Exploration of the folding dynamics of human telomeric G-quadruplex with a hybrid atomistic structure-based model

Structure-based models or Gō-like models, which are built from one or multiple particular experimental structures, have been successfully applied to the folding of proteins and RNAs. Recently, a variant termed the hybrid atomistic model advances the description of backbone and side chain interaction...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of chemical physics Vol. 148; no. 20; pp. 204107 - 204114
Main Authors Bian, Yunqiang, Ren, Weitong, Song, Feng, Yu, Jiafeng, Wang, Jihua
Format Journal Article
LanguageEnglish
Published United States American Institute of Physics 28.05.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Structure-based models or Gō-like models, which are built from one or multiple particular experimental structures, have been successfully applied to the folding of proteins and RNAs. Recently, a variant termed the hybrid atomistic model advances the description of backbone and side chain interactions of traditional structure-based models, by borrowing the description of local interactions from classical force fields. In this study, we assessed the validity of this model in the folding problem of human telomeric DNA G-quadruplex, where local dihedral terms play important roles. A two-state model was developed and a set of molecular dynamics simulations was conducted to study the folding dynamics of sequence Htel24, which was experimentally validated to adopt two different (3 + 1) hybrid G-quadruplex topologies in K+ solution. Consistent with the experimental observations, the hybrid-1 conformation was found to be more stable and the hybrid-2 conformation was kinetically more favored. The simulations revealed that the hybrid-2 conformation folded in a higher cooperative manner, which may be the reason why it was kinetically more accessible. Moreover, by building a Markov state model, a two-quartet G-quadruplex state and a misfolded state were identified as competing states to complicate the folding process of Htel24. Besides, the simulations also showed that the transition between hybrid-1 and hybrid-2 conformations may proceed an ensemble of hairpin structures. The hybrid atomistic structure-based model reproduced the kinetic partitioning folding dynamics of Htel24 between two different folds, and thus can be used to study the complex folding processes of other G-quadruplex structures.
AbstractList Structure-based models or Gō-like models, which are built from one or multiple particular experimental structures, have been successfully applied to the folding of proteins and RNAs. Recently, a variant termed the hybrid atomistic model advances the description of backbone and side chain interactions of traditional structure-based models, by borrowing the description of local interactions from classical force fields. In this study, we assessed the validity of this model in the folding problem of human telomeric DNA G-quadruplex, where local dihedral terms play important roles. A two-state model was developed and a set of molecular dynamics simulations was conducted to study the folding dynamics of sequence Htel24, which was experimentally validated to adopt two different (3 + 1) hybrid G-quadruplex topologies in K+ solution. Consistent with the experimental observations, the hybrid-1 conformation was found to be more stable and the hybrid-2 conformation was kinetically more favored. The simulations revealed that the hybrid-2 conformation folded in a higher cooperative manner, which may be the reason why it was kinetically more accessible. Moreover, by building a Markov state model, a two-quartet G-quadruplex state and a misfolded state were identified as competing states to complicate the folding process of Htel24. Besides, the simulations also showed that the transition between hybrid-1 and hybrid-2 conformations may proceed an ensemble of hairpin structures. The hybrid atomistic structure-based model reproduced the kinetic partitioning folding dynamics of Htel24 between two different folds, and thus can be used to study the complex folding processes of other G-quadruplex structures.Structure-based models or Gō-like models, which are built from one or multiple particular experimental structures, have been successfully applied to the folding of proteins and RNAs. Recently, a variant termed the hybrid atomistic model advances the description of backbone and side chain interactions of traditional structure-based models, by borrowing the description of local interactions from classical force fields. In this study, we assessed the validity of this model in the folding problem of human telomeric DNA G-quadruplex, where local dihedral terms play important roles. A two-state model was developed and a set of molecular dynamics simulations was conducted to study the folding dynamics of sequence Htel24, which was experimentally validated to adopt two different (3 + 1) hybrid G-quadruplex topologies in K+ solution. Consistent with the experimental observations, the hybrid-1 conformation was found to be more stable and the hybrid-2 conformation was kinetically more favored. The simulations revealed that the hybrid-2 conformation folded in a higher cooperative manner, which may be the reason why it was kinetically more accessible. Moreover, by building a Markov state model, a two-quartet G-quadruplex state and a misfolded state were identified as competing states to complicate the folding process of Htel24. Besides, the simulations also showed that the transition between hybrid-1 and hybrid-2 conformations may proceed an ensemble of hairpin structures. The hybrid atomistic structure-based model reproduced the kinetic partitioning folding dynamics of Htel24 between two different folds, and thus can be used to study the complex folding processes of other G-quadruplex structures.
