The early application of the calculus to the inverse square force problem

The translation of Newton's geometrical Propositions in the Principia into the language of the differential calculus in the form developed by Leibniz and his followers has been the subject of many scholarly articles and books. One of the most vexing problems in this translation concerns the tra...

Full description

Saved in:
Bibliographic Details
Published inArchive for history of exact sciences Vol. 64; no. 3; pp. 269 - 300
Main Author Nauenberg, M.
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer 01.05.2010
Springer-Verlag
Subjects
Online AccessGet full text
ISSN0003-9519
1432-0657
DOI10.1007/s00407-009-0056-z

Cover

Loading…
Abstract The translation of Newton's geometrical Propositions in the Principia into the language of the differential calculus in the form developed by Leibniz and his followers has been the subject of many scholarly articles and books. One of the most vexing problems in this translation concerns the transition from the discrete polygonal orbits and force impulses in Prop. 1 to the continuous orbits and forces in Prop. 6. Newton justified this transition by lemma 1 on prime and ultimate ratios which was a concrete formulation of a limit, but it took another century before this concept was established on a rigorous mathematical basis. This difficulty was mirrored in the newly developed calculus which dealt with differentials that vanish in this limit, and therefore were considered to be fictional quantities by some mathematicians. Despite these problems, early practitioners of the differential calculus like Jacob Hermann, Pierre Varignon, and Johann Bernoulli succeeded without apparent difficulties in applying the differential calculus to the solution of the fundamental problem of orbital motion under the action of inverse square central forces. By following their calculations and describing some essential details that have been ignored in the past, I clarify the reason why the lack of rigor in establishing the continuum limit was not a practical problem.
AbstractList The translation of Newton’s geometrical Propositions in the Principia into the language of the differential calculus in the form developed by Leibniz and his followers has been the subject of many scholarly articles and books. One of the most vexing problems in this translation concerns the transition from the discrete polygonal orbits and force impulses in Prop. 1 to the continuous orbits and forces in Prop. 6. Newton justified this transition by lemma 1 on prime and ultimate ratios which was a concrete formulation of a limit, but it took another century before this concept was established on a rigorous mathematical basis. This difficulty was mirrored in the newly developed calculus which dealt with differentials that vanish in this limit, and therefore were considered to be fictional quantities by some mathematicians. Despite these problems, early practitioners of the differential calculus like Jacob Hermann, Pierre Varignon, and Johann Bernoulli succeeded without apparent difficulties in applying the differential calculus to the solution of the fundamental problem of orbital motion under the action of inverse square central forces. By following their calculations and describing some essential details that have been ignored in the past, I clarify the reason why the lack of rigor in establishing the continuum limit was not a practical problem.
The translation of Newton's geometrical Propositions in the Principia into the language of the differential calculus in the form developed by Leibniz and his followers has been the subject of many scholarly articles and books. One of the most vexing problems in this translation concerns the transition from the discrete polygonal orbits and force impulses in Prop. 1 to the continuous orbits and forces in Prop. 6. Newton justified this transition by lemma 1 on prime and ultimate ratios which was a concrete formulation of a limit, but it took another century before this concept was established on a rigorous mathematical basis. This difficulty was mirrored in the newly developed calculus which dealt with differentials that vanish in this limit, and therefore were considered to be fictional quantities by some mathematicians. Despite these problems, early practitioners of the differential calculus like Jacob Hermann, Pierre Varignon, and Johann Bernoulli succeeded without apparent difficulties in applying the differential calculus to the solution of the fundamental problem of orbital motion under the action of inverse square central forces. By following their calculations and describing some essential details that have been ignored in the past, I clarify the reason why the lack of rigor in establishing the continuum limit was not a practical problem.
Author Nauenberg, M.
Author_xml – sequence: 1
  givenname: M.
  surname: Nauenberg
  fullname: Nauenberg, M.
