The low-bias conducting mechanism of single-molecule junctions constructed with methylsulfide linker groups and gold electrodes

The atomic structure and electronic transport properties of two types of molecular junctions, in which a series of saturated and conjugated molecules are symmetrically connected to gold electrodes through methylsulfide groups, are investigated using the non-equilibrium Green’s function formalism com...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of chemical physics Vol. 147; no. 5; pp. 054702 - 54706
Main Authors Wang, Minglang, Wang, Yongfeng, Sanvito, Stefano, Hou, Shimin
Format Journal Article
LanguageEnglish
Published United States American Institute of Physics 07.08.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The atomic structure and electronic transport properties of two types of molecular junctions, in which a series of saturated and conjugated molecules are symmetrically connected to gold electrodes through methylsulfide groups, are investigated using the non-equilibrium Green’s function formalism combined with density functional theory. Our calculations show that the low-bias junction conductance is determined by the electronic tunneling between the two Au–S donor-acceptor bonds formed at the molecule-electrode interfaces. For alkanes with 4, 6, and 8 carbon atoms in the chain, the Au–S bonds moderately couple with the σ-type frontier molecular orbitals of the alkane backbone and thus prefer to be coplanar with the alkane backbone in the junction. This results in an exponential decrease of the junction conductance as a function of the number of methylene groups. In contrast, the Au–S bonds couple strongly with the π-type orbitals of the 1,4’-bis(methylsulfide)benzene and 4,4’-bis(methylsulfide)biphenyl molecules and thus tend to be perpendicular to the neighboring benzene rings, leading to the rather large junction conductance. Our findings contribute to the understanding of the low-bias conducting mechanism and facilitate the design of molecular electronic devices with methylsulfide groups and gold electrodes.
AbstractList The atomic structure and electronic transport properties of two types of molecular junctions, in which a series of saturated and conjugated molecules are symmetrically connected to gold electrodes through methylsulfide groups, are investigated using the non-equilibrium Green’s function formalism combined with density functional theory. Our calculations show that the low-bias junction conductance is determined by the electronic tunneling between the two Au–S donor-acceptor bonds formed at the molecule-electrode interfaces. For alkanes with 4, 6, and 8 carbon atoms in the chain, the Au–S bonds moderately couple with the σ-type frontier molecular orbitals of the alkane backbone and thus prefer to be coplanar with the alkane backbone in the junction. This results in an exponential decrease of the junction conductance as a function of the number of methylene groups. In contrast, the Au–S bonds couple strongly with the π-type orbitals of the 1,4’-bis(methylsulfide)benzene and 4,4’-bis(methylsulfide)biphenyl molecules and thus tend to be perpendicular to the neighboring benzene rings, leading to the rather large junction conductance. Our findings contribute to the understanding of the low-bias conducting mechanism and facilitate the design of molecular electronic devices with methylsulfide groups and gold electrodes.
The atomic structure and electronic transport properties of two types of molecular junctions, in which a series of saturated and conjugated molecules are symmetrically connected to gold electrodes through methylsulfide groups, are investigated using the non-equilibrium Green's function formalism combined with density functional theory. Our calculations show that the low-bias junction conductance is determined by the electronic tunneling between the two Au-S donor-acceptor bonds formed at the molecule-electrode interfaces. For alkanes with 4, 6, and 8 carbon atoms in the chain, the Au-S bonds moderately couple with the σ-type frontier molecular orbitals of the alkane backbone and thus prefer to be coplanar with the alkane backbone in the junction. This results in an exponential decrease of the junction conductance as a function of the number of methylene groups. In contrast, the Au-S bonds couple strongly with the π-type orbitals of the 1,4'-bis(methylsulfide)benzene and 4,4'-bis(methylsulfide)biphenyl molecules and thus tend to be perpendicular to the neighboring benzene rings, leading to the rather large junction conductance. Our findings contribute to the understanding of the low-bias conducting mechanism and facilitate the design of molecular electronic devices with methylsulfide groups and gold electrodes.The atomic structure and electronic transport properties of two types of molecular junctions, in which a series of saturated and conjugated molecules are symmetrically connected to gold electrodes through methylsulfide groups, are investigated using the non-equilibrium Green's function formalism combined with density functional theory. Our calculations show that the low-bias junction conductance is determined by the electronic tunneling between the two Au-S donor-acceptor bonds formed at the molecule-electrode interfaces. For alkanes with 4, 6, and 8 carbon atoms in the chain, the Au-S bonds moderately couple with the σ-type frontier molecular orbitals of the alkane backbone and thus prefer to be coplanar with the alkane backbone in the junction. This results in an exponential decrease of the junction conductance as a function of the number of methylene groups. In contrast, the Au-S bonds couple strongly with the π-type orbitals of the 1,4'-bis(methylsulfide)benzene and 4,4'-bis(methylsulfide)biphenyl molecules and thus tend to be perpendicular to the neighboring benzene rings, leading to the rather large junction conductance. Our findings contribute to the understanding of the low-bias conducting mechanism and facilitate the design of molecular electronic devices with methylsulfide groups and gold electrodes.