Structure-based models or Gō-like models, which are built from one or multiple particular experimental structures, have been successfully applied to the folding of proteins and RNAs. Recently, a variant termed the hybrid atomistic model advances the description of backbone and side chain interactions of traditional structure-based models, by borrowing the description of local interactions from classical force fields. In this study, we assessed the validity of this model in the folding problem of human telomeric DNA G-quadruplex, where local dihedral terms play important roles. A two-state model was developed and a set of molecular dynamics simulations was conducted to study the folding dynamics of sequence Htel24, which was experimentally validated to adopt two different (3 + 1) hybrid G-quadruplex topologies in K solution. Consistent with the experimental observations, the hybrid-1 conformation was found to be more stable and the hybrid-2 conformation was kinetically more favored. The simulations revealed that the hybrid-2 conformation folded in a higher cooperative manner, which may be the reason why it was kinetically more accessible. Moreover, by building a Markov state model, a two-quartet G-quadruplex state and a misfolded state were identified as competing states to complicate the folding process of Htel24. Besides, the simulations also showed that the transition between hybrid-1 and hybrid-2 conformations may proceed an ensemble of hairpin structures. The hybrid atomistic structure-based model reproduced the kinetic partitioning folding dynamics of Htel24 between two different folds, and thus can be used to study the complex folding processes of other G-quadruplex structures.
Structure-based models or Gō-like models, which are built from one or multiple particular experimental structures, have been successfully applied to the folding of proteins and RNAs. Recently, a variant termed the hybrid atomistic model advances the description of backbone and side chain interactions of traditional structure-based models, by borrowing the description of local interactions from classical force fields. In this study, we assessed the validity of this model in the folding problem of human telomeric DNA G-quadruplex, where local dihedral terms play important roles. A two-state model was developed and a set of molecular dynamics simulations was conducted to study the folding dynamics of sequence Htel24, which was experimentally validated to adopt two different (3 + 1) hybrid G-quadruplex topologies in K+ solution. Consistent with the experimental observations, the hybrid-1 conformation was found to be more stable and the hybrid-2 conformation was kinetically more favored. The simulations revealed that the hybrid-2 conformation folded in a higher cooperative manner, which may be the reason why it was kinetically more accessible. Moreover, by building a Markov state model, a two-quartet G-quadruplex state and a misfolded state were identified as competing states to complicate the folding process of Htel24. Besides, the simulations also showed that the transition between hybrid-1 and hybrid-2 conformations may proceed an ensemble of hairpin structures. The hybrid atomistic structure-based model reproduced the kinetic partitioning folding dynamics of Htel24 between two different folds, and thus can be used to study the complex folding processes of other G-quadruplex structures.
Author Wang, Jihua
Song, Feng
Bian, Yunqiang
Yu, Jiafeng
Ren, Weitong
Author_xml – sequence: 1
  givenname: Yunqiang
  surname: Bian
  fullname: Bian, Yunqiang
  email: bianyunqiang@gmail.com, jhw25336@126.com
  organization: Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University
– sequence: 2
  givenname: Weitong
  surname: Ren
  fullname: Ren, Weitong
  organization: National Laboratory of Solid State Microstructure, Department of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University
