Strategic design of covalent organic frameworks (COFs) for photocatalytic hydrogen generation
Covalent organic frameworks (COFs) are an emerging class of crystalline materials that are attracting increasing attention due to their high porosity, crystallinity, and tunable properties. Consequently, the strategic design of COF-based photocatalysts for various applications, including energy and...
Saved in:
Published in | Journal of materials chemistry. A, Materials for energy and sustainability Vol. 11; no. 27; pp. 14489 - 14538 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Cambridge
Royal Society of Chemistry
11.07.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Covalent organic frameworks (COFs) are an emerging class of crystalline materials that are attracting increasing attention due to their high porosity, crystallinity, and tunable properties. Consequently, the strategic design of COF-based photocatalysts for various applications, including energy and environmental remediation, has attracted considerable interest. In particular, the sustainable production of clean fuel - hydrogen (H
2
) - by water splitting is a promising means to meet the global energy demand and to address the atmospheric CO
2
concentration caused by the excessive use of fossil fuels. In this regard, COFs offer potential advantages due to their modular nature, which facilitates their rational design from suitable organic building blocks to achieve optimal properties of visible light harvesting properties and easy charge transport. As a result, extensive research has been devoted to the design of photoresponsive COFs for efficient water splitting to generate hydrogen. Here, we provide a comprehensive review of recent developments in the strategic design of COF-based photocatalysts for solar fuel production
via
water splitting. The various organic linkers used in the construction of photocatalytic COFs and their structure-property correlations are discussed in detail. The role of bandgap engineering in tuning the hydrogen evolution efficiency of COFs is also discussed. Furthermore, the current challenges and future perspectives of COF-based solid catalysts for green and sustainable clean fuel production are presented. Indeed, this review demonstrates the importance of COF-based photocatalysts for the visible-light-driven hydrogen evolution reaction (HER) and can be beneficial for the future design of photocatalytic systems.
Covalent organic frameworks provide a platform for the integration of functional organic linkers into ordered yet tunable two-dimensional frameworks to yield π-π stacked conjugated materials for photocatalytic water splitting for hydrogen generation. |
---|---|
AbstractList | Covalent organic frameworks (COFs) are an emerging class of crystalline materials that are attracting increasing attention due to their high porosity, crystallinity, and tunable properties. Consequently, the strategic design of COF-based photocatalysts for various applications, including energy and environmental remediation, has attracted considerable interest. In particular, the sustainable production of clean fuel – hydrogen (H
2
) – by water splitting is a promising means to meet the global energy demand and to address the atmospheric CO
2
concentration caused by the excessive use of fossil fuels. In this regard, COFs offer potential advantages due to their modular nature, which facilitates their rational design from suitable organic building blocks to achieve optimal properties of visible light harvesting properties and easy charge transport. As a result, extensive research has been devoted to the design of photoresponsive COFs for efficient water splitting to generate hydrogen. Here, we provide a comprehensive review of recent developments in the strategic design of COF-based photocatalysts for solar fuel production
via
water splitting. The various organic linkers used in the construction of photocatalytic COFs and their structure–property correlations are discussed in detail. The role of bandgap engineering in tuning the hydrogen evolution efficiency of COFs is also discussed. Furthermore, the current challenges and future perspectives of COF-based solid catalysts for green and sustainable clean fuel production are presented. Indeed, this review demonstrates the importance of COF-based photocatalysts for the visible-light-driven hydrogen evolution reaction (HER) and can be beneficial for the future design of photocatalytic systems. Covalent organic frameworks (COFs) are an emerging class of crystalline materials that are attracting increasing attention due to their high porosity, crystallinity, and tunable properties. Consequently, the strategic design of COF-based photocatalysts for various applications, including energy and environmental remediation, has attracted considerable interest. In particular, the sustainable production of clean fuel – hydrogen (H2) – by water splitting is a promising means to meet the global energy demand and to address the atmospheric CO2 concentration caused by the excessive use of fossil fuels. In this regard, COFs offer potential advantages due to their modular nature, which facilitates their rational design from suitable organic building blocks to achieve optimal properties of visible light harvesting properties and easy charge transport. As a result, extensive research has been devoted to the design of photoresponsive COFs for efficient water splitting to generate hydrogen. Here, we provide a comprehensive review of recent developments in the strategic design of COF-based photocatalysts for solar fuel production via water splitting. The various organic linkers used in the construction of photocatalytic COFs and their structure–property correlations are discussed in detail. The role of bandgap engineering in tuning the hydrogen evolution efficiency of COFs is also discussed. Furthermore, the current challenges and future perspectives of COF-based solid catalysts for green and sustainable clean fuel production are presented. Indeed, this review demonstrates the importance of COF-based photocatalysts for the visible-light-driven hydrogen evolution reaction (HER) and can be beneficial for the future design of photocatalytic systems. Covalent organic frameworks (COFs) are an emerging class of crystalline materials that are attracting increasing attention due to their high