Author Hou, Shimin
Sanvito, Stefano
Wang, Minglang
Wang, Yongfeng
Author_xml – sequence: 1
  givenname: Minglang
  surname: Wang
  fullname: Wang, Minglang
  organization: Key Laboratory for the Physics and Chemistry of Nanodevices, Department of Electronics, Peking University
– sequence: 2
  givenname: Yongfeng
  surname: Wang
  fullname: Wang, Yongfeng
  organization: 3 School of Physics, AMBER and CRANN Institute, Trinity College, Dublin 2, Ireland
– sequence: 3
  givenname: Stefano
  surname: Sanvito
  fullname: Sanvito, Stefano
  organization: School of Physics, AMBER and CRANN Institute, Trinity College
– sequence: 4
  givenname: Shimin
  surname: Hou
  fullname: Hou, Shimin
  email: smhou@pku.edu.cn
  organization: 3 School of Physics, AMBER and CRANN Institute, Trinity College, Dublin 2, Ireland
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28789544$$D View this record in MEDLINE/PubMed
BookMark eNp9kc9rHCEUgKUkNJukh_4DReilLUyi4zjqsYT-gkAuyVkcfbPr1tGtzhBy6r9e0929hNKT8Pi-D3nvHJ3EFAGht5RcUdKza3rVKdWLjr9CK0qkakSvyAlaEdLSRvWkP0PnpWwJIVS03Wt01kohFe-6Ffp9vwEc0mMzeFOwTdEtdvZxjSewGxN9mXAacamTAM2UAtglAN4usVIp_jXKnKsDDj_6eVO9efMUyhJG72rZx5-Q8TqnZVewiQ6vU3AYamfOyUG5RKejCQXeHN4L9PD1y_3N9-b27tuPm8-3jWWSzQ2zqrWScWBicESAdJKOTjnKQQwjEZzIQQ0cKB-Z6oD10sqRctKOhrfGWHaBPuy7u5x-LVBmPfliIQQTIS1FU9UKriTvREXfv0C3acmx_k63lPZEMNKSSr07UMswgdO77CeTn_RxtRW43gM2p1IyjNr62Txvbc7GB02Jfj6epvpwvGp8fGEco_9iP-3Zcqz-B_4Dnv-oBA
CODEN JCPSA6
CitedBy_id crossref_primary_10_1039_D1SC02287C
crossref_primary_10_1021_jacs_8b10296
crossref_primary_10_1021_acs_jpcc_2c00761
crossref_primary_10_1021_acs_jpclett_7b02822
crossref_primary_10_1039_C8CP05901B
crossref_primary_10_1039_C9CP02249J
crossref_primary_10_1039_D2CP06030B
crossref_primary_10_1021_acs_jpcc_3c00224
crossref_primary_10_1016_j_chemphys_2022_111478
crossref_primary_10_1021_acs_jpcc_8b11092
Cites_doi 10.1103/physrevb.73.085414
10.1021/nl403698m
10.1021/jacs.6b04394
10.1038/nature05037
10.1038/nchem.2180
10.1021/jacs.6b07825
10.1038/nnano.2009.10
10.1103/physrevb.43.1993
10.1021/ja505277z
10.1021/ja903731m
10.1021/jp908347s
10.1021/ja308626m
10.1021/ja4055367
10.1021/nn502836e
10.1021/ja512523r
10.1103/physrev.140.a1133
10.1021/nl2045815
10.1088/0957-4484/16/2/010
10.1021/nl104411f
10.1088/0953-8984/14/11/302
10.1039/c2cp41578j
10.1021/ja211590d
10.1103/physrevlett.99.056801
10.1021/acs.accounts.6b00004
10.1039/c4cs00264d
10.1039/c6sc01360k
10.1103/physrev.136.b864
10.1038/nchem.2160
10.1021/ja211677q
10.1002/anie.201206301
10.1063/1.2388272
10.1038/nmat1349
10.1021/ja0773857
10.1021/ja410656a
10.1103/physrevlett.68.2512
10.1021/jacs.5b08155
10.1021/acs.nanolett.5b01270
10.1103/physrevb.83.115108
10.1103/physrevb.68.115406
10.1126/science.278.5336.252
10.1038/nnano.2012.147
10.1103/physrevlett.102.126803
10.1016/j.chemphys.2007.06.011
10.1103/physrevb.65.165401
10.1088/0957-4484/18/34/345203
10.1039/c4fd00093e
10.1103/physrevlett.77.3865
10.1021/ar4002526
10.1021/ja0762386
10.1126/science.1087481
10.1016/s0301-0104(02)00446-9
10.1038/nnano.2015.97
10.1088/0957-4484/16/12/055
10.1021/acs.chemrev.5b00680
10.1021/acs.nanolett.6b01592
ContentType Journal Article
Copyright Author(s)
2017 Author(s). Published by AIP Publishing.
Copyright_xml – notice: Author(s)
– notice: 2017 Author(s). Published by AIP Publishing.
