Exploration of the folding dynamics of human telomeric G-quadruplex with a hybrid atomistic structure-based model
Structure-based models or Gō-like models, which are built from one or multiple particular experimental structures, have been successfully applied to the folding of proteins and RNAs. Recently, a variant termed the hybrid atomistic model advances the description of backbone and side chain interaction...
Saved in:
Published in | The Journal of chemical physics Vol. 148; no. 20; pp. 204107 - 204114 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Institute of Physics
28.05.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Structure-based models or Gō-like models, which are built from one or multiple particular experimental structures, have been successfully applied to the folding of proteins and RNAs. Recently, a variant termed the hybrid atomistic model advances the description of backbone and side chain interactions of traditional structure-based models, by borrowing the description of local interactions from classical force fields. In this study, we assessed the validity of this model in the folding problem of human telomeric DNA G-quadruplex, where local dihedral terms play important roles. A two-state model was developed and a set of molecular dynamics simulations was conducted to study the folding dynamics of sequence Htel24, which was experimentally validated to adopt two different (3 + 1) hybrid G-quadruplex topologies in K+ solution. Consistent with the experimental observations, the hybrid-1 conformation was found to be more stable and the hybrid-2 conformation was kinetically more favored. The simulations revealed that the hybrid-2 conformation folded in a higher cooperative manner, which may be the reason why it was kinetically more accessible. Moreover, by building a Markov state model, a two-quartet G-quadruplex state and a misfolded state were identified as competing states to complicate the folding process of Htel24. Besides, the simulations also showed that the transition between hybrid-1 and hybrid-2 conformations may proceed an ensemble of hairpin structures. The hybrid atomistic structure-based model reproduced the kinetic partitioning folding dynamics of Htel24 between two different folds, and thus can be used to study the complex folding processes of other G-quadruplex structures. |
---|---|
AbstractList | Structure-based models or Gō-like models, which are built from one or multiple particular experimental structures, have been successfully applied to the folding of proteins and RNAs. Recently, a variant termed the hybrid atomistic model advances the description of backbone and side chain interactions of traditional structure-based models, by borrowing the description of local interactions from classical force fields. In this study, we assessed the validity of this model in the folding problem of human telomeric DNA G-quadruplex, where local dihedral terms play important roles. A two-state model was developed and a set of molecular dynamics simulations was conducted to study the folding dynamics of sequence Htel24, which was experimentally validated to adopt two different (3 + 1) hybrid G-quadruplex topologies in K+ solution. Consistent with the experimental observations, the hybrid-1 conformation was found to be more stable and the hybrid-2 conformation was kinetically more favored. The simulations revealed that the hybrid-2 conformation folded in a higher cooperative manner, which may be the reason why it was kinetically more accessible. Moreover, by building a Markov state model, a two-quartet G-quadruplex state and a misfolded state were identified as competing states to complicate the folding process of Htel24. Besides, the simulations also showed that the transition between hybrid-1 and hybrid-2 conformations may proceed an ensemble of hairpin structures. The hybrid atomistic structure-based model reproduced the kinetic partitioning folding dynamics of Htel24 between two different folds, and thus can be used to study the complex folding processes of other G-quadruplex structures.Structure-based models or Gō-like models, which are built from one or multiple particular experimental structures, have been successfully applied to the folding of proteins and RNAs. Recently, a