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22860959$$DView record in Pascal Francis
BookMark eNp9kD1PwzAQhi1UJNrCD2BA8sIYOMd2Eo-o4qNSJZYyW657gVRpHOwEqf31uA0wMHSwrLPf585-JmTUuAYJuWZwxwDy-wAgIE8AVFwyS_ZnZMwETxPIZD4iYwDgiZJMXZBJCBsAlhYFjMl8-YEUja931LRtXVnTVa6hrqRdvLCmtn3dB9q5Y101X-gD0vDZG4-0dN4ibb1b1bi9JOelqQNe_exT8vb0uJy9JIvX5_nsYZFYXvAuESiRIZQK1jZX8SxW-VoxY_l6VVpAZXHFmLJSpIalolBMSC7zsjCiyCTyKbkd-rYmxPeV3jS2Crr11db4nU7TIgMlVczlQ856F4LHUtuqO_6u86aqNQN9MKcHczqa0wdzeh9J9o_8bX6KSQcmxGzzjl5vXO-bKOIkdDNAm9A5_zdFMC5SwRT_Bpd8jNk
CitedBy_id crossref_primary_10_1080_03080188_2022_2109102
crossref_primary_10_1111_j_2041_6962_2012_00133_x
crossref_primary_10_1007_s00407_015_0170_z
crossref_primary_10_1119_1_4736746
crossref_primary_10_1086_664935
crossref_primary_10_1007_s00407_014_0136_6
crossref_primary_10_1119_1_5012509
Cites_doi 10.1007/s00407-002-0063-9
10.1007/BF00327456
10.2307/2687647
10.1017/CBO9780511524752
10.1080/00033796000200059
10.1006/hmat.1994.1014
10.1080/00033796300203033
10.1016/S0315-0860(02)00027-7
10.1007/s00016-004-0226-y
10.1080/07468342.1994.11973607
10.1017/9781108627375
10.1017/CBO9780511983559.004
10.1007/BF01686278
10.7551/mitpress/9780262013178.001.0001
ContentType Journal Article
Copyright Springer-Verlag 2010
The Author(s) 2010
2015 INIST-CNRS
Copyright_xml – notice: Springer-Verlag 2010
– notice: The Author(s) 2010
– notice: 2015 INIST-CNRS
DBID C6C
AAYXX
CITATION
IQODW
DOI 10.1007/s00407-009-0056-z
DatabaseName Springer Nature OA Free Journals
CrossRef
Pascal-Francis
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: C6C
  name: Springer_OA刊
  url: http://www.springeropen.com/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Mathematics
EISSN 1432-0657
EndPage 300
ExternalDocumentID 22860959
10_1007_s00407_009_0056_z
41342419
GroupedDBID --Z
-Y2
-~C
-~X
.86
.VR
06D
0R~
0VY
199
1N0
203
23M
2J2
2JN
2JY
2KG
2LR
2VQ
2~H
30V
4.4
406
408
409
40D
40E
42P
5GY
5VS
67Z
6J9
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AACJB
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAVDF
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBHK
ABBRH
ABBXA
ABDBE
ABDBF
ABDZT
ABECU
ABFSG
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ABXSQ
ACAOD
ACBXY
ACDEK
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMFV
ACMLO
ACMTB
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACSTC
ACTMH
ACUHS
ACZOJ
ADAAO
ADHHG
ADHIR
ADHKG
ADIMF
ADKNI
ADKPE
ADMHG
ADRFC
ADTPH
ADULT
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEGXH
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEOZU
AEPYU
AESKC
AETLH
AEUPB
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFGCZ
AFHIU
AFLOW
AFQWF
AFVYC
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGJBK
AGLNM
AGMZJ
AGQEE
AGQMX
AGQPQ
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHIZY
AHKAY
AHPBZ
AHSBF
AHWEU
AHYZX
AIAKS
AIGIU
AIHAF
AIIXL
AILAN
AITGF
AIXLP
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALRMG
ALWAN
AMKLP
AMTXH
AMVHM
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
B-.