porosity, crystallinity, and tunable properties. Consequently, the strategic design of COF-based photocatalysts for various applications, including energy and environmental remediation, has attracted considerable interest. In particular, the sustainable production of clean fuel - hydrogen (H 2 ) - by water splitting is a promising means to meet the global energy demand and to address the atmospheric CO 2 concentration caused by the excessive use of fossil fuels. In this regard, COFs offer potential advantages due to their modular nature, which facilitates their rational design from suitable organic building blocks to achieve optimal properties of visible light harvesting properties and easy charge transport. As a result, extensive research has been devoted to the design of photoresponsive COFs for efficient water splitting to generate hydrogen. Here, we provide a comprehensive review of recent developments in the strategic design of COF-based photocatalysts for solar fuel production via water splitting. The various organic linkers used in the construction of photocatalytic COFs and their structure-property correlations are discussed in detail. The role of bandgap engineering in tuning the hydrogen evolution efficiency of COFs is also discussed. Furthermore, the current challenges and future perspectives of COF-based solid catalysts for green and sustainable clean fuel production are presented. Indeed, this review demonstrates the importance of COF-based photocatalysts for the visible-light-driven hydrogen evolution reaction (HER) and can be beneficial for the future design of photocatalytic systems. Covalent organic frameworks provide a platform for the integration of functional organic linkers into ordered yet tunable two-dimensional frameworks to yield π-π stacked conjugated materials for photocatalytic water splitting for hydrogen generation. |
Author | Díaz, David Díaz Prakash, Kamal Pachfule, Pradip Nagaraja, C. M Mishra, Bikash |
AuthorAffiliation | Department of Chemistry S. N. Bose National Centre for Basic Sciences Instituto Universitario de Bio-Orgánica Antonio González y Departamento de Química Orgánica Universidad de La Laguna Indian Institute of Technology Ropar Department of Chemical and Biological Sciences |
AuthorAffiliation_xml | – sequence: 0 name: S. N. Bose National Centre for Basic Sciences – sequence: 0 name: Department of Chemistry – sequence: 0 name: Instituto Universitario de Bio-Orgánica Antonio González y Departamento de Química Orgánica – sequence: 0 name: Indian Institute of Technology Ropar – sequence: 0 name: Universidad de La Laguna – sequence: 0 name: Department of Chemical and Biological Sciences |
Author_xml | – sequence: 1 givenname: Kamal surname: Prakash fullname: Prakash, Kamal – sequence: 2 givenname: Bikash surname: Mishra fullname: Mishra, Bikash – sequence: 3 givenname: David Díaz surname: Díaz fullname: Díaz, David Díaz – sequence: 4 givenname: C. M surname: Nagaraja fullname: Nagaraja, C. M – sequence: 5 givenname: Pradip surname: Pachfule fullname: Pachfule, Pradip |
BookMark | eNptkU1LAzEQhoMoWGsv3oWAFxVWs5n9yB5LtSoWerAeZUmzyXbbbVKTVOm_N7ZSQRwYZmCe-eCdE3SojZYIncXkJiZQ3FbgOaExKxYHqENJSqI8KbLDfc7YMeo5NyfBGCFZUXTQ24u33Mu6EbiSrqk1NgoL88FbqT02tuY6lJTlS_lp7MLhy8F46K6wMhavZsYbwT1vNz5As01lTS01Di7D0MboU3SkeOtk7yd20evwfjJ4jEbjh6dBfxQJYOAjqhQXoNIpT3KVSwaygERRmky5TFWsmKQCUkUgj5lirMoSgBxiKYRgGVQFdNHFbu7Kmve1dL6cm7XVYWVJGaQpTVKAQJEdJaxxzkpVisZv7wwaNG0Zk_Jbx_IOJv2tjs-h5fpPy8o2S243_8PnO9g6sed-nwJfcVZ_yQ |
CitedBy_id | crossref_primary_10_1016_j_chemosphere_2023_141028 crossref_primary_10_1002_smll_202400344 crossref_primary_10_1039_D4CC01743A crossref_primary_10_1016_j_polymer_2024_127014 crossref_primary_10_1016_j_jhazmat_2024_135075 crossref_primary_10_1038_s41598_024_77287_9 crossref_primary_10_1002_ange_202410300 crossref_primary_10_1039_D4TA06982J crossref_primary_10_1002_anie_202416039 crossref_primary_10_1016_j_surfin_2024_105399 crossref_primary_10_1002_smll_202408140 crossref_primary_10_1039_D3TA06192B crossref_primary_10_1039_D4NR03796K crossref_primary_10_1002_smll_202401168 crossref_primary_10_1039_D4DT03277B crossref_primary_10_1002_advs_202307227 crossref_primary_10_1039_D4CE00630E crossref_primary_10_1021_acsaem_4c02073 crossref_primary_10_3390_nano15010059 crossref_primary_10_1016_j_cej_2025_160631 crossref_primary_10_1016_j_jcis_2024_03_164 crossref_primary_10_1016_j_micromeso_2024_113118 crossref_primary_10_1002_adfm_202413943 crossref_primary_10_1002_cctc_202301522 crossref_primary_10_1002_smtd_202500059 crossref_primary_10_1039_D4SE01764A crossref_primary_10_1021_acsanm_4c06557 crossref_primary_10_1039_D3TA06222H crossref_primary_10_1016_j_mcat_2025_114976 crossref_primary_10_1039_D3TA05715A crossref_primary_10_1002_anie_202410300 crossref_primary_10_1016_j_jece_2024_115142 crossref_primary_10_1021_acsanm_4c02796 crossref_primary_10_1021_acs_jpclett_4c00818 crossref_primary_10_1039_D3TA04552H crossref_primary_10_1016_j_jcis_2025_01_247 crossref_primary_10_3390_polym16040539 crossref_primary_10_1039_D4CC04284K crossref_primary_10_1016_j_seppur_2024_130960 crossref_primary_10_1039_D4TC00999A crossref_primary_10_1016_j_microc_2024_109976 crossref_primary_10_1021_acsmaterialslett_4c00414 crossref_primary_10_1039_D4TA02453B crossref_primary_10_1016_j_ijbiomac_2025_140524 crossref_primary_10_1016_j_fuel_2023_130654 crossref_primary_10_1021_acsmaterialslett_4c00418 crossref_primary_10_1002_cjoc_202400437 crossref_primary_10_1002_chem_202401122 crossref_primary_10_1016_j_gee_2024_09_001 crossref_primary_10_1002_adma_202413118 crossref_primary_10_1039_D4QI01480D crossref_primary_10_1016_j_partic_2023_12_008 crossref_primary_10_1016_j_watres_2024_122919 crossref_primary_10_1039_D4TC02995J crossref_primary_10_1016_j_jmst_2025_02_009 crossref_primary_10_1016_j_foodchem_2024_140352 crossref_primary_10_1002_chem_202403733 crossref_primary_10_1016_S1872_2067_23_64580_2 crossref_primary_10_1021_acs_chemmater_4c03161 crossref_primary_10_1039_D4TA04576A crossref_primary_10_1016_j_jscs_2024_101955 crossref_primary_10_1039_D4GC03467H crossref_primary_10_1039_D4CC04439H crossref_primary_10_1002_ange_202416039 |
