1016/j.ultsonch.2018.05.038 10.1016/j.jcis.2019.01.134 10.1016/j.cis.2012.06.012 10.1371/journal.pone.0196555 10.1016/j.jhazmat.2015.01.069 10.1016/j.chemosphere.2011.07.051 10.1111/jfd.12783 10.1007/978-3-540-68089-5_5 10.1016/S0927-7757(97)00033-2 10.1016/j.jcis.2008.10.009 10.1016/j.jenvman.2016.05.072 10.1016/j.chemosphere.2013.07.059 10.1252/jcej.39.1213 10.1016/j.chemosphere.2021.129922 10.1577/1548-8640(1997)059<0094:ROOPAA>2.3.CO;2 10.1016/j.watres.2011.02.026 10.1016/j.cocis.2021.101439 10.1016/j.tifs.2019.11.019 10.1021/jp4002093 10.1039/C9CS00839J 10.21873/invivo.11097 10.3733/ucanr.8149 10.1016/j.cis.2017.06.011 10.1021/ie302212p 10.1016/j.watres.2019.05.014 10.1016/j.cej.2017.04.106 10.1089/ees.2017.0377 10.1016/j.cocis.2021.101456 10.1039/D0SM00111B 10.1016/j.jcis.2021.03.064 10.1016/j.partic.2014.05.002 10.1021/jp0445270 10.1016/j.jfoodeng.2010.11.002 10.1016/j.chemosphere.2011.05.054 10.32829/nanoj.v1i1.21 10.1016/j.jwpe.2020.101463 10.1016/j.chemosphere.2008.01.054 10.1016/j.chemosphere.2019.02.041 10.11001/jksww.2017.31.6.481 10.4491/eer.2020.163 10.1016/j.cis.2019.101992 10.1016/j.seppur.2018.02.003 10.4491/eer.2018.210 10.1016/j.colsurfa.2010.03.005 10.1016/j.ultsonch.2021.105629 10.1016/j.seppur.2013.04.034 10.1039/C1JM14439A 10.1289/ehp.1205436 10.1016/j.jhazmat.2016.04.058 10.1016/j.ejpb.2016.04.013 10.1016/j.scitotenv.2018.07.235 10.2478/intox-2014-0008 10.1021/es00021a010 10.1016/j.envint.2020.105914 10.2166/wst.2017.113 10.1016/j.chemosphere.2007.03.014 10.1038/s41598-018-38066-5 10.1021/acs.langmuir.7b00510 10.1016/j.fsi.2021.02.015 10.1111/wej.12577 10.1016/j.scitotenv.2021.147362 10.1088/1468-6996/15/5/055003 10.1021/jp022210z 10.3390/w11010055 10.1016/j.mineng.2014.02.002 10.1021/acs.langmuir.8b01163 10.1021/jp074727m 10.1016/j.envpol.2008.10.009 10.1016/j.cherd.2015.04.003 10.1016/j.tifs.2009.01.049 10.1080/10643389.2020.1860406 10.1016/j.jhydrol.2008.05.030 10.1016/j.watres.2021.117039 10.1088/1755-1315/128/1/012149 10.2175/106143010X12609736966522 10.1016/j.envint.2016.04.026 10.1021/es303652q 10.1002/j.1551-8833.1981.tb04637.x 10.1016/S0043-1354(02)00570-5 10.1680/jenes.18.00015 10.18517/ijaseit.8.3.3922 10.1016/j.cocis.2021.101455 10.1016/j.aquaculture.2020.736286 10.1016/j.seppur.2018.11.059 10.1016/j.cropro.2011.07.018 10.1016/j.ces.2009.10.003 10.1016/j.chemosphere.2020.127216 10.1016/j.chemosphere.2015.12.084 10.1016/j.chemosphere.2006.08.003 10.2175/106143014X14062131177953 10.1002/cphc.201600576 10.1002/9781119139188.ch17 10.1016/j.mineng.2017.06.020 10.1016/j.eti.2021.101729 10.1186/1556-276X-6-295 10.1080/01919512.2011.604595 10.1016/j.envpol.2008.11.025 10.1016/j.jhazmat.2017.08.030 10.1002/jctb.5085 10.1049/mnl.2018.5710 10.2166/wst.2007.556 10.1021/ic00213a018 10.2494/photopolymer.28.293 10.1016/j.jfoodeng.2017.03.003 10.1016/j.chemosphere.2018.03.157 10.2166/wst.2019.227 10.1021/acs.langmuir.9b03532 10.1080/01919512.2012.686354 10.1080/01919512.2014.913473 10.1063/1.4904718 10.1089/ees.2018.0203 10.2166/wh.2020.020 10.1016/j.jenvman.2016.04.037 10.1186/s13568-021-01254-0 10.1021/es048396s 10.1186/s12302-019-0283-0 10.1007/s11356-019-05554-8 10.1080/23311932.2018.1558496 10.1002/jctb.2698 10.1021/acs.accounts.8b00606 10.1080/19443994.2016.1172986 10.1016/j.jhazmat.2020.123759 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2021 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2021 |
DBID | AAYXX CITATION 7QH 7ST 7UA C1K F1W H97 L.G SOI |
DOI | 10.1039/d1en00700a |
DatabaseName | CrossRef Aqualine Environment Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Aquatic Science & Fisheries Abstracts (ASFA) Professional Environment Abstracts |
DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional ASFA: Aquatic Sciences and Fisheries Abstracts Aqualine Environment Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Water Resources Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional CrossRef |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2051-8161 |
EndPage | 351 |
ExternalDocumentID | 10_1039_D1EN00700A d1en00700a |
GroupedDBID | 0R 4.4 AAEMU AAGNR AAIWI AAJAE AANOJ ABASK ABDVN ABGFH ABRYZ ACGFS ACLDK ADMRA ADSRN AFRAH AGRSR AGSTE AGSWI ALMA_UNASSIGNED_HOLDINGS ANUXI ASKNT AUDPV BLAPV BSQNT C6K CKLOX EBS ECGLT EE0 EF- H13 HZ H~N J3I JG O-G O9- RCNCU RIG RPMJG RRC RSCEA 0R~ AARTK AAWGC AAXHV AAYXX ABEMK ABJNI ABPDG ABXOH AEFDR AENGV AETIL AFLYV AFOGI AFRZK AGEGJ AHGCF AKBGW AKMSF APEMP CITATION GGIMP HZ~ RAOCF RVUXY 7QH 7ST 7UA C1K F1W H97 L.G SOI |
