The early application of the calculus to the inverse square force problem
The translation of Newton's geometrical Propositions in the Principia into the language of the differential calculus in the form developed by Leibniz and his followers has been the subject of many scholarly articles and books. One of the most vexing problems in this translation concerns the tra...
Saved in:
Published in | Archive for history of exact sciences Vol. 64; no. 3; pp. 269 - 300 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer
01.05.2010
Springer-Verlag |
Subjects | |
Online Access | Get full text |
ISSN | 0003-9519 1432-0657 |
DOI | 10.1007/s00407-009-0056-z |
Cover
Loading…
Abstract | The translation of Newton's geometrical Propositions in the Principia into the language of the differential calculus in the form developed by Leibniz and his followers has been the subject of many scholarly articles and books. One of the most vexing problems in this translation concerns the transition from the discrete polygonal orbits and force impulses in Prop. 1 to the continuous orbits and forces in Prop. 6. Newton justified this transition by lemma 1 on prime and ultimate ratios which was a concrete formulation of a limit, but it took another century before this concept was established on a rigorous mathematical basis. This difficulty was mirrored in the newly developed calculus which dealt with differentials that vanish in this limit, and therefore were considered to be fictional quantities by some mathematicians. Despite these problems, early practitioners of the differential calculus like Jacob Hermann, Pierre Varignon, and Johann Bernoulli succeeded without apparent difficulties in applying the differential calculus to the solution of the fundamental problem of orbital motion under the action of inverse square central forces. By following their calculations and describing some essential details that have been ignored in the past, I clarify the reason why the lack of rigor in establishing the continuum limit was not a practical problem. |
---|---|
AbstractList | The translation of Newton’s geometrical Propositions in the
Principia
into the language of the differential calculus in the form developed by Leibniz and his followers has been the subject of many scholarly articles and books. One of the most vexing problems in this translation concerns the transition from the discrete polygonal orbits and force impulses in Prop. 1 to the continuous orbits and forces in Prop. 6. Newton justified this transition by lemma 1 on prime and ultimate ratios which was a concrete formulation of a limit, but it took another century before this concept was established on a rigorous mathematical basis. This difficulty was mirrored in the newly developed calculus which dealt with differentials that vanish in this limit, and therefore were considered to be fictional quantities by some mathematicians. Despite these problems, early practitioners of the differential calculus like Jacob Hermann, Pierre Varignon, and Johann Bernoulli succeeded without apparent difficulties in applying the differential calculus to the solution of the fundamental problem of orbital motion under the action of inverse square central forces. By following their calculations and describing some essential