DBID AAYXX
CITATION
NPM
8FD
H8D
L7M
7X8
DOI 10.1063/1.4996745
DatabaseName CrossRef
PubMed
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE - Academic
Technology Research Database
PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Physics
EISSN 1089-7690
ExternalDocumentID 28789544
10_1063_1_4996745
jcp
Genre Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China (NSFC)
  grantid: 61621061; 61671021
  funderid: http://dx.doi.org/10.13039/501100001809
GroupedDBID ---
-DZ
-ET
-~X
123
1UP
2-P
29K
4.4
53G
5VS
85S
AAAAW
AABDS
AAEUA
AAPUP
AAYIH
ABPPZ
ABRJW
ABZEH
ACBRY
ACLYJ
ACNCT
ACZLF
ADCTM
AEJMO
AENEX
AFATG
AFHCQ
AGKCL
AGLKD
AGMXG
AGTJO
AHSDT
AJJCW
AJQPL
ALEPV
ALMA_UNASSIGNED_HOLDINGS
AQWKA
ATXIE
AWQPM
BPZLN
CS3
D-I
DU5
EBS
EJD
ESX
F5P
FDOHQ
FFFMQ
HAM
M6X
M71
M73
N9A
NPSNA
O-B
P2P
RIP
RNS
RQS
TN5
TWZ
UPT
WH7
YQT
YZZ
~02
AAGWI
AAYXX
ABJGX
ADMLS
BDMKI
CITATION
NPM
8FD
H8D
L7M
7X8
ID FETCH-LOGICAL-c383t-3c92c835e37bd07e8d81fd9d15e7bf07508b9b5e15f394e368c8f1502fa52aac3
ISSN 0021-9606
1089-7690
IngestDate Fri Jul 11 06:52:45 EDT 2025
Sun Jun 29 16:56:11 EDT 2025
Wed Feb 19 02:43:03 EST 2025
Tue Jul 01 04:16:21 EDT 2025
Thu Apr 24 23:12:58 EDT 2025
Fri Jun 21 00:14:35 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License 0021-9606/2017/147(5)/054702/5/$30.00
Published by AIP Publishing.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c383t-3c92c835e37bd07e8d81fd9d15e7bf07508b9b5e15f394e368c8f1502fa52aac3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-5042-4405
0000000250424405
OpenAccessLink https://aip.scitation.org/doi/pdf/10.1063/1.4996745
PMID 28789544
PQID 2116073020
PQPubID 2050685
PageCount 5
ParticipantIDs crossref_citationtrail_10_1063_1_4996745
proquest_journals_2116073020
pubmed_primary_28789544
scitation_primary_10_1063_1_4996745
crossref_primary_10_1063_1_4996745
proquest_miscellaneous_1927598547
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20170807
2017-08-07
2017-Aug-07
PublicationDateYYYYMMDD 2017-08-07
PublicationDate_xml – month: 08
  year: 2017
  text: 20170807
  day: 07
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Melville
PublicationTitle The Journal of chemical physics
PublicationTitleAlternate J Chem Phys
PublicationYear 2017
Publisher American Institute of Physics
Publisher_xml – name: American Institute of Physics
References Aradhya, Nielsen, Hybertsen, venkataraman (c21) 2014; 8
Capozzi, Xia, Adak, Dell, Liu, Taylor, Neaton, Campos, venkataraman (c27) 2015; 10
Su, Li, Klausen, Widawsky, Batra, Steigerwald, Venkataraman, Nuckolls (c32) 2016; 138
Li, Zhang, Hou, Qian, Shen, Zhao, Xue (c48) 2007; 336
Venkataraman, Klare, Nuckolls, Hybertsen, Steigerwald (c5) 2006; 442
Li, Garner, Shangguan, Zheng, Su, Neupane, Li, Velian, Steigerwald, Xiao, Nuckolls, Solomon, Venkataraman (c31) 2016; 7
Batra, Meisner, Darancet, Chen, Steigerwald, Nuckolls, Venkataraman (c20) 2014; 174
Dell, Capozzi, Dubay, Berkelbach, Moreno, Reichman, Venkataraman, Campos (c17) 2013; 135
Meisner, Kamenetska, Krikorian, Steigerwald, Venkataraman, Nuckolls (c9) 2011; 11
Xue, Datta, Ratner (c45) 2002; 281
Meisner, Ahn, Aradhya, Krikorian, Parameswaran, Steigerwald, Venkataraman, Nuckolls (c16) 2012; 134
Reed, Zhou, Muller, Burgin, Tour (c3) 1997; 278
Su, Li, Steigerwald, Venkataraman, Nuckolls (c25) 2015; 7
Troullier, Martins (c52) 1991; 43
Park, Whalley, Kamenetska, Steigerwald, Hybertsen, Nuckolls, Venkataraman (c6) 2007; 129