ID | FETCH-LOGICAL-c383t-51425de55665051704e06f6e5d13a507cffc341508a2d1270f78412a7f7b47d93 |
ISSN | 2051-8153 |
IngestDate | Mon Jun 30 11:58:20 EDT 2025 Thu Apr 24 23:05:16 EDT 2025 Tue Jul 01 02:35:40 EDT 2025 Sun May 15 04:20:39 EDT 2022 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c383t-51425de55665051704e06f6e5d13a507cffc341508a2d1270f78412a7f7b47d93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-7033-0302 0000-0003-3684-3926 |
OpenAccessLink | http://pubs.rsc.org/en/content/articlepdf/2021/EN/D1EN00700A |
PQID | 2608174418 |
PQPubID | 2047519 |
PageCount | 18 |
ParticipantIDs | proquest_journals_2608174418 crossref_citationtrail_10_1039_D1EN00700A crossref_primary_10_1039_D1EN00700A rsc_primary_d1en00700a |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-12-09 |
PublicationDateYYYYMMDD | 2021-12-09 |
PublicationDate_xml | – month: 12 year: 2021 text: 2021-12-09 day: 09 |
PublicationDecade | 2020 |
PublicationPlace | Cambridge |
PublicationPlace_xml | – name: Cambridge |
PublicationTitle | Environmental science. Nano |
PublicationYear | 2021 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | FAO (D1EN00700A/cit138/1) 2017 Takahashi (D1EN00700A/cit40/1) 2003; 107 Uchida (D1EN00700A/cit51/1) 2011; 6 He (D1EN00700A/cit115/1) 2015; 37 Gao (D1EN00700A/cit46/1) 2019; 26 Xia (D1EN00700A/cit33/1) 2018; 11 Azevedo (D1EN00700A/cit35/1) 2019; 271 Li (D1EN00700A/cit41/1) 2006; 39 Ebina (D1EN00700A/cit48/1) 2013; 8 Huber (D1EN00700A/cit134/1) 2005; 39 Kuster (D1EN00700A/cit18/1) 2008; 358 Fernández-Rubio (D1EN00700A/cit17/1) 2019; 224 Ahmed (D1EN00700A/cit73/1) 2018; 203 Zhang (D1EN00700A/cit131/1) 2013; 114 Zhou (D1EN00700A/cit56/1) 2021; 53 Oh (D1EN00700A/cit81/1) 2017; 33 Michailidi (D1EN00700A/cit55/1) 2020; 564 Suslow (D1EN00700A/cit109/1) 2004 Azuma (D1EN00700A/cit137/1) 2019; 212 Ushida (D1EN00700A/cit148/1) 2017; 206 Takahashi (D1EN00700A/cit110/1) 2007; 111 Patel (D1EN00700A/cit26/1) 2021; 23 Hewage (D1EN00700A/cit54/1) 2021; 609 Zhang (D1EN00700A/cit45/1) 2018; 201 Xia (D1EN00700A/cit155/1) 2019; 14 Venieri (D1EN00700A/cit8/1) 2017; 92 Kikuchi (D1EN00700A/cit72/1) 2009; 329 Hu (D1EN00700A/cit30/1) 2018; 342 Alheshibri (D1EN00700A/cit90/1) 2019; 542 Bartelt-Hunt (D1EN00700A/cit19/1) 2009; 157 Li (D1EN00700A/cit151/1) 2020; 258 Khan (D1EN00700A/cit32/1) 2020; 20 Lee (D1EN00700A/cit116/1) 2012; 19 Jadhav (D1EN00700A/cit76/1) 2020; 36 Takahashi (D1EN00700A/cit114/1) 2015; 28 Dong (D1EN00700A/cit15/1) 2016; 178 Imaizumi (D1EN00700A/cit143/1) 2018; 41 Linh (D1EN00700A/cit147/1) 2021; 112 Furuichi (D1EN00700A/cit128/1) 2013; 10 Nirmalkar (D1EN00700A/cit60/1) 2018; 34 Etchepare (D1EN00700A/cit71/1) 2017; 112 von Sonntag (D1EN00700A/cit95/1) 2015 Sumikura (D1EN00700A/cit122/1) 2007; 56 Agarwal (D1EN00700A/cit44/1) 2012; 22 WHO (D1EN00700A/cit94/1) Chu (D1EN00700A/cit111/1) 2007; 68 Hoigné (D1EN00700A/cit108/1) 1998 Karamah (D1EN00700A/cit132/1) 2018; 8 Meegoda (D1EN00700A/cit53/1) 2018; 35 Tekile (D1EN00700A/cit36/1) 2017; 31 Jhunkeaw (D1EN00700A/cit140/1) 2021; 534 Ahmed (D1EN00700A/cit20/1) 2017; 323 Noguera-Oviedo (D1EN00700A/cit133/1) 2016; 316 Ding (D1EN00700A/cit9/1) 2019; 160 Tomiyasu (D1EN00700A/cit99/1) 1985; 24 Seki (D1EN00700A/cit130/1) 2017; 31 John (D1EN00700A/cit39/1) 2020 Gottschalk (D1EN00700A/cit97/1) 2010 Kwack (D1EN00700A/cit124/1) 2014; 32 Cullen (D1EN00700A/cit127/1) 2009; 20 Xiong (D1EN00700A/cit84/1) 2021; 50 Hewage (D1EN00700A/cit105/1) 2020; 37 Thanh Dien (D1EN00700A/cit142/1) 2021 Rodriguez-Narvaez (D1EN00700A/cit23/1) 2017; 323 Park (D1EN00700A/cit25/1) 2020; 12 Batagoda (D1EN00700A/cit104/1) 2018; 14 Zieliński (D1EN00700A/cit4/1) 2020; 143 Cheng (D1EN00700A/cit43/1) 2019; 80 Tamaki (D1EN00700A/cit149/1) 2018; 34 da Silva (D1EN00700A/cit11/1) 2011; 85 Li (D1EN00700A/cit88/1) 2021; 596 Padilla-Martinez (D1EN00700A/cit70/1) 2014; 26 Wang (D1EN00700A/cit78/1) 2019; 9 Li (D1EN00700A/cit27/1) 2015; 86 Kobayashi (D1EN00700A/cit92/1) 2014; 9232 Sharma (D1EN00700A/cit16/1) 2019; 646 Hashimoto (D1EN00700A/cit34/1) 2021; 274 Megahed (D1EN00700A/cit102/1) 2018; 13 Liu (D1EN00700A/cit106/1) 2012; 87 Jabesa (D1EN00700A/cit112/1) 2016; 180 Liu (D1EN00700A/cit66/1) 2016; 6 Ushikubo (D1EN00700A/cit50/1) 2010; 361 Sehested (D1EN00700A/cit100/1) 