variant termed the hybrid atomistic model advances the description of backbone and side chain interactions of traditional structure-based models, by borrowing the description of local interactions from classical force fields. In this study, we assessed the validity of this model in the folding problem of human telomeric DNA G-quadruplex, where local dihedral terms play important roles. A two-state model was developed and a set of molecular dynamics simulations was conducted to study the folding dynamics of sequence Htel24, which was experimentally validated to adopt two different (3 + 1) hybrid G-quadruplex topologies in K+ solution. Consistent with the experimental observations, the hybrid-1 conformation was found to be more stable and the hybrid-2 conformation was kinetically more favored. The simulations revealed that the hybrid-2 conformation folded in a higher cooperative manner, which may be the reason why it was kinetically more accessible. Moreover, by building a Markov state model, a two-quartet G-quadruplex state and a misfolded state were identified as competing states to complicate the folding process of Htel24. Besides, the simulations also showed that the transition between hybrid-1 and hybrid-2 conformations may proceed an ensemble of hairpin structures. The hybrid atomistic structure-based model reproduced the kinetic partitioning folding dynamics of Htel24 between two different folds, and thus can be used to study the complex folding processes of other G-quadruplex structures. Structure-based models or Gō-like models, which are built from one or multiple particular experimental structures, have been successfully applied to the folding of proteins and RNAs. Recently, a variant termed the hybrid atomistic model advances the description of backbone and side chain interactions of traditional structure-based models, by borrowing the description of local interactions from classical force fields. In this study, we assessed the validity of this model in the folding problem of human telomeric DNA G-quadruplex, where local dihedral terms play important roles. A two-state model was developed and a set of molecular dynamics simulations was conducted to study the folding dynamics of sequence Htel24, which was experimentally validated to adopt two different (3 + 1) hybrid G-quadruplex topologies in K solution. Consistent with the experimental observations, the hybrid-1 conformation was found to be more stable and the hybrid-2 conformation was kinetically more favored. The simulations revealed that the hybrid-2 conformation folded in a higher cooperative manner, which may be the reason why it was kinetically more accessible. Moreover, by building a Markov state model, a two-quartet G-quadruplex state and a misfolded state were identified as competing states to complicate the folding process of Htel24. Besides, the simulations also showed that the transition between hybrid-1 and hybrid-2 conformations may proceed an ensemble of hairpin structures. The hybrid atomistic structure-based model reproduced the kinetic partitioning folding dynamics of Htel24 between two different folds, and thus can be used to study the complex folding processes of other G-quadruplex structures. Structure-based models or Gō-like models, which are built from one or multiple particular experimental structures, have been successfully applied to the folding of proteins and RNAs. Recently, a variant termed the hybrid atomistic model advances the description of backbone and side chain interactions of traditional structure-based models, by borrowing the description of local interactions from classical force fields. In this study, we assessed the validity of this model in the folding problem of human telomeric DNA G-quadruplex, where local dihedral terms play important roles. A two-state model was developed and a set of molecular dynamics simulations was conducted to study the folding dynamics of sequence Htel24, which was experimentally validated to adopt two different (3 + 1) hybrid G-quadruplex topologies in K+ solution. Consistent with the experimental observations, the hybrid-1 conformation was found to be more stable and the hybrid-2 conformation was kinetically more favored. The simulations revealed that the hybrid-2 conformation folded in