Xu, Tao (c4) 2003; 301
Brandbyge, Mozos, Ordejón, Taylor, Stokbro (c46) 2002; 65
Ning, Li, Shen, Qian, Hou, Rocha, Sanvito (c37) 2007; 18
Dell, Capozzi, Xia, venkataraman, Campos (c23) 2015; 7
Feng, Li, Yang (c41) 2009; 113
Quek, Khoo (c40) 2014; 47
Batra, Darancet, Chen, Meisner, Widawsky, Neaton, Nuckolls, Venkataraman (c18) 2013; 13
Zhang, Hou, Li, Qian, Han, Shen, Zhao, Xue (c47) 2005; 16
Li, Pobelov, Wandlowski, Bagrets, Arnold, Evers (c35) 2008; 130
Roy, Schenck, Ahn, Lalancette, Venkataraman, Nuckolls, Steigerwald (c15) 2012; 51
Xue, Ratner (c34) 2003; 68
Quek, Kamenetska, Steigerwald, Choi, Louie, Hybertsen, Neaton, Venkataraman (c38) 2009; 4
Aradhya, Meisner, Krikorian, Ahn, Parameswaran, Steigerwald, Nuckolls, Venkataraman (c12) 2012; 12
Adak, Rosenthal, Meisner, Andrade, Pasupathy, Nuckolls, Hybersen, Venkataraman (c26) 2015; 15
Park, Widawsky, Kamenetska, Steigerwald, Hybertsen, Nuckolls, Venkataraman (c8) 2009; 131
Capozzi, Dell, Berkelbach, Reichman, Venkataraman, Campos (c22) 2014; 136
Toher, Sanvito (c55) 2007; 99
Capozzi, Low, Xia, Liu, Neaton, Campos, Venkataraman (c30) 2016; 16
Kim, Li, Venkataraman, Leighton (c33) 2016; 138
Frei, Aradhya, hybertsen, Venkataraman (c10) 2012; 134
Su, Widawsky, Li, Klausen, Leighton, Steigerwald, Venkataraman, Nuckolls (c19) 2013; 135
Hou, Zhang, Li, Ning, Han, Shen, Zhao, Xue, Wu (c36) 2004; 16
Vazquez, Skouta, Schneebeli, Kamenetska, Breslow, Venkataraman, Hybertsen (c14) 2012; 7
Xiang, Guo, Lee (c1) 2016; 116
Rocha, García-Suárez, Bailey, Lambert, Ferrer, Sanvito (c50) 2006; 73
Meir, Wingreen (c42) 1992; 68
Hybertsen, Venkataraman (c29) 2016; 49
Leary, La Rosa, Teresa González, Rubio-Bollinger, Agraït, Marth (c2) 2015; 44
Ahn, Aradhya, Klausen, Capozzi, Roy, Steigerwald, Nuckolls, Venkataraman (c13) 2012; 14
Kohn, Sham (c44) 1965; 140
Soler, Artacho, Gale, García, Junquera, Ordejón, Sánchez-Portal (c51) 2002; 14
Rocha, García-Suárez, Bailey, Lambert, Ferrer, Sanvito (c49) 2005; 4
Su, Li, Zhang, Neupane, Batra, Klausen, Kumar, Steigerwald, Venkataraman, Nuckolls (c28) 2015; 137
Strange, Rostgaard, Hakkinen, Thygesen (c39) 2011; 83
Hohenberg, Kohn (c43) 1964; 136
Klausen, Widawsky, Steigerwald, Venkataraman, Nuckolls (c11) 2012; 134
Perdew, Burke, Ernzerhof (c53) 1996; 77
Li, Su, Zhang, Steigerwald, Nuckolls, Venkataraman (c24) 2015; 137
Kamenetska, Koentopp, Whalley, Park, Steigerwald, Nuckolls, Hybertsen, Venkataraman (c7) 2009; 102
Li, Hou, Zhang, Qian, Shen, Zhao (c54) 2006; 125
(2023073107360803300_c6) 2007; 129
(2023073107360803300_c30) 2016; 16
(2023073107360803300_c38) 2009; 4
(2023073107360803300_c23) 2015; 7
(2023073107360803300_c24) 2015; 137
(2023073107360803300_c26) 2015; 15
(2023073107360803300_c29) 2016; 49
(2023073107360803300_c41) 2009; 113
(2023073107360803300_c21) 2014; 8
(2023073107360803300_c12) 2012; 12
(2023073107360803300_c35) 2008; 130
(2023073107360803300_c51) 2002; 14
(2023073107360803300_c36) 2004; 16
(2023073107360803300_c2) 2015; 44
(2023073107360803300_c19) 2013; 135
(2023073107360803300_c39) 2011; 83
(2023073107360803300_c16) 2012; 134
(2023073107360803300_c1) 2016; 116
(2023073107360803300_c27) 2015; 10
(2023073107360803300_c37) 2007; 18
(2023073107360803300_c18) 2013; 13
(2023073107360803300_c54) 2006; 125
(2023073107360803300_c4) 2003; 301
(2023073107360803300_c9) 2011; 11
(2023073107360803300_c40) 2014; 47
(2023073107360803300_c22) 2014; 136