1991; 25 Ljunggren (D1EN00700A/cit68/1) 1997; 129–130 Li (D1EN00700A/cit52/1) 2013; 6 Leroy (D1EN00700A/cit62/1) 2016 Zheng (D1EN00700A/cit107/1) 2015; 287 Rice (D1EN00700A/cit96/1) 1981; 73 U.S. EPA (D1EN00700A/cit29/1) 1999 Shangguan (D1EN00700A/cit38/1) 2018; 128 Yasui (D1EN00700A/cit61/1) 2018; 48 Kobayashi (D1EN00700A/cit113/1) 2011; 30 Fan (D1EN00700A/cit125/1) 2021; 196 Huang (D1EN00700A/cit3/1) 2011; 45 Atkinson (D1EN00700A/cit58/1) 2019; 52 Reinthaler (D1EN00700A/cit2/1) 2003; 37 Phaephiphat (D1EN00700A/cit150/1) 2018; 4 Campbell (D1EN00700A/cit12/1) 2006; 65 Sedlák (D1EN00700A/cit63/1) 2013; 117 Azevedo (D1EN00700A/cit28/1) 2017; 75 Gray (D1EN00700A/cit103/1) 2013 Nghia (D1EN00700A/cit141/1) 2021 Kim (D1EN00700A/cit123/1) 2021; 409 Wang (D1EN00700A/cit120/1) 2020; 37 Rivera-Utrilla (D1EN00700A/cit21/1) 2013; 93 Liu (D1EN00700A/cit119/1) 2010; 82 Gonçalves (D1EN00700A/cit146/1) 2011; 33 Helmecke (D1EN00700A/cit1/1) 2020; 32 Wu (D1EN00700A/cit79/1) 2012; 179–182 Kim (D1EN00700A/cit80/1) 2019; 24 Xu (D1EN00700A/cit83/1) 2015; 18 Summerfelt (D1EN00700A/cit145/1) 1997; 59 McKinney (D1EN00700A/cit7/1) 2012; 46 Kumar (D1EN00700A/cit139/1) 2017 Bu (D1EN00700A/cit74/1) 2021; 76 Takahashi (D1EN00700A/cit87/1) 2005; 109 Ikeura (D1EN00700A/cit152/1) 2011; 103 Cruz (D1EN00700A/cit136/1) 2017; 1 Movahed (D1EN00700A/cit59/1) 2021; 785 Alharbi (D1EN00700A/cit153/1) 2016; 57 Gross (D1EN00700A/cit82/1) 2016; 104 Crittenden (D1EN00700A/cit93/1) Gurung (D1EN00700A/cit67/1) 2016; 9328 Ternes (D1EN00700A/cit135/1) 2003; 37 Wu (D1EN00700A/cit57/1) 2021; 11 Benotti (D1EN00700A/cit14/1) 2009; 157 Favvas (D1EN00700A/cit75/1) 2021; 54 Batakliev (D1EN00700A/cit126/1) 2014; 7 Gnyawali (D1EN00700A/cit85/1) 2019 Kurita (D1EN00700A/cit144/1) 2017; 25 Thi Phan (D1EN00700A/cit69/1) 2020; 95 Hayakumo (D1EN00700A/cit129/1) 2014; 15 Kim (D1EN00700A/cit121/1) 2021; 27 Hopkins (D1EN00700A/cit13/1) 2016; 92–93 Alheshibri (D1EN00700A/cit65/1) 2021; 55 Ahmed (D1EN00700A/cit86/1) 2018; 35 Matzek (D1EN00700A/cit22/1) 2016; 151 Jadhav (D1EN00700A/cit64/1) 2020; 16 Calgaroto (D1EN00700A/cit89/1) 2014; 60 Zheng (D1EN00700A/cit118/1) 2015; 287 Khuntia (D1EN00700A/cit42/1) 2013; 52 Temesgen (D1EN00700A/cit37/1) 2017; 246 Ulatowski (D1EN00700A/cit77/1) 2020; 34 Gardoni (D1EN00700A/cit98/1) 2012; 34 Sharma (D1EN00700A/cit10/1) 2016; 150 Agarwal (D1EN00700A/cit24/1) 2011; 84 Chu (D1EN00700A/cit47/1) 2008; 72 Ohgaki (D1EN00700A/cit49/1) 2010; 65 Fan (D1EN00700A/cit117/1) 2020; 238 Monteiro (D1EN00700A/cit5/1) 2020; 18 Rosenberg (D1EN00700A/cit6/1) 2012; 120 Xiao (D1EN00700A/cit31/1) 2019; 14 Batchelor (D1EN00700A/cit91/1) 2021; 54 Kimmerle (D1EN00700A/cit154/1) 2015; 28 Khuntia (D1EN00700A/cit101/1) 2015; 98 |
References_xml | – issn: 2019 end-page: 84 publication-title: Proc. SPIE 10878 in Photons Plus Ultrasound: Imaging and Sensing doi: Gnyawali Wang Wang Fishbein So De Leon Abenojar Exner Tsai Kolios – issn: 1999 end-page: 7 doi: U.S. EPA – doi: Crittenden Trussel Hand Howe Tchobanoglous – issn: 2013 publication-title: Ozone Disinfection doi: Gray – issn: 2014 issue: 9232 end-page: 92320U doi: Kobayashi Maeda Kashiwa Fujita – issn: 2015 publication-title: Chemistry of Ozone in Water and Wastewater Treatment: From Basic Principles to Applications doi: von Sonntag von Gunten – issn: 2004 publication-title: Oxidation-Reduction Potential (ORP) for Water Disinfection Monitoring, Control, and Documentation doi: Suslow – issn: 2017 end-page: p 397-415 publication-title: Foodborne Pathog. Antibiot. Resist. doi: Kumar Lekshmi Parvathi Nayak Varela – doi: WHO – issn: 2017 end-page: p 26-28 publication-title: FAO yearbook of fishery and aquaculture statistics doi: FAO – issn: 2010 publication-title: Ozonation of Water and Waste Water: A Practical Guide to Understanding Ozone and its Applications doi: Gottschalk Libra Saupe – issn: 1998 end-page: p 83-141 publication-title: Quality and Treatment of Drinking Water II doi: Hoigné – volume: 28 start-page: 621 year: 2015 ident: D1EN00700A/cit154/1 publication-title: IFAC-PapersOnLine doi: 10.1016/j.ifacol.2015.05.046 – volume: 151 start-page: 178 year: 2016 ident: D1EN00700A/cit22/1 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2016.02.055 – volume: 20 start-page: 2021 year: 2020 ident: D1EN00700A/cit32/1 publication-title: Water Sci. Technol.: Water Supply – volume: 9232 year: 2014 ident: D1EN00700A/cit92/1 – volume: 25 start-page: 2127 year: 2017 ident: D1EN00700A/cit144/1 publication-title: Aquacult. Int. doi: 10.1007/s10499-017-0179-1 – volume: 37 start-page: 521 year: 2020 ident: D1EN00700A/cit105/1 publication-title: Environ. Eng. Sci. doi: 10.1089/ees.2019.0497 – volume: 34 start-page: 335 year: 2018 ident: D1EN00700A/cit149/1 publication-title: Plant Pathol. J. doi: 10.5423/PPJ.NT.11.2017.0234 – volume: 609 start-page: 125669 year: 2021 ident: D1EN00700A/cit54/1 publication-title: Colloids Surf., A doi: 10.1016/j.colsurfa.2020.125669 – volume-title: Chemistry of Ozone in Water and Wastewater Treatment: From Basic Principles to Applications year: 2015 ident: D1EN00700A/cit95/1 – volume: 55 start-page: 101470 year: 2021 ident: D1EN00700A/cit65/1 publication-title: Curr. Opin. Colloid Interface Sci. doi: 10.1016/j.cocis.2021.101470 – volume: 564 start-page: 371 year: 2020 ident: D1EN00700A/cit55/1 publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2019.12.093 – volume: 6 start-page: 23936 year: 2016 ident: D1EN00700A/cit66/1 publication-title: Sci. Rep. doi: 10.1038/srep23936 – volume: 37 start-page: 1685 year: 2003 ident: D1EN00700A/cit2/1 publication-title: Water Res. doi: 10.1016/S0043-1354(02)00569-9 – volume: 14 start-page: 157 year: 2019 ident: D1EN00700A/cit155/1 publication-title: J. Environ. Eng. Sci. doi: 10.1680/jenes.18.00039 – volume: 323 start-page: 274 year: 2017 ident: D1EN00700A/cit20/1 publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2016.04.045 – volume: 6 start-page: 3676 year: 2013 ident: D1EN00700A/cit52/1 publication-title: Materials doi: 10.3390/ma6093676 – start-page: 26 volume-title: FAO yearbook of fishery and aquaculture statistics year: 2017 ident: D1EN00700A/cit138/1 – volume: 48 start-page: 259 year: 2018 ident: D1EN00700A/cit61/1 publication-title: Ultrason. Sonochem. doi: 10.1016/j.ultsonch.2018.05.038 – volume: 542 start-page: 136 year: 2019 ident: D1EN00700A/cit90/1 publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2019.01.134 – volume: 179–182 start-page: 123 year: 2012 ident: D1EN00700A/cit79/1 publication-title: Adv. Colloid Interface Sci. doi: 10.1016/j.cis.2012.06.012 – volume: 13 start-page: 1 year: 2018 ident: D1EN00700A/cit102/1 publication-title: PLoS One doi: 10.1371/journal.pone.0196555 – volume: 287 start-page: 412 year: 2015 ident: D1EN00700A/cit107/1 publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2015.01.069 – volume: 85 start-page: 1331 year: 2011 ident: D1EN00700A/cit11/1 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2011.07.051 – volume: 41 start-page: 725 year: 2018 ident: D1EN00700A/cit143/1 publication-title: J. Fish Dis. doi: 10.1111/jfd.12783 – start-page: 83 volume-title: Quality and Treatment of Drinking Water II year: 1998 ident: D1EN00700A/cit108/1 doi: 10.1007/978-3-540-68089-5_5 – volume: 129–130 start-page: 151 year: 1997 ident: D1EN00700A/cit68/1 publication-title: Colloids Surf., A doi: 10.1016/S0927-7757(97)00033-2 – volume: 329 start-page: 306 year: 2009 ident: D1EN00700A/cit72/1 publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2008.10.009 – volume: 180 start-page: 476 year: 2016 ident: D1EN00700A/cit112/1 publication-title: J. Environ. Manage. doi: 10.1016/j.jenvman.2016.05.072 – volume: 93 start-page: 1268 year: 2013 ident: D1EN00700A/cit21/1 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2013.07.059 – volume: 39 start-page: 1213 year: 2006 ident: D1EN00700A/cit41/1 publication-title: J. Chem. Eng. Jpn. doi: 10.1252/jcej.39.1213 – volume: 274 start-page: 129922 year: 2021 ident: D1EN00700A/cit34/1 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2021.129922 – volume: 59 start-page: 94 year: 1997 ident: D1EN00700A/cit145/1 publication-title: Prog. Fish-Cult. doi: 10.1577/1548-8640(1997)059<0094:ROOPAA>2.3.CO;2 – volume: 45 start-page: 2775 year: 2011 ident: D1EN00700A/cit3/1 publication-title: Water Res. doi: 10.1016/j.watres.2011.02.026 – volume: 53 start-page: 101439 year: 2021 ident: D1EN00700A/cit56/1 publication-title: Curr. Opin. Colloid Interface Sci. doi: 10.1016/j.cocis.2021.101439 – volume: 95 start-page: 118 year: 2020 ident: D1EN00700A/cit69/1 publication-title: Trends Food Sci. Technol. doi: 10.1016/j.tifs.2019.11.019 – volume-title: Ozonation of Water and Waste Water: A Practical Guide to Understanding Ozone and its Applications year: 2010 