A fault dynamic model of high-speed angular contact ball bearings

•A new dynamic model of faulty high-speed angular contact ball bearings is set up.•A B-spline fitting excitation function is used to represent the fault excitation.•The dynamic responses under different fault sizes and speeds are compared.•Experiment on high-speed bearings was performed to verify th...

Full description

Saved in:
Bibliographic Details
Published inMechanism and machine theory Vol. 143; p. 103627
Main Authors Qin, Yi, Li, Chengcheng, Cao, Folin, Chen, Haizhou
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.01.2020
Subjects
Online AccessGet full text
ISSN0094-114X
DOI10.1016/j.mechmachtheory.2019.103627

Cover

Abstract •A new dynamic model of faulty high-speed angular contact ball bearings is set up.•A B-spline fitting excitation function is used to represent the fault excitation.•The dynamic responses under different fault sizes and speeds are compared.•Experiment on high-speed bearings was performed to verify the proposed model. Angular contact ball bearings (ACBBs) are widely used in rotary machines especially in high-speed rotating machines because of their excellent properties. However, the traditional dynamic model of a rolling bearing is mainly applied to simulate the dynamic response at low speed, and uses the simple displacement excitation function to characterize the fault, thus its accuracy will decrease under high speed condition. Aiming at the shortcomings of the traditional model, a new high-speed fault dynamic model of ACBB is proposed by considering the influences of centrifugal force, gyroscopic moment and time-varying contact angles on the rolling element under high-speed running and using a B-spline fitting displacement excitation method to represent the fault excitation. With this model, high-speed dynamic responses under different fault sizes and rotation speeds are calculated by the Runge–Kutta method and Newton– Raphson method. Then the corresponding time and frequency domain characteristics are analyzed. From the simulation results, it can be seen that all the simulated acceleration signals of ACBBs are more in line with the actual situation than the traditional model, especially for the shape of an impulse. Finally, the effectiveness and correctness of the proposed model are verified by the experiment on aero-engine spindle bearings.
AbstractList •A new dynamic model of faulty high-speed angular contact ball bearings is set up.•A B-spline fitting excitation function is used to represent the fault excitation.•The dynamic responses under different fault sizes and speeds are compared.•Experiment on high-speed bearings was performed to verify the proposed model. Angular contact ball bearings (ACBBs) are widely used in rotary machines especially in high-speed rotating machines because of their excellent properties. However, the traditional dynamic model of a rolling bearing is mainly applied to simulate the dynamic response at low speed, and uses the simple displacement excitation function to characterize the fault, thus its accuracy will decrease under high speed condition. Aiming at the shortcomings of the traditional model, a new high-speed fault dynamic model of ACBB is proposed by considering the influences of centrifugal force, gyroscopic moment and time-varying contact angles on the rolling element under high-speed running and using a B-spline fitting displacement excitation method to represent the fault excitation. With this model, high-speed dynamic responses under different fault sizes and rotation speeds are calculated by the Runge–Kutta method and Newton– Raphson method. Then the corresponding time and frequency domain characteristics are analyzed. From the simulation results, it can be seen that all the simulated acceleration signals of ACBBs are more in line with the actual situation than the traditional model, especially for the shape of an impulse. Finally, the effectiveness and correctness of the proposed model are verified by the experiment on aero-engine spindle bearings.
ArticleNumber 103627
Author Qin, Yi
Li, Chengcheng
Chen, Haizhou
Cao, Folin
Author_xml – sequence: 1
  givenname: Yi
  surname: Qin
  fullname: Qin, Yi