a higher cooperative manner, which may be the reason why it was kinetically more accessible. Moreover, by building a Markov state model, a two-quartet G-quadruplex state and a misfolded state were identified as competing states to complicate the folding process of Htel24. Besides, the simulations also showed that the transition between hybrid-1 and hybrid-2 conformations may proceed an ensemble of hairpin structures. The hybrid atomistic structure-based model reproduced the kinetic partitioning folding dynamics of Htel24 between two different folds, and thus can be used to study the complex folding processes of other G-quadruplex structures. |
Author | Wang, Jihua Song, Feng Bian, Yunqiang Yu, Jiafeng Ren, Weitong |
Author_xml | – sequence: 1 givenname: Yunqiang surname: Bian fullname: Bian, Yunqiang email: bianyunqiang@gmail.com, jhw25336@126.com organization: Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University – sequence: 2 givenname: Weitong surname: Ren fullname: Ren, Weitong organization: National Laboratory of Solid State Microstructure, Department of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University – sequence: 3 givenname: Feng surname: Song fullname: Song, Feng organization: Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University – sequence: 4 givenname: Jiafeng surname: Yu fullname: Yu, Jiafeng organization: Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University – sequence: 5 givenname: Jihua surname: Wang fullname: Wang, Jihua email: bianyunqiang@gmail.com, jhw25336@126.com organization: Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29865833$$D View this record in MEDLINE/PubMed |
BookMark | eNqd0U1r3DAQBmARUpJNmkP_QBH00hacSJatj2MJaVoI9NKehWRJXQXZ8uojzf77OtldAqGnngSjZ16GmTNwPMXJAvAOo0uMKLnClz1qeSf4EVhhxEXDqEDHYIVQixtBET0FZznfI4Qwa7sTcNoKTntOyApsbh7nEJMqPk4wOljWFroYjJ9-Q7Od1OiH_FRf11FNsNgQR5v8AG-bTVUm1TnYR_jHlzVUcL3VyRuoShx9LgvKJdWh1GQbrbI1cIzGhrfgjVMh24v9ew5-fb35ef2tuftx-_36y10zEE5KQwxmDjHdC8E0Y8712GpqtO3M8q9bTIzmuiVCMdoJKnprmCOIG2p619GOnIOPu9w5xU21uchlqsGGoCYba5Yt6lHHO_xMP7yi97GmaZluUZxTgUmPFvV-r6oerZFz8qNKW3lY5gKudmBIMedknRx8ed5sScoHiZF8OpfEcn-upePTq45D6L_s553Nh9T_ww8xvUA5G0f-AhsjsGs |
CODEN | JCPSA6 |
CitedBy_id | crossref_primary_10_1002_jcc_27535 crossref_primary_10_1021_acs_jcim_3c00171 crossref_primary_10_1021_acs_jpcb_8b11547 crossref_primary_10_1093_nar_gkz610 crossref_primary_10_1016_j_ijbiomac_2024_129712 crossref_primary_10_1021_acs_jctc_0c00340 crossref_primary_10_3390_molecules24030637 crossref_primary_10_1016_j_ijbiomac_2018_09_102 crossref_primary_10_1088_1674_1056_abe1a7 crossref_primary_10_3390_molecules27154915 crossref_primary_10_1016_j_bpc_2019_106173 |
Cites_doi | 10.1073/pnas.0604375103 10.1021/ct400154j 10.1016/j.biochi.2014.07.009 10.1016/s0092-8674(01)00457-3 10.1021/acs.jpcb.6b03731 10.1016/s0009-2614(99)01123-9 10.1073/pnas.1402768111 10.1063/1.4828816 10.1073/pnas.0906625106 10.1006/jmbi.2000.3693 10.1073/pnas.1308381110 10.1016/j.cplett.2006.05.062 10.1021/jp212614b 10.1093/nar/gkw1010 10.1021/acs.jctc.6b00667 10.1021/acs.jctc.7b00182 10.1038/nature755 10.1088/0034-4885/71/12/126601 10.1093/nar/gkw970 10.1093/nar/gkt784 10.1073/pnas.0909088106 10.1093/nar/gkv994 10.1039/c4cs00048j 10.1016/j.ymeth.2010.06.002 10.1021/ct300275s 10.1529/biophysj.106.097782 10.1016/j.bpj.2014.01.042 10.1021/acs.jpclett.7b03123 10.1093/nar/gkt412 10.1021/ct700301q 10.1021/acs.jctc.5b00743 10.1021/ct300878a 10.1002/anie.201502286 10.1016/s0010-4655(00)00215-0 10.1002/anie.201801999 10.1021/jp400786b 10.1002/bip.22247 10.1021/acs.jpcb.7b06919 10.1038/nrd3428 10.1063/1.2943202 10.1016/j.biochi.2008.02.026 10.1002/anie.200300589 10.1038/srep39239 10.1016/j.bbagen.2016.12.008 10.1093/nar/gkm711 10.1371/journal.pcbi.1002471 10.1093/nar/gkl348 10.1021/ct200547m 10.1002/bip.1978.360170612 10.1063/1.4997377 10.1093/nar/gkx766 10.1021/ja807503g 10.1093/nar/gkm522 |
ContentType | Journal Article |
Copyright | Author(s) 2018 Author(s). Published by AIP Publishing. |
Copyright_xml | – notice: Author(s) – notice: 2018 Author(s). Published by AIP Publishing. |
DBID | AAYXX CITATION NPM 8FD H8D L7M 7X8 |
DOI | 10.1063/1.5028498 |
DatabaseName | CrossRef PubMed Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed Technology Research Database CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Physics |
