The low-bias conducting mechanism of single-molecule junctions constructed with methylsulfide linker groups and gold electrodes
The atomic structure and electronic transport properties of two types of molecular junctions, in which a series of saturated and conjugated molecules are symmetrically connected to gold electrodes through methylsulfide groups, are investigated using the non-equilibrium Green’s function formalism com...
Saved in:
Published in | The Journal of chemical physics Vol. 147; no. 5; pp. 054702 - 54706 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Institute of Physics
07.08.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The atomic structure and electronic transport properties of two types of molecular junctions, in which a series of saturated and conjugated molecules are symmetrically connected to gold electrodes through methylsulfide groups, are investigated using the non-equilibrium Green’s function formalism combined with density functional theory. Our calculations show that the low-bias junction conductance is determined by the electronic tunneling between the two Au–S donor-acceptor bonds formed at the molecule-electrode interfaces. For alkanes with 4, 6, and 8 carbon atoms in the chain, the Au–S bonds moderately couple with the σ-type frontier molecular orbitals of the alkane backbone and thus prefer to be coplanar with the alkane backbone in the junction. This results in an exponential decrease of the junction conductance as a function of the number of methylene groups. In contrast, the Au–S bonds couple strongly with the π-type orbitals of the 1,4’-bis(methylsulfide)benzene and 4,4’-bis(methylsulfide)biphenyl molecules and thus tend to be perpendicular to the neighboring benzene rings, leading to the rather large junction conductance. Our findings contribute to the understanding of the low-bias conducting mechanism and facilitate the design of molecular electronic devices with methylsulfide groups and gold electrodes. |
---|---|
AbstractList | The atomic structure and electronic transport properties of two types of molecular junctions, in which a series of saturated and conjugated molecules are symmetrically connected to gold electrodes through methylsulfide groups, are investigated using the non-equilibrium Green’s function formalism combined with density functional theory. Our calculations show that the low-bias junction conductance is determined by the electronic tunneling between the two Au–S donor-acceptor bonds formed at the molecule-electrode interfaces. For alkanes with 4, 6, and 8 carbon atoms in the chain, the Au–S bonds moderately couple with the σ-type frontier molecular orbitals of the alkane backbone and thus prefer to be coplanar with the alkane backbone in the junction. This results in an exponential decrease of the junction conductance as a function of the number of methylene groups. In contrast, the Au–S bonds couple strongly with the π-type orbitals of the 1,4’-bis(methylsulfide)benzene and 4,4’-bis(methylsulfide)biphenyl molecules and thus tend to be perpendicular to the neighboring benzene rings, leading to the rather large junction conductance. Our findings contribute to the understanding of the low-bias conducting mechanism and facilitate the design of molecular electronic devices with methylsulfide groups and gold electrodes. The atomic structure and electronic transport properties of two types of molecular junctions, in which a series of saturated and conjugated molecules are symmetrically connected to gold electrodes through methylsulfide groups, are investigated using the non-equilibrium Green's function formalism combined with density functional theory. Our calculations show that the low-bias junction conductance is determined by the electronic tunneling between the two Au-S donor-acceptor bonds formed at the molecule-electrode interfaces. For alkanes with 4, 6, and 8 carbon atoms in the chain, the Au-S bonds moderately couple with