B0M
BA0
BAPOH
BDATZ
BGNMA
BIPZW
BSONS
CAG
COF
CS3
CSCUP
D0L
DDRTE
DL5
DNIVK
DPUIP
DQDLB
EAD
EAP
EBLON
EBS
ECEWR
EIOEI
EJD
EMK
EPL
ESBYG
EST
ESX
EWH
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
GQ8
GXS
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IPSME
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JAAYA
JBMMH
JBSCW
JCJTX
JENOY
JHFFW
JKQEH
JLEZI
JLXEF
JMS
JPL
JST
JZLTJ
KDC
KOV
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NB9
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P9R
PF0
PT4
PT5
QOK
QOS
R89
R9I
RHV
RNS
ROL
RPX
RSV
S16
S27
S3B
SA0
SAP
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WJK
WK8
YLTOR
Z45
ZMTXR
~45
~8M
~EX
-52
-5D
-5G
-BR
-EM
1SB
2.D
28-
2P1
5QI
ABTAH
ADINQ
AEFIE
AELPN
AFEXP
AGGDS
BBWZM
BXSLM
C6C
E.L
GQ6
H13
JSODD
KOW
NDZJH
R4E
RIG
RNI
RZK
S1Z
S26
S28
SCLPG
T16
ZWQNP
ZY4
AAYXX
AFOHR
CITATION
AABYN
AAFGU
AAPBV
AAYFA
ABFGW
ABKAS
ABPTK
ACBMV
ACBRV
ACBYP
ACFWO
ACIGE
ACIPQ
ACTTH
ACVWB
ACWMK
ADMDM
ADOXG
AEEQQ
AEFTE
AEPOP
AESTI
AEVTX
AFDAS
AFMKY
AFNRJ
AGGBP
AGPAZ
AIMYW
AJDOV
AKQUC
IQODW
UNUBA
ID FETCH-LOGICAL-c383t-4e5e1e0f90dc79c38e1e7d91ac3dbfc0e9ceb119c542a12489145357f8a4865e3
IEDL.DBID U2A
ISSN 0003-9519
IngestDate Wed Dec 20 09:37:34 EST 2023
Thu Apr 24 23:03:50 EDT 2025
Tue Jul 01 02:22:25 EDT 2025
Fri Feb 21 02:36:06 EST 2025
Thu Jun 19 15:27:30 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Central Force
Conic Section
Differential Calculus
Seventeenth Century
Early Application
Differential calculus
Orbit
Bernoulli (J.)
Mechanics
Varignon (P.)
Isaac Newton
Principia
Leibniz (G. W.)
Planetary motion
Celestial mechanics
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c383t-4e5e1e0f90dc79c38e1e7d91ac3dbfc0e9ceb119c542a12489145357f8a4865e3
OpenAccessLink https://link.springer.com/10.1007/s00407-009-0056-z
PageCount 32
ParticipantIDs pascalfrancis_primary_22860959
crossref_citationtrail_10_1007_s00407_009_0056_z
crossref_primary_10_1007_s00407_009_0056_z
springer_journals_10_1007_s00407_009_0056_z
jstor_primary_41342419
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2010-05-01
PublicationDateYYYYMMDD 2010-05-01
PublicationDate_xml – month: 05
  year: 2010
  text: 2010-05-01
  day: 01
PublicationDecade 2010
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle Archive for history of exact sciences
PublicationTitleAbbrev Arch. Hist. Exact Sci
PublicationYear 2010
Publisher Springer
Springer-Verlag
Publisher_xml – name: Springer
– name: Springer-Verlag
References CR19
CR17
CR38
Bertoloni Meli (CR9) 1991
CR15
CR37
CR36
CR13
CR35
CR34
CR33
CR32
CR30
Kline (CR23) 1972
Aiton (CR1) 1954; 20
Aiton (CR2) 1962; 16
Nauenberg (CR31) 2003; 30
CR4
CR3
CR6
Guicciardini (CR18) 2009
CR5
CR8
Wilson (CR39) 1994; 25
CR7
Erlichson (CR14) 1994; 21
CR29
Guicciardini (CR16) 1999
CR28
CR27
Boyer (CR10) 1989
CR26
CR25
CR24
CR22
CR21
Brackenridge (CR12) 2003; 57
CR20
Bos (CR11) 1973; 14
56_CR30
H.J.M. Bos (56_CR11) 1973; 14
56_CR34
56_CR13
56_CR35
56_CR32
56_CR33
56_CR3
56_CR4
