Microstructural Variation and a Physical Mechanism Model for a Ti-55511 Alloy during Double-Stage Hot Deformation with Stepped Strain Rates in the β Region
The microstructural variation and high-temperature flow features of a Ti-55511 alloy in the β region are studied by utilizing double-stage compression with a stepped strain rate. The results demonstrate that the stresses in the latter stage of hot compression markedly reduce as the strain at the pre...
Saved in:
Published in | Materials Vol. 14; no. 21; p. 6371 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
25.10.2021
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The microstructural variation and high-temperature flow features of a Ti-55511 alloy in the β region are studied by utilizing double-stage compression with a stepped strain rate. The results demonstrate that the stresses in the latter stage of hot compression markedly reduce as the strain at the previous stage or the strain rate at the previous/latter stage drops. Moreover, the annihilation/interaction of substructures is promoted, and the distinct refinement of the dynamic recrystallization (DRX) in the β grain can be found. However, the coarsening of the β grain and the consumption of dislocation substructures are accelerated at high temperatures. Furthermore, the principal DRX nucleation mechanism of the Ti-55511 alloy during double-stage compression with a stepped strain rate in the β region is discontinuous DRX. Additionally, by using the microstructural variation characteristics related to the forming parameters, a physical mechanism equation is modeled to forecast the forming features, the DRX fraction, and the size of the β grain in the investigated alloy. The forecasted results are in accordance with the tested results, indicating that the established model can accurately forecast the microstructure variation and flow features of the studied alloy. |
---|---|
AbstractList | The microstructural variation and high-temperature flow features of a Ti-55511 alloy in the β region are studied by utilizing double-stage compression with a stepped strain rate. The results demonstrate that the stresses in the latter stage of hot compression markedly reduce as the strain at the previous stage or the strain rate at the previous/latter stage drops. Moreover, the annihilation/interaction of substructures is promoted, and the distinct refinement of the dynamic recrystallization (DRX) in the β grain can be found. However, the coarsening of the β grain and the consumption of dislocation substructures are accelerated at high temperatures. Furthermore, the principal DRX nucleation mechanism of the Ti-55511 alloy during double-stage compression with a stepped strain rate in the β region is discontinuous DRX. Additionally, by using the microstructural variation characteristics related to the forming parameters, a physical mechanism equation is modeled to forecast the forming features, the DRX fraction, and the size of the β grain in the investigated alloy. The forecasted results are in accordance with the tested results, indicating that the established model can accurately forecast the microstructure variation and flow features of the studied alloy. The microstructural variation and high-temperature flow features of a Ti-55511 alloy in the β region are studied by utilizing double-stage compression with a stepped strain rate. The results demonstrate that the stresses in the latter stage of hot compression markedly reduce as the strain at the previous stage or the strain rate at the previous/latter stage drops. Moreover, the annihilation/interaction of substructures is promoted, and the distinct refinement of the dynamic recrystallization (DRX) in the β grain can be found. However, the coarsening of the β grain and the consumption of dislocation substructures are accelerated at high temperatures. Furthermore, the principal DRX nucleation mechanism of the Ti-55511 alloy during double-stage compression with a stepped strain rate in the β region is discontinuous DRX. Additionally, by using the microstructural variation characteristics related to