  email: qy_808@aliyun.com
  organization: State Key Laboratory of Mechanical Transmission, Chongqing University, Chongqing 400044, People's Republic of China
– sequence: 2
  givenname: Chengcheng
  surname: Li
  fullname: Li, Chengcheng
  organization: State Key Laboratory of Mechanical Transmission, Chongqing University, Chongqing 400044, People's Republic of China
– sequence: 3
  givenname: Folin
  surname: Cao
  fullname: Cao, Folin
  organization: State Key Laboratory of Mechanical Transmission, Chongqing University, Chongqing 400044, People's Republic of China
– sequence: 4
  givenname: Haizhou
  surname: Chen
  fullname: Chen, Haizhou
  organization: College of Electromechanical Engineering, Qingdao University of Science and Technology, Laoshan District, Qingdao 266061, People's Republic of China
BookMark eNqNkD1vwjAQhj1QqUD7Hzx0DbXjfBCpC0WlVELq0krdrONyJkZOgmxTiX_fILq0E9MN772P7p4JG3V9R4w9SDGTQhaP-1lL2LSATWyo96dZKmQ1RKpIyxEbC1FliZTZ1y2bhLAXQpR5psZsseAGji7y-tRBa5G3fU2O94Y3dtck4UBUc-h2RweeY99FwMi34BzfEnjb7cIduzHgAt3_zin7XL18LNfJ5v31bbnYJKjmKiZZmRusC6gAtgYLaaSgLK-LPFW5qPKywgxKU5oshbmpBBW5JEhRKAOlGnpqyp4vXPR9CJ6MRhsh2uEmD9ZpKfRZhN7rvyL0WYS-iBggT_8gB29bGLaurK8udRoe_bbkdUBLHVJtPWHUdW-vA_0AMOSI9w
CitedBy_id crossref_primary_10_1016_j_engappai_2021_104383
crossref_primary_10_1016_j_ymssp_2020_107317
crossref_primary_10_1007_s12206_024_0407_3
crossref_primary_10_1016_j_mechmachtheory_2020_104196
crossref_primary_10_1016_j_mechmachtheory_2021_104352
crossref_primary_10_1016_j_ymssp_2022_109783
crossref_primary_10_1109_TII_2021_3089340
crossref_primary_10_1177_09544062221116026
crossref_primary_10_1109_TIM_2024_3400349
crossref_primary_10_1109_TMECH_2022_3166977
crossref_primary_10_1007_s12555_021_0100_6
crossref_primary_10_1088_1361_6501_ada3ea
crossref_primary_10_1155_2022_5266054
crossref_primary_10_1177_09544062241285412
crossref_primary_10_1109_TIM_2020_3046913
crossref_primary_10_1177_09544062221097341
crossref_primary_10_1007_s12555_021_0975_2
crossref_primary_10_1016_j_measurement_2024_115668
crossref_primary_10_1080_15397734_2021_1875329
crossref_primary_10_1016_j_isatra_2022_10_026
crossref_primary_10_1016_j_jsv_2023_118071
crossref_primary_10_1109_TIM_2021_3123442
crossref_primary_10_1016_j_mechmachtheory_2022_105061
crossref_primary_10_1016_j_engappai_2022_104932
crossref_primary_10_1016_j_engfailanal_2023_107753
crossref_primary_10_1016_j_ymssp_2021_108697
crossref_primary_10_1109_TMECH_2021_3098737
crossref_primary_10_3233_JIFS_210810
crossref_primary_10_1016_j_mechmachtheory_2023_105288
crossref_primary_10_1109_TIM_2021_3072111
crossref_primary_10_1177_09544062241300062
crossref_primary_10_1016_j_ymssp_2022_109889
crossref_primary_10_1016_j_isatra_2020_12_052
crossref_primary_10_1109_ACCESS_2023_3234528
crossref_primary_10_1109_TII_2020_2999442
crossref_primary_10_1007_s10845_021_01876_y
crossref_primary_10_1016_j_engappai_2023_107117
crossref_primary_10_1016_j_mechmachtheory_2020_103967
crossref_primary_10_1080_02286203_2020_1818426
crossref_primary_10_1016_j_ymssp_2021_107936
crossref_primary_10_3390_ma13204533
crossref_primary_10_1109_TIM_2021_3055786
crossref_primary_10_1016_j_ress_2021_107927
crossref_primary_10_3390_en15072396
crossref_primary_10_1007_s11071_024_09968_z
crossref_primary_10_1109_TIM_2024_3497152
crossref_primary_10_1088_1361_6501_ac9153
crossref_primary_10_1109_JSEN_2023_3337365
crossref_primary_10_1016_j_ijmecsci_2024_109387
crossref_primary_10_1155_2022_8767974
crossref_primary_10_1016_j_ymssp_2024_112086
crossref_primary_10_1109_TIM_2020_3033061
crossref_primary_10_1016_j_triboint_2022_107786
crossref_primary_10_1109_TIM_2023_3243663
crossref_primary_10_3390_s22176366
crossref_primary_10_1016_j_mechmachtheory_2021_104665
crossref_primary_10_1016_j_mechmachtheory_2020_104047
crossref_primary_10_1016_j_apm_2022_02_017
crossref_primary_10_1155_2021_9951110
crossref_primary_10_1016_j_aei_2022_101535
crossref_primary_10_1177_10775463221094162
crossref_primary_10_1016_j_measurement_2020_108402
crossref_primary_10_1088_1361_6501_ad9164
crossref_primary_10_1115_1_4054435
crossref_primary_10_1016_j_euromechsol_2022_104688
crossref_primary_10_1155_2020_4951828
crossref_primary_10_1007_s42417_022_00620_x