the σ-type frontier molecular orbitals of the alkane backbone and thus prefer to be coplanar with the alkane backbone in the junction. This results in an exponential decrease of the junction conductance as a function of the number of methylene groups. In contrast, the Au-S bonds couple strongly with the π-type orbitals of the 1,4'-bis(methylsulfide)benzene and 4,4'-bis(methylsulfide)biphenyl molecules and thus tend to be perpendicular to the neighboring benzene rings, leading to the rather large junction conductance. Our findings contribute to the understanding of the low-bias conducting mechanism and facilitate the design of molecular electronic devices with methylsulfide groups and gold electrodes.The atomic structure and electronic transport properties of two types of molecular junctions, in which a series of saturated and conjugated molecules are symmetrically connected to gold electrodes through methylsulfide groups, are investigated using the non-equilibrium Green's function formalism combined with density functional theory. Our calculations show that the low-bias junction conductance is determined by the electronic tunneling between the two Au-S donor-acceptor bonds formed at the molecule-electrode interfaces. For alkanes with 4, 6, and 8 carbon atoms in the chain, the Au-S bonds moderately couple with the σ-type frontier molecular orbitals of the alkane backbone and thus prefer to be coplanar with the alkane backbone in the junction. This results in an exponential decrease of the junction conductance as a function of the number of methylene groups. In contrast, the Au-S bonds couple strongly with the π-type orbitals of the 1,4'-bis(methylsulfide)benzene and 4,4'-bis(methylsulfide)biphenyl molecules and thus tend to be perpendicular to the neighboring benzene rings, leading to the rather large junction conductance. Our findings contribute to the understanding of the low-bias conducting mechanism and facilitate the design of molecular electronic devices with methylsulfide groups and gold electrodes. |
Author | Hou, Shimin Sanvito, Stefano Wang, Minglang Wang, Yongfeng |
Author_xml | – sequence: 1 givenname: Minglang surname: Wang fullname: Wang, Minglang organization: Key Laboratory for the Physics and Chemistry of Nanodevices, Department of Electronics, Peking University – sequence: 2 givenname: Yongfeng surname: Wang fullname: Wang, Yongfeng organization: 3 School of Physics, AMBER and CRANN Institute, Trinity College, Dublin 2, Ireland – sequence: 3 givenname: Stefano surname: Sanvito fullname: Sanvito, Stefano organization: School of Physics, AMBER and CRANN Institute, Trinity College – sequence: 4 givenname: Shimin surname: Hou fullname: Hou, Shimin email: smhou@pku.edu.cn organization: 3 School of Physics, AMBER and CRANN Institute, Trinity College, Dublin 2, Ireland |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28789544$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kc9rHCEUgKUkNJukh_4DReilLUyi4zjqsYT-gkAuyVkcfbPr1tGtzhBy6r9e0929hNKT8Pi-D3nvHJ3EFAGht5RcUdKza3rVKdWLjr9CK0qkakSvyAlaEdLSRvWkP0PnpWwJIVS03Wt01kohFe-6Ffp9vwEc0mMzeFOwTdEtdvZxjSewGxN9mXAacamTAM2UAtglAN4usVIp_jXKnKsDDj_6eVO9efMUyhJG72rZx5-Q8TqnZVewiQ6vU3AYamfOyUG5RKejCQXeHN4L9PD1y_3N9-b27tuPm8-3jWWSzQ2zqrWScWBicESAdJKOTjnKQQwjEZzIQQ0cKB-Z6oD10sqRctKOhrfGWHaBPuy7u5x-LVBmPfliIQQTIS1FU9UKriTvREXfv0C3acmx_k63lPZEMNKSSr07UMswgdO77CeTn_RxtRW43gM2p1IyjNr62Txvbc7GB02Jfj6epvpwvGp8fGEco_9iP-3Zcqz-B_4Dnv-oBA |
CODEN | JCPSA6 |
CitedBy_id | crossref_primary_10_1039_D1SC02287C crossref_primary_10_1021_jacs_8b10296 crossref_primary_10_1021_acs_jpcc_2c00761 crossref_primary_10_1021_acs_jpclett_7b02822 crossref_primary_10_1039_C8CP05901B crossref_primary_10_1039_C9CP02249J crossref_primary_10_1039_D2CP06030B crossref_primary_10_1021_acs_jpcc_3c00224 crossref_primary_10_1016_j_chemphys_2022_111478 crossref_primary_10_1021_acs_jpcc_8b11092 |