the forming parameters, a physical mechanism equation is modeled to forecast the forming features, the DRX fraction, and the size of the β grain in the investigated alloy. The forecasted results are in accordance with the tested results, indicating that the established model can accurately forecast the microstructure variation and flow features of the studied alloy.The microstructural variation and high-temperature flow features of a Ti-55511 alloy in the β region are studied by utilizing double-stage compression with a stepped strain rate. The results demonstrate that the stresses in the latter stage of hot compression markedly reduce as the strain at the previous stage or the strain rate at the previous/latter stage drops. Moreover, the annihilation/interaction of substructures is promoted, and the distinct refinement of the dynamic recrystallization (DRX) in the β grain can be found. However, the coarsening of the β grain and the consumption of dislocation substructures are accelerated at high temperatures. Furthermore, the principal DRX nucleation mechanism of the Ti-55511 alloy during double-stage compression with a stepped strain rate in the β region is discontinuous DRX. Additionally, by using the microstructural variation characteristics related to the forming parameters, a physical mechanism equation is modeled to forecast the forming features, the DRX fraction, and the size of the β grain in the investigated alloy. The forecasted results are in accordance with the tested results, indicating that the established model can accurately forecast the microstructure variation and flow features of the studied alloy. |
Author | Jiang, Yu-Qiang Xie, Yang-Chen He, Dao-Guang Lin, Yong-Cheng Chen, Zi-Jian Xia, Yu-Chi Su, Gang Yan, Xin-Tao Li, Zhou |
AuthorAffiliation | 1 School of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China; 193812038@csu.edu.cn (G.S.); gugeyouling@163.com (Y.-Q.J.); lizhou_industry@hotmail.com (Z.L.); zjchen@csu.edu.cn (Z.-J.C.); yanxintao@csu.edu.cn (X.-T.Y.); xiayuchi@csu.edu.cn (Y.-C.X.); 193811005@csu.edu.cn (Y.-C.X.) 3 Light Alloy Research Institute of Central South University, Changsha 410083, China 2 State Key Laboratory of High Performance Complex Manufacturing, Changsha 410083, China |
AuthorAffiliation_xml | – name: 2 State Key Laboratory of High Performance Complex Manufacturing, Changsha 410083, China – name: 3 Light Alloy Research Institute of Central South University, Changsha 410083, China – name: 1 School of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China; 193812038@csu.edu.cn (G.S.); gugeyouling@163.com (Y.-Q.J.); lizhou_industry@hotmail.com (Z.L.); zjchen@csu.edu.cn (Z.-J.C.); yanxintao@csu.edu.cn (X.-T.Y.); xiayuchi@csu.edu.cn (Y.-C.X.); 193811005@csu.edu.cn (Y.-C.X.) |
Author_xml | – sequence: 1 givenname: Dao-Guang orcidid: 0000-0001-9359-0051 surname: He fullname: He, Dao-Guang – sequence: 2 givenname: Gang surname: Su fullname: Su, Gang – sequence: 3 givenname: Yong-Cheng orcidid: 0000-0001-9033-1564 surname: Lin fullname: Lin, Yong-Cheng – sequence: 4 givenname: Yu-Qiang orcidid: 0000-0002-1611-1106 surname: Jiang fullname: Jiang, Yu-Qiang – sequence: 5 givenname: Zhou surname: Li fullname: Li, Zhou – sequence: 6 givenname: Zi-Jian surname: Chen fullname: Chen, Zi-Jian – sequence: 7 givenname: Xin-Tao surname: Yan fullname: Yan, Xin-Tao – sequence: 8 givenname: Yu-Chi surname: Xia fullname: Xia, Yu-Chi – sequence: 9 givenname: Yang-Chen surname: Xie fullname: Xie, Yang-Chen |
BookMark | eNptkd9qFDEUxoNUbK298QkC3ogwOpkkk8mNUNpqhS5KW70dMsmZ3ZRMsk0yln0Xn8IH8ZnMusU_xdycA98vH-ec7yna88EDQs9J_ZpSWb-ZFGENaakgj9ABkbKtiGRs769-Hx2ldFOXRynpGvkE7VMmBOkkP0DfFlbHkHKcdZ6jcviLilZlGzxW3mCFP602yeoiLECvlLdpwotgwOExxCJf24pzTgg-di5ssJmj9Ut8GubBQXWV1RLwecj4FAo-7XzvbF7hqwzrNZhSo7IeX6oMCZcmrwD_-I4vYVnQZ-jxqFyCo_t6iD6_O7s-Oa8uPr7_cHJ8UWna0VwxZYxkLSFtZzgZBzNoocjIpJGDNnw0uhm7znQjDIYZrZgaBzYIUnMBRPCGHqK3O9_1PExgNPgylevX0U4qbvqgbP-v4u2qX4avfcc7zgQrBi_vDWK4nSHlfrJJg3PKQ5hT33ApmOSSk4K-eIDehDn6st6WamtOWy4K9WpHbcNJEcbfw5C63-be_8m9wPUDWNv869bb47r_ffkJvz-zIg |