crossref_primary_10_1016_j_jsv_2020_115766
crossref_primary_10_1016_j_ress_2022_108322
crossref_primary_10_1142_S0218213024400037
crossref_primary_10_1155_2020_8869648
crossref_primary_10_1155_2021_5077366
Cites_doi 10.1016/j.jsv.2008.06.043
10.1243/13506501JET578
10.1115/1.3453357
10.1115/1.2959106
10.1088/1361-6501/aa9460
10.1016/j.ymssp.2006.12.002
10.1177/1077546317716315
10.1115/1.4002333
10.1006/jsvi.1997.1031
10.1016/j.mechmachtheory.2012.05.008
10.1109/TIE.2017.2736510
10.1115/1.2958070
10.1016/j.ymssp.2007.12.001
10.1016/0022-460X(85)90390-6
10.1115/1.4003595
10.1016/j.ymssp.2014.06.006
10.1016/j.ijmecsci.2010.05.005
10.1007/s11071-016-3037-1
10.1016/j.jsv.2012.11.029
10.1016/j.jsv.2019.01.048
10.1109/TFUZZ.2018.2878200
10.1109/TIM.2017.2669947
10.1115/1.4003088
10.1115/1.1569940
10.1115/1.4027334
10.1016/j.jsv.2015.10.015
10.1016/j.ymssp.2010.09.009
ContentType Journal Article
Copyright 2019 Elsevier Ltd
Copyright_xml – notice: 2019 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.mechmachtheory.2019.103627
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_mechmachtheory_2019_103627
S0094114X19317677
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
29M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
ABFNM
ABJNI
ABMAC
ABTAH
ABWVN
ABXDB
ACDAQ
ACGFS
ACNNM
ACRLP
ACRPL
ADBBV
ADEZE
ADMUD
ADNMO
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AFFNX
AFJKZ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CS3
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SET
SEW
SPCBC
SST
SSZ
T5K
T9H
TN5
TWZ
WUQ
XPP
ZMT
ZY4
~G-
AAYWO
AAYXX
ACVFH
ADCNI
AEUPX
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
APXCP
BJAXD
CITATION
SPC
SSH
ID FETCH-LOGICAL-c383t-475fcd6a9aabfc61f10e45d6523509579c4a7f7f42a8f90e651ea2c03fa73d6a3
IEDL.DBID AIKHN
ISSN 0094-114X
IngestDate Thu Apr 24 23:06:13 EDT 2025
Tue Jul 01 01:48:31 EDT 2025
Sun Apr 06 06:54:00 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Dynamic response
Fault diagnosis
High-speed effect
Aircraft bearing
Impulse
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c383t-475fcd6a9aabfc61f10e45d6523509579c4a7f7f42a8f90e651ea2c03fa73d6a3
ParticipantIDs crossref_citationtrail_10_1016_j_mechmachtheory_2019_103627
crossref_primary_10_1016_j_mechmachtheory_2019_103627
elsevier_sciencedirect_doi_10_1016_j_mechmachtheory_2019_103627
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2020
2020-01-00
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – month: 01
  year: 2020
  text: January 2020
PublicationDecade 2020
PublicationTitle Mechanism and machine theory
PublicationYear 2020
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Liu, Shao (bib0023) 2018; 24
Qin (bib0006) 2018; 65
Tandon, Choudhury (bib0024) 1997; 205
Ashtekar, Sadeghi, Stacke (bib0017) 2009; 224
Sopanen, Mikkola (bib0028) 2003; 217
Ahmadi, Petersen, Howard (bib0012) 2015; 52–53
Ashtekar, Sadeghi, Stacke (bib0016) 2008; 130
Wang, Jing, Yi, Dong, Liu, Ji (bib0019) 2014; 229
Li, Oliveira, Lozada, Cabrera, Sanchez, Zurita (bib0005) 2018; 27
Sawalhi, Randall, Endo (bib0009) 2007; 21
Gupta (bib0018) 1979; 101
Cui, Zhang, Zhang, Zhang, Lee (bib0001) 2016; 364
Behzad, Bastami, Mba (bib0031) 2011; 133
Chen, Li (bib0002) 2017; 66
Rafsanjani, Abbasion, Farshidianfar, Moeenfard (bib0015) 2009; 319
Cong, Chen, Dong, Pecht (bib0032) 2013; 332
Patel, Tandon, Pandey (bib0025) 2010; 132
Wang, Yang, Xiang, Yang, He (bib0003) 2017; 28
Qin, Zou, Tang, Wang, Chen (bib0007) 2019
Sawalhi, Randall (bib0010) 2011; 25
Patil, Mathew, Rajendrakumar, Desai (bib0026) 2010; 52
Qin, Cao, Wang, Chen, Chen (bib0035) 2019; 447
Sawalhi, Randall. (bib0020) 2008; 22
Song, Wang, Peng (bib0004) 2018; 68
Liu, Shao, Lim (bib0022) 2012; 56
Antoni, Randall (bib0030) 2003; 125
Li, Cao, Chen (bib0027) 2015; 8
Arslan, Aktuerk (bib0021) 2008; 130
Epps (bib0008) 1991
Arslan, AktüRk (bib0013) 2008; 130
Tandon, Choudhury (bib0029) 1997; 205
McFadden, Smith (bib0011) 1985; 98
Niu, Cao (bib0034) 2014; 136
Kogan, Bortman, Klein (bib0014) 2017; 87
Nakhaeinejad, Bryant (bib0033) 2011; 133
Liu (10.1016/j.mechmachtheory.2019.103627_bib0023) 2018; 24
Sawalhi (10.1016/j.mechmachtheory.2019.103627_bib0009) 2007; 21
Nakhaeinejad (10.1016/j.mechmachtheory.2019.103627_bib0033) 2011; 133