(2023073107360803300_c15) 2012; 51
(2023073107360803300_c28) 2015; 137
(2023073107360803300_c49) 2005; 4
(2023073107360803300_c17) 2013; 135
(2023073107360803300_c42) 1992; 68
(2023073107360803300_c46) 2002; 65
(2023073107360803300_c8) 2009; 131
(2023073107360803300_c34) 2003; 68
(2023073107360803300_c52) 1991; 43
(2023073107360803300_c7) 2009; 102
(2023073107360803300_c25) 2015; 7
(2023073107360803300_c47) 2005; 16
(2023073107360803300_c5) 2006; 442
(2023073107360803300_c43) 1964; 136
(2023073107360803300_c20) 2014; 174
(2023073107360803300_c32) 2016; 138
(2023073107360803300_c44) 1965; 140
(2023073107360803300_c10) 2012; 134
(2023073107360803300_c14) 2012; 7
(2023073107360803300_c50) 2006; 73
(2023073107360803300_c13) 2012; 14
(2023073107360803300_c55) 2007; 99
(2023073107360803300_c3) 1997; 278
(2023073107360803300_c53) 1996; 77
(2023073107360803300_c31) 2016; 7
(2023073107360803300_c33) 2016; 138
(2023073107360803300_c11) 2012; 134
(2023073107360803300_c45) 2002; 281
(2023073107360803300_c48) 2007; 336
References_xml – volume: 135
  start-page: 11724
  year: 2013
  ident: c17
  publication-title: J. Am. Chem. Soc.
– volume: 73
  start-page: 085414
  year: 2006
  ident: c50
  publication-title: Phys. Rev. B
– volume: 51
  start-page: 12473
  year: 2012
  ident: c15
  publication-title: Angew. Chem., Int. Ed.
– volume: 4
  start-page: 335
  year: 2005
  ident: c49
  publication-title: Nat. Mater.
– volume: 43
  start-page: 1993
  year: 1991
  ident: c52
  publication-title: Phys. Rev. B
– volume: 68
  start-page: 115406
  year: 2003
  ident: c34
  publication-title: Phys. Rev. B
– volume: 278
  start-page: 252
  year: 1997
  ident: c3
  publication-title: Science
– volume: 102
  start-page: 126803
  year: 2009
  ident: c7
  publication-title: Phys. Rev. Lett.
– volume: 174
  start-page: 79
  year: 2014
  ident: c20
  publication-title: Faraday Discuss.
– volume: 16
  start-page: 3057
  year: 2005
  ident: c47
  publication-title: Nanotechnology
– volume: 49
  start-page: 452
  year: 2016
  ident: c29
  publication-title: Acc. Chem. Res.
– volume: 77
  start-page: 3865
  year: 1996
  ident: c53
  publication-title: Phys. Rev. Lett.
– volume: 135
  start-page: 18331
  year: 2013
  ident: c19
  publication-title: J. Am. Chem. Soc.
– volume: 138
  start-page: 7791
  year: 2016
  ident: c32
  publication-title: J. Am. Chem. Soc.
– volume: 281
  start-page: 151
  year: 2002
  ident: c45
  publication-title: Chem. Phys.
– volume: 12
  start-page: 1643
  year: 2012
  ident: c12
  publication-title: Nano Lett.
– volume: 68
  start-page: 2512
  year: 1992
  ident: c42
  publication-title: Phys. Rev. Lett.
– volume: 14
  start-page: 2745
  year: 2002
  ident: c51
  publication-title: J. Phys.: Condens. Matter
– volume: 18
  start-page: 345203
  year: 2007
  ident: c37
  publication-title: Nanotechnology
– volume: 47
  start-page: 3250
  year: 2014
  ident: c40
  publication-title: Acc. Chem. Res.
– volume: 113
  start-page: 21911
  year: 2009
  ident: c41
  publication-title: J. Phys. Chem. C
– volume: 137
  start-page: 5028
  year: 2015
  ident: c24
  publication-title: J. Am. Chem. Soc.
– volume: 136
  start-page: 10486
  year: 2014
  ident: c22
  publication-title: J. Am. Chem. Soc.
– volume: 7
  start-page: 209
  year: 2015
  ident: c23
  publication-title: Nat. Chem.
– volume: 16
  start-page: 3949
  year: 2016
  ident: c30
  publication-title: Nano Lett.