ident: D1EN00700A/cit97/1 – start-page: 7 year: 1999 ident: D1EN00700A/cit29/1 – volume: 117 start-page: 2495 year: 2013 ident: D1EN00700A/cit63/1 publication-title: J. Phys. Chem. B doi: 10.1021/jp4002093 – volume: 50 start-page: 5746 year: 2021 ident: D1EN00700A/cit84/1 publication-title: Chem. Soc. Rev. doi: 10.1039/C9CS00839J – volume: 31 start-page: 579 year: 2017 ident: D1EN00700A/cit130/1 publication-title: In Vivo doi: 10.21873/invivo.11097 – volume-title: Oxidation-Reduction Potential (ORP) for Water Disinfection Monitoring, Control, and Documentation year: 2004 ident: D1EN00700A/cit109/1 doi: 10.3733/ucanr.8149 – volume: 246 start-page: 40 year: 2017 ident: D1EN00700A/cit37/1 publication-title: Adv. Colloid Interface Sci. doi: 10.1016/j.cis.2017.06.011 – volume: 52 start-page: 318 year: 2013 ident: D1EN00700A/cit42/1 publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie302212p – volume: 8 start-page: 2 year: 2013 ident: D1EN00700A/cit48/1 publication-title: PLoS One – volume: 160 start-page: 339 year: 2019 ident: D1EN00700A/cit9/1 publication-title: Water Res. doi: 10.1016/j.watres.2019.05.014 – volume: 323 start-page: 361 year: 2017 ident: D1EN00700A/cit23/1 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2017.04.106 – volume: 35 start-page: 720 year: 2018 ident: D1EN00700A/cit86/1 publication-title: Environ. Eng. Sci. doi: 10.1089/ees.2017.0377 – volume: 54 start-page: 101456 year: 2021 ident: D1EN00700A/cit91/1 publication-title: Curr. Opin. Colloid Interface Sci. doi: 10.1016/j.cocis.2021.101456 – volume: 16 start-page: 4502 year: 2020 ident: D1EN00700A/cit64/1 publication-title: Soft Matter doi: 10.1039/D0SM00111B – volume: 596 start-page: 184 year: 2021 ident: D1EN00700A/cit88/1 publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2021.03.064 – volume: 18 start-page: 11 year: 2015 ident: D1EN00700A/cit83/1 publication-title: Particuology doi: 10.1016/j.partic.2014.05.002 – volume: 109 start-page: 21858 year: 2005 ident: D1EN00700A/cit87/1 publication-title: J. Phys. Chem. B doi: 10.1021/jp0445270 – volume: 32 start-page: 901 year: 2014 ident: D1EN00700A/cit124/1 publication-title: Weon'ye Gwahag Gi'sulji – volume: 103 start-page: 345 year: 2011 ident: D1EN00700A/cit152/1 publication-title: J. Food Eng. doi: 10.1016/j.jfoodeng.2010.11.002 – volume: 84 start-page: 1175 year: 2011 ident: D1EN00700A/cit24/1 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2011.05.054 – volume: 1 start-page: 9 year: 2017 ident: D1EN00700A/cit136/1 publication-title: J. Nanotechnol. doi: 10.32829/nanoj.v1i1.21 – volume: 37 start-page: 101463 year: 2020 ident: D1EN00700A/cit120/1 publication-title: J. Water Process. Eng. doi: 10.1016/j.jwpe.2020.101463 – volume: 72 start-page: 205 year: 2008 ident: D1EN00700A/cit47/1 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2008.01.054 – volume: 224 start-page: 379 year: 2019 ident: D1EN00700A/cit17/1 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2019.02.041 – volume: 31 start-page: 481 year: 2017 ident: D1EN00700A/cit36/1 publication-title: J. Korean Soc. Water Wastewater doi: 10.11001/jksww.2017.31.6.481 – volume: 27 start-page: 200163 year: 2021 ident: D1EN00700A/cit121/1 publication-title: Environ. Eng. Res. doi: 10.4491/eer.2020.163 – volume: 271 start-page: 101992 year: 2019 ident: D1EN00700A/cit35/1 publication-title: Adv. Colloid Interface Sci. doi: 10.1016/j.cis.2019.101992 – volume: 201 start-page: 10 year: 2018 ident: D1EN00700A/cit45/1 publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2018.02.003 – volume: 24 start-page: 382 year: 2019 ident: D1EN00700A/cit80/1 publication-title: Environ. Eng. Res. doi: 10.4491/eer.2018.210 – volume: 361 start-page: 31 year: 2010 ident: D1EN00700A/cit50/1 publication-title: Colloids Surf., A doi: 10.1016/j.colsurfa.2010.03.005 – volume: 76 start-page: 105629 year: 2021 ident: D1EN00700A/cit74/1 publication-title: Ultrason. Sonochem. doi: 10.1016/j.ultsonch.2021.105629 – volume: 114 start-page: 126 year: 2013 ident: D1EN00700A/cit131/1 publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2013.04.034 – volume: 22 start-page: 2203 year: 2012 ident: D1EN00700A/cit44/1 publication-title: J. Mater. Chem. doi: 10.1039/C1JM14439A – volume: 120 start-page: 1551 year: 2012 ident: D1EN00700A/cit6/1 publication-title: Environ. Health Perspect. doi: 10.1289/ehp.1205436 – volume: 316 