details that have been ignored in the past, I clarify the reason why the lack of rigor in establishing the continuum limit was not a practical problem. The translation of Newton's geometrical Propositions in the Principia into the language of the differential calculus in the form developed by Leibniz and his followers has been the subject of many scholarly articles and books. One of the most vexing problems in this translation concerns the transition from the discrete polygonal orbits and force impulses in Prop. 1 to the continuous orbits and forces in Prop. 6. Newton justified this transition by lemma 1 on prime and ultimate ratios which was a concrete formulation of a limit, but it took another century before this concept was established on a rigorous mathematical basis. This difficulty was mirrored in the newly developed calculus which dealt with differentials that vanish in this limit, and therefore were considered to be fictional quantities by some mathematicians. Despite these problems, early practitioners of the differential calculus like Jacob Hermann, Pierre Varignon, and Johann Bernoulli succeeded without apparent difficulties in applying the differential calculus to the solution of the fundamental problem of orbital motion under the action of inverse square central forces. By following their calculations and describing some essential details that have been ignored in the past, I clarify the reason why the lack of rigor in establishing the continuum limit was not a practical problem. |
Author | Nauenberg, M. |
Author_xml | – sequence: 1 givenname: M. surname: Nauenberg fullname: Nauenberg, M. |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22860959$$DView record in Pascal Francis |
BookMark | eNp9kD1PwzAQhi1UJNrCD2BA8sIYOMd2Eo-o4qNSJZYyW657gVRpHOwEqf31uA0wMHSwrLPf585-JmTUuAYJuWZwxwDy-wAgIE8AVFwyS_ZnZMwETxPIZD4iYwDgiZJMXZBJCBsAlhYFjMl8-YEUja931LRtXVnTVa6hrqRdvLCmtn3dB9q5Y101X-gD0vDZG4-0dN4ibb1b1bi9JOelqQNe_exT8vb0uJy9JIvX5_nsYZFYXvAuESiRIZQK1jZX8SxW-VoxY_l6VVpAZXHFmLJSpIalolBMSC7zsjCiyCTyKbkd-rYmxPeV3jS2Crr11db4nU7TIgMlVczlQ856F4LHUtuqO_6u86aqNQN9MKcHczqa0wdzeh9J9o_8bX6KSQcmxGzzjl5vXO-bKOIkdDNAm9A5_zdFMC5SwRT_Bpd8jNk |
CitedBy_id | crossref_primary_10_1080_03080188_2022_2109102 crossref_primary_10_1111_j_2041_6962_2012_00133_x crossref_primary_10_1007_s00407_015_0170_z crossref_primary_10_1119_1_4736746 crossref_primary_10_1086_664935 crossref_primary_10_1007_s00407_014_0136_6 crossref_primary_10_1119_1_5012509 |
Cites_doi | 10.1007/s00407-002-0063-9 10.1007/BF00327456 10.2307/2687647 10.1017/CBO9780511524752 10.1080/00033796000200059 10.1006/hmat.1994.1014 10.1080/00033796300203033 10.1016/S0315-0860(02)00027-7 10.1007/s00016-004-0226-y 10.1080/07468342.1994.11973607 10.1017/9781108627375 10.1017/CBO9780511983559.004 10.1007/BF01686278 10.7551/mitpress/9780262013178.001.0001 |
ContentType | Journal Article |
Copyright | Springer-Verlag 2010 The Author(s) 2010 2015 INIST-CNRS |
Copyright_xml | – notice: Springer-Verlag 2010 – notice: The Author(s) 2010 – notice: 2015 INIST-CNRS |
DBID | C6C AAYXX CITATION IQODW |
DOI | 10.1007/s00407-009-0056-z |
DatabaseName | Springer Nature OA Free Journals CrossRef Pascal-Francis |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: C6C name: Springer_OA刊 url: http://www.springeropen.com/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Mathematics |