– volume: 136
  start-page: B864
  year: 1964
  ident: c43
  publication-title: Phys. Rev.
– volume: 131
  start-page: 10820
  year: 2009
  ident: c8
  publication-title: J. Am. Chem. Soc.
– volume: 44
  start-page: 920
  year: 2015
  ident: c2
  publication-title: Chem. Soc. Rev.
– volume: 301
  start-page: 1221
  year: 2003
  ident: c4
  publication-title: Science
– volume: 99
  start-page: 056801
  year: 2007
  ident: c55
  publication-title: Phys. Rev. Lett.
– volume: 65
  start-page: 165401
  year: 2002
  ident: c46
  publication-title: Phys. Rev. B
– volume: 83
  start-page: 115108
  year: 2011
  ident: c39
  publication-title: Phys. Rev. B
– volume: 137
  start-page: 12400
  year: 2015
  ident: c28
  publication-title: J. Am. Chem. Soc.
– volume: 134
  start-page: 4541
  year: 2012
  ident: c11
  publication-title: J. Am. Chem. Soc.
– volume: 138
  start-page: 11505
  year: 2016
  ident: c33
  publication-title: J. Am. Chem. Soc.
– volume: 442
  start-page: 904
  year: 2006
  ident: c5
  publication-title: Nature
– volume: 134
  start-page: 4003
  year: 2012
  ident: c10
  publication-title: J. Am. Chem. Soc.
– volume: 14
  start-page: 13841
  year: 2012
  ident: c13
  publication-title: Phys. Chem. Chem. Phys.
– volume: 4
  start-page: 230
  year: 2009
  ident: c38
  publication-title: Nat. Nanotechnol.
– volume: 134
  start-page: 20440
  year: 2012
  ident: c16
  publication-title: J. Am. Chem. Soc.
– volume: 130
  start-page: 318
  year: 2008
  ident: c35
  publication-title: J. Am. Chem. Soc.
– volume: 140
  start-page: A1133
  year: 1965
  ident: c44
  publication-title: Phys. Rev.
– volume: 15
  start-page: 4143
  year: 2015
  ident: c26
  publication-title: Nano Lett.
– volume: 336
  start-page: 127
  year: 2007
  ident: c48
  publication-title: Chem. Phys.
– volume: 7
  start-page: 5657
  year: 2016
  ident: c31
  publication-title: Chem. Sci.
– volume: 13
  start-page: 6233
  year: 2013
  ident: c18
  publication-title: Nano Lett.
– volume: 7
  start-page: 663
  year: 2012
  ident: c14
  publication-title: Nat. Nanotechnol.
– volume: 116
  start-page: 4318
  year: 2016
  ident: c1
  publication-title: Chem. Rev.
– volume: 129
  start-page: 15768
  year: 2007
  ident: c6
  publication-title: J. Am. Chem. Soc.
– volume: 11
  start-page: 1575
  year: 2011
  ident: c9
  publication-title: Nano Lett.
– volume: 7
  start-page: 215
  year: 2015
  ident: c25
  publication-title: Nat. Chem.
– volume: 16
  start-page: 239
  year: 2004
  ident: c36
  publication-title: Nanotechnology
– volume: 125
  start-page: 194113
  year: 2006
  ident: c54
  publication-title: J. Chem. Phys.
– volume: 8
  start-page: 7522
  year: 2014
  ident: c21
  publication-title: ACS Nano
– volume: 10
  start-page: 522
  year: 2015
  ident: c27
  publication-title: Nat. Nanotechnol.
– volume: 73
  start-page: 085414
  year: 2006
  ident: 2023073107360803300_c50
  publication-title: Phys. Rev. B
  doi: 10.1103/physrevb.73.085414
– volume: 13
  start-page: 6233
  year: 2013
  ident: 2023073107360803300_c18
  publication-title: Nano Lett.
  doi: 10.1021/nl403698m
– volume: 138
  start-page: 7791
  year: 2016
  ident: 2023073107360803300_c32
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b04394
– volume: 442
  start-page: 904
  year: 2006
  ident: 2023073107360803300_c5
  publication-title: Nature
  doi: 10.1038/nature05037
– volume: 7
  start-page: 215
  year: 2015
  ident: 2023073107360803300_c25
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.2180
– volume: 138
  start-page: 11505
  year: 2016
  ident: 2023073107360803300_c33
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b07825
– volume: 4
  start-page: 230
  year: 2009
  ident: 2023073107360803300_c38
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2009.10
– volume: 43
  start-page: 1993
  year: 1991
  ident: 2023073107360803300_c52
  publication-title: Phys. Rev. B
  doi: 10.1103/physrevb.43.1993
– volume: 136
  start-page: 10486
  year: 2014
  ident: 2023073107360803300_c22
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja505277z
– volume: 131
  start-page: 10820
  year: 2009
  ident: 2023073107360803300_c8
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja903731m
– volume: 113
  start-page: 21911
  year: 2009
  ident: 2023073107360803300_c41
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp908347s
– volume: 134
  start-page: 20440
  year: 2012
  ident: 2023073107360803300_c16
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja308626m
– volume: 135
  start-page: 11724
  year: 2013
  ident: 2023073107360803300_c17
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja4055367
– volume: 8
  start-page: 7522
  year: 2014
  ident: 2023073107360803300_c21
  publication-title: ACS Nano
  doi: 10.1021/nn502836e
– volume: 137
  start-page: 5028
  year: 2015
  ident: 2023073107360803300_c24
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja512523r
– volume: 140
  start-page: A1133
  year: 1965
  ident: 2023073107360803300_c44
  publication-title: Phys. Rev.