Cites_doi | 10.1103/physrevb.73.085414 10.1021/nl403698m 10.1021/jacs.6b04394 10.1038/nature05037 10.1038/nchem.2180 10.1021/jacs.6b07825 10.1038/nnano.2009.10 10.1103/physrevb.43.1993 10.1021/ja505277z 10.1021/ja903731m 10.1021/jp908347s 10.1021/ja308626m 10.1021/ja4055367 10.1021/nn502836e 10.1021/ja512523r 10.1103/physrev.140.a1133 10.1021/nl2045815 10.1088/0957-4484/16/2/010 10.1021/nl104411f 10.1088/0953-8984/14/11/302 10.1039/c2cp41578j 10.1021/ja211590d 10.1103/physrevlett.99.056801 10.1021/acs.accounts.6b00004 10.1039/c4cs00264d 10.1039/c6sc01360k 10.1103/physrev.136.b864 10.1038/nchem.2160 10.1021/ja211677q 10.1002/anie.201206301 10.1063/1.2388272 10.1038/nmat1349 10.1021/ja0773857 10.1021/ja410656a 10.1103/physrevlett.68.2512 10.1021/jacs.5b08155 10.1021/acs.nanolett.5b01270 10.1103/physrevb.83.115108 10.1103/physrevb.68.115406 10.1126/science.278.5336.252 10.1038/nnano.2012.147 10.1103/physrevlett.102.126803 10.1016/j.chemphys.2007.06.011 10.1103/physrevb.65.165401 10.1088/0957-4484/18/34/345203 10.1039/c4fd00093e 10.1103/physrevlett.77.3865 10.1021/ar4002526 10.1021/ja0762386 10.1126/science.1087481 10.1016/s0301-0104(02)00446-9 10.1038/nnano.2015.97 10.1088/0957-4484/16/12/055 10.1021/acs.chemrev.5b00680 10.1021/acs.nanolett.6b01592 |
ContentType | Journal Article |
Copyright | Author(s) 2017 Author(s). Published by AIP Publishing. |
Copyright_xml | – notice: Author(s) – notice: 2017 Author(s). Published by AIP Publishing. |
DBID | AAYXX CITATION NPM 8FD H8D L7M 7X8 |
DOI | 10.1063/1.4996745 |
DatabaseName | CrossRef PubMed Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic Technology Research Database PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Physics |
EISSN | 1089-7690 |
ExternalDocumentID | 28789544 10_1063_1_4996745 jcp |
Genre | Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China (NSFC) grantid: 61621061; 61671021 funderid: http://dx.doi.org/10.13039/501100001809 |
GroupedDBID | --- -DZ -ET -~X 123 1UP 2-P 29K 4.4 53G 5VS 85S AAAAW AABDS AAEUA AAPUP AAYIH ABPPZ ABRJW ABZEH ACBRY ACLYJ ACNCT ACZLF ADCTM AEJMO AENEX AFATG AFHCQ AGKCL AGLKD AGMXG AGTJO AHSDT AJJCW AJQPL ALEPV ALMA_UNASSIGNED_HOLDINGS AQWKA ATXIE AWQPM BPZLN CS3 D-I DU5 EBS EJD ESX F5P FDOHQ FFFMQ HAM M6X M71 M73 N9A NPSNA O-B P2P RIP RNS RQS TN5 TWZ UPT WH7 YQT YZZ ~02 AAGWI AAYXX ABJGX ADMLS BDMKI CITATION NPM 8FD H8D L7M 7X8 |
ID | FETCH-LOGICAL-c383t-3c92c835e37bd07e8d81fd9d15e7bf07508b9b5e15f394e368c8f1502fa52aac3 |
ISSN | 0021-9606 1089-7690 |
IngestDate | Fri Jul 11 06:52:45 EDT 2025 Sun Jun 29 16:56:11 EDT 2025 Wed Feb 19 02:43:03 EST 2025 Tue Jul 01 04:16:21 EDT 2025 Thu Apr 24 23:12:58 EDT 2025 Fri Jun 21 00:14:35 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
License | 0021-9606/2017/147(5)/054702/5/$30.00 Published by AIP Publishing. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c383t-3c92c835e37bd07e8d81fd9d15e7bf07508b9b5e15f394e368c8f1502fa52aac3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-5042-4405 0000000250424405 |
OpenAccessLink | https://aip.scitation.org/doi/pdf/10.1063/1.4996745 |
PMID | 28789544 |
PQID | 2116073020 |
PQPubID | 2050685 |
PageCount | 5 |
ParticipantIDs | crossref_citationtrail_10_1063_1_4996745 proquest_journals_2116073020 pubmed_primary_28789544 scitation_primary_10_1063_1_4996745 crossref_primary_10_1063_1_4996745 proquest_miscellaneous_1927598547 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20170807 2017-08-07 2017-Aug-07 |
PublicationDateYYYYMMDD | 2017-08-07 |
PublicationDate_xml | – month: 08 year: 2017 text: 20170807 day: 07 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Melville |
PublicationTitle | The Journal of chemical physics |
PublicationTitleAlternate | J Chem Phys |
PublicationYear | 2017 |
Publisher | American Institute of Physics |
Publisher_xml | – name: American Institute of Physics |