Cites_doi | 10.1039/D0EE04013D 10.1021/acscentsci.9b00047 10.1038/natrevmats.2016.68 10.1021/jacs.0c03418 10.1039/C3CY00845B 10.1039/D1TA00690H 10.1039/C9EE00717B 10.1002/er.3549 10.1021/ja308278w 10.3390/catal11060754 10.1021/acs.accounts.2c00200 10.1038/s41467-022-30035-x 10.1016/j.chempr.2019.04.015 10.1126/science.aal1585 10.1039/C5EE03019F 10.1039/c39850000474 10.1021/jacs.8b01320 10.1021/acsaem.0c01545 10.1039/C9CS00313D 10.1039/C8TA12442F 10.1021/jacs.2c02346 10.1021/acssuschemeng.7b00325 10.1002/anie.201708548 10.1002/ange.201908513 10.1039/D0CC05222A 10.1039/C8TA05430D 10.1021/jacs.7b01240 10.1002/anie.201900046 10.1016/j.ijhydene.2020.02.103 10.1021/cr1002326 10.1039/D0TA02202K 10.1016/j.cclet.2016.05.020 10.1038/238037a0 10.1039/C9CC02144B 10.1021/acscatal.9b01951 10.1038/s41586-021-03907-3 10.1016/j.ccr.2021.213989 10.1016/j.cej.2021.129984 10.1039/D1PY00247C 10.1038/s41467-021-21527-3 10.1039/D1EE00505G 10.26434/chemrxiv-2022-p0pjr 10.1002/marc.201300227 10.1039/D1CC00854D 10.1021/acs.accounts.0c00357 10.1002/aenm.201703278 10.1038/ncomms13638 10.1021/acs.chemrev.1c00978 10.1002/anie.202016618 10.1021/acsami.1c24713 10.1002/chem.201300133 10.1246/bcsj.20200389 10.1021/jacs.9b03243 10.1021/ja809307s 10.1039/C5CC04680G 10.1039/D0CY02094J 10.1002/anie.201806862 10.1038/s42004-019-0158-8 10.1002/adma.201705454 10.1021/acs.chemrev.0c00955 10.1039/C4SC00016A 10.1039/C4CC02553A 10.1021/jacs.7b07489 10.1039/C7CC01827D 10.1021/acsnano.9b03649 10.1002/chem.202101587 10.1016/j.apcatb.2018.11.027 10.1016/j.ijhydene.2021.08.004 10.1021/jacs.2c11893 10.1002/asia.202100357 10.1016/S0961-9534(02)00017-X 10.1016/j.apcatb.2020.118586 10.1126/science.1120411 10.1021/acs.chemrev.9b00201 10.1038/s41467-022-29076-z 10.1039/C9TA14047F 10.1016/j.ccr.2021.213778 10.1021/ja0269643 10.1016/j.cej.2019.122342 10.1038/s41467-021-26817-4 10.1038/s41467-021-24179-5 10.1002/adfm.201705553 10.1039/C9QM00633H 10.1039/D0TA00364F 10.1039/C9CS00911F 10.1038/s41467-022-33501-8 10.1016/j.ijhydene.2018.10.200 10.1038/ncomms9508 10.1021/acsami.8b16013 10.1021/jp036890x 10.1038/srep41978 10.1002/advs.202202417 10.1021/acscatal.0c04820 10.1039/C6CS00851H 10.1021/acscatal.1c05233 10.1039/C9TA07319A 10.1002/adma.202107480 10.1016/j.rser.2021.111230 10.1016/j.apcatb.2020.119802 10.1039/D0CS00278J 10.1038/s41557-018-0141-5 10.1002/smll.202101017 10.1021/acsami.9b21903 10.1021/acs.chemmater.9b02825 10.3389/fpls.2018.00273 10.1002/anie.201914424 10.3390/molecules25102425 10.1002/chem.202100595 10.1002/aenm.201701620 10.1021/ja4017842 10.1016/j.mtchem.2018.12.002 10.1039/D0TA10165F 10.3390/polym14071363 10.1021/acsami.1c06008 10.1039/b207642j 10.1080/17518253.2018.1440324 10.3390/membranes12020173 10.1039/C4CC08063G 10.1021/jacs.6b08815 10.1038/s41563-019-0399-z 10.1038/s43586-022-00181-z 10.1002/anie.202014408 10.1002/anie.201806664 10.1002/chem.202004683 10.1016/j.jclepro.2019.02.046 10.1021/acsenergylett.7b01123 10.1039/D2CE01296K 10.1021/acs.energyfuels.1c03426 10.1021/acs.chemrev.9b00550 10.1039/D0CS00199F 10.1039/D0CS00620C 10.1021/jacs.9b02997 10.1016/j.rser.2014.07.113 10.1039/c0cc04057f 10.1021/acs.cgd.3c00379 10.1021/acsami.0c15780 10.1002/chem.201501692 10.1021/jacs.9b01226 10.1016/j.jallcom.2021.159565 10.1039/C7EE03640J 10.1021/ja048912e 10.1039/C9TA12870K 10.1002/anie.202104870 10.1016/j.apenergy.2020.114885 10.1039/D0CY02330B 10.1016/j.jallcom.2020.155057 10.1039/D0TA05894G 10.1021/acssuschemeng.1c05162 10.1039/D2CC04190A 10.1021/jacs.7b11255 10.1021/ja058087h 10.1016/j.jclepro.2021.125822 10.1039/c0cc01562h 10.1016/j.jcis.2022.01.190 10.1039/D1MA00158B 10.1002/adma.201807865 10.1039/D2TA01646J 10.1002/adts.201700015 10.1021/jacs.0c02155 10.1016/j.apsusc.2020.148082 10.1002/marc.201500270 10.1002/chem.201403800 10.1016/j.rser.2021.111180 10.1039/D0TA05834C 10.1039/C9DT03307F 10.1002/anie.202006925 10.1021/ja511802c 10.1002/ente.201500478 10.1039/D1TA04493A 10.1002/solr.202100226 10.1039/D1QI00543J 10.1016/j.apcatb.2019.118271 10.1021/acs.chemrev.0c00107 10.1039/C9SC04663A 10.1039/D0AN01734E 10.1039/D2TA01058E |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2023 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2023 |
DBID | AAYXX CITATION 7SP 7SR 7ST 7U5 8BQ 8FD C1K JG9 L7M SOI |
DOI | 10.1039/d3ta02189k |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Environment Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management Materials Research Database Advanced Technologies Database with Aerospace Environment Abstracts |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Environment Abstracts Advanced Technologies Database with Aerospace METADEX Environmental Sciences and Pollution Management |
DatabaseTitleList | CrossRef Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2050-7496 |
EndPage | 14538 |
ExternalDocumentID | 10_1039_D3TA02189K d3ta02189k |
GroupedDBID | -JG 0-7 0R~ 705 AAEMU AAIWI AAJAE AANOJ AAWGC AAXHV ABASK ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACGFS ACIWK ACLDK ADMRA ADSRN AEFDR AENEX AENGV AESAV AETIL AFLYV AFOGI AFRAH AFRDS AFVBQ AGEGJ AGRSR AGSTE AHGCF ALMA_UNASSIGNED_HOLDINGS ANUXI APEMP ASKNT AUDPV BLAPV BSQNT C6K EBS ECGLT EE0 EF- GGIMP GNO H13 HZ~ H~N J3I O-G O9- R7C RAOCF RCNCU RNS RPMJG RRC RSCEA SKA SKF SLH UCJ AAYXX AFRZK AKMSF ALUYA CITATION 7SP 7SR 7ST 7U5 8BQ 8FD C1K JG9 L7M SOI |
ID | FETCH-LOGICAL-c383t-2ffac3f5ba47f7e83e934f224bae5f1f8e2c35f03718f88d6433731eccc863d93 |
ISSN | 2050-7488 |
IngestDate | Mon Jun 30 11:59:37 EDT 2025 Tue Jul 01 01:13:41 EDT 2025 Thu Apr 24 22:54:39 EDT 2025 Tue Dec 17 20:58:55 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 27 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c383t-2ffac3f5ba47f7e83e934f224bae5f1f8e2c35f03718f88d6433731eccc863d93 |