CitedBy_id | crossref_primary_10_1016_j_jallcom_2024_174934 crossref_primary_10_1016_j_matchar_2022_112385 crossref_primary_10_3390_ma16186192 crossref_primary_10_1007_s12540_024_01876_6 crossref_primary_10_1016_j_mtcomm_2022_105209 crossref_primary_10_3390_ma15093161 crossref_primary_10_1016_j_jmatprotec_2024_118478 crossref_primary_10_1016_j_mtcomm_2024_110037 crossref_primary_10_1016_j_mtcomm_2025_111844 crossref_primary_10_3390_ma16093430 |
Cites_doi | 10.1016/j.jallcom.2021.159534 10.1016/j.msea.2016.04.040 10.1016/j.matdes.2010.10.004 10.1016/j.msea.2019.138631 10.1016/j.ijmecsci.2018.04.050 10.1016/j.jmst.2018.11.018 10.1016/j.jallcom.2018.03.120 10.1016/j.msea.2017.05.113 10.1016/j.ijfatigue.2019.06.002 10.1016/j.ijmecsci.2020.106069 10.1016/j.matchar.2017.11.026 10.1002/adem.201901193 10.1016/j.ijplas.2011.05.008 10.1016/j.msea.2020.139822 10.1016/j.matlet.2015.03.052 10.1016/j.ijplas.2020.102862 10.1016/j.msea.2018.02.097 10.1016/j.ijmecsci.2019.105178 10.1515/htmp-2014-0106 10.1016/j.matdes.2018.03.020 10.1016/j.ijmecsci.2016.01.024 10.1016/j.msea.2016.12.043 10.1016/j.msea.2020.140491 10.1016/j.matdes.2015.06.093 10.1016/j.matchar.2020.110272 10.1016/j.jallcom.2019.03.383 10.1016/j.msea.2020.139692 10.1016/j.msea.2013.01.077 10.1016/j.msea.2014.06.006 10.1016/j.msea.2016.11.002 10.3390/met7120568 10.1016/j.matlet.2014.03.042 10.1016/j.msea.2019.03.003 10.1016/j.vacuum.2019.108878 10.1016/j.matchar.2019.03.034 10.1016/j.msea.2011.02.051 10.1016/j.msea.2017.11.070 10.1016/S1006-706X(16)30191-1 10.1016/j.matdes.2015.01.009 10.1007/s12289-015-1274-3 10.1016/j.matdes.2013.02.044 10.1016/j.jallcom.2019.05.031 10.1016/S1359-6462(99)00163-3 10.1016/j.msea.2019.138851 10.1016/j.matdes.2013.04.009 10.1016/j.jallcom.2020.154672 10.1016/j.jallcom.2018.04.225 10.1016/j.matdes.2008.04.046 10.1016/j.matchar.2019.03.029 10.1016/j.vacuum.2019.01.008 10.1016/j.intermet.2014.01.007 10.1002/adem.201900930 10.1016/j.jmrt.2019.12.070 10.1007/s00339-016-0248-8 10.1016/j.msea.2015.07.031 10.1016/j.commatsci.2014.05.040 10.1016/j.matchar.2013.03.016 10.1016/j.vacuum.2018.08.020 10.1016/j.jallcom.2016.11.208 10.1016/j.msea.2010.02.009 |
ContentType | Journal Article |
Copyright | 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2021 by the authors. 2021 |
Copyright_xml | – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2021 by the authors. 2021 |
DBID | AAYXX CITATION 7SR 8FD 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU D1I DWQXO HCIFZ JG9 KB. PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM |
DOI | 10.3390/ma14216371 |
DatabaseName | CrossRef Engineered Materials Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Materials Science & Engineering ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central SciTech Premium Collection Materials Research Database Materials Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials Materials Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Engineered Materials Abstracts ProQuest Central Korea Materials Science Database ProQuest Central (New) ProQuest Materials Science Collection ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1996-1944 |
ExternalDocumentID | PMC8585474 10_3390_ma14216371 |
GroupedDBID | 29M 2WC 2XV 53G 5GY 5VS 8FE 8FG AADQD AAFWJ AAHBH AAYXX ABDBF ABJCF ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS AOIJS BCNDV BENPR BGLVJ CCPQU CITATION CZ9 D1I E3Z EBS ESX FRP GX1 HCIFZ HH5 HYE I-F IAO ITC KB. KC. KQ8 MK~ MODMG M~E OK1 OVT P2P PDBOC PGMZT PHGZM PHGZT PIMPY PROAC RPM TR2 TUS 7SR 8FD ABUWG AZQEC DWQXO JG9 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM |
ID | FETCH-LOGICAL-c383t-4add9461168d51fbdbc7a1f49d9bcd5fdc2f88d8febd4dca4afb4b71057e17523 |
IEDL.DBID | BENPR |
ISSN | 1996-1944 |
IngestDate | Thu Aug 21 18:33:40 EDT 2025 Thu Jul 10 22:16:01 EDT 2025 Fri Jul 25 11:52:00 EDT 2025 Tue Jul 01 03:41:53 EDT 2025 Thu Apr 24 22:57:10 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 21 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c383t-4add9461168d51fbdbc7a1f49d9bcd5fdc2f88d8febd4dca4afb4b71057e17523 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-1611-1106 0000-0001-9033-1564 0000-0001-9359-0051 |