EISSN | 1432-0657 |
EndPage | 300 |
ExternalDocumentID | 22860959 10_1007_s00407_009_0056_z 41342419 |
GroupedDBID | --Z -Y2 -~C -~X .86 .VR 06D 0R~ 0VY 199 1N0 203 23M 2J2 2JN 2JY 2KG 2LR 2VQ 2~H 30V 4.4 406 408 409 40D 40E 42P 5GY 5VS 67Z 6J9 6NX 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AACJB AAHNG AAIAL AAJBT AAJKR AANZL AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAVDF AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBHK ABBRH ABBXA ABDBE ABDBF ABDZT ABECU ABFSG ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ABXSQ ACAOD ACBXY ACDEK ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMFV ACMLO ACMTB ACOKC ACOMO ACPIV ACREN ACSNA ACSTC ACTMH ACUHS ACZOJ ADAAO ADHHG ADHIR ADHKG ADIMF ADKNI ADKPE ADMHG ADRFC ADTPH ADULT ADURQ ADYFF ADYOE ADZKW AEBTG AEFQL AEGAL AEGNC AEGXH AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEOZU AEPYU AESKC AETLH AEUPB AEVLU AEXYK AEZWR AFBBN AFDZB AFGCZ AFHIU AFLOW AFQWF AFVYC AFWTZ AFYQB AFZKB AGAYW AGDGC AGJBK AGLNM AGMZJ AGQEE AGQMX AGQPQ AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHIZY AHKAY AHPBZ AHSBF AHWEU AHYZX AIAKS AIGIU AIHAF AIIXL AILAN AITGF AIXLP AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALRMG ALWAN AMKLP AMTXH AMVHM AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG ATHPR AVWKF AXYYD AYFIA AYJHY AZFZN B-. B0M BA0 BAPOH BDATZ BGNMA BIPZW BSONS CAG COF CS3 CSCUP D0L DDRTE DL5 DNIVK DPUIP DQDLB EAD EAP EBLON EBS ECEWR EIOEI EJD EMK EPL ESBYG EST ESX EWH F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ7 GQ8 GXS HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ IPSME ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JAAYA JBMMH JBSCW JCJTX JENOY JHFFW JKQEH JLEZI JLXEF JMS JPL JST JZLTJ KDC KOV LAS LLZTM M4Y MA- N2Q N9A NB0 NB9 NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P9R PF0 PT4 PT5 QOK QOS R89 R9I RHV RNS ROL RPX RSV S16 S27 S3B SA0 SAP SDD SDH SDM SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WJK WK8 YLTOR Z45 ZMTXR ~45 ~8M ~EX -52 -5D -5G -BR -EM 1SB 2.D 28- 2P1 5QI ABTAH ADINQ AEFIE AELPN AFEXP AGGDS BBWZM BXSLM C6C E.L GQ6 H13 JSODD KOW NDZJH R4E RIG RNI RZK S1Z S26 S28 SCLPG T16 ZWQNP ZY4 AAYXX AFOHR CITATION AABYN AAFGU AAPBV AAYFA ABFGW ABKAS ABPTK ACBMV ACBRV ACBYP ACFWO ACIGE ACIPQ ACTTH ACVWB ACWMK ADMDM ADOXG AEEQQ AEFTE AEPOP AESTI AEVTX AFDAS AFMKY AFNRJ AGGBP AGPAZ AIMYW AJDOV AKQUC IQODW UNUBA |
ID | FETCH-LOGICAL-c383t-4e5e1e0f90dc79c38e1e7d91ac3dbfc0e9ceb119c542a12489145357f8a4865e3 |
IEDL.DBID | U2A |
ISSN | 0003-9519 |
IngestDate | Wed Dec 20 09:37:34 EST 2023 Thu Apr 24 23:03:50 EDT 2025 Tue Jul 01 02:22:25 EDT 2025 Fri Feb 21 02:36:06 EST 2025 Thu Jun 19 15:27:30 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Central Force Conic Section Differential Calculus Seventeenth Century Early Application Differential calculus Orbit Bernoulli (J.) Mechanics Varignon (P.) Isaac Newton Principia Leibniz (G. W.) Planetary motion Celestial mechanics |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c383t-4e5e1e0f90dc79c38e1e7d91ac3dbfc0e9ceb119c542a12489145357f8a4865e3 |
OpenAccessLink | https://link.springer.com/10.1007/s00407-009-0056-z |
PageCount | 32 |