start-page: 242 year: 2016 ident: D1EN00700A/cit133/1 publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2016.04.058 – volume: 104 start-page: 30 year: 2016 ident: D1EN00700A/cit82/1 publication-title: Eur. J. Pharm. Biopharm. doi: 10.1016/j.ejpb.2016.04.013 – volume: 646 start-page: 1459 year: 2019 ident: D1EN00700A/cit16/1 publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.07.235 – volume: 7 start-page: 47 year: 2014 ident: D1EN00700A/cit126/1 publication-title: Interdiscip. Toxicol. doi: 10.2478/intox-2014-0008 – ident: D1EN00700A/cit94/1 – volume: 25 start-page: 1589 year: 1991 ident: D1EN00700A/cit100/1 publication-title: Environ. Sci. Technol. doi: 10.1021/es00021a010 – volume: 143 start-page: 105914 year: 2020 ident: D1EN00700A/cit4/1 publication-title: Environ. Int. doi: 10.1016/j.envint.2020.105914 – volume: 75 start-page: 2342 year: 2017 ident: D1EN00700A/cit28/1 publication-title: Water Sci. Technol. doi: 10.2166/wst.2017.113 – volume: 9328 start-page: 1 year: 2016 ident: D1EN00700A/cit67/1 publication-title: Geosyst. Eng. – volume: 68 start-page: 1854 year: 2007 ident: D1EN00700A/cit111/1 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2007.03.014 – volume: 9 start-page: 1118 year: 2019 ident: D1EN00700A/cit78/1 publication-title: Sci. Rep. doi: 10.1038/s41598-018-38066-5 – volume: 33 start-page: 3818 year: 2017 ident: D1EN00700A/cit81/1 publication-title: Langmuir doi: 10.1021/acs.langmuir.7b00510 – volume: 112 start-page: 64 year: 2021 ident: D1EN00700A/cit147/1 publication-title: Fish Shellfish Immunol. doi: 10.1016/j.fsi.2021.02.015 – volume: 34 start-page: 772 year: 2020 ident: D1EN00700A/cit77/1 publication-title: Water Environ. J. doi: 10.1111/wej.12577 – volume: 785 start-page: 147362 year: 2021 ident: D1EN00700A/cit59/1 publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2021.147362 – volume: 15 start-page: 590 year: 2014 ident: D1EN00700A/cit129/1 publication-title: Sci. Technol. Adv. Mater. doi: 10.1088/1468-6996/15/5/055003 – volume: 107 start-page: 2171 year: 2003 ident: D1EN00700A/cit40/1 publication-title: J. Phys. Chem. B doi: 10.1021/jp022210z – start-page: 84 volume-title: Proc. SPIE 10878 in Photons Plus Ultrasound: Imaging and Sensing year: 2019 ident: D1EN00700A/cit85/1 – volume: 11 start-page: 55 year: 2018 ident: D1EN00700A/cit33/1 publication-title: Water doi: 10.3390/w11010055 – volume: 60 start-page: 33 year: 2014 ident: D1EN00700A/cit89/1 publication-title: Miner. Eng. doi: 10.1016/j.mineng.2014.02.002 – volume: 34 start-page: 10964 year: 2018 ident: D1EN00700A/cit60/1 publication-title: Langmuir doi: 10.1021/acs.langmuir.8b01163 – volume: 111 start-page: 11443 year: 2007 ident: D1EN00700A/cit110/1 publication-title: J. Phys. Chem. B doi: 10.1021/jp074727m – volume: 157 start-page: 994 year: 2009 ident: D1EN00700A/cit14/1 publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2008.10.009 – volume: 98 start-page: 231 year: 2015 ident: D1EN00700A/cit101/1 publication-title: Chem. Eng. Res. Des. doi: 10.1016/j.cherd.2015.04.003 – volume: 20 start-page: 125 year: 2009 ident: D1EN00700A/cit127/1 publication-title: Trends Food Sci. Technol. doi: 10.1016/j.tifs.2009.01.049 – start-page: 1 year: 2020 ident: D1EN00700A/cit39/1 publication-title: Crit. Rev. Environ. Sci. Technol. doi: 10.1080/10643389.2020.1860406 – volume: 19 start-page: 4373 year: 2012 ident: D1EN00700A/cit116/1 publication-title: Energies – volume: 358 start-page: 112 year: 2008 ident: D1EN00700A/cit18/1 publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2008.05.030 – volume: 196 start-page: 117039 year: 2021 ident: D1EN00700A/cit125/1 publication-title: Water Res. doi: 10.1016/j.watres.2021.117039 – volume: 128 start-page: 12149 year: 2018 ident: D1EN00700A/cit38/1 publication-title: IOP Conf. Ser. Earth Environ. Sci. doi: 10.1088/1755-1315/128/1/012149 – volume: 82 start-page: 657 year: 2010 ident: D1EN00700A/cit119/1 publication-title: Water Environ. Res. doi: 10.2175/106143010X12609736966522 – volume: 92–93 start-page: 301 year: 2016 ident: D1EN00700A/cit13/1 publication-title: Environ. Int. doi: 10.1016/j.envint.2016.04.026 – volume: 46 start-page: 13393 year: 2012 ident: D1EN00700A/cit7/1 publication-title: Environ. Sci. Technol. doi: 10.1021/es303652q – volume: 73 start-page: 44 year: 1981 ident: D1EN00700A/cit96/1 publication-title: J. - Am. Water Works Assoc. doi: 