Notes | reduction/conversion. 2 Dr David Díaz Díaz received his PhD in Chemistry from the University of La Laguna (ULL) (2002). Then he joined Prof. Finn's group at TSRI, USA. Since 2006, he has held positions in academia and industry (Ramón y Cajal, UAM, Spain, 2006; Dow, Switzerland, 2007; CSIC, Spain, 2009; University of Regensburg, Germany, Alexander von Humboldt Researcher (2010), Heisenberg Professor (2013), and Privatdozent (since 2018)). In 2020, he was appointed as Distinguished Researcher (ULL). His main research interest focuses on the development of new functional materials for biomedical, environmental, and energy applications. Dr Pradip Pachfule studied chemistry at Solapur University, India and graduated in 2008. He received his PhD at CSIR-National Chemical Laboratory, Pune, India under the supervision of Prof. Rahul Banerjee in 2014. Later, he worked as a JSPS postdoctoral research fellow in the laboratory of Prof. Qiang Xu at AIST, Kansai, Japan. This was followed by working in the group of Prof. Arne Thomas as an Alexander von Humboldt postdoctoral fellow and a postdoctoral research fellow at the Technische Universität Berlin, Germany (2017-2021). He is currently working as an assistant professor at S. N. Bose National Centre for Basic Sciences, Kolkata, India. His research is focused on covalent organic frameworks and their applications in photocatalytic water splitting and CO Dr Kamal Prakash received his PhD degree in Chemistry from the Indian Institute of Technology (IIT) Roorkee, India in May 2018. Following his PhD, he worked as a Postdoctoral Fellow at the University of Houston, Texas, USA in 2018-2019. Later, he joined the Indian Institute of Technology Ropar as an Institute Postdoctoral Fellow in 2021. His current research interests focus on the design and synthesis of novel covalent organic frameworks (COFs) and their photocatalytic application in hydrogen evolution and CO Bikash Mishra is currently pursuing his doctor of philosophy at the department of chemical and biological sciences at S. N. Bose National Centre for Basic Sciences, Kolkata, India. He was awarded his Bachelor of sciences in chemistry from Sidho-Kanho-Birsha University, Purulia. He pursued his master of science in organic chemistry from Banaras Hindu University, Varanasi. Currently, his research focusses on water splitting by covalent organic frameworks (COF) for hydrogen production. reduction. Dr C. M. Nagaraja is an associate professor at the Indian Institute of Technology Ropar. He received his PhD from the Indian Institute of Science, Bangalore in 2007. Subsequently, he carried out postdoctoral research at Brandeis University, USA and Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore. Prior to joining the Indian Institute of Technology Ropar in 2012, he worked as an Assistant Professor at IIT Jodhpur. His research mainly focuses on the design of framework materials for utilization of carbon dioxide and inorganic nanostructured materials for generation of solar fuels. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-4271-6424 0000-0002-0557-3364 0000-0002-0804-541X |
OpenAccessLink | https://riull.ull.es/xmlui/bitstream/915/42226/1/d3ta02189k.pdf |
PQID | 2835524533 |
PQPubID | 2047523 |
PageCount | 5 |
ParticipantIDs | crossref_citationtrail_10_1039_D3TA02189K proquest_journals_2835524533 crossref_primary_10_1039_D3TA02189K rsc_primary_d3ta02189k |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-07-11 |
PublicationDateYYYYMMDD | 2023-07-11 |
PublicationDate_xml | – month: 07 year: 2023 text: 2023-07-11 day: 11 |
PublicationDecade | 2020 |
PublicationPlace | Cambridge |
PublicationPlace_xml | – name: Cambridge |
PublicationTitle | Journal of materials chemistry. A, Materials for energy and sustainability |
PublicationYear | 2023 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Thote (D3TA02189K/cit107/1) 2014; 20 Liu (D3TA02189K/cit126/1) 2020; 12 Banerjee (D3TA02189K/cit79/1) 2017; 139 Kandambeth (D3TA02189K/cit152/1) 2012; 134 Dong (D3TA02189K/cit157/1) 2020; 379 Ellabban (D3TA02189K/cit3/1) 2014; 39 McKeown (D3TA02189K/cit40/1) 2002 Debnath (D3TA02189K/cit29/1) 2021; 5 Li (D3TA02189K/cit86/1) 2020; 8 Xu (D3TA02189K/cit164/1) 2021; 871 Ozawa (D3TA02189K/cit73/1) 2006; 128 Wang (D3TA02189K/cit82/1) 2020; 56 Wang (D3TA02189K/cit100/1) 2020; 49 Chen (D3TA02189K/cit151/1) 2021; 12 Chen (D3TA02189K/cit132/1) 2022; 12 Xing (D3TA02189K/cit169/1) 2020; 12 Vyas (D3TA02189K/cit78/1) 2015; 6 Li (D3TA02189K/cit115/1) 2023; 145 Mi (D3TA02189K/cit106/1) 2021; 60 Jin (D3TA02189K/cit140/1) 2019; 5 Li (D3TA02189K/cit144/1) 2021; 60 Yao (D3TA02189K/cit108/1) 2020; 8 Joseph (D3TA02189K/cit149/1) 2020; 45 Tan (D3TA02189K/cit39/1) 2017; 46 Natali (D3TA02189K/cit72/1) 2013; 19 Huang (D3TA02189K/cit119/1) 2019; 58 Chen (D3TA02189K/cit95/1) 2021; 435 Gottschling (D3TA02189K/cit112/1) 2020; 142 Ghosh (D3TA02189K/cit63/1) 2020; 142 Ishikawa (D3TA02189K/cit24/1) 2004; 108 Li (D3TA02189K/cit159/1) 2020; 266 Elewa (D3TA02189K/cit71/1) 2021; 285 Fajrina (D3TA02189K/cit75/1) 2019; 44 Li (D3TA02189K/cit87/1) 2020; 49 Yu (D3TA02189K/cit97/1) 2022; 10 Diercks (D3TA02189K/cit44/1) 2017; 355 Kim (D3TA02189K/cit37/1) 2021; 8 Humayun (D3TA02189K/cit20/1) 2018; 11 You (D3TA02189K/cit76/1) 2021; 291 Alnouss (D3TA02189K/cit15/1) 2020; 266 Zhang (D3TA02189K/cit74/1) 2010; 46 Agyekum (D3TA02189K/cit8/1) 2022; 12 Karaeva (D3TA02189K/cit17/1) 2021; 46 Wang (D3TA02189K/cit23/1) 2019; 18 Dhingra (D3TA02189K/cit30/1) 2022; 615 Zhou (D3TA02189K/cit56/1) 2019; 131 Ruigómez (D3TA02189K/cit90/1) 2015; 21 Li (D3TA02189K/cit101/1) 2018; 1 Cheng (D3TA02189K/cit21/1) 2016; 7 Luo (D3TA02189K/cit10/1) 2019; 13 Luo (D3TA02189K/cit110/1) 2019; 55 Kaur (D3TA02189K/cit31/1) 2017; 5 Battula (D3TA02189K/cit137/1) 2019; 244 Cheng (D3TA02189K/cit133/1) 2022; 34 Wang (D3TA02189K/cit50/1) 2022; 6 Cheng (D3TA02189K/cit118/1) 2018; 10 Zhang (D3TA02189K/cit125/1) 2020; 59 Karak (D3TA02189K/cit93/1) 2017; 139 Chen (D3TA02189K/cit105/1) 2020; 262 Banerjee (D3TA02189K/cit64/1) 2018; 3 Weng (D3TA02189K/cit155/1) 2022; 13 Matsumoto (D3TA02189K/cit91/1) 2017; 139 Shen (D3TA02189K/cit70/1) 2020; 8 Xie (D3TA02189K/cit19/1) 2017; 33 Yuan (D3TA02189K/cit41/1) 2019; 5 Wang (D3TA02189K/cit98/1) 2021; 17 Li (D3TA02189K/cit145/1) 2022; 13 Ai (D3TA02189K/cit85/1) 2021; 27 Huang (D3TA02189K/cit162/1) 2020; 833 Deng (D3TA02189K/cit36/1) 2021; 16 Singh (D3TA02189K/cit58/1) 2021; 2 Walter (D3TA02189K/cit66/1) 2010; 110 Rogdakis (D3TA02189K/cit6/1) 2021; 14 Zhang (D3TA02189K/cit166/1) 2018; 57 Schwab (D3TA02189K/cit47/1) 2010; 46 Wang (D3TA02189K/cit80/1) 2018; 10 Sprachmann (D3TA02189K/cit60/1) 2022 Nasir (D3TA02189K/cit28/1) 2020; 8 Tan (D3TA02189K/cit163/1) 2021; 11 Cassia (D3TA02189K/cit2/1) 2018; 9 Xiong (D3TA02189K/cit177/1) 2014; 4 Li (D3TA02189K/cit69/1) 2020; 25 Rahman (D3TA02189K/cit65/1) 2020; 49 Zhao (D3TA02189K/cit103/1) 2019; 141 Wei (D3TA02189K/cit88/1) 2015; 51 Haung (D3TA02189K/cit49/1) 2016; 1 Hou (D3TA02189K/cit109/1) 2019; 48 Wang (D3TA02189K/cit113/1) 2021; 57 Kumar (D3TA02189K/cit130/1) 2022; 10 Zhao (D3TA02189K/cit143/1) 2021; 11 Wang (D3TA02189K/cit141/1) 2020; 142 Kumar (D3TA02189K/cit138/1) 2018; 6 Skorjanc (D3TA02189K/cit55/1) 2020; 11 Côté (D3TA02189K/cit43/1) 2005; 310 Yue (D3TA02189K/cit9/1) 2021; 146 Yang (D3TA02189K/cit83/1) 2021; 60 Jiang (D3TA02189K/cit61/1) 2021; 94 Kailasam (D3TA02189K/cit135/1) 2016; 4 Li (D3TA02189K/cit84/1) 2022; 13 Xie (D3TA02189K/cit102/1) 2022; 14 Geng (D3TA02189K/cit59/1) 2020; 120 Lin (D3TA02189K/cit170/1) 2021; 11 Zhong (D3TA02189K/cit104/1) 2019; 141 Zhao (D3TA02189K/cit136/1) 2022; 9 Guan (D3TA02189K/cit89/1) 2018; 140 Fujishima (D3TA02189K/cit18/1) 1972; 238 Shen (D3TA02189K/cit34/1) 2017; 7 Bi (D3TA02189K/cit116/1) 2015; 36 Gonclaves (D3TA02189K/cit148/1) 2021; 146 Sharma (D3TA02189K/cit131/1) 2021; 27 Wang (D3TA02189K/cit146/1) 2016; 27 Watanabe (D3TA02189K/cit16/1) 2021; 22 Li (D3TA02189K/cit174/1) 2022; 58 Ahmed (D3TA02189K/cit62/1) 2021; 441 Wang (D3TA02189K/cit33/1) 2009; 131 Kokkonen (D3TA02189K/cit4/1) 2021; 9 Acar (D3TA02189K/cit11/1) 2016; 40 Zhang (D3TA02189K/cit158/1) 2020; 8 Audebert (D3TA02189K/cit129/1) 2021; 121 Tan (D3TA02189K/cit53/1) 2023; 3 Liu (D3TA02189K/cit127/1) 2019; 31 Liu (D3TA02189K/cit42/1) 2019; 7 Ishikawa (D3TA02189K/cit25/1) 2002; 124 Low (D3TA02189K/cit168/1) 2014; 50 Wang (D3TA02189K/cit68/1) 2020; 120 Haldar (D3TA02189K/cit48/1) 2022; 20 Romero (D3TA02189K/cit67/1) 2021; 11 Liu (D3TA02189K/cit14/1) 2016; 9 Wang (D3TA02189K/cit35/1) 2020; 8 Flores (D3TA02189K/cit147/1) 2020; 3 Zheng (D3TA02189K/cit161/1) 2020; 8 Lohse (D3TA02189K/cit99/1) 2018; 28 Fávaro (D3TA02189K/cit121/1) 2022; 14 Hu (D3TA02189K/cit128/1) 2021; 12 Guan (D3TA02189K/cit94/1) 2020; 49 Liao (D3TA02189K/cit26/1) 2019; 12 Zhou (D3TA02189K/cit154/1) 2021; 12 Ma (D3TA02189K/cit7/1) 2021; 14 Altintas (D3TA02189K/cit173/1) 2022; 24 Qi (D3TA02189K/cit13/1) 2018; 8 Cheng (D3TA02189K/cit156/1) 2018; 11 Kailasam (D3TA02189K/cit134/1) 2013; 34 Lau (D3TA02189K/cit27/1) 2015; 137 Wu (D3TA02189K/cit32/1) 2014; 50 Peng (D3TA02189K/cit165/1) 2018; 30 Liu (D3TA02189K/cit124/1) 2018; 57 Stegbauer (D3TA02189K/cit139/1) 2018; 8 Zhang (D3TA02189K/cit167/1) 2021; 9 Pachfule (D3TA02189K/cit96/1) 2018; 140 Liu (D3TA02189K/cit114/1) 2021; 537 Shang (D3TA02189K/cit176/1) 2021; 9 Calautit (D3TA02189K/cit1/1) 2021; 147 Meier (D3TA02189K/cit122/1) 2019; 31 Zhou (D3TA02189K/cit171/1) 2021; 12 Zheng (D3TA02189K/cit172/1) 2019; 12 Kim (D3TA02189K/cit5/1) 2020; 120 Yanagida (D3TA02189K/cit45/1) 1985 Jiang (D3TA02189K/cit46/1) 2004; 126 Wang (D3TA02189K/cit123/1) 2017; 56 Mishra (D3TA02189K/cit178/1) 2023; 23 Nishiyama (D3TA02189K/cit22/1) 2021; 598 He (D3TA02189K/cit51/1) 2022; 11 Kumar (D3TA02189K/cit175/1) 2021; 27 Liu (D3TA02189K/cit54/1) 2021; 50 Zhang (D3TA02189K/cit38/1) 2020; 4 Biswal (D3TA02189K/cit153/1) 2019; 141 Kuecken (D3TA02189K/cit117/1) 2017; 53 Chen (D3TA02189K/cit142/1) 2020; 59 Acer (D3TA02189K/cit12/1) 2019; 218 Biswal (D3TA02189K/cit92/1) 2013; 135 Gui (D3TA02189K/cit57/1) 2020; 53 Guan (D3TA02189K/cit52/1) 2022; 55 Gao (D3TA02189K/cit160/1) 2019; 7 Wang (D3TA02189K/cit111/1) 2021; 13 Gao (D3TA02189K/cit120/1) 2019; 9 Stegbauer (D3TA02189K/cit77/1) 2014; 5 Fan (D3TA02189K/cit150/1) 2019; 2 Yin (D3TA02189K/cit81/1) 2021; 419 |
References_xml | – issn: 2022 publication-title: ChemRxiv doi: Sprachmann Wachsmuth Bhosale Burmeister Smales Kochovski Grabicki Esser Dumele – volume: 14 start-page: 3352 year: 2021 ident: D3TA02189K/cit6/1 publication-title: Energy Environ. Sci. doi: 10.1039/D0EE04013D – volume: 5 start-page: 409 year: 2019 ident: D3TA02189K/cit41/1 publication-title: ACS Cent. Sci. doi: 10.1021/acscentsci.9b00047 – volume: 1 start-page: 16068 year: 2016 ident: D3TA02189K/cit49/1 publication-title: Nat. Rev. Mater. doi: 10.1038/natrevmats.2016.68 – volume: 142 start-page: 11131 year: 2020 ident: D3TA02189K/cit141/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.0c03418 – volume: 4 start-page: 325 year: 2014 ident: D3TA02189K/cit177/1 publication-title: Catal. Sci. Technol. doi: 10.1039/C3CY00845B – volume: 9 start-page: 10527 year: 2021 ident: D3TA02189K/cit4/1 publication-title: J. Mater. Chem. A doi: 10.1039/D1TA00690H – volume: 12 start-page: 2080 year: 2019 ident: D3TA02189K/cit26/1 publication-title: Energy Environ. Sci. doi: 10.1039/C9EE00717B – volume: 40 start-page: 1449 year: 2016 ident: D3TA02189K/cit11/1 publication-title: Int. J. Energy Res. doi: 10.1002/er.3549 – volume: 134 start-page: 19524 year: 2012 ident: D3TA02189K/cit152/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja308278w – volume: 11 start-page: 754 year: 2021 ident: D3TA02189K/cit67/1 publication-title: Catalysts doi: 10.3390/catal11060754 – volume: 55 start-page: 1912 year: 2022 ident: D3TA02189K/cit52/1 publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.2c00200 – volume: 13 start-page: 2357 year: 2022 ident: D3TA02189K/cit84/1 publication-title: Nat. Commun. doi: 10.1038/s41467-022-30035-x – volume: 5 start-page: 1632 year: 2019 ident: D3TA02189K/cit140/1 publication-title: Chem doi: 10.1016/j.chempr.2019.04.015 – volume: 355 start-page: 923 year: 2017 ident: D3TA02189K/cit44/1 publication-title: Science doi: 10.1126/science.aal1585 – volume: 9 start-page: 467 year: 2016 ident: D3TA02189K/cit14/1 publication-title: Energy Environ. Sci. doi: 10.1039/C5EE03019F – start-page: 474 year: 1985 ident: D3TA02189K/cit45/1 publication-title: J. Chem. Soc., Chem. Commun. doi: 10.1039/c39850000474 – volume: 142 start-page: 9752 year: 2020 ident: D3TA02189K/cit63/1 publication-title: J. Am. Chem. Soc. – volume: 140 start-page: 4494 year: 2018 ident: D3TA02189K/cit89/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b01320 – volume: 3 start-page: 9848 year: 2020 ident: D3TA02189K/cit147/1 publication-title: ACS Appl. Energy Mater. doi: 10.1021/acsaem.0c01545 – volume: 49 start-page: 1887 year: 2020 ident: D3TA02189K/cit65/1 publication-title: Chem. Soc. Rev. doi: 10.1039/C9CS00313D – volume: 7 start-page: 5153 year: 2019 ident: D3TA02189K/cit42/1 publication-title: J. Mater. Chem. A doi: 10.1039/C8TA12442F – volume: 20 start-page: 9101 year: 2022 ident: D3TA02189K/cit48/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.2c02346 – volume: 5 start-page: 4293 year: 2017 ident: D3TA02189K/cit31/1 publication-title: ACS Sustainable Chem. Eng. doi: 10.1021/acssuschemeng.7b00325 – volume: 56 start-page: 14149 year: 2017 ident: D3TA02189K/cit123/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201708548 – volume: 131 start-page: 16951 year: 2019 ident: D3TA02189K/cit56/1 publication-title: Angew. Chem. doi: 10.1002/ange.201908513 – volume: 56 start-page: 12612 year: 2020 ident: D3TA02189K/cit82/1 publication-title: Chem. Commun. doi: 10.1039/D0CC05222A – volume: 6 start-page: 21719 year: 2018 ident: D3TA02189K/cit138/1 publication-title: J. Mater. Chem. A doi: 10.1039/C8TA05430D – volume: 139 start-page: 4999 year: 2017 ident: D3TA02189K/cit91/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b01240 – volume: 58 start-page: 8676 year: 2019 ident: D3TA02189K/cit119/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201900046 – volume: 45 start-page: 11954 year: 2020 ident: D3TA02189K/cit149/1 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2020.02.103 – volume: 110 start-page: 6443 year: 2010 ident: D3TA02189K/cit66/1 publication-title: Chem. Rev. doi: 10.1021/cr1002326 – volume: 8 start-page: 8949 year: 2020 ident: D3TA02189K/cit108/1 publication-title: J. Mater. Chem. A doi: 10.1039/D0TA02202K – volume: 27 start-page: 1376 year: 2016 ident: D3TA02189K/cit146/1 publication-title: Chin. Chem. Lett. doi: 10.1016/j.cclet.2016.05.020 – volume: 238 start-page: 37 year: 1972 ident: D3TA02189K/cit18/1 publication-title: Nature doi: 10.1038/238037a0 – volume: 55 start-page: 5829 year: 2019 ident: D3TA02189K/cit110/1 publication-title: Chem. Commun. doi: 10.1039/C9CC02144B – volume: 9 start-page: 9438 year: 2019 ident: D3TA02189K/cit120/1 publication-title: ACS Catal. doi: 10.1021/acscatal.9b01951 – volume: 598 start-page: 304 year: 2021 ident: D3TA02189K/cit22/1 publication-title: Nature doi: 10.1038/s41586-021-03907-3 – volume: 441 start-page: 213989 year: 2021 ident: D3TA02189K/cit62/1 publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2021.213989 – volume: 419 start-page: 129984 year: 2021 ident: D3TA02189K/cit81/1 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.129984 – volume: 12 start-page: 3250 year: 2021 ident: D3TA02189K/cit154/1 publication-title: Polym. Chem. doi: 10.1039/D1PY00247C – volume: 12 start-page: 1354 year: 2021 ident: D3TA02189K/cit151/1 publication-title: Nat. Commun. doi: 10.1038/s41467-021-21527-3 – volume: 14 start-page: 2883 year: 2021 ident: D3TA02189K/cit7/1 publication-title: Energy Environ. Sci. doi: 10.1039/D1EE00505G – volume-title: ChemRxiv year: 2022 ident: D3TA02189K/cit60/1 doi: 10.26434/chemrxiv-2022-p0pjr – volume: 34 start-page: 1008 year: 2013 ident: D3TA02189K/cit134/1 publication-title: Macromol. Rapid Commun. doi: 10.1002/marc.201300227 – volume: 57 start-page: 4464 year: 2021 ident: D3TA02189K/cit113/1 publication-title: Chem. Commun. doi: 10.1039/D1CC00854D – volume: 53 start-page: 2225 year: 2020 ident: D3TA02189K/cit57/1 publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.0c00357 – volume: 8 start-page: 1703278 year: 2018 ident: D3TA02189K/cit139/1 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201703278 – volume: 7 start-page: 13638 year: 2016 ident: D3TA02189K/cit21/1 publication-title: Nat. Commun. doi: 10.1038/ncomms13638 – volume: 11 start-page: 10087 year: 2022 ident: D3TA02189K/cit51/1 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.1c00978 – volume: 60 start-page: 9642 year: 2021 ident: D3TA02189K/cit106/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202016618 – volume: 14 start-page: 14182 year: 2022 ident: D3TA02189K/cit121/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.1c24713 – volume: 19 start-page: 9261 year: 2013 ident: D3TA02189K/cit72/1 publication-title: Chem.–Eur. J. doi: 10.1002/chem.201300133 – volume: 94 start-page: 1215 year: 2021 ident: D3TA02189K/cit61/1 publication-title: Bull. Chem. Soc. Jpn. doi: 10.1246/bcsj.20200389 – volume: 141 start-page: 11082 year: 2019 ident: D3TA02189K/cit153/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b03243 – volume: 131 start-page: 1680 year: 2009 ident: D3TA02189K/cit33/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja809307s – volume: 51 start-page: 12178 year: 2015 ident: D3TA02189K/cit88/1 publication-title: Chem. Commun. doi: 10.1039/C5CC04680G – volume: 11 start-page: 1874 year: 2021 ident: D3TA02189K/cit163/1 publication-title: Catal. Sci. Technol. doi: 10.1039/D0CY02094J – volume: 57 start-page: 12106 year: 2018 ident: D3TA02189K/cit166/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201806862 – volume: 2 start-page: 55 year: 2019 ident: D3TA02189K/cit150/1 publication-title: Commun. Chem. doi: 10.1038/s42004-019-0158-8 – volume: 30 start-page: 1705454 year: 2018 ident: D3TA02189K/cit165/1 publication-title: Adv. Mater. doi: 10.1002/adma.201705454 – volume: 121 start-page: 2515 year: 2021 ident: D3TA02189K/cit129/1 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.0c00955 – volume: 5 start-page: 2789 year: 2014 ident: D3TA02189K/cit77/1 publication-title: Chem. Sci. doi: 10.1039/C4SC00016A – volume: 50 start-page: 10768 year: 2014 ident: D3TA02189K/cit168/1 publication-title: Chem. Commun. doi: 10.1039/C4CC02553A – volume: 139 start-page: 16228 year: 2017 ident: D3TA02189K/cit79/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b07489 – volume: 53 start-page: 5854 year: 2017 ident: D3TA02189K/cit117/1 publication-title: Chem. Commun. doi: 10.1039/C7CC01827D – volume: 13 start-page: 9811 year: 2019 ident: D3TA02189K/cit10/1 publication-title: ACS Nano doi: 10.1021/acsnano.9b03649 – volume: 27 start-page: 13669 year: 2021 ident: D3TA02189K/cit85/1 publication-title: Chem.–Eur. J. doi: 10.1002/chem.202101587 – volume: 244 start-page: 313 year: 2019 ident: D3TA02189K/cit137/1 publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2018.11.027 – volume: 46 start-page: 34089 year: 2021 ident: D3TA02189K/cit17/1 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2021.08.004 – volume: 145 start-page: 8364 year: 2023 ident: D3TA02189K/cit115/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.2c11893 – volume: 16 start-page: 1851 year: 2021 ident: D3TA02189K/cit36/1 publication-title: Chem.