OpenAccessLink | https://www.proquest.com/docview/2596053657?pq-origsite=%requestingapplication% |
PMID | 34771895 |
PQID | 2596053657 |
PQPubID | 2032366 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8585474 proquest_miscellaneous_2597495951 proquest_journals_2596053657 crossref_primary_10_3390_ma14216371 crossref_citationtrail_10_3390_ma14216371 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20211025 |
PublicationDateYYYYMMDD | 2021-10-25 |
PublicationDate_xml | – month: 10 year: 2021 text: 20211025 day: 25 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Materials |
PublicationYear | 2021 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Kumar (ref_22) 2020; 831 Wu (ref_31) 2011; 528 Li (ref_43) 2019; 35 Kar (ref_4) 2013; 81 Hajari (ref_36) 2017; 681 Wu (ref_21) 2020; 773 Abbasi (ref_29) 2016; 665 Sun (ref_11) 2018; 753 Verleysen (ref_48) 2018; 712 Xu (ref_34) 2018; 135 Zhao (ref_45) 2014; 92 Foul (ref_20) 2018; 722 Zhu (ref_5) 2018; 142–143 Long (ref_32) 2021; 191 Seshacharyulu (ref_17) 1999; 41 Xiao (ref_53) 2020; 790 Bobbili (ref_46) 2017; 696 Wang (ref_15) 2016; 23 Fan (ref_50) 2011; 27 Xiao (ref_51) 2020; 772 Barezban (ref_58) 2019; 791 Jiang (ref_28) 2020; 163 Yasmeen (ref_54) 2019; 164 Quan (ref_14) 2015; 34 Bodunrin (ref_37) 2020; 9 Sun (ref_44) 2011; 32 Ning (ref_26) 2015; 71 Jiang (ref_52) 2020; 22 Peng (ref_41) 2013; 51 Sen (ref_10) 2019; 753 Lin (ref_40) 2018; 157 Fan (ref_7) 2013; 49 Luo (ref_23) 2018; 146 He (ref_35) 2009; 30 Lin (ref_1) 2019; 169 Liang (ref_8) 2015; 151 Momeni (ref_18) 2019; 161 Mehtonen (ref_57) 2013; 571 Velay (ref_60) 2016; 108–109 Lin (ref_9) 2016; 122 Zhao (ref_19) 2019; 151 Momeni (ref_12) 2015; 643 Ai (ref_16) 2019; 127 Lin (ref_27) 2020; 22 Jiang (ref_47) 2021; 870 Balasundar (ref_2) 2017; 684 Li (ref_24) 2018; 748 Saboori (ref_59) 2020; 792 Kotkunde (ref_13) 2017; 10 ref_42 Buzolin (ref_56) 2021; 136 Tan (ref_30) 2015; 84 Wen (ref_33) 2021; 803 Matsumoto (ref_25) 2014; 611 Long (ref_38) 2019; 796 Zhang (ref_6) 2014; 124 Sun (ref_49) 2010; 527 Wang (ref_3) 2019; 151 Cheng (ref_55) 2014; 49 Bobbili (ref_39) 2017; 700 |
References_xml | – volume: 870 start-page: 159534 year: 2021 ident: ref_47 article-title: Microstructure evolution and a unified constitutive model for a Ti-55511 alloy deformed in β region publication-title: J. Alloy. Compd. doi: 10.1016/j.jallcom.2021.159534 – volume: 665 start-page: 154 year: 2016 ident: ref_29 article-title: Dynamic softening mechanism in Ti-13V-11Cr-3Al beta Ti alloy during hot compressive deformation publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2016.04.040 – volume: 32 start-page: 1537 year: 2011 ident: ref_44 article-title: Modeling constitutive relationship of Ti40 alloy using artificial neural network publication-title: Mater. Des. doi: 10.1016/j.matdes.2010.10.004 – volume: 772 start-page: 138631 year: 2020 ident: ref_51 article-title: A physical-based constitutive model considering the motion of dislocation for Ni3Al-base superalloy publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2019.138631 – volume: 142–143 start-page: 502 year: 2018 ident: ref_5 article-title: Computational-experimental approaches for fatigue reliability assessment of turbine bladed disks publication-title: Int. J. Mech. Sci. doi: 10.1016/j.ijmecsci.2018.04.050 – volume: 35 start-page: 907 year: 2019 ident: ref_43 article-title: Modeling hot deformation behavior of low-cost Ti-2Al-9.2Mo-2Fe beta titanium alloy using a deep neural network publication-title: J. Mater. Sci. Technol. doi: 10.1016/j.jmst.2018.11.018 – volume: 748 start-page: 1031 year: 2018 ident: ref_24 article-title: Unified modelling of the flow behavior and softening mechanism of a TC6 titanium alloy during hot deformation publication-title: J. Alloy. Compd. doi: 10.1016/j.jallcom.2018.03.120 – volume: 700 start-page: 82 year: 2017 ident: ref_39 article-title: Constitutive modeling and fracture behavior of a biomedical Ti–13Nb-13Zr alloy publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2017.05.113 – volume: 127 start-page: 110 year: 2019 ident: ref_16 article-title: Probabilistic modelling of notch