References | Aradhya, Nielsen, Hybertsen, venkataraman (c21) 2014; 8 Capozzi, Xia, Adak, Dell, Liu, Taylor, Neaton, Campos, venkataraman (c27) 2015; 10 Su, Li, Klausen, Widawsky, Batra, Steigerwald, Venkataraman, Nuckolls (c32) 2016; 138 Li, Zhang, Hou, Qian, Shen, Zhao, Xue (c48) 2007; 336 Venkataraman, Klare, Nuckolls, Hybertsen, Steigerwald (c5) 2006; 442 Li, Garner, Shangguan, Zheng, Su, Neupane, Li, Velian, Steigerwald, Xiao, Nuckolls, Solomon, Venkataraman (c31) 2016; 7 Batra, Meisner, Darancet, Chen, Steigerwald, Nuckolls, Venkataraman (c20) 2014; 174 Dell, Capozzi, Dubay, Berkelbach, Moreno, Reichman, Venkataraman, Campos (c17) 2013; 135 Meisner, Kamenetska, Krikorian, Steigerwald, Venkataraman, Nuckolls (c9) 2011; 11 Xue, Datta, Ratner (c45) 2002; 281 Meisner, Ahn, Aradhya, Krikorian, Parameswaran, Steigerwald, Venkataraman, Nuckolls (c16) 2012; 134 Reed, Zhou, Muller, Burgin, Tour (c3) 1997; 278 Su, Li, Steigerwald, Venkataraman, Nuckolls (c25) 2015; 7 Troullier, Martins (c52) 1991; 43 Park, Whalley, Kamenetska, Steigerwald, Hybertsen, Nuckolls, Venkataraman (c6) 2007; 129 Xu, Tao (c4) 2003; 301 Brandbyge, Mozos, Ordejón, Taylor, Stokbro (c46) 2002; 65 Ning, Li, Shen, Qian, Hou, Rocha, Sanvito (c37) 2007; 18 Dell, Capozzi, Xia, venkataraman, Campos (c23) 2015; 7 Feng, Li, Yang (c41) 2009; 113 Quek, Khoo (c40) 2014; 47 Batra, Darancet, Chen, Meisner, Widawsky, Neaton, Nuckolls, Venkataraman (c18) 2013; 13 Zhang, Hou, Li, Qian, Han, Shen, Zhao, Xue (c47) 2005; 16 Li, Pobelov, Wandlowski, Bagrets, Arnold, Evers (c35) 2008; 130 Roy, Schenck, Ahn, Lalancette, Venkataraman, Nuckolls, Steigerwald (c15) 2012; 51 Xue, Ratner (c34) 2003; 68 Quek, Kamenetska, Steigerwald, Choi, Louie, Hybertsen, Neaton, Venkataraman (c38) 2009; 4 Aradhya, Meisner, Krikorian, Ahn, Parameswaran, Steigerwald, Nuckolls, Venkataraman (c12) 2012; 12 Adak, Rosenthal, Meisner, Andrade, Pasupathy, Nuckolls, Hybersen, Venkataraman (c26) 2015; 15 Park, Widawsky, Kamenetska, Steigerwald, Hybertsen, Nuckolls, Venkataraman (c8) 2009; 131 Capozzi, Dell, Berkelbach, Reichman, Venkataraman, Campos (c22) 2014; 136 Toher, Sanvito (c55) 2007; 99 Capozzi, Low, Xia, Liu, Neaton, Campos, Venkataraman (c30) 2016; 16 Kim, Li, Venkataraman, Leighton (c33) 2016; 138 Frei, Aradhya, hybertsen, Venkataraman (c10) 2012; 134 Su, Widawsky, Li, Klausen, Leighton, Steigerwald, Venkataraman, Nuckolls (c19) 2013; 135 Hou, Zhang, Li, Ning, Han, Shen, Zhao, Xue, Wu (c36) 2004; 16 Vazquez, Skouta, Schneebeli, Kamenetska, Breslow, Venkataraman, Hybertsen (c14) 2012; 7 Xiang, Guo, Lee (c1) 2016; 116 Rocha, García-Suárez, Bailey, Lambert, Ferrer, Sanvito (c50) 2006; 73 Meir, Wingreen (c42) 1992; 68 Hybertsen, Venkataraman (c29) 2016; 49 Leary, La Rosa, Teresa González, Rubio-Bollinger, Agraït, Marth (c2) 2015; 44 Ahn, Aradhya, Klausen, Capozzi, Roy, Steigerwald, Nuckolls, Venkataraman (c13) 2012; 14 Kohn, Sham (c44) 1965; 140 Soler, Artacho, Gale, García, Junquera, Ordejón, Sánchez-Portal (c51) 2002; 14 Rocha, García-Suárez, Bailey, Lambert, Ferrer, Sanvito (c49) 2005; 4 Su, Li, Zhang, Neupane, Batra, Klausen, Kumar, Steigerwald, Venkataraman, Nuckolls (c28) 2015; 137 Strange, Rostgaard, Hakkinen, Thygesen (c39) 2011; 83 Hohenberg, Kohn (c43) 1964; 136 Klausen, Widawsky, Steigerwald, Venkataraman, Nuckolls (c11) 2012; 134 Perdew, Burke, Ernzerhof (c53) 1996; 77 Li, Su, Zhang, Steigerwald, Nuckolls, Venkataraman (c24) 2015; 137 Kamenetska, Koentopp, Whalley, Park, Steigerwald, Nuckolls, Hybertsen, Venkataraman (c7) 2009; 102 Li, Hou, Zhang, Qian, Shen, Zhao (c54) 2006; 125 (2023073107360803300_c6) 2007; 129 (2023073107360803300_c30) 2016; 16 (2023073107360803300_c38) 2009; 4 (2023073107360803300_c23) 2015; 7 (2023073107360803300_c24) 2015; 137 (2023073107360803300_c26) 2015; 15 (2023073107360803300_c29) 2016; 49 (2023073107360803300_c41) 2009; 113 (2023073107360803300_c21) 2014; 8 (2023073107360803300_c12) 2012; 12 (2023073107360803300_c35) 2008; 130 (2023073107360803300_c51) 2002; 14 (2023073107360803300_c36) 2004; 16 (2023073107360803300_c2) 2015; 44 (2023073107360803300_c19) 2013; 135 (2023073107360803300_c39) 2011; 83 (2023073107360803300_c16) 2012; 134 (2023073107360803300_c1) 2016; 116 (2023073107360803300_c27) 2015; 10 (2023073107360803300_c37) 2007; 18 (2023073107360803300_c18) 2013; 13 (2023073107360803300_c54) 2006; 125 (2023073107360803300_c4) 2003; 301 (2023073107360803300_c9) 2011; 11 (2023073107360803300_c40) 2014; 47 (2023073107360803300_c22) 2014; 136 (2023073107360803300_c15) 2012; 51 (2023073107360803300_c28) 2015; 137 (2023073107360803300_c49) 2005; 4 (2023073107360803300_c17) 2013; 135 (2023073107360803300_c42) 1992; 68 (2023073107360803300_c46) 2002; 65 (2023073107360803300_c8) 2009; 131 (2023073107360803300_c34) 2003; 68 (2023073107360803300_c52) 1991; 43 (2023073107360803300_c7) 2009; 102 (2023073107360803300_c25) 2015; 7 (2023073107360803300_c47) 2005; 16 (2023073107360803300_c5) 2006; 442 (2023073107360803300_c43) 1964; 136 (2023073107360803300_c20) 2014; 174 (2023073107360803300_c32) 2016; 138 (2023073107360803300_c44) 1965; 140 (2023073107360803300_c10) 2012; 134 (2023073107360803300_c14) 2012; 7 (2023073107360803300_c50) 2006; 73 (2023073107360803300_c13) 2012; 14 (2023073107360803300_c55) 2007; 99 (2023073107360803300_c3) 1997; 278 (2023073107360803300_c53) 1996; 77 (2023073107360803300_c31) 2016; 7 (2023073107360803300_c33) 2016; 138 (2023073107360803300_c11) 2012; 134 (2023073107360803300_c45) 2002; 281 (2023073107360803300_c48) 2007; 336 |
References_xml | – volume: 135 start-page: 11724 year: 2013 ident: c17 publication-title: J. Am. Chem. Soc. – volume: 73 start-page: 085414 year: 2006 ident: c50 publication-title: Phys. Rev. B – volume: 51 start-page: 12473 year: 2012 ident: c15 publication-title: Angew. Chem., Int. Ed. – volume: 4 start-page: 335 year: 2005 ident: c49 publication-title: Nat. Mater. – volume: 43 start-page: 1993 year: 1991 ident: c52 publication-title: Phys. Rev. B – volume: 68 start-page: 115406 year: 2003 ident: c34 publication-title: Phys. Rev. B – volume: 278 start-page: 252 year: 1997 ident: c3 publication-title: Science – volume: 102 start-page: 126803 year: 2009 ident: c7 publication-title: Phys. Rev. Lett. – volume: 174 start-page: 79 year: 2014 ident: c20 publication-title: Faraday Discuss. – volume: 16 start-page: 3057 year: 2005 ident: c47 publication-title: Nanotechnology – volume: 49 start-page: 452 year: 2016 ident: c29 publication-title: Acc. Chem. Res. – volume: 77 start-page: 3865 year: 1996 ident: c53 publication-title: Phys. Rev. Lett. – volume: 135 start-page: 18331 year: 2013 ident: c19 publication-title: J. Am. Chem. Soc. – volume: 138 start-page: 7791 year: 2016 ident: c32 publication-title: J. Am. Chem. Soc. – volume: 281 start-page: 151 year: 2002 ident: c45 publication-title: Chem. Phys. – volume: 12 start-page: 1643 year: 2012 ident: c12 publication-title: Nano Lett. – volume: 68 start-page: 2512 year: 1992 ident: c42 publication-title: Phys. Rev. Lett. – volume: 14 start-page: 2745 year: 2002 ident: c51 publication-title: J. Phys.: Condens. Matter – volume: 18 start-page: 345203 year: 2007 ident: c37 publication-title: Nanotechnology – volume: 47 start-page: 3250 year: 2014 ident: c40 publication-title: Acc. Chem. Res. – volume: 113 start-page: 21911 year: 2009 ident: c41 publication-title: J. Phys. Chem. C – volume: 137 start-page: 5028 year: 2015 ident: c24 publication-title: J. Am. Chem. Soc. – volume: 136 start-page: 10486 year: 2014 ident: c22 publication-title: J. Am. Chem. Soc. – volume: 7 start-page: 209 year: 2015 ident: c23 publication-title: Nat. Chem. – volume: 16 start-page: 3949 year: 2016 ident: c30 publication-title: Nano Lett. – volume: 136 start-page: B864 year: 1964 ident: c43 publication-title: Phys. Rev. – volume: 131 start-page: 10820 year: 2009 ident: c8 publication-title: J. Am. Chem. Soc. – volume: 44 start-page: 920 year: 2015 ident: c2 publication-title: Chem. Soc. Rev. – volume: 301 start-page: 1221 year: 2003 ident: c4 publication-title: Science – volume: 99 start-page: 056801 year: 2007 ident: c55 publication-title: Phys. Rev. Lett. – volume: 65 