EISSN | 1089-7690 |
ExternalDocumentID | 29865833 10_1063_1_5028498 jcp |
Genre | Journal Article |
GrantInformation_xml | – fundername: National Science Foundation of Shandong Province grantid: ZR2015CQ002 – fundername: National Science Foundation of Shandong Province grantid: ZR2016JL027 – fundername: National Natural Science Foundation of China grantid: 11504043; 31500606; 61671107; 61771093 funderid: http://dx.doi.org/10.13039/501100001809 – fundername: Taishan Young Scholars Program of Shandong Province of China grantid: tsqn20161049 |
GroupedDBID | --- -DZ -ET -~X 123 1UP 2-P 29K 4.4 53G 5VS 85S AAAAW AABDS AAEUA AAPUP AAYIH ABPPZ ABZEH ACBRY ACLYJ ACNCT ACZLF ADCTM AEJMO AENEX AFATG AFHCQ AGKCL AGLKD AGMXG AGTJO AHSDT AJJCW AJQPL ALEPV ALMA_UNASSIGNED_HOLDINGS AQWKA ATXIE AWQPM BPZLN CS3 D-I DU5 EBS EJD ESX F5P FDOHQ FFFMQ HAM M6X M71 M73 N9A NPSNA O-B P2P RIP RNS RQS TN5 TWZ UPT WH7 YQT YZZ ~02 AAGWI AAYXX ABJGX ADMLS BDMKI CITATION NPM 8FD H8D L7M 7X8 |
ID | FETCH-LOGICAL-c383t-3d17f07b5997b77ff51eb6dbe4d383b213db8b239a7649695ed7f308d6d5f4643 |
ISSN | 0021-9606 1089-7690 |
IngestDate | Fri Jul 11 06:49:59 EDT 2025 Mon Jun 30 13:10:29 EDT 2025 Wed Feb 19 02:43:21 EST 2025 Thu Apr 24 23:08:22 EDT 2025 Tue Jul 01 00:27:17 EDT 2025 Sun Jul 14 10:05:12 EDT 2019 Fri Jun 21 00:14:20 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 20 |
Language | English |
License | 0021-9606/2018/148(20)/204107/8/$30.00 Published by AIP Publishing. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c383t-3d17f07b5997b77ff51eb6dbe4d383b213db8b239a7649695ed7f308d6d5f4643 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PMID | 29865833 |
PQID | 2088691350 |
PQPubID | 2050685 |
PageCount | 8 |
ParticipantIDs | scitation_primary_10_1063_1_5028498 proquest_journals_2088691350 proquest_miscellaneous_2050484164 crossref_citationtrail_10_1063_1_5028498 pubmed_primary_29865833 crossref_primary_10_1063_1_5028498 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20180528 2018-05-28 2018-May-28 |
PublicationDateYYYYMMDD | 2018-05-28 |
PublicationDate_xml | – month: 05 year: 2018 text: 20180528 day: 28 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Melville |
PublicationTitle | The Journal of chemical physics |
PublicationTitleAlternate | J Chem Phys |
PublicationYear | 2018 |
Publisher | American Institute of Physics |
Publisher_xml | – name: American Institute of Physics |
References | Sterpone, Melchionna, Tuffery, Pasquali, Mousseau, Cragnolini, Chebaro, StPierre, Kalimeri, Barducci, Laurin, Tek, Baaden, Nguyen, Derreumaux (c33) 2014; 43 Laio, Gervasio (c49) 2008; 71 Aznauryan, Søndergaard, Noer, Schiøtt, Birkedal (c18) 2016; 44 Stadlbauer, Trantírek, Cheatham, Koča, Šponer (c48) 2014; 105 Souaille, Roux (c50) 2001; 135 Scherer, Trendelkamp-Schroer, Paul, Pérez-Hernández, Hoffmann, Plattner, Wehmeyer, Prinz, Noé (c44) 2015; 11 Patel, Phan, Kuryavyi (c25) 2007; 35 Wang, Tang, Wang, Wang (c39) 2012; 8 Hackett, Feldser, Greider (c22) 2001; 106 Parkinson, Lee, Neidle (c27) 2002; 417 Sutto, Mereu, Gervasio (c9) 2011; 7 Schwantes, Pande (c45) 2013; 9 Sultan, Pande (c51) 2017; 13 Wang, Chu, Longhi, Roche, Han, Wang, Wang (c11) 2013; 110 Wu, Zhang, Qin, Liu, Wang (c3) 2008; 128 Hayes, Noel, Whitford, Mohanty, Sanbonmatsu, Onuchic (c5) 2014; 106 Clementi, Nymeyer, Onuchic (c6) 2000; 298 Marchand, Gabelica (c19) 2016; 44 You, Guo, Le, Tang, Yao, Zhao, Yan (c15) 2018; 9 Bessi, Jonker, Richter, Schwalbe (c20) 2015; 54 Šponer, Bussi, Stadlbauer, Kührová, Banáš, Islam, Haider, Neidle, Otyepka (c32) 2016; 1861 Li, Wang, Takada (c2) 2014; 111 Okazaki, Koga, Takada, Onuchic, Wolynes (c4) 2006; 103 Sugita, Okamoto (c40) 1999; 314 Ren, Li, Wang, Zhang, Wang (c7) 2017; 121 Chen, Eargle, Lai, Kim, Abeysirigunawardena, Mayerle, Woodson, Ha, Luthey-Schulten (c10) 2012; 116 Cho, Pincus, Thirumalai (c8) 2009; 106 Ueda, Taketomi, Gō (c1) 1978; 17 Tawani, Amanullah, Mishra, Kumar (c24) 2016; 6 Maragliano, Vanden-Eijnden (c52) 2006; 426 Zgarbová, Luque, Šponer, Cheatham, Otyepka, Jurečka (c38) 2013; 9 Cragnolini, Derreumaux, Pasquali (c34) 2013; 117 Hou, Fu, Wu, Wang, Teng, Xie, Wang, Xi (c16) 2017; 45 Dai, Carver, Yang (c17) 2008; 90 Stadlbauer, Krepl, Cheatham, Koča, Šponer (c35) 2013; 41 Balasubramanian, Hurley, Neidle (c23) 2011; 10 Cragnolini, Chakraborty, Šponer, Derreumaux, Pasquali, Wales (c13) 2017; 147 Dai, Carver, Punchihewa, Jones, Yang (c26) 2007; 35 Noé, Wu, Prinz, Plattner (c46) 2013; 139 Kim, Long, Dubins, Chalikian (c31) 2016; 120 Huang, Bowman, Bacallado, Pande (c53) 2009; 106 Krepl, Zgarbová, Stadlbauer, Otyepka, Banáš, Koča, Cheatham, Jurečka, Šponer (c37) 2012; 8 Chen, Chen, Dai, Yuan, Ou, Huang, Tan (c14) 2018; 57 Ambrus, Chen, Dai, Bialis, Jones, Yang (c29) 2006; 34 Hess, Kutzner, van der Spoel, Lindahl (c42) 2008; 4 Pande, Beauchamp, Bowman (c43) 2010; 52 Pérez, Marchán, Svozil, Šponer, Cheatham, Laughton, Orozco (c36) 2017; 92 Buscaglia, Gray, Chaires (c41) 2013; 99 Agrawal, Hatzakis, Guo, Carver, Yang (c30) 2013; 41 Stadlbauer, Kührová, Banáš, Koča, Bussi, Trantírek, Otyepka, Šponer (c47) 2015; 43 Davis (c21) 2004; 43 Stadlbauer, Mazzanti, Cragnolini, Wales, Derreumaux, Pasquali, Šponer (c12) 2016; 12 Lim, Amrane, Bouaziz, Xu, Mu, Patel, Luu, Phan (c28) 2009; 131 (2023062521593353000_c16) 2017; 45 (2023062521593353000_c42) 2008; 4 (2023062521593353000_c23) 2011; 10 (2023062521593353000_c45) 2013; 9 (2023062521593353000_c37) 2012; 8 (2023062521593353000_c41) 2013; 99 (2023062521593353000_c28) 2009; 131 (2023062521593353000_c40) 1999; 314 (2023062521593353000_c21) 2004; 43 (2023062521593353000_c31) 2016; 120 (2023062521593353000_c4) 2006; 103 (2023062521593353000_c6) 2000; 298 (2023062521593353000_c9) 2011; 7 (2023062521593353000_c27) 2002; 417 (2023062521593353000_c51) 2017; 13 (2023062521593353000_c22) 2001; 106 (2023062521593353000_c18) 2016; 44 (2023062521593353000_c39) 2012; 8 (2023062521593353000_c10) 2012; 116 (2023062521593353000_c35) 2013; 41 (2023062521593353000_c49) 2008; 71 (2023062521593353000_c36) 2017; 92 (2023062521593353000_c5) 2014; 106 (2023062521593353000_c47) 2015; 43 (2023062521593353000_c46) 2013; 139 (2023062521593353000_c32) 2016; 1861 (2023062521593353000_c12) 2016; 12 (2023062521593353000_c20) 2015; 54 (2023062521593353000_c52) 2006; 426 (2023062521593353000_c38) 2013; 9 (2023062521593353000_c13) 2017; 147 (2023062521593353000_c48) 2014; 105 (2023062521593353000_c8) 2009; 106 (2023062521593353000_c26) 2007; 35 (2023062521593353000_c34) 2013; 117 (2023062521593353000_c11) 2013; 110 (2023062521593353000_c2) 2014; 111 (2023062521593353000_c24) 2016; 6 (2023062521593353000_c15) 2018; 9 (2023062521593353000_c1) 1978; 17 (2023062521593353000_c30) 2013; 41 (2023062521593353000_c7) 2017; 121 (2023062521593353000_c19) 2016; 44 (2023062521593353000_c50) 2001; 135 (2023062521593353000_c14) 2018; 57 (2023062521593353000_c25) 2007; 35 (2023062521593353000_c44) 2015; 11 (2023062521593353000_c33) 2014; 43 (2023062521593353000_c29) 2006; 34 (2023062521593353000_c3) 2008; 128 (2023062521593353000_c17) 2008; 90 (2023062521593353000_c43) 2010; 52 (2023062521593353000_c53) 2009; 106 |
References_xml | – volume: 417 start-page: 876 year: 2002 ident: c27 publication-title: Nature – volume: 106 start-page: 1508 year: 2014 ident: c5 publication-title: Biophys. J. – volume: 17 start-page: 1531 year: 1978 ident: c1 publication-title: Biopolymers – volume: 110 start-page: E3743 year: 2013 ident: c11 publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 121 start-page: 9799 year: 2017 ident: c7 publication-title: J. Phys. Chem. B – volume: 147 start-page: 152715 year: 2017 ident: c13 publication-title: J. Chem. Phys. – volume: 41 start-page: 7128 year: 2013 ident: c35 publication-title: Nucleic Acids Res. – volume: 34 start-page: 2723 year: 2006 ident: c29 publication-title: Nucleic Acids Res. – volume: 44 start-page: 11024 year: 2016 ident: c18 publication-title: Nucleic Acids Res. – volume: 41 start-page: 10584 year: 2013 ident: c30 publication-title: Nucleic Acids Res. – volume: 99 start-page: 1006 year: 2013 ident: c41 publication-title: Biopolymers – volume: 105 start-page: 22 year: 2014 ident: c48 publication-title: Biochimie – volume: 71 start-page: 126601 year: 2008 ident: c49 publication-title: Rep. Prog. Phys. – volume: 6 start-page: 39239 year: 2016 ident: c24 publication-title: Sci. Rep. – volume: 131 start-page: 4301 year: 2009 ident: c28 publication-title: J. Am. Chem. Soc. – volume: 12 start-page: 6077 year: 2016 ident: c12 publication-title: J. Chem. Theory Comput. – volume: 135 