ParticipantIDs | pascalfrancis_primary_22860959 crossref_citationtrail_10_1007_s00407_009_0056_z crossref_primary_10_1007_s00407_009_0056_z springer_journals_10_1007_s00407_009_0056_z jstor_primary_41342419 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2010-05-01 |
PublicationDateYYYYMMDD | 2010-05-01 |
PublicationDate_xml | – month: 05 year: 2010 text: 2010-05-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
PublicationTitle | Archive for history of exact sciences |
PublicationTitleAbbrev | Arch. Hist. Exact Sci |
PublicationYear | 2010 |
Publisher | Springer Springer-Verlag |
Publisher_xml | – name: Springer – name: Springer-Verlag |
References | CR19 CR17 CR38 Bertoloni Meli (CR9) 1991 CR15 CR37 CR36 CR13 CR35 CR34 CR33 CR32 CR30 Kline (CR23) 1972 Aiton (CR1) 1954; 20 Aiton (CR2) 1962; 16 Nauenberg (CR31) 2003; 30 CR4 CR3 CR6 Guicciardini (CR18) 2009 CR5 CR8 Wilson (CR39) 1994; 25 CR7 Erlichson (CR14) 1994; 21 CR29 Guicciardini (CR16) 1999 CR28 CR27 Boyer (CR10) 1989 CR26 CR25 CR24 CR22 CR21 Brackenridge (CR12) 2003; 57 CR20 Bos (CR11) 1973; 14 56_CR30 H.J.M. Bos (56_CR11) 1973; 14 56_CR34 56_CR13 56_CR35 56_CR32 56_CR33 56_CR3 56_CR4 E.J. Aiton (56_CR2) 1962; 16 N. Guicciardini (56_CR16) 1999 M. Kline (56_CR23) 1972 56_CR38 56_CR17 56_CR36 56_CR15 56_CR37 56_CR7 C.B. Boyer (56_CR10) 1989 56_CR8 E.J. Aiton (56_CR1) 1954; 20 56_CR5 56_CR6 56_CR19 56_CR20 56_CR24 56_CR21 N. Guicciardini (56_CR18) 2009 56_CR22 C. Wilson (56_CR39) 1994; 25 H. Erlichson (56_CR14) 1994; 21 D. Bertoloni Meli (56_CR9) 1991 56_CR27 M. Nauenberg (56_CR31) 2003; 30 56_CR28 56_CR25 56_CR26 J.B. Brackenridge (56_CR12) 2003; 57 56_CR29 |
References_xml | – ident: CR22 – volume: 57 start-page: 313 year: 2003 end-page: 336 ident: CR12 article-title: Newton’s Easy Quadratures “Omitted for the Sake of Brevity” publication-title: Archive for History of Exact Sciences doi: 10.1007/s00407-002-0063-9 – year: 1991 ident: CR9 publication-title: Newton vs. Leibniz – ident: CR4 – ident: CR37 – ident: CR30 – year: 1972 ident: CR23 publication-title: Mathematical Thought from Ancient to Modern Times vol. 1 – volume: 14 start-page: 1 year: 1973 end-page: 90 ident: CR11 article-title: Differentials, Higher-Order Differentials and the Derivative in the Leibnizian Calculus publication-title: Arch. Hist. Exact Sci. doi: 10.1007/BF00327456 – ident: CR33 – ident: CR35 – ident: CR6 – ident: CR29 – volume: 25 start-page: 193 year: 1994 end-page: 205 ident: CR39 article-title: Newton’s Orbit Problem: A Historian’s Response publication-title: The College Mathematics Journal doi: 10.2307/2687647 – ident: CR8 – ident: CR25 – ident: CR27 – start-page: 207 year: 1999 end-page: 225 ident: CR16 publication-title: Reading the Principia: The Debate on Newton’s Mathematical Methods for Natural Philosophy from 187 to 1736 doi: 10.1017/CBO9780511524752 – ident: CR21 – volume: 16 start-page: 65 year: 1962 end-page: 82 ident: CR2 article-title: The Celestial Mechanics of Leibniz publication-title: Annals of Science doi: 10.1080/00033796000200059 – volume: 21 start-page: 148 year: 1994 end-page: 161 ident: CR14 article-title: The Visualization of Quadratures in the Mystery of Corollary 3 to Proposition 41 of Newton’s Principia publication-title: Historia Mathematica doi: 10.1006/hmat.1994.1014 – ident: CR19 – year: 2009 ident: CR18 