Arslan (10.1016/j.mechmachtheory.2019.103627_bib0013) 2008; 130
Kogan (10.1016/j.mechmachtheory.2019.103627_bib0014) 2017; 87
Qin (10.1016/j.mechmachtheory.2019.103627_bib0007) 2019
Qin (10.1016/j.mechmachtheory.2019.103627_bib0035) 2019; 447
Ashtekar (10.1016/j.mechmachtheory.2019.103627_bib0017) 2009; 224
Sawalhi (10.1016/j.mechmachtheory.2019.103627_bib0020) 2008; 22
Rafsanjani (10.1016/j.mechmachtheory.2019.103627_bib0015) 2009; 319
Liu (10.1016/j.mechmachtheory.2019.103627_bib0022) 2012; 56
Behzad (10.1016/j.mechmachtheory.2019.103627_bib0031) 2011; 133
Tandon (10.1016/j.mechmachtheory.2019.103627_bib0029) 1997; 205
Gupta (10.1016/j.mechmachtheory.2019.103627_bib0018) 1979; 101
Arslan (10.1016/j.mechmachtheory.2019.103627_bib0021) 2008; 130
Patil (10.1016/j.mechmachtheory.2019.103627_bib0026) 2010; 52
Song (10.1016/j.mechmachtheory.2019.103627_bib0004) 2018; 68
McFadden (10.1016/j.mechmachtheory.2019.103627_bib0011) 1985; 98
Wang (10.1016/j.mechmachtheory.2019.103627_bib0003) 2017; 28
Ashtekar (10.1016/j.mechmachtheory.2019.103627_bib0016) 2008; 130
Tandon (10.1016/j.mechmachtheory.2019.103627_bib0024) 1997; 205
Sopanen (10.1016/j.mechmachtheory.2019.103627_bib0028) 2003; 217
Li (10.1016/j.mechmachtheory.2019.103627_bib0027) 2015; 8
Epps (10.1016/j.mechmachtheory.2019.103627_bib0008) 1991
Ahmadi (10.1016/j.mechmachtheory.2019.103627_bib0012) 2015; 52–53
Cui (10.1016/j.mechmachtheory.2019.103627_bib0001) 2016; 364
Qin (10.1016/j.mechmachtheory.2019.103627_bib0006) 2018; 65
Sawalhi (10.1016/j.mechmachtheory.2019.103627_bib0010) 2011; 25
Cong (10.1016/j.mechmachtheory.2019.103627_bib0032) 2013; 332
Chen (10.1016/j.mechmachtheory.2019.103627_bib0002) 2017; 66
Li (10.1016/j.mechmachtheory.2019.103627_bib0005) 2018; 27
Antoni (10.1016/j.mechmachtheory.2019.103627_bib0030) 2003; 125
Niu (10.1016/j.mechmachtheory.2019.103627_bib0034) 2014; 136
Wang (10.1016/j.mechmachtheory.2019.103627_bib0019) 2014; 229
Patel (10.1016/j.mechmachtheory.2019.103627_bib0025) 2010; 132
References_xml – volume: 22
  start-page: 1924
  year: 2008
  end-page: 1951
  ident: bib0020
  article-title: Simulating gear and bearing interactions in the presence of faults: part I. the combined gear bearing dynamic model and the simulation of localised bearing faults
  publication-title: Mech. Syst. Signal Process.
– volume: 68
  start-page: 741
  year: 2018
  end-page: 753
  ident: bib0004
  article-title: Vibration-Based intelligent fault diagnosis for roller bearings in low-speed rotating machinery
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 217
  start-page: 213
  year: 2003
  end-page: 223
  ident: bib0028
  article-title: Dynamic model of a deep-groove ball bearing including localized and distributed defects. part 2: implementation and results
  publication-title: Proc. Inst. Mech. Eng. K: J. Multi-body Dyn.
– volume: 125
  start-page: 282
  year: 2003
  end-page: 289
  ident: bib0030
  article-title: A stochastic model for simulation and diagnostics of rolling element bearings with localized faults
  publication-title: ASME J. Vib. Acoust.
– volume: 25
  start-page: 846
  year: 2011
  end-page: 870
  ident: bib0010
  article-title: Vibration response of spalled rolling element bearings: observations, simulations and signal processing techniques to track the spall size
  publication-title: Mech. Syst. Signal Process.
– volume: 133
  year: 2011
  ident: bib0031
  article-title: A new model for estimating vibrations generated in the defective rolling element bearings
  publication-title: ASME J. Vib. Acoust.
– volume: 319
  start-page: 1150
  year: 2009
  end-page: 1174
  ident: bib0015
  article-title: Nonlinear dynamic modeling of surface defects in rolling element bearing systems
  publication-title: J. Sound Vib.
– volume: 447
  start-page: 1
  year: 2019
  end-page: 19
  ident: bib0035
  article-title: Dynamics modelling for deep groove ball bearings with local faults based on coupled and segmented displacement excitation
  publication-title: J. Sound Vib.
– volume: 133
  year: 2011
  ident: bib0033
  article-title: Dynamic modeling of rolling element bearings with surface contact defects using bond graphs
  publication-title: ASME J. Tribol.