  doi: 10.1103/physrev.140.a1133
– volume: 12
  start-page: 1643
  year: 2012
  ident: 2023073107360803300_c12
  publication-title: Nano Lett.
  doi: 10.1021/nl2045815
– volume: 16
  start-page: 239
  year: 2004
  ident: 2023073107360803300_c36
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/16/2/010
– volume: 11
  start-page: 1575
  year: 2011
  ident: 2023073107360803300_c9
  publication-title: Nano Lett.
  doi: 10.1021/nl104411f
– volume: 14
  start-page: 2745
  year: 2002
  ident: 2023073107360803300_c51
  publication-title: J. Phys.: Condens. Matter
  doi: 10.1088/0953-8984/14/11/302
– volume: 14
  start-page: 13841
  year: 2012
  ident: 2023073107360803300_c13
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/c2cp41578j
– volume: 134
  start-page: 4003
  year: 2012
  ident: 2023073107360803300_c10
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja211590d
– volume: 99
  start-page: 056801
  year: 2007
  ident: 2023073107360803300_c55
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/physrevlett.99.056801
– volume: 49
  start-page: 452
  year: 2016
  ident: 2023073107360803300_c29
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.6b00004
– volume: 44
  start-page: 920
  year: 2015
  ident: 2023073107360803300_c2
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/c4cs00264d
– volume: 7
  start-page: 5657
  year: 2016
  ident: 2023073107360803300_c31
  publication-title: Chem. Sci.
  doi: 10.1039/c6sc01360k
– volume: 136
  start-page: B864
  year: 1964
  ident: 2023073107360803300_c43
  publication-title: Phys. Rev.
  doi: 10.1103/physrev.136.b864
– volume: 7
  start-page: 209
  year: 2015
  ident: 2023073107360803300_c23
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.2160
– volume: 134
  start-page: 4541
  year: 2012
  ident: 2023073107360803300_c11
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja211677q
– volume: 51
  start-page: 12473
  year: 2012
  ident: 2023073107360803300_c15
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201206301
– volume: 125
  start-page: 194113
  year: 2006
  ident: 2023073107360803300_c54
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2388272
– volume: 4
  start-page: 335
  year: 2005
  ident: 2023073107360803300_c49
  publication-title: Nat. Mater.
  doi: 10.1038/nmat1349
– volume: 129
  start-page: 15768
  year: 2007
  ident: 2023073107360803300_c6
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0773857
– volume: 135
  start-page: 18331
  year: 2013
  ident: 2023073107360803300_c19
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja410656a
– volume: 68
  start-page: 2512
  year: 1992
  ident: 2023073107360803300_c42
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/physrevlett.68.2512
– volume: 137
  start-page: 12400
  year: 2015
  ident: 2023073107360803300_c28
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b08155
– volume: 15
  start-page: 4143
  year: 2015
  ident: 2023073107360803300_c26
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.5b01270
– volume: 83
  start-page: 115108
  year: 2011
  ident: 2023073107360803300_c39
  publication-title: Phys. Rev. B
  doi: 10.1103/physrevb.83.115108
– volume: 68
  start-page: 115406
  year: 2003
  ident: 2023073107360803300_c34
  publication-title: Phys. Rev. B
  doi: 10.1103/physrevb.68.115406
– volume: 278
  start-page: 252
  year: 1997
  ident: 2023073107360803300_c3
  publication-title: Science
  doi: 10.1126/science.278.5336.252
– volume: 7
  start-page: 663
  year: 2012
  ident: 2023073107360803300_c14
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2012.147
– volume: 102
  start-page: 126803
  year: 2009
  ident: 2023073107360803300_c7
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/physrevlett.102.126803
– volume: 336
  start-page: 127
  year: 2007
  ident: 2023073107360803300_c48
  publication-title: Chem. Phys.
  doi: 10.1016/j.chemphys.2007.06.011
– volume: 65
  start-page: 165401
  year: 2002
  ident: 2023073107360803300_c46
  publication-title: Phys. Rev. B
  doi: 10.1103/physrevb.65.165401
– volume: 18
  start-page: 345203
  year: 2007
  ident: 2023073107360803300_c37
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/18/34/345203
– volume: 174
  start-page: 79
  year: 2014
  ident: 2023073107360803300_c20
  publication-title: Faraday Discuss.