publication-title: Isaac Newton on Mathematical Certainty and Method – ident: CR3 – ident: CR15 – ident: CR38 – ident: CR17 – year: 1989 ident: CR10 publication-title: A History of Mathematics – ident: CR13 – ident: CR32 – ident: CR34 – ident: CR36 – ident: CR5 – ident: CR7 – volume: 20 start-page: 81 year: 1954 end-page: 99 ident: CR1 article-title: The Inverse Problem of Central Forces publication-title: Annals of Science doi: 10.1080/00033796300203033 – ident: CR28 – ident: CR26 – ident: CR24 – volume: 30 start-page: 441 year: 2003 end-page: 456 ident: CR31 article-title: Kepler’s area law in the Principia: filling in some details in Newton’s proof of Proposition 1 publication-title: Historia Mathematica doi: 10.1016/S0315-0860(02)00027-7 – ident: CR20 – ident: 56_CR6 – ident: 56_CR27 – ident: 56_CR29 – ident: 56_CR25 – ident: 56_CR4 – ident: 56_CR33 – ident: 56_CR8 – ident: 56_CR35 – volume-title: A History of Mathematics year: 1989 ident: 56_CR10 – ident: 56_CR32 doi: 10.1007/s00016-004-0226-y – volume: 20 start-page: 81 year: 1954 ident: 56_CR1 publication-title: Annals of Science doi: 10.1080/00033796300203033 – ident: 56_CR20 – ident: 56_CR37 – ident: 56_CR22 – volume: 25 start-page: 193 year: 1994 ident: 56_CR39 publication-title: The College Mathematics Journal doi: 10.1080/07468342.1994.11973607 – volume: 30 start-page: 441 year: 2003 ident: 56_CR31 publication-title: Historia Mathematica doi: 10.1016/S0315-0860(02)00027-7 – ident: 56_CR5 – ident: 56_CR34 doi: 10.1017/9781108627375 – ident: 56_CR3 – ident: 56_CR26 – ident: 56_CR7 – ident: 56_CR24 – volume-title: Mathematical Thought from Ancient to Modern Times vol. 1 year: 1972 ident: 56_CR23 – ident: 56_CR36 – volume: 16 start-page: 65 year: 1962 ident: 56_CR2 publication-title: Annals of Science doi: 10.1080/00033796000200059 – volume: 21 start-page: 148 year: 1994 ident: 56_CR14 publication-title: Historia Mathematica doi: 10.1006/hmat.1994.1014 – ident: 56_CR28 doi: 10.1017/CBO9780511983559.004 – ident: 56_CR30 doi: 10.1007/BF01686278 – ident: 56_CR17 – volume-title: Isaac Newton on Mathematical Certainty and Method year: 2009 ident: 56_CR18 doi: 10.7551/mitpress/9780262013178.001.0001 – ident: 56_CR38 – ident: 56_CR13 – ident: 56_CR19 – volume: 14 start-page: 1 year: 1973 ident: 56_CR11 publication-title: Arch. Hist. Exact Sci. doi: 10.1007/BF00327456 – ident: 56_CR15 – ident: 56_CR21 – volume-title: Newton vs. Leibniz year: 1991 ident: 56_CR9 – volume: 57 start-page: 313 year: 2003 ident: 56_CR12 publication-title: Archive for History of Exact Sciences doi: 10.1007/s00407-002-0063-9 – start-page: 207 volume-title: Reading the Principia: The Debate on Newton’s Mathematical Methods for Natural Philosophy from 187 to 1736 year: 1999 ident: 56_CR16 doi: 10.1017/CBO9780511524752 |
SSID | ssj0012880 |
Score | 1.8342061 |
Snippet | The translation of Newton's geometrical Propositions in the Principia into the language of the differential calculus in the form developed by Leibniz and his... The translation of Newton’s geometrical Propositions in the Principia into the language of the differential calculus in the form developed by Leibniz and his... |
SourceID | pascalfrancis crossref springer jstor |
SourceType | Index Database Enrichment Source Publisher |
StartPage | 269 |