– sequence: 3
  givenname: Feng
  surname: Song
  fullname: Song, Feng
  organization: Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University
– sequence: 4
  givenname: Jiafeng
  surname: Yu
  fullname: Yu, Jiafeng
  organization: Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University
– sequence: 5
  givenname: Jihua
  surname: Wang
  fullname: Wang, Jihua
  email: bianyunqiang@gmail.com, jhw25336@126.com
  organization: Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29865833$$D View this record in MEDLINE/PubMed
BookMark eNqd0U1r3DAQBmARUpJNmkP_QBH00hacSJatj2MJaVoI9NKehWRJXQXZ8uojzf77OtldAqGnngSjZ16GmTNwPMXJAvAOo0uMKLnClz1qeSf4EVhhxEXDqEDHYIVQixtBET0FZznfI4Qwa7sTcNoKTntOyApsbh7nEJMqPk4wOljWFroYjJ9-Q7Od1OiH_FRf11FNsNgQR5v8AG-bTVUm1TnYR_jHlzVUcL3VyRuoShx9LgvKJdWh1GQbrbI1cIzGhrfgjVMh24v9ew5-fb35ef2tuftx-_36y10zEE5KQwxmDjHdC8E0Y8712GpqtO3M8q9bTIzmuiVCMdoJKnprmCOIG2p619GOnIOPu9w5xU21uchlqsGGoCYba5Yt6lHHO_xMP7yi97GmaZluUZxTgUmPFvV-r6oerZFz8qNKW3lY5gKudmBIMedknRx8ed5sScoHiZF8OpfEcn-upePTq45D6L_s553Nh9T_ww8xvUA5G0f-AhsjsGs
CODEN JCPSA6
CitedBy_id crossref_primary_10_1002_jcc_27535
crossref_primary_10_1021_acs_jcim_3c00171
crossref_primary_10_1021_acs_jpcb_8b11547
crossref_primary_10_1093_nar_gkz610
crossref_primary_10_1016_j_ijbiomac_2024_129712
crossref_primary_10_1021_acs_jctc_0c00340
crossref_primary_10_3390_molecules24030637
crossref_primary_10_1016_j_ijbiomac_2018_09_102
crossref_primary_10_1088_1674_1056_abe1a7
crossref_primary_10_3390_molecules27154915
crossref_primary_10_1016_j_bpc_2019_106173
Cites_doi 10.1073/pnas.0604375103
10.1021/ct400154j
10.1016/j.biochi.2014.07.009
10.1016/s0092-8674(01)00457-3
10.1021/acs.jpcb.6b03731
10.1016/s0009-2614(99)01123-9
10.1073/pnas.1402768111
10.1063/1.4828816
10.1073/pnas.0906625106
10.1006/jmbi.2000.3693
10.1073/pnas.1308381110
10.1016/j.cplett.2006.05.062
10.1021/jp212614b
10.1093/nar/gkw1010
10.1021/acs.jctc.6b00667
10.1021/acs.jctc.7b00182
10.1038/nature755
10.1088/0034-4885/71/12/126601
10.1093/nar/gkw970
10.1093/nar/gkt784
10.1073/pnas.0909088106
10.1093/nar/gkv994
10.1039/c4cs00048j
10.1016/j.ymeth.2010.06.002
10.1021/ct300275s
10.1529/biophysj.106.097782
10.1016/j.bpj.2014.01.042
10.1021/acs.jpclett.7b03123
10.1093/nar/gkt412
10.1021/ct700301q
10.1021/acs.jctc.5b00743
10.1021/ct300878a
10.1002/anie.201502286
10.1016/s0010-4655(00)00215-0
10.1002/anie.201801999
10.1021/jp400786b
10.1002/bip.22247
10.1021/acs.jpcb.7b06919
10.1038/nrd3428
10.1063/1.2943202
10.1016/j.biochi.2008.02.026
10.1002/anie.200300589
10.1038/srep39239
10.1016/j.bbagen.2016.12.008
10.1093/nar/gkm711
10.1371/journal.pcbi.1002471
10.1093/nar/gkl348
10.1021/ct200547m
10.1002/bip.1978.360170612
10.1063/1.4997377
10.1093/nar/gkx766
10.1021/ja807503g
10.1093/nar/gkm522
ContentType Journal Article
Copyright Author(s)
2018 Author(s). Published by AIP Publishing.
Copyright_xml – notice: Author(s)
– notice: 2018 Author(s). Published by AIP Publishing.
DBID AAYXX
CITATION
NPM
8FD
H8D
L7M
7X8
DOI 10.1063/1.5028498
DatabaseName CrossRef
PubMed
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed
Technology Research Database
CrossRef

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Physics
EISSN 1089-7690
ExternalDocumentID 29865833
10_1063_1_5028498
jcp
Genre Journal Article
GrantInformation_xml – fundername: National Science Foundation of Shandong Province
  grantid: ZR2015CQ002
– fundername: National Science Foundation of Shandong Province
  grantid: ZR2016JL027
– fundername: National Natural Science Foundation of China
  grantid: 11504043; 31500606; 61671107; 61771093
  funderid: http://dx.doi.org/10.13039/501100001809
– fundername: Taishan Young Scholars Program of Shandong Province of China
  grantid: tsqn20161049
GroupedDBID ---
-DZ
-ET
-~X
123
1UP
2-P
29K
4.4
53G
5VS
85S
AAAAW
AABDS
AAEUA
AAPUP
AAYIH
ABPPZ
ABZEH
ACBRY
ACLYJ
ACNCT
ACZLF
ADCTM
AEJMO
AENEX
AFATG
AFHCQ
AGKCL
AGLKD
AGMXG
AGTJO
AHSDT
AJJCW