10.1002/j.1551-8833.1981.tb04637.x – volume: 37 start-page: 1976 year: 2003 ident: D1EN00700A/cit135/1 publication-title: Water Res. doi: 10.1016/S0043-1354(02)00570-5 – volume: 14 start-page: 57 year: 2018 ident: D1EN00700A/cit104/1 publication-title: J. Environ. Eng. Sci. doi: 10.1680/jenes.18.00015 – volume: 8 start-page: 811 year: 2018 ident: D1EN00700A/cit132/1 publication-title: Int. J. Adv. Sci. Eng. Inf. Technol. doi: 10.18517/ijaseit.8.3.3922 – volume: 54 start-page: 101455 year: 2021 ident: D1EN00700A/cit75/1 publication-title: Curr. Opin. Colloid Interface Sci. doi: 10.1016/j.cocis.2021.101455 – volume: 534 start-page: 736286 year: 2021 ident: D1EN00700A/cit140/1 publication-title: Aquaculture doi: 10.1016/j.aquaculture.2020.736286 – volume: 10 start-page: 131 year: 2013 ident: D1EN00700A/cit128/1 publication-title: J. Oral Tissue Eng. – volume: 212 start-page: 483 year: 2019 ident: D1EN00700A/cit137/1 publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2018.11.059 – volume: 30 start-page: 1514 year: 2011 ident: D1EN00700A/cit113/1 publication-title: Crop Prot. doi: 10.1016/j.cropro.2011.07.018 – volume: 65 start-page: 1296 year: 2010 ident: D1EN00700A/cit49/1 publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2009.10.003 – volume: 258 start-page: 127216 year: 2020 ident: D1EN00700A/cit151/1 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2020.127216 – volume: 150 start-page: 702 year: 2016 ident: D1EN00700A/cit10/1 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2015.12.084 – volume: 65 start-page: 1265 year: 2006 ident: D1EN00700A/cit12/1 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2006.08.003 – volume: 86 start-page: 844 year: 2015 ident: D1EN00700A/cit27/1 publication-title: Water Environ. Res. doi: 10.2175/106143014X14062131177953 – start-page: 2787 year: 2016 ident: D1EN00700A/cit62/1 publication-title: ChemPhysChem doi: 10.1002/cphc.201600576 – start-page: 397 volume-title: Foodborne Pathog. Antibiot. Resist. year: 2017 ident: D1EN00700A/cit139/1 doi: 10.1002/9781119139188.ch17 – volume: 112 start-page: 19 year: 2017 ident: D1EN00700A/cit71/1 publication-title: Miner. Eng. doi: 10.1016/j.mineng.2017.06.020 – ident: D1EN00700A/cit93/1 – volume: 23 start-page: 101729 year: 2021 ident: D1EN00700A/cit26/1 publication-title: Environ. Technol. Innovation doi: 10.1016/j.eti.2021.101729 – volume: 6 start-page: 1 year: 2011 ident: D1EN00700A/cit51/1 publication-title: Nanoscale Res. Lett. doi: 10.1186/1556-276X-6-295 – volume: 33 start-page: 345 year: 2011 ident: D1EN00700A/cit146/1 publication-title: Ozone: Sci. Eng. doi: 10.1080/01919512.2011.604595 – volume: 157 start-page: 786 year: 2009 ident: D1EN00700A/cit19/1 publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2008.11.025 – volume: 342 start-page: 446 year: 2018 ident: D1EN00700A/cit30/1 publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2017.08.030 – volume: 92 start-page: 43 year: 2017 ident: D1EN00700A/cit8/1 publication-title: J. Chem. Technol. Biotechnol. doi: 10.1002/jctb.5085 – volume: 14 start-page: 782 year: 2019 ident: D1EN00700A/cit31/1 publication-title: Micro Nano Lett. doi: 10.1049/mnl.2018.5710 – volume: 56 start-page: 53 year: 2007 ident: D1EN00700A/cit122/1 publication-title: Water Sci. Technol. doi: 10.2166/wst.2007.556 – volume: 12 start-page: 1 year: 2020 ident: D1EN00700A/cit25/1 publication-title: Pharmaceutics – volume: 24 start-page: 2962 year: 1985 ident: D1EN00700A/cit99/1 publication-title: Inorg. Chem. doi: 10.1021/ic00213a018 – volume: 28 start-page: 293 year: 2015 ident: D1EN00700A/cit114/1 publication-title: J. Photopolym. Sci. Technol. doi: 10.2494/photopolymer.28.293 – volume: 206 start-page: 48 year: 2017 ident: D1EN00700A/cit148/1 publication-title: J. Food Eng. doi: 10.1016/j.jfoodeng.2017.03.003 – start-page: 1 year: 2021 ident: D1EN00700A/cit141/1 publication-title: Aquacult. Res. – volume: 203 start-page: 327 year: 2018 ident: D1EN00700A/cit73/1 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2018.03.157 – start-page: 1 year: 2021 ident: D1EN00700A/cit142/1 publication-title: J. Fish Dis. – volume: 238 issue: 116484 year: 2020 ident: D1EN00700A/cit117/1 publication-title: Sep. Purif. Technol. – volume: 80 start-page: 25 year: 2019 ident: D1EN00700A/cit43/1 publication-title: Water Sci. Technol. doi: 10.2166/wst.2019.227 – volume: 36 