– volume: 130
  year: 2008
  ident: bib0016
  article-title: A new approach to modeling surface defects in bearing dynamics simulations
  publication-title: ASME J. Tribol.
– volume: 66
  start-page: 1
  year: 2017
  end-page: 10
  ident: bib0002
  article-title: Multisensor feature fusion for bearing fault diagnosis using sparse autoencoder and deep belief network
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 98
  start-page: 263
  year: 1985
  end-page: 273
  ident: bib0011
  article-title: The vibration produced by multiple point defects in a rolling element bearing
  publication-title: J. Sound Vib.
– volume: 332
  start-page: 2081
  year: 2013
  end-page: 2097
  ident: bib0032
  article-title: Vibration model of rolling element bearings in a rotor-bearing system for fault diagnosis
  publication-title: J. Sound Vib.
– volume: 130
  start-page: 1
  year: 2008
  end-page: 12
  ident: bib0013
  article-title: An investigation of rolling element vibrations caused by local defects
  publication-title: ASME J. Tribol.
– volume: 364
  start-page: 67
  year: 2016
  end-page: 76
  ident: bib0001
  article-title: Vibration response mechanism of faulty outer race rolling element bearings for quantitative analysis
  publication-title: J. Sound Vib.
– volume: 8
  start-page: 33
  year: 2015
  end-page: 48
  ident: bib0027
  article-title: Modelling and vibration analysis of machine tool spindle system with bearing defects
  publication-title: Int. J. Mec. Manuf. Syst.
– volume: 205
  start-page: 275
  year: 1997
  end-page: 292
  ident: bib0024
  article-title: An analytical model for the prediciton of the vibration response of of rolling element bearings due to a localized defect
  publication-title: J. Sound Vib
– volume: 205
  start-page: 275
  year: 1997
  end-page: 292
  ident: bib0029
  article-title: An analytical model for the prediction of the vibration response of rolling element bearing due to a localized defect
  publication-title: J. Sound Vib.
– volume: 28
  start-page: 11
  year: 2017
  ident: bib0003
  article-title: A hybrid approach to fault diagnosis of roller bearings under variable speed conditions
  publication-title: Meas. Sci. Technol.
– volume: 229
  start-page: 39
  year: 2014
  end-page: 64
  ident: bib0019
  article-title: Dynamic modelling for vibration analysis of a cylindrical roller bearing due to localized defects on raceways
  publication-title: Proc. Inst. Mech. Eng. K: J. Multi-Body Dyn.
– volume: 52
  start-page: 1193
  year: 2010
  end-page: 1201
  ident: bib0026
  article-title: A theoretical model to predict the effect of localized defect on vibrations associated with ball bearing
  publication-title: Int. J. Mech. Sci.
– volume: 101
  start-page: 293
  year: 1979
  end-page: 302
  ident: bib0018
  article-title: Dynamics of rolling-element bearings—part I: cylindrical roller bearing analysis
  publication-title: J. Lubr. Technol.
– volume: 130
  year: 2008
  ident: bib0021
  article-title: An investigation of rolling element vibrations caused by local defects
  publication-title: ASME J. Tribol.
– volume: 52–53
  start-page: 309
  year: 2015
  end-page: 326
  ident: bib0012
  article-title: A nonlinear dynamic vibration model of defective bearings – The importance of modelling the finite size of rolling elements
  publication-title: Mech. Syst. Signal Process.
– volume: 24
  start-page: 3894
  year: 2018
  end-page: 3907
  ident: bib0023
  article-title: An improved analytical model for a lubricated roller bearing including a localized defect with different edge shapes
  publication-title: J. Vib. Control
– volume: 27
  start-page: 1362
  year: 2018
  end-page: 1382
  ident: bib0005
  article-title: A systematic review of fuzzy formalisms for bearing fault diagnosis
  publication-title: IEEE Trans. Fuzzy Syst.
– year: 2019
  ident: bib0007
  article-title: Transient feature extraction by the improved orthogonal matching pursuit and K-SVD algorithm with adaptive transient dictionary
  publication-title: IEEE Trans. Indus. Inform.
– year: 1991
  ident: bib0008
  article-title: An investigation into vibrations excited by discrete faults in rolling element bearings
– volume: 136
  year: 2014
  ident: bib0034
  article-title: Dynamic modeling and vibration response simulation for high speed rolling ball bearings with localized surface defects in raceways
  publication-title: J. Manuf. Sci. Eng.
– volume: 224
  start-page: 25
  year: 2009
  end-page: 35
  ident: bib0017
  article-title: Surface defects effects on bearing dynamics
  publication-title: Proc. Inst. Mech. Eng. J: J. Eng. Tribol.
– volume: 87
  start-page: 219
  year: 2017
  end-page: 236
  ident: bib0014
  article-title: A new model for spall-rolling-element interaction
  publication-title: Nonlinear Dyn
– volume: 56
  start-page: 156
  year: 2012
  end-page: 169
  ident: bib0022
  article-title: Vibration analysis of ball bearings with a localized defect applying piecewise response function
  publication-title: Mech. Mach. Theory
– volume: 132
  year: 2010
  ident: bib0025
  article-title: A dynamic model for vibration studies of deep groove ball bearings considering single and multiple defects in races
  publication-title: ASME J. Tribol.