start-page: 40 year: 2001 ident: c50 publication-title: Comput. Phys. Commun. – volume: 44 start-page: 10999 year: 2016 ident: c19 publication-title: Nucleic Acids Res. – volume: 426 start-page: 168 year: 2006 ident: c52 publication-title: Chem. Phys. Lett. – volume: 8 start-page: 2506 year: 2012 ident: c37 publication-title: J. Chem. Theory Comput. – volume: 13 start-page: 2440 year: 2017 ident: c51 publication-title: J. Chem. Theory Comput. – volume: 106 start-page: 17349 year: 2009 ident: c8 publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 120 start-page: 4963 year: 2016 ident: c31 publication-title: J. Phys. Chem. B – volume: 139 start-page: 184114 year: 2013 ident: c46 publication-title: J. Chem. Phys. – volume: 90 start-page: 1172 year: 2008 ident: c17 publication-title: Biochimie – volume: 1861 start-page: 1246 year: 2016 ident: c32 publication-title: Biochim. Biophys. Acta – volume: 54 start-page: 8444 year: 2015 ident: c20 publication-title: Angew. Chem., Int. Ed. – volume: 10 start-page: 261 year: 2011 ident: c23 publication-title: Nat. Rev. Drug Discov. – volume: 9 start-page: 2339 year: 2013 ident: c38 publication-title: J. Chem. Theory Comput. – volume: 9 start-page: 811 year: 2018 ident: c15 publication-title: J. Phys. Chem. Lett. – volume: 298 start-page: 937 year: 2000 ident: c6 publication-title: J. Mol. Biol. – volume: 92 start-page: 3817 year: 2017 ident: c36 publication-title: Biophys. J. – volume: 106 start-page: 275 year: 2001 ident: c22 publication-title: Cell – volume: 116 start-page: 6819 year: 2012 ident: c10 publication-title: J. Phys. Chem. B – volume: 117 start-page: 8047 year: 2013 ident: c34 publication-title: J. Phys. Chem. B – volume: 43 start-page: 9626 year: 2015 ident: c47 publication-title: Nucleic Acids Res. – volume: 45 start-page: 11401 year: 2017 ident: c16 publication-title: Nucleic Acids Res. – volume: 7 start-page: 4208 year: 2011 ident: c9 publication-title: J. Chem. Theory Comput. – volume: 8 start-page: e1002471 year: 2012 ident: c39 publication-title: PLoS Comput. Biol. – volume: 57 start-page: 4702 year: 2018 ident: c14 publication-title: Angew. Chem., Int. Ed. – volume: 52 start-page: 99 year: 2010 ident: c43 publication-title: Methods – volume: 9 start-page: 2000 year: 2013 ident: c45 publication-title: J. Chem. Theory Comput. – volume: 11 start-page: 5525 year: 2015 ident: c44 publication-title: J. Chem. Theory Comput. – volume: 128 start-page: 235103 year: 2008 ident: c3 publication-title: J. Chem. Phys. – volume: 43 start-page: 668 year: 2004 ident: c21 publication-title: Angew. Chem., Int. Ed. – volume: 106 start-page: 19765 year: 2009 ident: c53 publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 35 start-page: 4927 year: 2007 ident: c26 publication-title: Nucleic Acids Res. – volume: 103 start-page: 11844 year: 2006 ident: c4 publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 35 start-page: 7429 year: 2007 ident: c25 publication-title: Nucleic Acids Res. – volume: 43 start-page: 4871 year: 2014 ident: c33 publication-title: Chem. Soc. Rev. – volume: 314 start-page: 141 year: 1999 ident: c40 publication-title: Chem. Phys. Lett. – volume: 111 start-page: 10550 year: 2014 ident: c2 publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 4 start-page: 435 year: 2008 ident: c42 publication-title: J. Chem. Theory Comput. – volume: 103 start-page: 11844 year: 2006 ident: 2023062521593353000_c4 publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0604375103 – volume: 9 start-page: 2339 year: 2013 ident: 2023062521593353000_c38 publication-title: J. Chem. Theory Comput. doi: 10.1021/ct400154j – volume: 105 start-page: 22 year: 2014 ident: 2023062521593353000_c48 publication-title: Biochimie doi: 10.1016/j.biochi.2014.07.009 – volume: 106 start-page: 275 year: 2001 ident: 2023062521593353000_c22 publication-title: Cell doi: 10.1016/s0092-8674(01)00457-3 – volume: 120 start-page: 4963 year: 2016 ident: 2023062521593353000_c31 publication-title: J. Phys. Chem. B doi: 10.1021/acs.jpcb.6b03731 – volume: 314 start-page: 141 year: 1999 ident: 2023062521593353000_c40 publication-title: Chem. Phys. Lett. doi: 10.1016/s0009-2614(99)01123-9 – volume: 111 start-page: 10550 year: 2014 ident: 2023062521593353000_c2 publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1402768111 – volume: 139 start-page: 184114 year: 2013 ident: 2023062521593353000_c46 publication-title: J. Chem. Phys. doi: 10.1063/1.4828816 – volume: 106 start-page: 17349 year: 2009 ident: 2023062521593353000_c8 publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0906625106 – volume: 298 start-page: 937 year: 2000 ident: 2023062521593353000_c6 publication-title: J. Mol. Biol. doi: 10.1006/jmbi.2000.3693 – volume: 110 start-page: E3743 year: 2013 ident: 2023062521593353000_c11 publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1308381110 – volume: 426 start-page: 168 year: 2006 ident: 2023062521593353000_c52 publication-title: Chem. Phys. Lett. doi: 10.1016/j.cplett.2006.05.062 – volume: 116 start-page: 6819 year: 2012 ident: 2023062521593353000_c10 publication-title: J. Phys. Chem. B doi: 10.1021/jp212614b – volume: 44 start-page: 11024 year: 2016 ident: 2023062521593353000_c18 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkw1010 – volume: 12 start-page: 6077 year: 2016 ident: 2023062521593353000_c12 publication-title: J. Chem. Theory Comput. doi: 10.1021/acs.jctc.6b00667 – volume: 13 start-page: 2440 year: 2017 ident: 2023062521593353000_c51 publication-title: J. Chem. Theory Comput. doi: 10.1021/acs.jctc.7b00182 – volume: 417 start-page: 876 year: 2002 ident: 2023062521593353000_c27 publication-title: Nature doi: 10.1038/nature755 – volume: 71 start-page: 126601 year: 2008 ident: 2023062521593353000_c49 publication-title: Rep. Prog. Phys. doi: 10.1088/0034-4885/71/12/126601 – volume: 44 start-page: 10999 year: 2016 ident: 2023062521593353000_c19 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkw970 – volume: 41 start-page: 10584 year: 2013 ident: 2023062521593353000_c30 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkt784 – volume: 106 start-page: 19765 year: 2009 ident: 2023062521593353000_c53 publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0909088106 – volume: 43 start-page: 9626 year: 2015 ident: 2023062521593353000_c47 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkv994 – volume: 43 start-page: 4871 year: 2014 ident: 2023062521593353000_c33 publication-title: Chem. Soc. Rev. doi: 10.1039/c4cs00048j – volume: 52 start-page: 99 year: 2010 ident: 2023062521593353000_c43 publication-title: Methods doi: 10.1016/j.ymeth.2010.06.002 – volume: 8 start-page: 2506 year: 2012 ident: 2023062521593353000_c37 publication-title: J. Chem. Theory Comput. doi: 10.1021/ct300275s – volume: 92 start-page: 3817 year: 2017 ident: 2023062521593353000_c36 publication-title: Biophys. J. doi: 10.1529/biophysj.106.097782 – volume: 106 start-page: 1508 year: 2014 ident: 2023062521593353000_c5 publication-title: Biophys. J. doi: 10.1016/j.bpj.2014.01.042 – volume: 9 start-page: 811 year: 2018 ident: 2023062521593353000_c15 publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.7b03123 – volume: 41 start-page: 7128 year: 2013 ident: 2023062521593353000_c35 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkt412 – volume: 4 start-page: 435 year: 2008 ident: 2023062521593353000_c42 publication-title: J. Chem. Theory Comput. doi: 10.1021/ct700301q – volume: 11 start-page: 5525 year: 2015 ident: 2023062521593353000_c44 publication-title: J. Chem. Theory Comput. doi: 10.1021/acs.jctc.5b00743 – volume: 9 start-page: 2000 year: 2013 ident: 2023062521593353000_c45 publication-title: J. Chem. Theory Comput. doi: 10.1021/ct300878a – volume: 54 start-page: 8444 year: 2015 ident: 2023062521593353000_c20 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201502286 – volume: 135 start-page: 40 year: 2001 ident: 2023062521593353000_c50 publication-title: Comput. Phys. Commun. doi: 10.1016/s0010-4655(00)00215-0 – volume: 57 start-page: 4702 year: 2018 ident: 2023062521593353000_c14 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201801999 – volume: 117 start-page: 8047 year: 2013 ident: 2023062521593353000_c34 publication-title: J. Phys. Chem. B doi: 10.1021/jp400786b – volume: 99 start-page: 1006 year: 2013 ident: 2023062521593353000_c41 publication-title: Biopolymers doi: 10.1002/bip.22247 – volume: 121 start-page: 9799 year: 2017 ident: 2023062521593353000_c7 publication-title: J. Phys. Chem. B doi: 10.1021/acs.jpcb.7b06919 – volume: 10 start-page: 261 year: 2011 ident: 