start-page: 1699 year: 2020 ident: D1EN00700A/cit76/1 publication-title: Langmuir doi: 10.1021/acs.langmuir.9b03532 – volume: 287 start-page: 412 year: 2015 ident: D1EN00700A/cit118/1 publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2015.01.069 – volume: 34 start-page: 233 year: 2012 ident: D1EN00700A/cit98/1 publication-title: Ozone: Sci. Eng. doi: 10.1080/01919512.2012.686354 – volume: 37 start-page: 78 year: 2015 ident: D1EN00700A/cit115/1 publication-title: Ozone: Sci. Eng. doi: 10.1080/01919512.2014.913473 – volume: 26 start-page: 122007 year: 2014 ident: D1EN00700A/cit70/1 publication-title: Phys. Fluids doi: 10.1063/1.4904718 – volume: 35 start-page: 1216 year: 2018 ident: D1EN00700A/cit53/1 publication-title: Environ. Eng. Sci. doi: 10.1089/ees.2018.0203 – volume: 18 start-page: 911 year: 2020 ident: D1EN00700A/cit5/1 publication-title: J. Water Health doi: 10.2166/wh.2020.020 – volume: 178 start-page: 11 year: 2016 ident: D1EN00700A/cit15/1 publication-title: J. Environ. Manage. doi: 10.1016/j.jenvman.2016.04.037 – volume: 11 start-page: 96 year: 2021 ident: D1EN00700A/cit57/1 publication-title: AMB Express doi: 10.1186/s13568-021-01254-0 – volume-title: Ozone Disinfection year: 2013 ident: D1EN00700A/cit103/1 – volume: 39 start-page: 4290 year: 2005 ident: D1EN00700A/cit134/1 publication-title: Environ. Sci. Technol. doi: 10.1021/es048396s – volume: 32 start-page: 4 year: 2020 ident: D1EN00700A/cit1/1 publication-title: Environ. Sci. Eur. doi: 10.1186/s12302-019-0283-0 – volume: 26 start-page: 21915 year: 2019 ident: D1EN00700A/cit46/1 publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-019-05554-8 – volume: 4 start-page: 1558496 year: 2018 ident: D1EN00700A/cit150/1 publication-title: Cogent Food Agric. doi: 10.1080/23311932.2018.1558496 – volume: 87 start-page: 206 year: 2012 ident: D1EN00700A/cit106/1 publication-title: J. Chem. Technol. Biotechnol. doi: 10.1002/jctb.2698 – volume: 52 start-page: 1196 year: 2019 ident: D1EN00700A/cit58/1 publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.8b00606 – volume: 57 start-page: 29340 year: 2016 ident: D1EN00700A/cit153/1 publication-title: Desalin. Water Treat. doi: 10.1080/19443994.2016.1172986 – volume: 409 start-page: 123759 year: 2021 ident: D1EN00700A/cit123/1 publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2020.123759 |
SSID | ssj0001125367 |
Score | 2.5312116 |
SecondaryResourceType | review_article |
Snippet | Micro- and nanobubbles (MNBs) are microscopic gas bodies sized at micro (<100 μm) and nanoscale (<1 μm), that have a long lifetime in aqueous solutions and... |
SourceID | proquest crossref rsc |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 3493 |
SubjectTerms | Agricultural wastes Aquaculture Aqueous solutions Disinfection Drinking water Feasibility studies Monitoring methods Oxidation Ozone Wastewater treatment |
Title | Disinfection applications of ozone micro- and nanobubbles |
URI | https://www.proquest.com/docview/2608174418 |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JT9wwFLYKXHqpQBR1yqJI9FIhT5M4znJEMIgucBokbpGXZ6nSNEHDzIVfz7OT2GE5UC7RyIo9sj_n-fNbCfkmpE3SxRWFFDTNCjBUliKmXEEZ4_knC2dov7rOL2-yX7f8NpRVdNElKzlVD6_GlbwHVWxDXG2U7H8g6wfFBvyN-OITEcbnmzA-_3s_OFM1J2NTtKWA7UOLBPKfdbijzkTQiKaVaykXvdvgoI8PoW5DgKSCqRW7rVe_4GR0u-79eZfteuGF-W-r_IGl5aF-Y4knuoQ0cX4ZVRA5KX6itEy69L1TGLd1KdMHmVmOt0Y6EoAsq9joMGW8c1p9IahxH-Dqnieza5twKPapTkM27GenlPcddFZzVtWh7wbZSvGSgGJ563Q2__kn6NiQvTFXRNhPbMhQy6ofYYCnnCRcNDaWQxUYxzbm2-RTf02ITjvMd8gHaHZJNcY7GuMdtSZyeEcd3hHiHY3w_kxuLmbzs0val76gipVsRZHGplwDR7LNbRa1OIM4NzlwnTCBFF4Zo5B_ILsWqbbOA8baj1NRmEJmha7YHtls8F-_kEhoYBAbyXLJMwZGiFhnoKSWIq9kwSbk-zD5WvV54W15kkX9cqUn5Ni_e9dlQ3n1rYNhDev-a7mv8d5c4u03S8oJ2cN19f11Ao3rJ76-afR98jFs3QOyuVqu4RCJ4Uoe9fg_AkW-YKk |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Disinfection+applications+of+ozone+micro-+and+nanobubbles&rft.jtitle=Environmental+science.+Nano&rft.au=Seridou%2C+Petroula&rft.au=Kalogerakis%2C+Nicolas&rft.date=2021-12-09&rft.issn=2051-8153&rft.eissn=2051-8161&rft.volume=8&rft.issue=12&rft.spage=3493&rft.epage=3510&rft_id=info:doi/10.1039%2FD1EN00700A&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_D1EN00700A |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2051-8153&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2051-8153&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2051-8153&client=summon |