AJQPL
ALEPV
ALMA_UNASSIGNED_HOLDINGS
AQWKA
ATXIE
AWQPM
BPZLN
CS3
D-I
DU5
EBS
EJD
ESX
F5P
FDOHQ
FFFMQ
HAM
M6X
M71
M73
N9A
NPSNA
O-B
P2P
RIP
RNS
RQS
TN5
TWZ
UPT
WH7
YQT
YZZ
~02
AAGWI
AAYXX
ABJGX
ADMLS
BDMKI
CITATION
NPM
8FD
H8D
L7M
7X8
ID FETCH-LOGICAL-c383t-3d17f07b5997b77ff51eb6dbe4d383b213db8b239a7649695ed7f308d6d5f4643
ISSN 0021-9606
1089-7690
IngestDate Fri Jul 11 06:49:59 EDT 2025
Mon Jun 30 13:10:29 EDT 2025
Wed Feb 19 02:43:21 EST 2025
Thu Apr 24 23:08:22 EDT 2025
Tue Jul 01 00:27:17 EDT 2025
Sun Jul 14 10:05:12 EDT 2019
Fri Jun 21 00:14:20 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 20
Language English
License 0021-9606/2018/148(20)/204107/8/$30.00
Published by AIP Publishing.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c383t-3d17f07b5997b77ff51eb6dbe4d383b213db8b239a7649695ed7f308d6d5f4643
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 29865833
PQID 2088691350
PQPubID 2050685
PageCount 8
ParticipantIDs scitation_primary_10_1063_1_5028498
proquest_journals_2088691350
proquest_miscellaneous_2050484164
crossref_citationtrail_10_1063_1_5028498
pubmed_primary_29865833
crossref_primary_10_1063_1_5028498
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20180528
2018-05-28
2018-May-28
PublicationDateYYYYMMDD 2018-05-28
PublicationDate_xml – month: 05
  year: 2018
  text: 20180528
  day: 28
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Melville
PublicationTitle The Journal of chemical physics
PublicationTitleAlternate J Chem Phys
PublicationYear 2018
Publisher American Institute of Physics
Publisher_xml – name: American Institute of Physics
References Sterpone, Melchionna, Tuffery, Pasquali, Mousseau, Cragnolini, Chebaro, StPierre, Kalimeri, Barducci, Laurin, Tek, Baaden, Nguyen, Derreumaux (c33) 2014; 43
Laio, Gervasio (c49) 2008; 71
Aznauryan, Søndergaard, Noer, Schiøtt, Birkedal (c18) 2016; 44
Stadlbauer, Trantírek, Cheatham, Koča, Šponer (c48) 2014; 105
Souaille, Roux (c50) 2001; 135
Scherer, Trendelkamp-Schroer, Paul, Pérez-Hernández, Hoffmann, Plattner, Wehmeyer, Prinz, Noé (c44) 2015; 11
Patel, Phan, Kuryavyi (c25) 2007; 35
Wang, Tang, Wang, Wang (c39) 2012; 8
Hackett, Feldser, Greider (c22) 2001; 106
Parkinson, Lee, Neidle (c27) 2002; 417
Sutto, Mereu, Gervasio (c9) 2011; 7
Schwantes, Pande (c45) 2013; 9
Sultan, Pande (c51) 2017; 13
Wang, Chu, Longhi, Roche, Han, Wang, Wang (c11) 2013; 110
Wu, Zhang, Qin, Liu, Wang (c3) 2008; 128
Hayes, Noel, Whitford, Mohanty, Sanbonmatsu, Onuchic (c5) 2014; 106
Clementi, Nymeyer, Onuchic (c6) 2000; 298
Marchand, Gabelica (c19) 2016; 44
You, Guo, Le, Tang, Yao, Zhao, Yan (c15) 2018; 9
Bessi, Jonker, Richter, Schwalbe (c20) 2015; 54
Šponer, Bussi, Stadlbauer, Kührová, Banáš, Islam, Haider, Neidle, Otyepka (c32) 2016; 1861
Li, Wang, Takada (c2) 2014; 111
Okazaki, Koga, Takada, Onuchic, Wolynes (c4) 2006; 103
Sugita, Okamoto (c40) 1999; 314
Ren, Li, Wang, Zhang, Wang (c7) 2017; 121
Chen, Eargle, Lai, Kim, Abeysirigunawardena, Mayerle, Woodson, Ha, Luthey-Schulten (c10) 2012; 116
Cho, Pincus, Thirumalai (c8) 2009; 106
Ueda, Taketomi, Gō (c1) 1978; 17
Tawani, Amanullah, Mishra, Kumar (c24) 2016; 6
Maragliano, Vanden-Eijnden (c52) 2006; 426
Zgarbová, Luque, Šponer, Cheatham, Otyepka, Jurečka (c38) 2013; 9
Cragnolini, Derreumaux, Pasquali (c34) 2013; 117
Hou, Fu, Wu, Wang, Teng, Xie, Wang, Xi (c16) 2017; 45
Dai, Carver, Yang (c17) 2008; 90
Stadlbauer, Krepl, Cheatham, Koča, Šponer (c35) 2013; 41
Balasubramanian, Hurley, Neidle (c23) 2011; 10
Cragnolini, Chakraborty, Šponer, Derreumaux, Pasquali, Wales (c13) 2017; 147
Dai, Carver, Punchihewa, Jones, Yang (c26) 2007; 35
Noé, Wu, Prinz, Plattner (c46) 2013; 139
Kim, Long, Dubins, Chalikian (c31) 2016; 120
Huang, Bowman, Bacallado, Pande (c53) 2009; 106
Krepl, Zgarbová, Stadlbauer, Otyepka, Banáš, Koča, Cheatham, Jurečka, Šponer (c37) 2012; 8
Chen, Chen, Dai, Yuan, Ou, Huang, Tan (c14) 2018; 57
Ambrus, Chen, Dai, Bialis, Jones, Yang (c29) 2006; 34