fatigue and size effect of components using highly stressed volume approach publication-title: Int. J. Fatigue doi: 10.1016/j.ijfatigue.2019.06.002 – volume: 191 start-page: 106069 year: 2021 ident: ref_32 article-title: Flow characterization of magnesium alloy ZK61 during hot deformation with improved constitutive equations and using activation energy maps publication-title: Int. J. Mech. Sci. doi: 10.1016/j.ijmecsci.2020.106069 – volume: 135 start-page: 154 year: 2018 ident: ref_34 article-title: Study on hot deformation behavior and workability of squeeze-cast 20 vol% SiCw/6061Al composites using processing map publication-title: Mater. Charact. doi: 10.1016/j.matchar.2017.11.026 – volume: 22 start-page: 1901193 year: 2020 ident: ref_27 article-title: Hot tensile deformation mechanism and dynamic softening behavior of Ti-6Al-4V alloy with thick lamellar microstructures publication-title: Adv. Eng. Mater. doi: 10.1002/adem.201901193 – volume: 27 start-page: 1833 year: 2011 ident: ref_50 article-title: Internal-state-variable based self-consistent constitutive modeling for hot working of two-phase titanium alloys coupling microstructure evolution publication-title: Int. J. Plast. doi: 10.1016/j.ijplas.2011.05.008 – volume: 792 start-page: 139822 year: 2020 ident: ref_59 article-title: Hot deformation behavior and flow stress modeling of Ti–6Al–4V alloy produced via electron beam melting additive manufacturing technology in single β-phase field publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2020.139822 – volume: 151 start-page: 57 year: 2015 ident: ref_8 article-title: The integrated influence on hot deformation of dual-phase titanium alloys incorporating dynamic recrystallization evolution and α/β phase transformation publication-title: Mater. Lett. doi: 10.1016/j.matlet.2015.03.052 – volume: 136 start-page: 102862 year: 2021 ident: ref_56 article-title: A dislocation-based model for the microstructure evolution and the flow stress of a Ti5553 alloy publication-title: Int. J. Plast. doi: 10.1016/j.ijplas.2020.102862 – volume: 722 start-page: 156 year: 2018 ident: ref_20 article-title: Dynamic transformation of α→β titanium at temperatures below the β-transus in commercially pure titanium publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2018.02.097 – volume: 164 start-page: 105178 year: 2019 ident: ref_54 article-title: Constitutive modeling for the simulation of the superplastic forming of TA15 titanium alloy publication-title: Int. J. Mech. Sci. doi: 10.1016/j.ijmecsci.2019.105178 – volume: 34 start-page: 549 year: 2015 ident: ref_14 article-title: Quantitative analysis of dynamic softening behaviors induced by dynamic recrystallization for Ti-10V-2Fe-2Al alloy publication-title: High Temp. Mater. Process. doi: 10.1515/htmp-2014-0106 – volume: 146 start-page: 152 year: 2018 ident: ref_23 article-title: Collaborative behavior in α lamellae and β phase evolution and its effect on the globularization of TC17 alloy publication-title: Mater. Des. doi: 10.1016/j.matdes.2018.03.020 – volume: 108–109 start-page: 1 year: 2016 ident: ref_60 article-title: Behavior modeling and microstructural evolutions of Ti–6Al–4V alloy under hot forming conditions publication-title: Int. J. Mech. Sci. doi: 10.1016/j.ijmecsci.2016.01.024 – volume: 684 start-page: 135 year: 2017 ident: ref_2 article-title: On the high temperature deformation behavior of titanium alloy BT3-1 publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2016.12.043 – volume: 803 start-page: 140491 year: 2021 ident: ref_33 article-title: High-temperature tensile characteristics and constitutive models of ultrahigh strength steel publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2020.140491 – volume: 84 start-page: 204 year: 2015 ident: ref_30 article-title: The identification of dynamic recrystallization and constitutive modeling during hot deformation of Ti55511 titanium alloy publication-title: Mater. Des. doi: 10.1016/j.matdes.2015.06.093 – volume: 163 start-page: 110272 year: 2020 ident: ref_28 article-title: Hot tensile properties, microstructure evolution and fracture