SubjectTerms | 18th century Algebra Astronomy Calculus Cartesian coordinates Classic(al) mechanics Conic sections Curves Differential calculus Differentials History History and Philosophical Foundations of Physics History of Mathematical Sciences History of Science History of science and technology Mathematical integrals Mathematical sciences and techniques Mathematics Mathematics and Statistics Mechanics Mechanics. Acoustics Observations and Techniques Philosophy of Science Physical sciences and techniques Spherical coordinates Triangles |
TemporalSubjectTerms | Century 18 |
Title | The early application of the calculus to the inverse square force problem |
URI | https://www.jstor.org/stable/41342419 https://link.springer.com/article/10.1007/s00407-009-0056-z |
Volume | 64 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZgu8ABscHEeFQ5cOChSmmbNOlxmjYGaJyYNE5Vm6YSEuqAlst-PU5fYuIhcUzlNJLtxHbsfAY4l7GKhKnzM2BUNnOFsmNHKTuJ0HwK38eQzLx3nj_4swW7W_Jl_Y47b6rdm5RkeVK3j92Mvgm7vMxHq22vt6HLTeiOSrxwR23qwJWSNm3y0H0ImlTmT7_YMEZVPaIpjoxy5E9aNbb4liEtDc90H_Zqj5GMKhH3YEtnfdidt3CreR969Q7NyUUNI315ALeoAUQb_GLyJUtNVinBmQSXNhd_OSlW5fg5M_UZmuRvqDOaoCurNKm7zRzCYjp5HM_sunGCrTDgLGymuXY0TQOaKBHgNxyJJHAi5SVxqqgOFB7RTqA4cyM08DJwGPe4SGXEpM-1N4BOtsr0ERBO40Sl6HUxyZlyRaR9ql3uKXSkOAbiQ6ANB0NVo4qb5hYvYYuHXDI9RKaHhunheghX7ZTXClLjL-JBKZaWEo0uQ68jGIK1IaeWwHWlAdFDgutGcGG9L_Pf1zn-F_UJ7DRVBNQ5hU7x_qHP0DkpYgu6o5un-4kF22N_bJWq-QloFNwz |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZgHIADYoOJ8Rg5cOChSmmbtOkRTaANtp02abeqTVMJCXVAy2W_HqdNK8ZL4pjKaSU7qT_HzmeACxHLyNd1fpqMymKOL63YltJKInSfvudhSKbvO0-m3nDOHhZ8Ycii9V2YL_n7kuxTH6bpI3z01dZqE7YYBsq6em_gDZqEgSMErZvjIWgI6gTmT69Yc0FVFaIuiYxy1EpatbP4lhct3c39PuwZnEhuK8O2YUNlHdidNCSreQfaZl_m5NKQR18dwAjtTpRmLSafctNkmRKcSfDT-rgvJ8WyHD9luipDkfwVV4oiCGClIqbHzCHM7-9mg6Fl2iVYEsPMwmKKK1vRNKCJ9AN8hiM_CexIukmcSqoCiT9mO5CcORG6dRHYjLvcT0XEhMeV24VWtszUERBO40SmiLWY4Ew6fqQ8qhzuSoRPHMPvHtBag6E0XOK6pcVz2LAgl0oPUemhVnq46sF1M-WlItL4S7hbmqWRRFfLEGsEPeiv2akRcByhqfNQ4KY2XGh2Y_77d47_JX0O28PZZByOR9PHE9ip6wiofQqt4u1dnSE8KeJ-uTA_ANSi2JQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZgSAgOiA0Q4zFy4MBD0dIuaZsjGkwbsIkDk3ar2jSVkFA3aLns1-P0JSYeEsdUTiPZTmzHzmeAcy9UgWvq_AwYFeW2q2hoKUWjAM2n6zgYkpn3zuOJM5zy-5mYlX1O06ravUpJFm8aDEpTknUXUdytH74Z3XNpfrGPFpwu12EDA5U8T9t3-nUawfY8VrXMQ1dCVmnNn36xYpiK2kRTKBmkyKu4aHLxLVuaG6HBLuyU3iO5KcTdhDWdtGB7XEOvpi1olrs1JRclpPTlHoxQG4g2WMbkS8aazGOCMwkubS4BU5LN8_FLYmo1NEnfUH80QbdWaVJ2ntmH6eDuuT-kZRMFqjD4zCjXQluaxZJFypX4DUduJK1A9aIwVkxLhce1JZXgdoDG3pMWFz3hxl7APUfo3gE0knmiD4EIFkYqRg-Me4Ir2w20w7QtegqdKoFBeRtYxUFflQjjptHFq19jI-dM95HpvmG6v2zDVT1lUcBr_EV8kIulpkQDzNEDkW3orMipJrBtzwDqIcF1JTi_3KPp7-sc_Yv6DDafbgf-42jycAxbVXEBs06gkb1_6FP0WbKwk-vlJ6aV4Ns |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+early+application+of+the+calculus+to+the+inverse+square+force+problem&rft.jtitle=Archive+for+history+of+exact+sciences&rft.au=NAUENBERG%2C+M&rft.date=2010-05-01&rft.pub=Springer&rft.issn=0003-9519&rft.eissn=1432-0657&rft.volume=64&rft.issue=3&rft.spage=269&rft.epage=300&rft_id=info:doi/10.1007%2Fs00407-009-0056-z&rft.externalDBID=n%2Fa&rft.externalDocID=22860959 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-9519&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-9519&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-9519&client=summon |