Hess, Kutzner, van der Spoel, Lindahl (c42) 2008; 4
Pande, Beauchamp, Bowman (c43) 2010; 52
Pérez, Marchán, Svozil, Šponer, Cheatham, Laughton, Orozco (c36) 2017; 92
Buscaglia, Gray, Chaires (c41) 2013; 99
Agrawal, Hatzakis, Guo, Carver, Yang (c30) 2013; 41
Stadlbauer, Kührová, Banáš, Koča, Bussi, Trantírek, Otyepka, Šponer (c47) 2015; 43
Davis (c21) 2004; 43
Stadlbauer, Mazzanti, Cragnolini, Wales, Derreumaux, Pasquali, Šponer (c12) 2016; 12
Lim, Amrane, Bouaziz, Xu, Mu, Patel, Luu, Phan (c28) 2009; 131
(2023062521593353000_c16) 2017; 45
(2023062521593353000_c42) 2008; 4
(2023062521593353000_c23) 2011; 10
(2023062521593353000_c45) 2013; 9
(2023062521593353000_c37) 2012; 8
(2023062521593353000_c41) 2013; 99
(2023062521593353000_c28) 2009; 131
(2023062521593353000_c40) 1999; 314
(2023062521593353000_c21) 2004; 43
(2023062521593353000_c31) 2016; 120
(2023062521593353000_c4) 2006; 103
(2023062521593353000_c6) 2000; 298
(2023062521593353000_c9) 2011; 7
(2023062521593353000_c27) 2002; 417
(2023062521593353000_c51) 2017; 13
(2023062521593353000_c22) 2001; 106
(2023062521593353000_c18) 2016; 44
(2023062521593353000_c39) 2012; 8
(2023062521593353000_c10) 2012; 116
(2023062521593353000_c35) 2013; 41
(2023062521593353000_c49) 2008; 71
(2023062521593353000_c36) 2017; 92
(2023062521593353000_c5) 2014; 106
(2023062521593353000_c47) 2015; 43
(2023062521593353000_c46) 2013; 139
(2023062521593353000_c32) 2016; 1861
(2023062521593353000_c12) 2016; 12
(2023062521593353000_c20) 2015; 54
(2023062521593353000_c52) 2006; 426
(2023062521593353000_c38) 2013; 9
(2023062521593353000_c13) 2017; 147
(2023062521593353000_c48) 2014; 105
(2023062521593353000_c8) 2009; 106
(2023062521593353000_c26) 2007; 35
(2023062521593353000_c34) 2013; 117
(2023062521593353000_c11) 2013; 110
(2023062521593353000_c2) 2014; 111
(2023062521593353000_c24) 2016; 6
(2023062521593353000_c15) 2018; 9
(2023062521593353000_c1) 1978; 17
(2023062521593353000_c30) 2013; 41
(2023062521593353000_c7) 2017; 121
(2023062521593353000_c19) 2016; 44
(2023062521593353000_c50) 2001; 135
(2023062521593353000_c14) 2018; 57
(2023062521593353000_c25) 2007; 35
(2023062521593353000_c44) 2015; 11
(2023062521593353000_c33) 2014; 43
(2023062521593353000_c29) 2006; 34
(2023062521593353000_c3) 2008; 128
(2023062521593353000_c17) 2008; 90
(2023062521593353000_c43) 2010; 52
(2023062521593353000_c53) 2009; 106
References_xml – volume: 417
  start-page: 876
  year: 2002
  ident: c27
  publication-title: Nature
– volume: 106
  start-page: 1508
  year: 2014
  ident: c5
  publication-title: Biophys. J.
– volume: 17
  start-page: 1531
  year: 1978
  ident: c1
  publication-title: Biopolymers
– volume: 110
  start-page: E3743
  year: 2013
  ident: c11
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 121
  start-page: 9799
  year: 2017
  ident: c7
  publication-title: J. Phys. Chem. B
– volume: 147
  start-page: 152715
  year: 2017
  ident: c13
  publication-title: J. Chem. Phys.
– volume: 41
  start-page: 7128
  year: 2013
  ident: c35
  publication-title: Nucleic Acids Res.
– volume: 34
  start-page: 2723
  year: 2006
  ident: c29
  publication-title: Nucleic Acids Res.
– volume: 44
  start-page: 11024
  year: 2016
  ident: c18
  publication-title: Nucleic Acids Res.
– volume: 41
  start-page: 10584
  year: 2013
  ident: c30
  publication-title: Nucleic Acids Res.
– volume: 99
  start-page: 1006
  year: 2013
  ident: c41
  publication-title: Biopolymers
– volume: 105
  start-page: 22
  year: 2014
  ident: c48
  publication-title: Biochimie
– volume: 71
  start-page: 126601
  year: 2008
  ident: c49
  publication-title: Rep. Prog. Phys.
– volume: 6
  start-page: 39239
  year: 2016
  ident: c24
  publication-title: Sci. Rep.
– volume: 131
  start-page: 4301
  year: 2009
  ident: c28
  publication-title: J. Am. Chem. Soc.
– volume: 12
  start-page: 6077
  year: 2016
  ident: c12
  publication-title: J. Chem. Theory Comput.