  doi: 10.1039/c4fd00093e
– volume: 77
  start-page: 3865
  year: 1996
  ident: 2023073107360803300_c53
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/physrevlett.77.3865
– volume: 47
  start-page: 3250
  year: 2014
  ident: 2023073107360803300_c40
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar4002526
– volume: 130
  start-page: 318
  year: 2008
  ident: 2023073107360803300_c35
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0762386
– volume: 301
  start-page: 1221
  year: 2003
  ident: 2023073107360803300_c4
  publication-title: Science
  doi: 10.1126/science.1087481
– volume: 281
  start-page: 151
  year: 2002
  ident: 2023073107360803300_c45
  publication-title: Chem. Phys.
  doi: 10.1016/s0301-0104(02)00446-9
– volume: 10
  start-page: 522
  year: 2015
  ident: 2023073107360803300_c27
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2015.97
– volume: 16
  start-page: 3057
  year: 2005
  ident: 2023073107360803300_c47
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/16/12/055
– volume: 116
  start-page: 4318
  year: 2016
  ident: 2023073107360803300_c1
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.5b00680
– volume: 16
  start-page: 3949
  year: 2016
  ident: 2023073107360803300_c30
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.6b01592
SSID ssj0001724
Score 2.2989054
Snippet The atomic structure and electronic transport properties of two types of molecular junctions, in which a series of saturated and conjugated molecules are...
SourceID proquest
pubmed
crossref
scitation
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 054702
SubjectTerms Alkanes
Atomic structure
Backbone
Benzene
Bias
Bonding strength
Coupling (molecular)
Density functional theory
Electrodes
Electron transport
Electronic devices
Gold
Hydrocarbons
Molecular orbitals
Physics
Resistance
Title The low-bias conducting mechanism of single-molecule junctions constructed with methylsulfide linker groups and gold electrodes
URI http://dx.doi.org/10.1063/1.4996745
https://www.ncbi.nlm.nih.gov/pubmed/28789544
https://www.proquest.com/docview/2116073020
https://www.proquest.com/docview/1927598547
Volume 147
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFLXKJjR4QDAYBAYyHw9IVUYT58N5nMamCbUDiVb0LXIce9qUJYi2IHjhr3Nv7bgpFAS8RFUaJZbPiX2uc30uIS8EjwrBBtoPk2LgR5jmWmRS-kgetXRYWxrPj86S00n0ZhpPez3dyVpazIsD-W3jvpL_QRXOAa64S_YfkHU3hRPwG_CFIyAMx7_GuGq-QHQrZpg_jt6tGPpfKdzPi-UvQAriYkCl_CtTB1f1L2EmM-lvsrH2sW0KOpaT_lrNFpW-KOHOEKaqT_3lvg_j5HzeVGXfFs4pbfLh5aopHXErWx8Cs3LihPsHuzw9ulgWDzl3Czyi_gxjCyadaVE33bUImN8wdyJdsaf9yLSW6PCu86B2B0HgY-Rk5iAz8A545qeJKR3qRmZjxmkpGG8c8UFi4eLDAdIsNc6U667aZ2_zk8lwmI-Pp-NrZDuEcALGw-3D16Phezdng4yzft2mZa0HVcJeuVuvK5dfwpGbZAdEi8mf6EiU8W1yy3Y_PTREuUN6qt4lO0dtSb9dct120l3yHfCiLXXoijrUUYc2mv5EHeqoQzvUoUgdukYdaqhDDXUoUIcideiKOvfI5OR4fHTq21ocvmSczX0ms1CCWlcsLcpBqnjJA11mZRCrtNCoO3mRFbEKYs2ySLGES64h2Ai1iEMhJNsjW3VTqweEJkGhMQoJIbaIQCFyFUnQoVxokSjQAR552fZz3nYo1kup8mXCRMLyILeQeOSZu_SjcWfZdNF-C1ZuX95ZHgborMggWPLIU_c3wIHfy0StmsUsh-AnjTMeR6lH7huQ3VNCnvIsjiKPPHeo_74JD__chEfkxupt2idbgJ96DFp3XjyxRP0BmsOxOQ
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+low-bias+conducting+mechanism+of+single-molecule+junctions+constructed+with+methylsulfide+linker+groups+and+gold+electrodes&rft.jtitle=The+Journal+of+chemical+physics&rft.au=Wang%2C+Minglang&rft.au=Sanvito+Stefano&rft.date=2017-08-07&rft.pub=American+Institute+of+Physics&rft.issn=0021-9606&rft.eissn=1089-7690&rft.volume=147&rft.issue=5&rft_id=info:doi/10.1063%2F1.4996745&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9606&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9606&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9606&client=summon