start-page: 165401 year: 2002 ident: c46 publication-title: Phys. Rev. B – volume: 83 start-page: 115108 year: 2011 ident: c39 publication-title: Phys. Rev. B – volume: 137 start-page: 12400 year: 2015 ident: c28 publication-title: J. Am. Chem. Soc. – volume: 134 start-page: 4541 year: 2012 ident: c11 publication-title: J. Am. Chem. Soc. – volume: 138 start-page: 11505 year: 2016 ident: c33 publication-title: J. Am. Chem. Soc. – volume: 442 start-page: 904 year: 2006 ident: c5 publication-title: Nature – volume: 134 start-page: 4003 year: 2012 ident: c10 publication-title: J. Am. Chem. Soc. – volume: 14 start-page: 13841 year: 2012 ident: c13 publication-title: Phys. Chem. Chem. Phys. – volume: 4 start-page: 230 year: 2009 ident: c38 publication-title: Nat. Nanotechnol. – volume: 134 start-page: 20440 year: 2012 ident: c16 publication-title: J. Am. Chem. Soc. – volume: 130 start-page: 318 year: 2008 ident: c35 publication-title: J. Am. Chem. Soc. – volume: 140 start-page: A1133 year: 1965 ident: c44 publication-title: Phys. Rev. – volume: 15 start-page: 4143 year: 2015 ident: c26 publication-title: Nano Lett. – volume: 336 start-page: 127 year: 2007 ident: c48 publication-title: Chem. Phys. – volume: 7 start-page: 5657 year: 2016 ident: c31 publication-title: Chem. Sci. – volume: 13 start-page: 6233 year: 2013 ident: c18 publication-title: Nano Lett. – volume: 7 start-page: 663 year: 2012 ident: c14 publication-title: Nat. Nanotechnol. – volume: 116 start-page: 4318 year: 2016 ident: c1 publication-title: Chem. Rev. – volume: 129 start-page: 15768 year: 2007 ident: c6 publication-title: J. Am. Chem. Soc. – volume: 11 start-page: 1575 year: 2011 ident: c9 publication-title: Nano Lett. – volume: 7 start-page: 215 year: 2015 ident: c25 publication-title: Nat. Chem. – volume: 16 start-page: 239 year: 2004 ident: c36 publication-title: Nanotechnology – volume: 125 start-page: 194113 year: 2006 ident: c54 publication-title: J. Chem. Phys. – volume: 8 start-page: 7522 year: 2014 ident: c21 publication-title: ACS Nano – volume: 10 start-page: 522 year: 2015 ident: c27 publication-title: Nat. Nanotechnol. – volume: 73 start-page: 085414 year: 2006 ident: 2023073107360803300_c50 publication-title: Phys. Rev. B doi: 10.1103/physrevb.73.085414 – volume: 13 start-page: 6233 year: 2013 ident: 2023073107360803300_c18 publication-title: Nano Lett. doi: 10.1021/nl403698m – volume: 138 start-page: 7791 year: 2016 ident: 2023073107360803300_c32 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b04394 – volume: 442 start-page: 904 year: 2006 ident: 2023073107360803300_c5 publication-title: Nature doi: 10.1038/nature05037 – volume: 7 start-page: 215 year: 2015 ident: 2023073107360803300_c25 publication-title: Nat. Chem. doi: 10.1038/nchem.2180 – volume: 138 start-page: 11505 year: 2016 ident: 2023073107360803300_c33 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b07825 – volume: 4 start-page: 230 year: 2009 ident: 2023073107360803300_c38 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2009.10 – volume: 43 start-page: 1993 year: 1991 ident: 2023073107360803300_c52 publication-title: Phys. Rev. B doi: 10.1103/physrevb.43.1993 – volume: 136 start-page: 10486 year: 2014 ident: 2023073107360803300_c22 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja505277z – volume: 131 start-page: 10820 year: 2009 ident: 2023073107360803300_c8 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja903731m – volume: 113 start-page: 21911 year: 2009 ident: 2023073107360803300_c41 publication-title: J. Phys. Chem. C doi: 10.1021/jp908347s – volume: 134 start-page: 20440 year: 2012 ident: 2023073107360803300_c16 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja308626m – volume: 135 start-page: 11724 year: 2013 ident: 2023073107360803300_c17 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja4055367 – volume: 8 start-page: 7522 year: 2014 ident: 2023073107360803300_c21 publication-title: ACS Nano doi: 10.1021/nn502836e – volume: 137 start-page: 5028 year: 2015 ident: 2023073107360803300_c24 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja512523r – volume: 140 start-page: A1133 year: 1965 ident: 2023073107360803300_c44 publication-title: Phys. Rev. doi: 10.1103/physrev.140.a1133 – volume: 12 start-page: 1643 year: 2012 ident: 2023073107360803300_c12 publication-title: Nano Lett. doi: 10.1021/nl2045815 – volume: 16 start-page: 239 year: 2004 ident: 2023073107360803300_c36 publication-title: Nanotechnology doi: 10.1088/0957-4484/16/2/010 – volume: 11 start-page: 1575 year: 2011 ident: 2023073107360803300_c9 publication-title: Nano Lett. doi: 10.1021/nl104411f – volume: 14 start-page: 2745 year: 2002 ident: 2023073107360803300_c51 publication-title: J. Phys.: Condens. Matter doi: 10.1088/0953-8984/14/11/302 – volume: 14 start-page: 13841 year: 2012 ident: 2023073107360803300_c13 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/c2cp41578j – volume: 134 start-page: 4003 year: 2012 ident: 2023073107360803300_c10 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja211590d – volume: 99 start-page: 056801 year: 2007 ident: 2023073107360803300_c55 publication-title: Phys. Rev. Lett. doi: 10.1103/physrevlett.99.056801 – volume: 49 start-page: 452 year: 2016 ident: 2023073107360803300_c29 publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.6b00004 – volume: 44 start-page: 920 year: 2015 ident: 2023073107360803300_c2 publication-title: Chem. Soc. Rev. doi: 10.1039/c4cs00264d – volume: 7 start-page: 5657 year: 2016 ident: 2023073107360803300_c31 publication-title: Chem. Sci. doi: 10.1039/c6sc01360k – volume: 136 start-page: B864 year: 1964 ident: 2023073107360803300_c43 publication-title: Phys. Rev. doi: 10.1103/physrev.136.b864 – volume: 7 start-page: 209 year: 2015 ident: 2023073107360803300_c23 publication-title: Nat. Chem. doi: 10.1038/nchem.2160 – volume: 134 start-page: 4541 year: 2012 ident: 2023073107360803300_c11 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja211677q – volume: 51 start-page: 12473 year: 2012 ident: 2023073107360803300_c15 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201206301 – volume: 125 start-page: 194113 year: 2006 ident: 2023073107360803300_c54 publication-title: J. Chem. Phys. doi: 10.1063/1.2388272 – volume: 4 start-page: 335 year: 2005 ident: 2023073107360803300_c49 publication-title: Nat. Mater. doi: 10.1038/nmat1349 – volume: 129 start-page: 15768 year: 2007 ident: 2023073107360803300_c6 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0773857 – volume: 135 start-page: 18331 year: 2013 ident: 2023073107360803300_c19 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja410656a – volume: 68 start-page: 2512 year: 1992 ident: 2023073107360803300_c42 publication-title: Phys. Rev. Lett. doi: 10.1103/physrevlett.68.2512 – volume: 137 start-page: 12400 year: 2015 ident: 2023073107360803300_c28 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b08155 – volume: 15 start-page: 4143 year: 2015 ident: 2023073107360803300_c26 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.5b01270 – volume: 83 start-page: 115108 year: 2011 ident: 2023073107360803300_c39 publication-title: Phys. Rev. B doi: 10.1103/physrevb.83.115108 – volume: 68 start-page: 115406 year: 2003 ident: 2023073107360803300_c34 publication-title: Phys. Rev. B doi: 10.1103/physrevb.68.115406 – volume: 278 start-page: 252 year: 1997 ident: 2023073107360803300_c3 publication-title: Science doi: 10.1126/science.278.5336.252 – volume: 7 start-page: 663 year: 2012 ident: 2023073107360803300_c14 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2012.147 – volume: 102 start-page: 126803 year: 2009 ident: 2023073107360803300_c7 publication-title: Phys. Rev. Lett. doi: 10.1103/physrevlett.102.126803 – volume: 336 start-page: 127 year: 2007 ident: 2023073107360803300_c48 publication-title: Chem. Phys. doi: 10.1016/j.chemphys.2007.06.011 – volume: 65 start-page: 165401 year: 2002 ident: 2023073107360803300_c46 