– volume: 135
  start-page: 40
  year: 2001
  ident: c50
  publication-title: Comput. Phys. Commun.
– volume: 44
  start-page: 10999
  year: 2016
  ident: c19
  publication-title: Nucleic Acids Res.
– volume: 426
  start-page: 168
  year: 2006
  ident: c52
  publication-title: Chem. Phys. Lett.
– volume: 8
  start-page: 2506
  year: 2012
  ident: c37
  publication-title: J. Chem. Theory Comput.
– volume: 13
  start-page: 2440
  year: 2017
  ident: c51
  publication-title: J. Chem. Theory Comput.
– volume: 106
  start-page: 17349
  year: 2009
  ident: c8
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 120
  start-page: 4963
  year: 2016
  ident: c31
  publication-title: J. Phys. Chem. B
– volume: 139
  start-page: 184114
  year: 2013
  ident: c46
  publication-title: J. Chem. Phys.
– volume: 90
  start-page: 1172
  year: 2008
  ident: c17
  publication-title: Biochimie
– volume: 1861
  start-page: 1246
  year: 2016
  ident: c32
  publication-title: Biochim. Biophys. Acta
– volume: 54
  start-page: 8444
  year: 2015
  ident: c20
  publication-title: Angew. Chem., Int. Ed.
– volume: 10
  start-page: 261
  year: 2011
  ident: c23
  publication-title: Nat. Rev. Drug Discov.
– volume: 9
  start-page: 2339
  year: 2013
  ident: c38
  publication-title: J. Chem. Theory Comput.
– volume: 9
  start-page: 811
  year: 2018
  ident: c15
  publication-title: J. Phys. Chem. Lett.
– volume: 298
  start-page: 937
  year: 2000
  ident: c6
  publication-title: J. Mol. Biol.
– volume: 92
  start-page: 3817
  year: 2017
  ident: c36
  publication-title: Biophys. J.
– volume: 106
  start-page: 275
  year: 2001
  ident: c22
  publication-title: Cell
– volume: 116
  start-page: 6819
  year: 2012
  ident: c10
  publication-title: J. Phys. Chem. B
– volume: 117
  start-page: 8047
  year: 2013
  ident: c34
  publication-title: J. Phys. Chem. B
– volume: 43
  start-page: 9626
  year: 2015
  ident: c47
  publication-title: Nucleic Acids Res.
– volume: 45
  start-page: 11401
  year: 2017
  ident: c16
  publication-title: Nucleic Acids Res.
– volume: 7
  start-page: 4208
  year: 2011
  ident: c9
  publication-title: J. Chem. Theory Comput.
– volume: 8
  start-page: e1002471
  year: 2012
  ident: c39
  publication-title: PLoS Comput. Biol.
– volume: 57
  start-page: 4702
  year: 2018
  ident: c14
  publication-title: Angew. Chem., Int. Ed.
– volume: 52
  start-page: 99
  year: 2010
  ident: c43
  publication-title: Methods
– volume: 9
  start-page: 2000
  year: 2013
  ident: c45
  publication-title: J. Chem. Theory Comput.
– volume: 11
  start-page: 5525
  year: 2015
  ident: c44
  publication-title: J. Chem. Theory Comput.
– volume: 128
  start-page: 235103
  year: 2008
  ident: c3
  publication-title: J. Chem. Phys.
– volume: 43
  start-page: 668
  year: 2004
  ident: c21
  publication-title: Angew. Chem., Int. Ed.
– volume: 106
  start-page: 19765
  year: 2009
  ident: c53
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 35
  start-page: 4927
  year: 2007
  ident: c26
  publication-title: Nucleic Acids Res.
– volume: 103
  start-page: 11844
  year: 2006
  ident: c4
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 35
  start-page: 7429
  year: 2007
  ident: c25
  publication-title: Nucleic Acids Res.
– volume: 43
  start-page: 4871
  year: 2014
  ident: c33
  publication-title: Chem. Soc. Rev.
– volume: 314
  start-page: 141
  year: 1999
  ident: c40
  publication-title: Chem. Phys. Lett.
– volume: 111
  start-page: 10550
  year: 2014
  ident: c2
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 4
  start-page: 435
  year: 2008
  ident: c42
  publication-title: J. Chem. Theory Comput.