–Asian J. doi: 10.1002/asia.202100357 – volume: 22 start-page: 405 year: 2021 ident: D3TA02189K/cit16/1 publication-title: Biomass Bioenergy doi: 10.1016/S0961-9534(02)00017-X – volume: 266 start-page: 118586 year: 2020 ident: D3TA02189K/cit159/1 publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2020.118586 – volume: 310 start-page: 1166 year: 2005 ident: D3TA02189K/cit43/1 publication-title: Science doi: 10.1126/science.1120411 – volume: 120 start-page: 919 year: 2020 ident: D3TA02189K/cit68/1 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.9b00201 – volume: 13 start-page: 1355 year: 2022 ident: D3TA02189K/cit145/1 publication-title: Nat. Commun. doi: 10.1038/s41467-022-29076-z – volume: 8 start-page: 4850 year: 2020 ident: D3TA02189K/cit70/1 publication-title: J. Mater. Chem. A doi: 10.1039/C9TA14047F – volume: 435 start-page: 213778 year: 2021 ident: D3TA02189K/cit95/1 publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2021.213778 – volume: 124 start-page: 13547 year: 2002 ident: D3TA02189K/cit25/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0269643 – volume: 379 start-page: 122342 year: 2020 ident: D3TA02189K/cit157/1 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.122342 – volume: 12 start-page: 6596 year: 2021 ident: D3TA02189K/cit128/1 publication-title: Nat. Commun. doi: 10.1038/s41467-021-26817-4 – volume: 12 start-page: 3934 year: 2021 ident: D3TA02189K/cit171/1 publication-title: Nat. Commun. doi: 10.1038/s41467-021-24179-5 – volume: 28 start-page: 1705553 year: 2018 ident: D3TA02189K/cit99/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201705553 – volume: 4 start-page: 332 year: 2020 ident: D3TA02189K/cit38/1 publication-title: Mater. Chem. Front. doi: 10.1039/C9QM00633H – volume: 8 start-page: 7003 year: 2020 ident: D3TA02189K/cit35/1 publication-title: J. Mater. Chem. A doi: 10.1039/D0TA00364F – volume: 49 start-page: 1357 year: 2020 ident: D3TA02189K/cit94/1 publication-title: Chem. Soc. Rev. doi: 10.1039/C9CS00911F – volume: 13 start-page: 5768 year: 2022 ident: D3TA02189K/cit155/1 publication-title: Nat. Commun. doi: 10.1038/s41467-022-33501-8 – volume: 44 start-page: 540 year: 2019 ident: D3TA02189K/cit75/1 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2018.10.200 – volume: 6 start-page: 8508 year: 2015 ident: D3TA02189K/cit78/1 publication-title: Nat. Commun. doi: 10.1038/ncomms9508 – volume: 10 start-page: 41415 year: 2018 ident: D3TA02189K/cit118/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b16013 – volume: 108 start-page: 2637 year: 2004 ident: D3TA02189K/cit24/1 publication-title: J. Phys. Chem. B doi: 10.1021/jp036890x – volume: 7 start-page: 41978 year: 2017 ident: D3TA02189K/cit34/1 publication-title: Sci. Rep. doi: 10.1038/srep41978 – volume: 9 start-page: 2202417 year: 2022 ident: D3TA02189K/cit136/1 publication-title: Adv. Sci. doi: 10.1002/advs.202202417 – volume: 11 start-page: 2098 year: 2021 ident: D3TA02189K/cit143/1 publication-title: ACS Catal. doi: 10.1021/acscatal.0c04820 – volume: 46 start-page: 3322 year: 2017 ident: D3TA02189K/cit39/1 publication-title: Chem. Soc. Rev. doi: 10.1039/C6CS00851H – volume: 12 start-page: 616 year: 2022 ident: D3TA02189K/cit132/1 publication-title: ACS Catal. doi: 10.1021/acscatal.1c05233 – volume: 33 start-page: 177 year: 2017 ident: D3TA02189K/cit19/1 publication-title: Chin. J. Inorg. Chem. – volume: 7 start-page: 20193 year: 2019 ident: D3TA02189K/cit160/1 publication-title: J. Mater. Chem. A doi: 10.1039/C9TA07319A – volume: 34 start-page: 2107480 year: 2022 ident: D3TA02189K/cit133/1 publication-title: Adv. Mater. doi: 10.1002/adma.202107480 – volume: 147 start-page: 111230 year: 2021 ident: D3TA02189K/cit1/1 publication-title: Renewable Sustainable Energy Rev. doi: 10.1016/j.rser.2021.111230 – volume: 285 start-page: 119802 year: 2021 ident: D3TA02189K/cit71/1 publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2020.119802 – volume: 49 start-page: 4135 year: 2020 ident: D3TA02189K/cit100/1 publication-title: Chem. Soc. Rev. doi: 10.1039/D0CS00278J – volume: 10 start-page: 1180 year: 2018 ident: D3TA02189K/cit80/1 publication-title: Nat. Chem. doi: 10.1038/s41557-018-0141-5 – volume: 17 start-page: 2101017 year: 2021 ident: D3TA02189K/cit98/1 publication-title: Small doi: 10.1002/smll.202101017 – volume: 12 start-page: 12774 year: 2020 ident: D3TA02189K/cit126/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b21903 – volume: 31 start-page: 8830 year: 2019 ident: D3TA02189K/cit122/1 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.9b02825 – volume: 9 start-page: 473 year: 2018 ident: D3TA02189K/cit2/1 publication-title: Front. Plant Sci. doi: 10.3389/fpls.2018.00273 – volume: 59 start-page: 6007 year: 2020 ident: D3TA02189K/cit125/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201914424 – volume: 25 start-page: 2425 year: 2020 ident: D3TA02189K/cit69/1 publication-title: Molecules doi: 10.3390/molecules25102425 – volume: 27 start-page: 10649 year: 2021 ident: D3TA02189K/cit131/1 publication-title: Chem.–Eur. J. doi: 10.1002/chem.202100595 – volume: 8 start-page: 1701620 year: 2018 ident: D3TA02189K/cit13/1 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201701620 – volume: 135 start-page: 5328 year: 2013 ident: D3TA02189K/cit92/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja4017842 – volume: 12 start-page: 34 year: 2019 ident: D3TA02189K/cit172/1 publication-title: Mater. Today Chem. doi: 10.1016/j.mtchem.2018.12.002 – volume: 8 start-page: 25425 year: 2020 ident: D3TA02189K/cit161/1 publication-title: J. Mater. Chem. A doi: 10.1039/D0TA10165F – volume: 14 start-page: 1363 year: 2022 ident: D3TA02189K/cit102/1 publication-title: Polymers doi: 10.3390/polym14071363 – volume: 13 start-page: 29916 year: 2021 ident: D3TA02189K/cit111/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.1c06008 – start-page: 2780 year: 2002 ident: D3TA02189K/cit40/1 publication-title: Chem. Commun. doi: 10.1039/b207642j – volume: 11 start-page: 86 year: 2018 ident: D3TA02189K/cit20/1 publication-title: Green Chem. Lett. Rev. doi: 10.1080/17518253.2018.1440324 – volume: 12 start-page: 173 year: 2022 ident: D3TA02189K/cit8/1 publication-title: Membranes doi: 10.3390/membranes12020173 – volume: 50 start-page: 15521 year: 2014 ident: D3TA02189K/cit32/1 publication-title: Chem. Commun. doi: 10.1039/C4CC08063G – volume: 139 start-page: 1856 year: 2017 ident: D3TA02189K/cit93/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b08815 – volume: 18 start-page: 827 year: 2019 ident: D3TA02189K/cit23/1 publication-title: Nat. Mater. doi: 10.1038/s41563-019-0399-z – volume: 3 start-page: 1 year: 2023 ident: D3TA02189K/cit53/1 publication-title: Nat. Rev. Methods Primers doi: 10.1038/s43586-022-00181-z – volume: 60 start-page: 1869 year: 2021 ident: D3TA02189K/cit144/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202014408 – volume: 57 start-page: 11968 year: 2018 ident: D3TA02189K/cit124/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201806664 – volume: 27 start-page: 1 year: 2021 ident: D3TA02189K/cit175/1 publication-title: Chem.