mechanisms of Ti-6Al-4V alloy with initial coarse equiaxed phases publication-title: Mater. Charact. doi: 10.1016/j.matchar.2020.110272 – volume: 791 start-page: 1200 year: 2019 ident: ref_58 article-title: Constitutive analysis of wrought Mg-Gd magnesium alloys during hot compression at elevated temperatures publication-title: J. Alloy. Compd. doi: 10.1016/j.jallcom.2019.03.383 – volume: 790 start-page: 139692 year: 2020 ident: ref_53 article-title: A dislocation density-based model and processing maps of Ti-55511 alloy with bimodal microstructures during hot compression in α + β region publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2020.139692 – volume: 571 start-page: 1 year: 2013 ident: ref_57 article-title: Hot deformation behavior and microstructure evolution of a stabilized high-Cr ferritic stainless steel publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2013.01.077 – volume: 611 start-page: 337 year: 2014 ident: ref_25 article-title: Hot forging characteristic of Ti–5Al–5V–5Mo–3Cr alloy with single metastable β microstructure publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2014.06.006 – volume: 681 start-page: 4620 year: 2017 ident: ref_36 article-title: Constitutive modeling for high-temperature flow behavior of Ti-6242S alloy publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2016.11.002 – ident: ref_42 doi: 10.3390/met7120568 – volume: 124 start-page: 113 year: 2014 ident: ref_6 article-title: Tension behavior of Ti–6.6Al–3.3Mo–1.8Zr–0.29Si alloy over a wide range of strain rates publication-title: Mater. Lett. doi: 10.1016/j.matlet.2014.03.042 – volume: 753 start-page: 156 year: 2019 ident: ref_10 article-title: Tensile deformation mechanism and failure mode of different microstructures in Ti-5Al-5Mo-5V-3Cr alloy publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2019.03.003 – volume: 169 start-page: 108878 year: 2019 ident: ref_1 article-title: Hot compressive deformation behavior and microstructural evolution of a Ti-55511 alloy with basket-weave microstructures publication-title: Vacuum doi: 10.1016/j.vacuum.2019.108878 – volume: 151 start-page: 358 year: 2019 ident: ref_3 article-title: Precipitation behavior of a β-quenched Ti-5Al-5Mo-5V-1Cr-1Fe alloy during high-temperature compression publication-title: Mater. Charact. doi: 10.1016/j.matchar.2019.03.034 – volume: 528 start-page: 4620 year: 2011 ident: ref_31 article-title: Effect of processing parameters on hot compressive deformation behavior of a new Ni-Cr-Co based P/M superalloy publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2011.02.051 – volume: 712 start-page: 1 year: 2018 ident: ref_48 article-title: Simulation of the plastic response of Ti-6Al-4V thin sheet under different loading conditions using the viscoplastic self-consistent model publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2017.11.070 – volume: 23 start-page: 1297 year: 2016 ident: ref_15 article-title: Deformation Behavior of Ti-5.6Al-4.8Sn-2.0Zr-1.0Mo-0.35Si-0.85Nd Alloy in β/Quasi-β Forging Process publication-title: J. Iron Steel Res. Int. doi: 10.1016/S1006-706X(16)30191-1 – volume: 71 start-page: 68 year: 2015 ident: ref_26 article-title: Dynamic softening behavior of TC18 titanium alloy during hot deformation publication-title: Mater. Des. doi: 10.1016/j.matdes.2015.01.009 – volume: 10 start-page: 255 year: 2017 ident: ref_13 article-title: Experimental and theoretical investigation of forming limit diagram for Ti-6Al-4 V alloy at warm condition publication-title: Int. J. Mater. Form. doi: 10.1007/s12289-015-1274-3 – volume: 49 start-page: 945 year: 2013 ident: ref_7 article-title: Characterization of hot deformation behavior of a new near beta titanium alloy: Ti-7333 publication-title: Mater. Des. doi: 10.1016/j.matdes.2013.02.044 – volume: 796 start-page: 65 year: 2019 ident: ref_38 article-title: Constitutive modelling, dynamic globularization behavior and processing map for Ti-6Cr-5Mo-5V-4Al alloy during hot deformation publication-title: J. Alloy. Compd. doi: 10.1016/j.jallcom.2019.05.031 – volume: 41 start-page: 283 year: 1999 ident: ref_17 article-title: Hot deformation mechanisms in ELI Grade Ti–6Al–4V publication-title: Scr. Mater. doi: 10.1016/S1359-6462(99)00163-3 – volume: 773 start-page: 138851 year: 2020 ident: ref_21 article-title: Experimental investigation on dynamic phase transformation and texture evolution of Ti55531 high strength titanium alloy during hot compression in the α + β region publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2019.138851 – volume: 51 start-page: 95 year: 2013 ident: ref_41 article-title: Comparative study on constitutive relationship of as-cast Ti60 titanium alloy during hot deformation based on Arrhenius-type and artificial neural network models publication-title: Mater. Des. doi: 10.1016/j.matdes.2013.04.009 – volume: 831 start-page: 154672 year: 2020 ident: ref_22 article-title: Effect of boron on microstructure evolution and hot tensile deformation behavior of Ti-5Al-5V-5Mo-1Cr-1Fe alloy publication-title: J. Alloy. Compd. doi: 10.1016/j.jallcom.2020.154672 – volume: 753 start-page: 256 year: 2018 ident: ref_11 article-title: Characterization on hot deformation behavior of Ti-22Al-25Nb alloy using a combination of 3D processing maps and finite element simulation method publication-title: J. Alloy. Compd. doi: 10.1016/j.jallcom.2018.04.225 – volume: 30 start-page: 166 year: 2009 ident: ref_35 article-title: Mathematical modeling for high temperature flow behavior of as-cast Ti–45Al–8.5Nb–(W, B, Y) alloy publication-title: Mater. Des. doi: 10.1016/j.matdes.2008.04.046 – volume: 151 start-page: 429 year: 2019 ident: ref_19 article-title: Recrystallization behavior during hot tensile deformation of TA15 titanium alloy sheet with substantial prior deformed substructures publication-title: Mater. Charact. doi: 10.1016/j.matchar.2019.03.029 – volume: 161 start-page: 410 year: 2019 ident: ref_18 article-title: A comparative study on the hot deformation behavior of Ti-5Al-5Mo-5V-3Cr and newly developed Ti-4Al-7Mo-3V-3Cr alloys publication-title: Vacuum doi: 10.1016/j.vacuum.2019.01.008 – volume: 49 start-page: 23 year: 2014 ident: ref_55 article-title: Flow characteristics and constitutive modeling for elevated temperature deformation of a high Nb containing TiAl alloy publication-title: Intermetallics doi: 10.1016/j.intermet.2014.01.007 – volume: 22 start-page: 1900930 year: 2020 ident: ref_52 article-title: Constitutive model and processing maps for a Ti-55511 alloy in β region publication-title: Adv. Eng. Mater. doi: 10.1002/adem.201900930 – volume: 9 start-page: 2376 year: 2020 ident: ref_37 article-title: Flow stress prediction using hyperbolic-sine Arrhenius constants optimised by simple generalised reduced gradient refinement publication-title: J. Mater. Res. Technol. doi: 10.1016/j.jmrt.2019.12.070 – volume: 122 start-page: 716 year: 2016 ident: ref_9 article-title: A novel constitutive model for hot deformation behaviors of Ti-6Al-4V alloy based on probabilistic method publication-title: Appl. Phys. A doi: 10.1007/s00339-016-0248-8 – volume: 643 start-page: 142 year: 2015 ident: ref_12 article-title: Yield point phenomena in TIMETAL 125 beta Ti alloy publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2015.07.031 – volume: 92 start-page: 47 year: 2014 ident: ref_45 article-title: Modelling of the hot deformation behaviour of a titanium alloy using constitutive equations and artificial neural network publication-title: Comp. Mater. Sci. doi: 10.1016/j.commatsci.2014.05.040 – volume: 81 start-page: 37 year: 2013 ident: ref_4 article-title: Quantitative microstructural characterization of a near beta Ti alloy Ti-5553 under different processing conditions publication-title: Mater. Charact. doi: 10.1016/j.matchar.2013.03.016 – volume: 157 start-page: 83 year: 2018 ident: ref_40 article-title: Phase transformation and constitutive models of a hot compressed TC18 titanium alloy in the α + β regime publication-title: Vacuum doi: 10.1016/j.vacuum.2018.08.020 – volume: 696 start-page: 295 year: 2017 ident: ref_46 article-title: A physically-based constitutive model for hot deformation of Ti-10-2-3 alloy publication-title: J. Alloy. Compd. doi: 10.1016/j.jallcom.2016.11.208 – volume: 527 start-page: 3464 year: 2010 ident: ref_49 article-title: A numerical model based on internal-state- variable method for the microstructure evolution during hot–working process of TA15 titanium alloy publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2010.02.009 |