– volume: 103
  start-page: 11844
  year: 2006
  ident: 2023062521593353000_c4
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0604375103
– volume: 9
  start-page: 2339
  year: 2013
  ident: 2023062521593353000_c38
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct400154j
– volume: 105
  start-page: 22
  year: 2014
  ident: 2023062521593353000_c48
  publication-title: Biochimie
  doi: 10.1016/j.biochi.2014.07.009
– volume: 106
  start-page: 275
  year: 2001
  ident: 2023062521593353000_c22
  publication-title: Cell
  doi: 10.1016/s0092-8674(01)00457-3
– volume: 120
  start-page: 4963
  year: 2016
  ident: 2023062521593353000_c31
  publication-title: J. Phys. Chem. B
  doi: 10.1021/acs.jpcb.6b03731
– volume: 314
  start-page: 141
  year: 1999
  ident: 2023062521593353000_c40
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/s0009-2614(99)01123-9
– volume: 111
  start-page: 10550
  year: 2014
  ident: 2023062521593353000_c2
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1402768111
– volume: 139
  start-page: 184114
  year: 2013
  ident: 2023062521593353000_c46
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4828816
– volume: 106
  start-page: 17349
  year: 2009
  ident: 2023062521593353000_c8
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0906625106
– volume: 298
  start-page: 937
  year: 2000
  ident: 2023062521593353000_c6
  publication-title: J. Mol. Biol.
  doi: 10.1006/jmbi.2000.3693
– volume: 110
  start-page: E3743
  year: 2013
  ident: 2023062521593353000_c11
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1308381110
– volume: 426
  start-page: 168
  year: 2006
  ident: 2023062521593353000_c52
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/j.cplett.2006.05.062
– volume: 116
  start-page: 6819
  year: 2012
  ident: 2023062521593353000_c10
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp212614b
– volume: 44
  start-page: 11024
  year: 2016
  ident: 2023062521593353000_c18
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkw1010
– volume: 12
  start-page: 6077
  year: 2016
  ident: 2023062521593353000_c12
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/acs.jctc.6b00667
– volume: 13
  start-page: 2440
  year: 2017
  ident: 2023062521593353000_c51
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/acs.jctc.7b00182
– volume: 417
  start-page: 876
  year: 2002
  ident: 2023062521593353000_c27
  publication-title: Nature
  doi: 10.1038/nature755
– volume: 71
  start-page: 126601
  year: 2008
  ident: 2023062521593353000_c49
  publication-title: Rep. Prog. Phys.
  doi: 10.1088/0034-4885/71/12/126601
– volume: 44
  start-page: 10999
  year: 2016
  ident: 2023062521593353000_c19
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkw970
– volume: 41
  start-page: 10584
  year: 2013
  ident: 2023062521593353000_c30
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkt784
– volume: 106
  start-page: 19765
  year: 2009
  ident: 2023062521593353000_c53
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0909088106
– volume: 43
  start-page: 9626
  year: 2015
  ident: 2023062521593353000_c47
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkv994
– volume: 43
  start-page: 4871
  year: 2014
  ident: 2023062521593353000_c33
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/c4cs00048j
– volume: 52
  start-page: 99
  year: 2010
  ident: 2023062521593353000_c43
  publication-title: Methods
  doi: 10.1016/j.ymeth.2010.06.002
– volume: 8
  start-page: 2506
  year: 2012
  ident: 2023062521593353000_c37
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct300275s
– volume: 92
  start-page: 3817
  year: 2017
  ident: 2023062521593353000_c36
  publication-title: Biophys. J.
  doi: 10.1529/biophysj.106.097782
– volume: 106
  start-page: 1508
  year: 2014
  ident: 2023062521593353000_c5
  publication-title: Biophys. J.
  doi: 10.1016/j.bpj.2014.01.042
– volume: 9
  start-page: 811
  year: 2018
  ident: 2023062521593353000_c15
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.7b03123
– volume: 41
  start-page: 7128
  year: 2013
  ident: 2023062521593353000_c35
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkt412
– volume: 4
  start-page: 435
  year: 2008
  ident: 2023062521593353000_c42
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct700301q
– volume: 11
  start-page: 5525
  year: 2015
  ident: 2023062521593353000_c44
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/acs.jctc.5b00743
– volume: 9
  start-page: 2000
  year: 2013
  ident: 2023062521593353000_c45
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct300878a
– volume: 54
  start-page: 8444
  year: 2015
  ident: 2023062521593353000_c20
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201502286
– volume: 135
  start-page: 40
  year: 2001
  ident: 2023062521593353000_c50
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/s0010-4655(00)00215-0
– volume: 57
  start-page: 4702
  year: 2018
  ident: 2023062521593353000_c14
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201801999
– volume: 117
  start-page: 8047
  year: 2013
  ident: 2023062521593353000_c34
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp400786b
– volume: 99
  start-page: 1006
  year: 2013
  ident: 2023062521593353000_c41
  publication-title: Biopolymers
  doi: 10.1002/bip.22247
– volume: 121
  start-page: 9799
  year: 2017
  ident: 2023062521593353000_c7
  publication-title: J. Phys. Chem. B
  doi: 10.1021/acs.jpcb.7b06919
– volume: 10
  start-page: 261
  year: 2011
  ident: 2023062521593353000_c23
  publication-title: Nat. Rev. Drug Discov.
  doi: 10.1038/nrd3428
– volume: 128
  start-page: 235103
  year: 2008
  ident: 2023062521593353000_c3
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2943202
– volume: 90
  start-page: 1172
  year: 2008
  ident: 2023062521593353000_c17
  publication-title: Biochimie
  doi: 10.1016/j.biochi.2008.02.026
– volume: 43
  start-page: 668
  year: 2004
  ident: 2023062521593353000_c21
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200300589
– volume: 6
  start-page: 39239
  year: 2016
  ident: 2023062521593353000_c24
  publication-title: Sci. Rep.