– volume: 21
  start-page: 2616
  year: 2007
  end-page: 2633
  ident: bib0009
  article-title: The enhancement of fault detection and diagnosis in rolling element bearings using minimum entropy deconvolution combined with spectral kurtosis
  publication-title: Mech. Syst. Signal Process.
– volume: 65
  start-page: 2716
  year: 2018
  end-page: 2726
  ident: bib0006
  article-title: A new family of model-based impulsive wavelets and their sparse representation for rolling bearing fault diagnosis
  publication-title: IEEE Trans. Indus. Electron.
– volume: 319
  start-page: 1150
  issue: 3–5
  year: 2009
  ident: 10.1016/j.mechmachtheory.2019.103627_bib0015
  article-title: Nonlinear dynamic modeling of surface defects in rolling element bearing systems
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2008.06.043
– year: 1991
  ident: 10.1016/j.mechmachtheory.2019.103627_bib0008
– volume: 224
  start-page: 25
  issue: 1
  year: 2009
  ident: 10.1016/j.mechmachtheory.2019.103627_bib0017
  article-title: Surface defects effects on bearing dynamics
  publication-title: Proc. Inst. Mech. Eng. J: J. Eng. Tribol.
  doi: 10.1243/13506501JET578
– volume: 217
  start-page: 213
  issue: 3
  year: 2003
  ident: 10.1016/j.mechmachtheory.2019.103627_bib0028
  article-title: Dynamic model of a deep-groove ball bearing including localized and distributed defects. part 2: implementation and results
  publication-title: Proc. Inst. Mech. Eng. K: J. Multi-body Dyn.
– volume: 68
  start-page: 741
  issue: 8
  year: 2018
  ident: 10.1016/j.mechmachtheory.2019.103627_bib0004
  article-title: Vibration-Based intelligent fault diagnosis for roller bearings in low-speed rotating machinery
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 101
  start-page: 293
  issue: 3
  year: 1979
  ident: 10.1016/j.mechmachtheory.2019.103627_bib0018
  article-title: Dynamics of rolling-element bearings—part I: cylindrical roller bearing analysis
  publication-title: J. Lubr. Technol.
  doi: 10.1115/1.3453357
– volume: 130
  issue: 4
  year: 2008
  ident: 10.1016/j.mechmachtheory.2019.103627_bib0016
  article-title: A new approach to modeling surface defects in bearing dynamics simulations
  publication-title: ASME J. Tribol.
  doi: 10.1115/1.2959106
– volume: 28
  start-page: 11
  issue: 12
  year: 2017
  ident: 10.1016/j.mechmachtheory.2019.103627_bib0003
  article-title: A hybrid approach to fault diagnosis of roller bearings under variable speed conditions
  publication-title: Meas. Sci. Technol.
  doi: 10.1088/1361-6501/aa9460
– volume: 21
  start-page: 2616
  issue: 6
  year: 2007
  ident: 10.1016/j.mechmachtheory.2019.103627_bib0009
  article-title: The enhancement of fault detection and diagnosis in rolling element bearings using minimum entropy deconvolution combined with spectral kurtosis
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2006.12.002
– volume: 24
  start-page: 3894
  issue: 17
  year: 2018
  ident: 10.1016/j.mechmachtheory.2019.103627_bib0023
  article-title: An improved analytical model for a lubricated roller bearing including a localized defect with different edge shapes
  publication-title: J. Vib. Control
  doi: 10.1177/1077546317716315
– volume: 132
  issue: 4
  year: 2010
  ident: 10.1016/j.mechmachtheory.2019.103627_bib0025
  article-title: A dynamic model for vibration studies of deep groove ball bearings considering single and multiple defects in races
  publication-title: ASME J. Tribol.
  doi: 10.1115/1.4002333
– volume: 8
  start-page: 33
  issue: 1/2
  year: 2015
  ident: 10.1016/j.mechmachtheory.2019.103627_bib0027
  article-title: Modelling and vibration analysis of machine tool spindle system with bearing defects
  publication-title: Int. J. Mec. Manuf. Syst.