E.J. Aiton (56_CR2) 1962; 16
N. Guicciardini (56_CR16) 1999
M. Kline (56_CR23) 1972
56_CR38
56_CR17
56_CR36
56_CR15
56_CR37
56_CR7
C.B. Boyer (56_CR10) 1989
56_CR8
E.J. Aiton (56_CR1) 1954; 20
56_CR5
56_CR6
56_CR19
56_CR20
56_CR24
56_CR21
N. Guicciardini (56_CR18) 2009
56_CR22
C. Wilson (56_CR39) 1994; 25
H. Erlichson (56_CR14) 1994; 21
D. Bertoloni Meli (56_CR9) 1991
56_CR27
M. Nauenberg (56_CR31) 2003; 30
56_CR28
56_CR25
56_CR26
J.B. Brackenridge (56_CR12) 2003; 57
56_CR29
References_xml – ident: CR22
– volume: 57
  start-page: 313
  year: 2003
  end-page: 336
  ident: CR12
  article-title: Newton’s Easy Quadratures “Omitted for the Sake of Brevity”
  publication-title: Archive for History of Exact Sciences
  doi: 10.1007/s00407-002-0063-9
– year: 1991
  ident: CR9
  publication-title: Newton vs. Leibniz
– ident: CR4
– ident: CR37
– ident: CR30
– year: 1972
  ident: CR23
  publication-title: Mathematical Thought from Ancient to Modern Times vol. 1
– volume: 14
  start-page: 1
  year: 1973
  end-page: 90
  ident: CR11
  article-title: Differentials, Higher-Order Differentials and the Derivative in the Leibnizian Calculus
  publication-title: Arch. Hist. Exact Sci.
  doi: 10.1007/BF00327456
– ident: CR33
– ident: CR35
– ident: CR6
– ident: CR29
– volume: 25
  start-page: 193
  year: 1994
  end-page: 205
  ident: CR39
  article-title: Newton’s Orbit Problem: A Historian’s Response
  publication-title: The College Mathematics Journal
  doi: 10.2307/2687647
– ident: CR8
– ident: CR25
– ident: CR27
– start-page: 207
  year: 1999
  end-page: 225
  ident: CR16
  publication-title: Reading the Principia: The Debate on Newton’s Mathematical Methods for Natural Philosophy from 187 to 1736
  doi: 10.1017/CBO9780511524752
– ident: CR21
– volume: 16
  start-page: 65
  year: 1962
  end-page: 82
  ident: CR2
  article-title: The Celestial Mechanics of Leibniz
  publication-title: Annals of Science
  doi: 10.1080/00033796000200059
– volume: 21
  start-page: 148
  year: 1994
  end-page: 161
  ident: CR14
  article-title: The Visualization of Quadratures in the Mystery of Corollary 3 to Proposition 41 of Newton’s Principia
  publication-title: Historia Mathematica
  doi: 10.1006/hmat.1994.1014
– ident: CR19
– year: 2009
  ident: CR18
  publication-title: Isaac Newton on Mathematical Certainty and Method
– ident: CR3
– ident: CR15
– ident: CR38
– ident: CR17
– year: 1989
  ident: CR10
  publication-title: A History of Mathematics
– ident: CR13
– ident: CR32
– ident: CR34
– ident: CR36
– ident: CR5
– ident: CR7
– volume: 20
  start-page: 81
  year: 1954
  end-page: 99
  ident: CR1
  article-title: The Inverse Problem of Central Forces
  publication-title: Annals of Science
  doi: 10.1080/00033796300203033
– ident: CR28
– ident: CR26
– ident: CR24
– volume: 30
  start-page: 441
  year: 2003
  end-page: 456
  ident: CR31
  article-title: Kepler’s area law in the Principia: filling in some details in Newton’s proof of Proposition 1