2023062521593353000_c23 publication-title: Nat. Rev. Drug Discov. doi: 10.1038/nrd3428 – volume: 128 start-page: 235103 year: 2008 ident: 2023062521593353000_c3 publication-title: J. Chem. Phys. doi: 10.1063/1.2943202 – volume: 90 start-page: 1172 year: 2008 ident: 2023062521593353000_c17 publication-title: Biochimie doi: 10.1016/j.biochi.2008.02.026 – volume: 43 start-page: 668 year: 2004 ident: 2023062521593353000_c21 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200300589 – volume: 6 start-page: 39239 year: 2016 ident: 2023062521593353000_c24 publication-title: Sci. Rep. doi: 10.1038/srep39239 – volume: 1861 start-page: 1246 year: 2016 ident: 2023062521593353000_c32 publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbagen.2016.12.008 – volume: 35 start-page: 7429 year: 2007 ident: 2023062521593353000_c25 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkm711 – volume: 8 start-page: e1002471 year: 2012 ident: 2023062521593353000_c39 publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1002471 – volume: 34 start-page: 2723 year: 2006 ident: 2023062521593353000_c29 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkl348 – volume: 7 start-page: 4208 year: 2011 ident: 2023062521593353000_c9 publication-title: J. Chem. Theory Comput. doi: 10.1021/ct200547m – volume: 17 start-page: 1531 year: 1978 ident: 2023062521593353000_c1 publication-title: Biopolymers doi: 10.1002/bip.1978.360170612 – volume: 147 start-page: 152715 year: 2017 ident: 2023062521593353000_c13 publication-title: J. Chem. Phys. doi: 10.1063/1.4997377 – volume: 45 start-page: 11401 year: 2017 ident: 2023062521593353000_c16 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkx766 – volume: 131 start-page: 4301 year: 2009 ident: 2023062521593353000_c28 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja807503g – volume: 35 start-page: 4927 year: 2007 ident: 2023062521593353000_c26 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkm522 |
SSID | ssj0001724 |
Score | 2.336398 |
Snippet | Structure-based models or Gō-like models, which are built from one or multiple particular experimental structures, have been successfully applied to the... |
SourceID | proquest pubmed crossref scitation |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 204107 |
SubjectTerms | Computer simulation Deoxyribonucleic acid DNA Folding Markov chains Molecular dynamics Proteins Simulation |
Title | Exploration of the folding dynamics of human telomeric G-quadruplex with a hybrid atomistic structure-based model |
URI | http://dx.doi.org/10.1063/1.5028498 https://www.ncbi.nlm.nih.gov/pubmed/29865833 https://www.proquest.com/docview/2088691350 https://www.proquest.com/docview/2050484164 |
Volume | 148 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jb9QwFLagFWo5IChQBgoyywFplJLFS3ysylIhipDaivYUxbENSNPMwgQBv57n2HECHRBwiSLHM478fXn-bL_nh9AToaiEkd1EhGmYoAjJIslJHrGcplIrI2Jld3QP37KDE_L6lJ72a7ptdMlS7lbfV8aV_A-qUAa42ijZf0A2_CkUwD3gC1dAGK5_hbFzoAuiz2pI43aTxsplmm8dNVwevqWeTJ3j_Kto3pRq0cwm-qsPbht__GZDt8YwBT9vj24eu4Nlm4WO7ECnXMqcoZTtg8paOVt1Jw-4tZLB6rtbYj1r6jncfgg7PM7evddgUvrSI-8hDN0cys6almqfStMV-lWKJLcb7D7qWzvLGuci4szlBg2ml-QDjqXx0JLGxOfDvWDkQVXZ9YZdCtqIuBzWA7Bn5y3aqciZjSjrx7ngfdg9uozWU5hcgHVc33t--OYojOAg6kh3ChXLnoWW7MnR_rc_y5gLc5OraAMUjHOmGOiV4-vomkcG7znW3ECXdL2FNva7_H5b6Mo7B9RNNB_wCE8NBh5hzyPc8ciWtzzCgUd4yCNseYRL7HiEA4_wLzzCLY9uoZOXL473DyKfiiOqsjxbRplKuIm5pEJwybkxNNGSKamJgucyTTIlc5lmouSMCCaoVtxkca6YooaA6r2N1uppre8gXJqyrBh0I1eGUK5kJaRkMK3NOK9AT43Q065ni64LbbqUSdH6S7CsSAqPxwg9ClVn7nCWVZV2OngK_-1-LlIYXJlIMhqP0MPwGDrGbpeVtZ42tg6F4Q0mLGSEth2soZWOBiP0OOD8p1dYUevLdNHXKGbK3P1tK_fQZv9N7aA1AE7fBy28lA88dX8AXZW2pQ |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exploration+of+the+folding+dynamics+of+human+telomeric+G-quadruplex+with+a+hybrid+atomistic+structure-based+model&rft.jtitle=The+Journal+of+chemical+physics&rft.au=Bian%2C+Yunqiang&rft.au=Ren%2C+Weitong&rft.au=Song%2C+Feng&rft.au=Yu%2C+Jiafeng&rft.date=2018-05-28&rft.eissn=1089-7690&rft.volume=148&rft.issue=20&rft.spage=204107&rft_id=info:doi/10.1063%2F1.5028498&rft_id=info%3Apmid%2F29865833&rft.externalDocID=29865833 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9606&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9606&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9606&client=summon |