– volume: 205
  start-page: 275
  issue: 3
  year: 1997
  ident: 10.1016/j.mechmachtheory.2019.103627_bib0029
  article-title: An analytical model for the prediction of the vibration response of rolling element bearing due to a localized defect
  publication-title: J. Sound Vib.
  doi: 10.1006/jsvi.1997.1031
– volume: 56
  start-page: 156
  year: 2012
  ident: 10.1016/j.mechmachtheory.2019.103627_bib0022
  article-title: Vibration analysis of ball bearings with a localized defect applying piecewise response function
  publication-title: Mech. Mach. Theory
  doi: 10.1016/j.mechmachtheory.2012.05.008
– volume: 65
  start-page: 2716
  issue: 3
  year: 2018
  ident: 10.1016/j.mechmachtheory.2019.103627_bib0006
  article-title: A new family of model-based impulsive wavelets and their sparse representation for rolling bearing fault diagnosis
  publication-title: IEEE Trans. Indus. Electron.
  doi: 10.1109/TIE.2017.2736510
– volume: 130
  start-page: 1
  issue: 4
  year: 2008
  ident: 10.1016/j.mechmachtheory.2019.103627_bib0013
  article-title: An investigation of rolling element vibrations caused by local defects
  publication-title: ASME J. Tribol.
  doi: 10.1115/1.2958070
– volume: 22
  start-page: 1924
  issue: 8
  year: 2008
  ident: 10.1016/j.mechmachtheory.2019.103627_bib0020
  article-title: Simulating gear and bearing interactions in the presence of faults: part I. the combined gear bearing dynamic model and the simulation of localised bearing faults
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2007.12.001
– volume: 229
  start-page: 39
  issue: 1
  year: 2014
  ident: 10.1016/j.mechmachtheory.2019.103627_bib0019
  article-title: Dynamic modelling for vibration analysis of a cylindrical roller bearing due to localized defects on raceways
  publication-title: Proc. Inst. Mech. Eng. K: J. Multi-Body Dyn.
– volume: 98
  start-page: 263
  issue: 2
  year: 1985
  ident: 10.1016/j.mechmachtheory.2019.103627_bib0011
  article-title: The vibration produced by multiple point defects in a rolling element bearing
  publication-title: J. Sound Vib.
  doi: 10.1016/0022-460X(85)90390-6
– volume: 133
  issue: 4
  year: 2011
  ident: 10.1016/j.mechmachtheory.2019.103627_bib0031
  article-title: A new model for estimating vibrations generated in the defective rolling element bearings
  publication-title: ASME J. Vib. Acoust.
  doi: 10.1115/1.4003595
– volume: 52–53
  start-page: 309
  year: 2015
  ident: 10.1016/j.mechmachtheory.2019.103627_bib0012
  article-title: A nonlinear dynamic vibration model of defective bearings – The importance of modelling the finite size of rolling elements
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2014.06.006
– year: 2019
  ident: 10.1016/j.mechmachtheory.2019.103627_bib0007
  article-title: Transient feature extraction by the improved orthogonal matching pursuit and K-SVD algorithm with adaptive transient dictionary
  publication-title: IEEE Trans. Indus. Inform.
– volume: 52
  start-page: 1193
  issue: 9
  year: 2010
  ident: 10.1016/j.mechmachtheory.2019.103627_bib0026
  article-title: A theoretical model to predict the effect of localized defect on vibrations associated with ball bearing
  publication-title: Int. J. Mech. Sci.
  doi: 10.1016/j.ijmecsci.2010.05.005
– volume: 87
  start-page: 219
  year: 2017
  ident: 10.1016/j.mechmachtheory.2019.103627_bib0014
  article-title: A new model for spall-rolling-element interaction
  publication-title: Nonlinear Dyn
  doi: 10.1007/s11071-016-3037-1
– volume: 205
  start-page: 275
  issue: 3
  year: 1997
  ident: 10.1016/j.mechmachtheory.2019.103627_bib0024
  article-title: An analytical model for the prediciton of the vibration response of of rolling element bearings due to a localized defect
  publication-title: J. Sound Vib
  doi: 10.1006/jsvi.1997.1031
– volume: 332
  start-page: 2081
  issue: 8
  year: 2013
  ident: 10.1016/j.mechmachtheory.2019.103627_bib0032
  article-title: Vibration model of rolling element bearings in a rotor-bearing system for fault diagnosis
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2012.11.029
– volume: 447
  start-page: 1
  year: 2019
  ident: 10.1016/j.mechmachtheory.2019.103627_bib0035
  article-title: Dynamics modelling for deep groove ball bearings with local faults based on coupled and segmented displacement excitation
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2019.01.048
– volume: 27
  start-page: 1362
  issue: 7
  year: 2018
  ident: 10.1016/j.mechmachtheory.2019.103627_bib0005
  article-title: A systematic review of fuzzy formalisms for bearing fault diagnosis
  publication-title: IEEE Trans. Fuzzy Syst.
  doi: 10.1109/TFUZZ.2018.2878200
– volume: 66
  start-page: 1
  issue: 7
  year: 2017
  ident: 10.1016/j.mechmachtheory.2019.103627_bib0002
  article-title: Multisensor feature fusion for bearing fault diagnosis using sparse autoencoder and deep belief network
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2017.2669947
– volume: 133
  issue: 1
  year: 2011
  ident: 10.1016/j.mechmachtheory.2019.103627_bib0033
  article-title: Dynamic modeling of rolling element bearings with surface contact defects using bond graphs
  publication-title: ASME J. Tribol.
  doi: 10.1115/1.4003088
– volume: 125
  start-page: 282
  issue: 3
  year: 2003
  ident: 10.1016/j.mechmachtheory.2019.103627_bib0030
  article-title: A stochastic model for simulation and diagnostics of rolling element bearings with localized faults
  publication-title: ASME J. Vib. Acoust.