publication-title: Phys. Rev. B doi: 10.1103/physrevb.65.165401 – volume: 18 start-page: 345203 year: 2007 ident: 2023073107360803300_c37 publication-title: Nanotechnology doi: 10.1088/0957-4484/18/34/345203 – volume: 174 start-page: 79 year: 2014 ident: 2023073107360803300_c20 publication-title: Faraday Discuss. doi: 10.1039/c4fd00093e – volume: 77 start-page: 3865 year: 1996 ident: 2023073107360803300_c53 publication-title: Phys. Rev. Lett. doi: 10.1103/physrevlett.77.3865 – volume: 47 start-page: 3250 year: 2014 ident: 2023073107360803300_c40 publication-title: Acc. Chem. Res. doi: 10.1021/ar4002526 – volume: 130 start-page: 318 year: 2008 ident: 2023073107360803300_c35 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0762386 – volume: 301 start-page: 1221 year: 2003 ident: 2023073107360803300_c4 publication-title: Science doi: 10.1126/science.1087481 – volume: 281 start-page: 151 year: 2002 ident: 2023073107360803300_c45 publication-title: Chem. Phys. doi: 10.1016/s0301-0104(02)00446-9 – volume: 10 start-page: 522 year: 2015 ident: 2023073107360803300_c27 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2015.97 – volume: 16 start-page: 3057 year: 2005 ident: 2023073107360803300_c47 publication-title: Nanotechnology doi: 10.1088/0957-4484/16/12/055 – volume: 116 start-page: 4318 year: 2016 ident: 2023073107360803300_c1 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.5b00680 – volume: 16 start-page: 3949 year: 2016 ident: 2023073107360803300_c30 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.6b01592 |
SSID | ssj0001724 |
Score | 2.2989054 |
Snippet | The atomic structure and electronic transport properties of two types of molecular junctions, in which a series of saturated and conjugated molecules are... |
SourceID | proquest pubmed crossref scitation |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 054702 |
SubjectTerms | Alkanes Atomic structure Backbone Benzene Bias Bonding strength Coupling (molecular) Density functional theory Electrodes Electron transport Electronic devices Gold Hydrocarbons Molecular orbitals Physics Resistance |
Title | The low-bias conducting mechanism of single-molecule junctions constructed with methylsulfide linker groups and gold electrodes |
URI | http://dx.doi.org/10.1063/1.4996745 https://www.ncbi.nlm.nih.gov/pubmed/28789544 https://www.proquest.com/docview/2116073020 https://www.proquest.com/docview/1927598547 |
Volume | 147 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFLXKJjR4QDAYBAYyHw9IVUYT58N5nMamCbUDiVb0LXIce9qUJYi2IHjhr3Nv7bgpFAS8RFUaJZbPiX2uc30uIS8EjwrBBtoPk2LgR5jmWmRS-kgetXRYWxrPj86S00n0ZhpPez3dyVpazIsD-W3jvpL_QRXOAa64S_YfkHU3hRPwG_CFIyAMx7_GuGq-QHQrZpg_jt6tGPpfKdzPi-UvQAriYkCl_CtTB1f1L2EmM-lvsrH2sW0KOpaT_lrNFpW-KOHOEKaqT_3lvg_j5HzeVGXfFs4pbfLh5aopHXErWx8Cs3LihPsHuzw9ulgWDzl3Czyi_gxjCyadaVE33bUImN8wdyJdsaf9yLSW6PCu86B2B0HgY-Rk5iAz8A545qeJKR3qRmZjxmkpGG8c8UFi4eLDAdIsNc6U667aZ2_zk8lwmI-Pp-NrZDuEcALGw-3D16Phezdng4yzft2mZa0HVcJeuVuvK5dfwpGbZAdEi8mf6EiU8W1yy3Y_PTREuUN6qt4lO0dtSb9dct120l3yHfCiLXXoijrUUYc2mv5EHeqoQzvUoUgdukYdaqhDDXUoUIcideiKOvfI5OR4fHTq21ocvmSczX0ms1CCWlcsLcpBqnjJA11mZRCrtNCoO3mRFbEKYs2ySLGES64h2Ai1iEMhJNsjW3VTqweEJkGhMQoJIbaIQCFyFUnQoVxokSjQAR552fZz3nYo1kup8mXCRMLyILeQeOSZu_SjcWfZdNF-C1ZuX95ZHgborMggWPLIU_c3wIHfy0StmsUsh-AnjTMeR6lH7huQ3VNCnvIsjiKPPHeo_74JD__chEfkxupt2idbgJ96DFp3XjyxRP0BmsOxOQ |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+low-bias+conducting+mechanism+of+single-molecule+junctions+constructed+with+methylsulfide+linker+groups+and+gold+electrodes&rft.jtitle=The+Journal+of+chemical+physics&rft.au=Wang%2C+Minglang&rft.au=Sanvito+Stefano&rft.date=2017-08-07&rft.pub=American+Institute+of+Physics&rft.issn=0021-9606&rft.eissn=1089-7690&rft.volume=147&rft.issue=5&rft_id=info:doi/10.1063%2F1.4996745&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9606&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9606&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9606&client=summon |