  publication-title: Historia Mathematica
  doi: 10.1016/S0315-0860(02)00027-7
– ident: CR20
– ident: 56_CR6
– ident: 56_CR27
– ident: 56_CR29
– ident: 56_CR25
– ident: 56_CR4
– ident: 56_CR33
– ident: 56_CR8
– ident: 56_CR35
– volume-title: A History of Mathematics
  year: 1989
  ident: 56_CR10
– ident: 56_CR32
  doi: 10.1007/s00016-004-0226-y
– volume: 20
  start-page: 81
  year: 1954
  ident: 56_CR1
  publication-title: Annals of Science
  doi: 10.1080/00033796300203033
– ident: 56_CR20
– ident: 56_CR37
– ident: 56_CR22
– volume: 25
  start-page: 193
  year: 1994
  ident: 56_CR39
  publication-title: The College Mathematics Journal
  doi: 10.1080/07468342.1994.11973607
– volume: 30
  start-page: 441
  year: 2003
  ident: 56_CR31
  publication-title: Historia Mathematica
  doi: 10.1016/S0315-0860(02)00027-7
– ident: 56_CR5
– ident: 56_CR34
  doi: 10.1017/9781108627375
– ident: 56_CR3
– ident: 56_CR26
– ident: 56_CR7
– ident: 56_CR24
– volume-title: Mathematical Thought from Ancient to Modern Times vol. 1
  year: 1972
  ident: 56_CR23
– ident: 56_CR36
– volume: 16
  start-page: 65
  year: 1962
  ident: 56_CR2
  publication-title: Annals of Science
  doi: 10.1080/00033796000200059
– volume: 21
  start-page: 148
  year: 1994
  ident: 56_CR14
  publication-title: Historia Mathematica
  doi: 10.1006/hmat.1994.1014
– ident: 56_CR28
  doi: 10.1017/CBO9780511983559.004
– ident: 56_CR30
  doi: 10.1007/BF01686278
– ident: 56_CR17
– volume-title: Isaac Newton on Mathematical Certainty and Method
  year: 2009
  ident: 56_CR18
  doi: 10.7551/mitpress/9780262013178.001.0001
– ident: 56_CR38
– ident: 56_CR13
– ident: 56_CR19
– volume: 14
  start-page: 1
  year: 1973
  ident: 56_CR11
  publication-title: Arch. Hist. Exact Sci.
  doi: 10.1007/BF00327456
– ident: 56_CR15
– ident: 56_CR21
– volume-title: Newton vs. Leibniz
  year: 1991
  ident: 56_CR9
– volume: 57
  start-page: 313
  year: 2003
  ident: 56_CR12
  publication-title: Archive for History of Exact Sciences
  doi: 10.1007/s00407-002-0063-9
– start-page: 207
  volume-title: Reading the Principia: The Debate on Newton’s Mathematical Methods for Natural Philosophy from 187 to 1736
  year: 1999
  ident: 56_CR16
  doi: 10.1017/CBO9780511524752
SSID ssj0012880
Score 1.8342061
Snippet The translation of Newton's geometrical Propositions in the Principia into the language of the differential calculus in the form developed by Leibniz and his...
The translation of Newton’s geometrical Propositions in the Principia into the language of the differential calculus in the form developed by Leibniz and his...
SourceID pascalfrancis
crossref
springer
jstor
SourceType Index Database
Enrichment Source
Publisher
StartPage 269
SubjectTerms 18th century
Algebra
Astronomy
Calculus
Cartesian coordinates
Classic(al) mechanics
Conic sections
Curves
Differential calculus
Differentials
History
History and Philosophical Foundations of Physics
History of Mathematical Sciences
History of Science
History of science and technology