SSID | ssj0000331829 |
Score | 2.3530588 |
Snippet | The microstructural variation and high-temperature flow features of a Ti-55511 alloy in the β region are studied by utilizing double-stage compression with a... |
SourceID | pubmedcentral proquest crossref |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database |
StartPage | 6371 |
SubjectTerms | Artificial intelligence Deformation Dynamic recrystallization High temperature Hot pressing Mathematical models Microstructure Nucleation Strain rate Titanium alloys Titanium base alloys |
Title | Microstructural Variation and a Physical Mechanism Model for a Ti-55511 Alloy during Double-Stage Hot Deformation with Stepped Strain Rates in the β Region |
URI | https://www.proquest.com/docview/2596053657 https://www.proquest.com/docview/2597495951 https://pubmed.ncbi.nlm.nih.gov/PMC8585474 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NbtNAEB7R9AIHxK8IlGoQXDhY9dpre31CBZpGSKmq0KLcrP0zRHLtoIQD78JT8CA8EzO24zQS4mZrV1rLMzvzzezsfABvmCvakKcKEhmbQOq0DHJtaLtbRXjEC69bOqDZRTq9lp8WyaJPuK37ssqtTWwNtWss58hPCKYT8o7TJHu3-h4waxSfrvYUGgdwSCZYqREcvj-7uJwPWZYwJp2N8q4vaUzx_cmNFjIiEJKJfU-0g5f7xZG3vM3kAdzvYSKednJ9CHd8_Qju3Woe-Bh-zbiWruv_yr0z8AuFve1_Rl071HjZiwBnnq_3Ltc3yMxnFRJOpeGrZZAQkBF4WlXNT-zuKyIBalP5gDDoV4_TZoMf_XC_ETlpi1wXtvIOP7fsEjhnsIr0QEgS__zGuecK5ydwPTm7-jANeq6FwFKMuiEpOZfLVIhUuUSUxhmbaVHK3OXGuqR0NiqVcqr0xklntdSlkSZjlmBPCCSKn8Kobmr_DDALjfe5Nzq0sYwVBXQitmRFcwqebOjDMbzd_vfC9o3I-YurggISllGxk9EYXg9zV137jX_OOtqKr-i34LrYKcwYXg3DtHn4RETXvvnRzskoQiSUOYZsT-zDatx-e3-kXn5r23DziarM5PP_L_4C7kZcBkPuLkqOYERa4V8SjtmYYzhQk_PjXmXp7Xwh_gI23vp2 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LaxRBEG5CclAPwSduErVEPXgYMo-e10EkGNeNyQaJG8lt7EeNWZjMrOwGyX_xN3jwh_ibrJrXZkG85TbQDd1MVXV91V31lRAvuVe0Jk_lhDLQjlRR7qRKk7mbhPAIeqjqdkDj42h0Kj-ehWdr4ldXC8Npld2ZWB_UtjJ8R75LMJ2QdxCF8dvZd4e7RvHratdCo1GLQ7z6QSHb_M3BPsn3le8P30_ejZy2q4BjKBpb0H6sTWXkeVFiQy_XVptYeblMbaqNDXNr_DxJbJKjttIaJVWupY65Hy6Sr2WiAzryN2RAnpwr04cf-jsdNyAL8dOGBZXG3d0L5UmfIE_srfq9JZhdTcW85tuGd8VmC0phr9Gie2INy_vizjWqwgfi55gz9xq2WWbqgC8UZNdSBVVaUPCpFTiMkYuJp_ML4D5rBRAqpuHJ1AkJNnmwVxTVFTTVkUDwXRfoEOL9hjCqFrCPfTUl8BUxcBbaDC18rntZwAlDY6APwq3w5zecIOdTPxSnNyKDR2K9rEp8LCB2NWKKWrkmkEFC4aMXGDqzUwrVjIvuQLzu_ntmWtpz3nGRUfjDMsqWMhqIF_3cWUP28c9ZO534stbg59lSPQfieT9MpsrvL6rE6rKeE1M8Sph2IOIVsferMdn36kg5Pa9Jv_n9VsZy6_-LPxO3RpPxUXZ0cHy4LW77nIBDjtYPd8Q6aQg-IQS10E9rtQXx9abt5C_DyzcE |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LixNBEC6WLIgexCdGVy1RDx6GnUfP6yCymg1Z14QQd2VvY79GA9mZSCKy_8Vf4dEf4W-yal7ZgHjb20A3zDBV1fV93dVfAbzgXtGKMpUTikA5Qka5k0pF4a4TwiPWs7JqBzSeRKNT8f4sPNuB3-1dGC6rbNfEaqE2peY98n2C6YS8g4gIfN6URUwHwzfLbw53kOKT1radRu0ix_biB9G31eujAdn6pe8PD0_ejZymw4CjiZmt6duMSUXkeVFiQi9XRulYerlITaq0CXOj_TxJTJJbZYTRUshcCRVzb1xLeZdFD2j5342ZFfVg9-3hZDrrdnjcgOLFT2tN1CBI3f1z6QmfAFDsbWfBDbTdLsy8lOmGt-BmA1HxoPap27Bjiztw45Jw4V34OeY6vlp7lnU78BNR7srGKAuDEqeN-XFs-WrxfHWO3HVtgYSRafhk7oQEojw8WCzKC6zvSiKBebWwDuHfLxZH5RoHtrtbibxhjFyTtrQGP1adLXDGQBnpgVAs_vmFM8vV1ffg9EqscB96RVnYB4Cxq6xNrZKuDkSQEJn0Ak0reErETbvW7cOr9r9nuhFB5y9eZESG2EbZxkZ9eN7NXdbSH_-ctdeaL2vCf5VtnLUPz7phClw-jZGFLb9Xc2Jip4Rw-xBvmb17G0t_b48U86-VBDif5opYPPz_y5_CNYqR7MPR5PgRXPe5Goeyrh_uQY8cxD4mOLVWTxq_Rfh81aHyF8xJPJY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Microstructural+Variation+and+a+Physical+Mechanism+Model+for+a+Ti-55511+Alloy+during+Double-Stage+Hot+Deformation+with+Stepped+Strain+Rates+in+the+%CE%B2+Region&rft.jtitle=Materials&rft.au=He%2C+Dao-Guang&rft.au=Su%2C+Gang&rft.au=Lin%2C+Yong-Cheng&rft.au=Jiang%2C+Yu-Qiang&rft.date=2021-10-25&rft.issn=1996-1944&rft.eissn=1996-1944&rft.volume=14&rft.issue=21&rft_id=info:doi/10.3390%2Fma14216371&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1996-1944&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1996-1944&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1996-1944&client=summon |