  doi: 10.1038/srep39239
– volume: 1861
  start-page: 1246
  year: 2016
  ident: 2023062521593353000_c32
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbagen.2016.12.008
– volume: 35
  start-page: 7429
  year: 2007
  ident: 2023062521593353000_c25
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkm711
– volume: 8
  start-page: e1002471
  year: 2012
  ident: 2023062521593353000_c39
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1002471
– volume: 34
  start-page: 2723
  year: 2006
  ident: 2023062521593353000_c29
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkl348
– volume: 7
  start-page: 4208
  year: 2011
  ident: 2023062521593353000_c9
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct200547m
– volume: 17
  start-page: 1531
  year: 1978
  ident: 2023062521593353000_c1
  publication-title: Biopolymers
  doi: 10.1002/bip.1978.360170612
– volume: 147
  start-page: 152715
  year: 2017
  ident: 2023062521593353000_c13
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4997377
– volume: 45
  start-page: 11401
  year: 2017
  ident: 2023062521593353000_c16
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkx766
– volume: 131
  start-page: 4301
  year: 2009
  ident: 2023062521593353000_c28
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja807503g
– volume: 35
  start-page: 4927
  year: 2007
  ident: 2023062521593353000_c26
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkm522
SSID ssj0001724
Score 2.336398
Snippet Structure-based models or Gō-like models, which are built from one or multiple particular experimental structures, have been successfully applied to the...
SourceID proquest
pubmed
crossref
scitation
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 204107
SubjectTerms Computer simulation
Deoxyribonucleic acid
DNA
Folding
Markov chains
Molecular dynamics
Proteins
Simulation
Title Exploration of the folding dynamics of human telomeric G-quadruplex with a hybrid atomistic structure-based model
URI http://dx.doi.org/10.1063/1.5028498
https://www.ncbi.nlm.nih.gov/pubmed/29865833
https://www.proquest.com/docview/2088691350
https://www.proquest.com/docview/2050484164
Volume 148
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jb9QwFLagFWo5IChQBgoyywFplJLFS3ysylIhipDaivYUxbENSNPMwgQBv57n2HECHRBwiSLHM478fXn-bL_nh9AToaiEkd1EhGmYoAjJIslJHrGcplIrI2Jld3QP37KDE_L6lJ72a7ptdMlS7lbfV8aV_A-qUAa42ijZf0A2_CkUwD3gC1dAGK5_hbFzoAuiz2pI43aTxsplmm8dNVwevqWeTJ3j_Kto3pRq0cwm-qsPbht__GZDt8YwBT9vj24eu4Nlm4WO7ECnXMqcoZTtg8paOVt1Jw-4tZLB6rtbYj1r6jncfgg7PM7evddgUvrSI-8hDN0cys6almqfStMV-lWKJLcb7D7qWzvLGuci4szlBg2ml-QDjqXx0JLGxOfDvWDkQVXZ9YZdCtqIuBzWA7Bn5y3aqciZjSjrx7ngfdg9uozWU5hcgHVc33t--OYojOAg6kh3ChXLnoWW7MnR_rc_y5gLc5OraAMUjHOmGOiV4-vomkcG7znW3ECXdL2FNva7_H5b6Mo7B9RNNB_wCE8NBh5hzyPc8ciWtzzCgUd4yCNseYRL7HiEA4_wLzzCLY9uoZOXL473DyKfiiOqsjxbRplKuIm5pEJwybkxNNGSKamJgucyTTIlc5lmouSMCCaoVtxkca6YooaA6r2N1uppre8gXJqyrBh0I1eGUK5kJaRkMK3NOK9AT43Q065ni64LbbqUSdH6S7CsSAqPxwg9ClVn7nCWVZV2OngK_-1-LlIYXJlIMhqP0MPwGDrGbpeVtZ42tg6F4Q0mLGSEth2soZWOBiP0OOD8p1dYUevLdNHXKGbK3P1tK_fQZv9N7aA1AE7fBy28lA88dX8AXZW2pQ
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exploration+of+the+folding+dynamics+of+human+telomeric+G-quadruplex+with+a+hybrid+atomistic+structure-based+model&rft.jtitle=The+Journal+of+chemical+physics&rft.au=Bian%2C+Yunqiang&rft.au=Ren%2C+Weitong&rft.au=Song%2C+Feng&rft.au=Yu%2C+Jiafeng&rft.date=2018-05-28&rft.eissn=1089-7690&rft.volume=148&rft.issue=20&rft.spage=204107&rft_id=info:doi/10.1063%2F1.5028498&rft_id=info%3Apmid%2F29865833&rft.externalDocID=29865833
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9606&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9606&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9606&client=summon