Mathematical integrals
Mathematical sciences and techniques
Mathematics
Mathematics and Statistics
Mechanics
Mechanics. Acoustics
Observations and Techniques
Philosophy of Science
Physical sciences and techniques
Spherical coordinates
Triangles
TemporalSubjectTerms Century 18
Title The early application of the calculus to the inverse square force problem
URI https://www.jstor.org/stable/41342419
https://link.springer.com/article/10.1007/s00407-009-0056-z
Volume 64
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZgu8ABscHEeFQ5cOChSmmbNOlxmjYGaJyYNE5Vm6YSEuqAlst-PU5fYuIhcUzlNJLtxHbsfAY4l7GKhKnzM2BUNnOFsmNHKTuJ0HwK38eQzLx3nj_4swW7W_Jl_Y47b6rdm5RkeVK3j92Mvgm7vMxHq22vt6HLTeiOSrxwR23qwJWSNm3y0H0ImlTmT7_YMEZVPaIpjoxy5E9aNbb4liEtDc90H_Zqj5GMKhH3YEtnfdidt3CreR969Q7NyUUNI315ALeoAUQb_GLyJUtNVinBmQSXNhd_OSlW5fg5M_UZmuRvqDOaoCurNKm7zRzCYjp5HM_sunGCrTDgLGymuXY0TQOaKBHgNxyJJHAi5SVxqqgOFB7RTqA4cyM08DJwGPe4SGXEpM-1N4BOtsr0ERBO40Sl6HUxyZlyRaR9ql3uKXSkOAbiQ6ANB0NVo4qb5hYvYYuHXDI9RKaHhunheghX7ZTXClLjL-JBKZaWEo0uQ68jGIK1IaeWwHWlAdFDgutGcGG9L_Pf1zn-F_UJ7DRVBNQ5hU7x_qHP0DkpYgu6o5un-4kF22N_bJWq-QloFNwz
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZgHIADYoOJ8Rg5cOChSmmbtOkRTaANtp02abeqTVMJCXVAy2W_HqdNK8ZL4pjKaSU7qT_HzmeACxHLyNd1fpqMymKOL63YltJKInSfvudhSKbvO0-m3nDOHhZ8Ycii9V2YL_n7kuxTH6bpI3z01dZqE7YYBsq6em_gDZqEgSMErZvjIWgI6gTmT69Yc0FVFaIuiYxy1EpatbP4lhct3c39PuwZnEhuK8O2YUNlHdidNCSreQfaZl_m5NKQR18dwAjtTpRmLSafctNkmRKcSfDT-rgvJ8WyHD9luipDkfwVV4oiCGClIqbHzCHM7-9mg6Fl2iVYEsPMwmKKK1vRNKCJ9AN8hiM_CexIukmcSqoCiT9mO5CcORG6dRHYjLvcT0XEhMeV24VWtszUERBO40SmiLWY4Ew6fqQ8qhzuSoRPHMPvHtBag6E0XOK6pcVz2LAgl0oPUemhVnq46sF1M-WlItL4S7hbmqWRRFfLEGsEPeiv2akRcByhqfNQ4KY2XGh2Y_77d47_JX0O28PZZByOR9PHE9ip6wiofQqt4u1dnSE8KeJ-uTA_ANSi2JQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZgSAgOiA0Q4zFy4MBD0dIuaZsjGkwbsIkDk3ar2jSVkFA3aLns1-P0JSYeEsdUTiPZTmzHzmeAcy9UgWvq_AwYFeW2q2hoKUWjAM2n6zgYkpn3zuOJM5zy-5mYlX1O06ravUpJFm8aDEpTknUXUdytH74Z3XNpfrGPFpwu12EDA5U8T9t3-nUawfY8VrXMQ1dCVmnNn36xYpiK2kRTKBmkyKu4aHLxLVuaG6HBLuyU3iO5KcTdhDWdtGB7XEOvpi1olrs1JRclpPTlHoxQG4g2WMbkS8aazGOCMwkubS4BU5LN8_FLYmo1NEnfUH80QbdWaVJ2ntmH6eDuuT-kZRMFqjD4zCjXQluaxZJFypX4DUduJK1A9aIwVkxLhce1JZXgdoDG3pMWFz3hxl7APUfo3gE0knmiD4EIFkYqRg-Me4Ir2w20w7QtegqdKoFBeRtYxUFflQjjptHFq19jI-dM95HpvmG6v2zDVT1lUcBr_EV8kIulpkQDzNEDkW3orMipJrBtzwDqIcF1JTi_3KPp7-sc_Yv6DDafbgf-42jycAxbVXEBs06gkb1_6FP0WbKwk-vlJ6aV4Ns
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+early+application+of+the+calculus+to+the+inverse+square+force+problem&rft.jtitle=Archive+for+history+of+exact+sciences&rft.au=NAUENBERG%2C+M&rft.date=2010-05-01&rft.pub=Springer&rft.issn=0003-9519&rft.eissn=1432-0657&rft.volume=64&rft.issue=3&rft.spage=269&rft.epage=300&rft_id=info:doi/10.1007%2Fs00407-009-0056-z&rft.externalDBID=n%2Fa&rft.externalDocID=22860959
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-9519&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-9519&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-9519&client=summon