  doi: 10.1115/1.1569940
– volume: 136
  issue: 4
  year: 2014
  ident: 10.1016/j.mechmachtheory.2019.103627_bib0034
  article-title: Dynamic modeling and vibration response simulation for high speed rolling ball bearings with localized surface defects in raceways
  publication-title: J. Manuf. Sci. Eng.
  doi: 10.1115/1.4027334
– volume: 364
  start-page: 67
  year: 2016
  ident: 10.1016/j.mechmachtheory.2019.103627_bib0001
  article-title: Vibration response mechanism of faulty outer race rolling element bearings for quantitative analysis
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2015.10.015
– volume: 25
  start-page: 846
  issue: 3
  year: 2011
  ident: 10.1016/j.mechmachtheory.2019.103627_bib0010
  article-title: Vibration response of spalled rolling element bearings: observations, simulations and signal processing techniques to track the spall size
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2010.09.009
– volume: 130
  issue: 4
  year: 2008
  ident: 10.1016/j.mechmachtheory.2019.103627_bib0021
  article-title: An investigation of rolling element vibrations caused by local defects
  publication-title: ASME J. Tribol.
  doi: 10.1115/1.2958070
SSID ssj0007543
Score 2.5163336
Snippet •A new dynamic model of faulty high-speed angular contact ball bearings is set up.•A B-spline fitting excitation function is used to represent the fault...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 103627
SubjectTerms Aircraft bearing
Dynamic response
Fault diagnosis
High-speed effect
Impulse
Title A fault dynamic model of high-speed angular contact ball bearings
URI https://dx.doi.org/10.1016/j.mechmachtheory.2019.103627
Volume 143
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JSgNBEC1iAqIHccW4hD7k2iazdLeNBwnBEBVzMpDb0OmFKNnQycGL3271zCQm4CHgdaCa4VG8elXUAlBX2bijVtRFxtDYcEdR1VsqI-Uw_hvbzOa4X3q824-fBmxQgvZyFsa3VRbcn3N6xtbFl0aBZmP-9uZnfGWMan6AEiQQXIgdqISR5KwMldbjc7e3ImTBiuY5GVNvsAv13zavidWjidKjbG7wy_d6ST-Izv2Zmb8i1Vr06RzCQSEbSSv_syMo2ekx7K8tEzyBVos4tRinxORH5kl25IbMHPEriennHOMU8dVJzGWJ71BXOiVDNR6TIXq7L5ifQr_z8Nru0uJAAtWYWKY0Fsxpw5VUaug0D1zQtDEzHJNL1AFMSB0r4YSLQ3XrZNNyFlgV6mbklIjQLjqD8nQ2tedAjEOmUYaZkEWooCLM4gSGrlAjAwhhZBXulmAkutge7o9YjJNlm9h7sgll4qFMciirwFbW83yLxpZ290vckw2vSJDwt3rh4t8vXMJe6HPsrOxyBeX0Y2GvUYikwxrs3HwHtcLdfgDYXt9Z
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La8JAEB6shT4OpU9qn3vwulWT3WxDD0WkYlv1pOAtrPtAiy_aeOilv72zebQKPQi9huwShsnMN8P3zQCUZSJ3VJJaX2vKdGAponpDQ19azP_aVBMdd6cbtPrsZcAHBWjkWhhHq8xifxrTk2idPalk1qwsxmOn8Q0ZovkBQpCaCITYgm3GfeF4fXdfvzwPwTPqXMioe30Hyr8kr6lRo6lUo0Q1-OmYXqGToQduycxfeWol9zQP4SADjaSeftcRFMzsGPZXRgmeQL1OrFxOYqLTFfMkWXFD5pa4gcT0Y4FZirjeJFayxPHTpYrJUE4mZIi-7trlp9BvPvUaLZqtR6AKy8qYMsGt0oEMpRxaFdRsrWoY1wGWlogCuAgVk8IKyzx5b8OqCXjNSE9VfSuFj-f8MyjO5jNzDkRbjDNSc-1xH_GTjzWcwMTlKfz_hdBhCR5yY0Qqmx3uVlhMopwk9hatmzJypoxSU5aA_5xepDM0Njz3mNs9WvOJCMP9Rjdc_PuGW9ht9TrtqP3cfb2EPc9V20kD5gqK8fvSXCMkiYc3ict9A7y04CQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+fault+dynamic+model+of+high-speed+angular+contact+ball+bearings&rft.jtitle=Mechanism+and+machine+theory&rft.au=Qin%2C+Yi&rft.au=Li%2C+Chengcheng&rft.au=Cao%2C+Folin&rft.au=Chen%2C+Haizhou&rft.date=2020-01-01&rft.pub=Elsevier+Ltd&rft.issn=0094-114X&rft.volume=143&rft_id=info:doi/10.1016%2Fj.mechmachtheory.2019.103627&rft.externalDocID=S0094114X19317677
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-114X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-114X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-114X&client=summon