–Eur. J. doi: 10.1002/chem.202004683 – volume: 218 start-page: 835 year: 2019 ident: D3TA02189K/cit12/1 publication-title: J. Cleaner Prod. doi: 10.1016/j.jclepro.2019.02.046 – volume: 3 start-page: 400 year: 2018 ident: D3TA02189K/cit64/1 publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.7b01123 – volume: 24 start-page: 7360 year: 2022 ident: D3TA02189K/cit173/1 publication-title: CrystEngComm doi: 10.1039/D2CE01296K – volume: 6 start-page: 2927 year: 2022 ident: D3TA02189K/cit50/1 publication-title: Energy Fuels doi: 10.1021/acs.energyfuels.1c03426 – volume: 120 start-page: 8814 year: 2020 ident: D3TA02189K/cit59/1 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.9b00550 – volume: 49 start-page: 2852 year: 2020 ident: D3TA02189K/cit87/1 publication-title: Chem. Soc. Rev. doi: 10.1039/D0CS00199F – volume: 50 start-page: 120 year: 2021 ident: D3TA02189K/cit54/1 publication-title: Chem. Soc. Rev. doi: 10.1039/D0CS00620C – volume: 141 start-page: 7615 year: 2019 ident: D3TA02189K/cit104/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b02997 – volume: 39 start-page: 748 year: 2014 ident: D3TA02189K/cit3/1 publication-title: Renewable Sustainable Energy Rev. doi: 10.1016/j.rser.2014.07.113 – volume: 46 start-page: 8932 year: 2010 ident: D3TA02189K/cit47/1 publication-title: Chem. Commun. doi: 10.1039/c0cc04057f – volume: 23 start-page: 4701 issue: 6 year: 2023 ident: D3TA02189K/cit178/1 publication-title: Cryst. Growth Des. doi: 10.1021/acs.cgd.3c00379 – volume: 12 start-page: 51555 year: 2020 ident: D3TA02189K/cit169/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.0c15780 – volume: 21 start-page: 10666 year: 2015 ident: D3TA02189K/cit90/1 publication-title: Chem.–Eur. J. doi: 10.1002/chem.201501692 – volume: 141 start-page: 6623 year: 2019 ident: D3TA02189K/cit103/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b01226 – volume: 871 start-page: 159565 year: 2021 ident: D3TA02189K/cit164/1 publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2021.159565 – volume: 11 start-page: 1362 year: 2018 ident: D3TA02189K/cit156/1 publication-title: Energy Environ. Sci. doi: 10.1039/C7EE03640J – volume: 126 start-page: 12084 year: 2004 ident: D3TA02189K/cit46/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja048912e – volume: 8 start-page: 4334 year: 2020 ident: D3TA02189K/cit158/1 publication-title: J. Mater. Chem. A doi: 10.1039/C9TA12870K – volume: 60 start-page: 19797 year: 2021 ident: D3TA02189K/cit83/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202104870 – volume: 266 start-page: 144885 year: 2020 ident: D3TA02189K/cit15/1 publication-title: Appl. Energy doi: 10.1016/j.apenergy.2020.114885 – volume: 11 start-page: 2616 year: 2021 ident: D3TA02189K/cit170/1 publication-title: Catal. Sci. Technol. doi: 10.1039/D0CY02330B – volume: 833 start-page: 155057 year: 2020 ident: D3TA02189K/cit162/1 publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2020.155057 – volume: 8 start-page: 16045 year: 2020 ident: D3TA02189K/cit86/1 publication-title: J. Mater. Chem. A doi: 10.1039/D0TA05894G – volume: 9 start-page: 14238 year: 2021 ident: D3TA02189K/cit176/1 publication-title: ACS Sustainable Chem. Eng. doi: 10.1021/acssuschemeng.1c05162 – volume: 58 start-page: 11488 year: 2022 ident: D3TA02189K/cit174/1 publication-title: Chem. Commun. doi: 10.1039/D2CC04190A – volume: 140 start-page: 1423 year: 2018 ident: D3TA02189K/cit96/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b11255 – volume: 128 start-page: 4926 year: 2006 ident: D3TA02189K/cit73/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja058087h – volume: 291 start-page: 125822 year: 2021 ident: D3TA02189K/cit76/1 publication-title: J. Cleaner Prod. doi: 10.1016/j.jclepro.2021.125822 – volume: 46 start-page: 7631 year: 2010 ident: D3TA02189K/cit74/1 publication-title: Chem. Commun. doi: 10.1039/c0cc01562h – volume: 615 start-page: 346 year: 2022 ident: D3TA02189K/cit30/1 publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2022.01.190 – volume: 2 start-page: 3188 year: 2021 ident: D3TA02189K/cit58/1 publication-title: Mater. Adv. doi: 10.1039/D1MA00158B – volume: 31 start-page: 1807865 year: 2019 ident: D3TA02189K/cit127/1 publication-title: Adv. Mater. doi: 10.1002/adma.201807865 – volume: 10 start-page: 14568 year: 2022 ident: D3TA02189K/cit130/1 publication-title: J. Mater. Chem. A doi: 10.1039/D2TA01646J – volume: 1 start-page: 1700015 year: 2018 ident: D3TA02189K/cit101/1 publication-title: Adv. Theory Simul. doi: 10.1002/adts.201700015 – volume: 142 start-page: 12146 year: 2020 ident: D3TA02189K/cit112/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.0c02155 – volume: 537 start-page: 148082 year: 2021 ident: D3TA02189K/cit114/1 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2020.148082 – volume: 36 start-page: 1799 year: 2015 ident: D3TA02189K/cit116/1 publication-title: Macromol. Rapid Commun. doi: 10.1002/marc.201500270 – volume: 20 start-page: 15961 year: 2014 ident: D3TA02189K/cit107/1 publication-title: Chem.–Eur. J. doi: 10.1002/chem.201403800 – volume: 146 start-page: 111180 year: 2021 ident: D3TA02189K/cit9/1 publication-title: Renewable Sustainable Energy Rev. doi: 10.1016/j.rser.2021.111180 – volume: 8 start-page: 20752 year: 2020 ident: D3TA02189K/cit28/1 publication-title: J. Mater. Chem. A doi: 10.1039/D0TA05834C – volume: 48 start-page: 14989 year: 2019 ident: D3TA02189K/cit109/1 publication-title: Dalton Trans. doi: 10.1039/C9DT03307F – volume: 59 start-page: 16902 year: 2020 ident: D3TA02189K/cit142/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202006925 – volume: 137 start-page: 1064 year: 2015 ident: D3TA02189K/cit27/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja511802c – volume: 4 start-page: 744 year: 2016 ident: D3TA02189K/cit135/1 publication-title: Energy Technol. doi: 10.1002/ente.201500478 – volume: 9 start-page: 16743 year: 2021 ident: D3TA02189K/cit167/1 publication-title: J. Mater. Chem. A doi: 10.1039/D1TA04493A – volume: 5 start-page: 2100226 year: 2021 ident: D3TA02189K/cit29/1 publication-title: Sol. RRL doi: 10.1002/solr.202100226 – volume: 8 start-page: 4107 year: 2021 ident: D3TA02189K/cit37/1 publication-title: Inorg. Chem. Front. doi: 10.1039/D1QI00543J – volume: 262 start-page: 118271 year: 2020 ident: D3TA02189K/cit105/1 publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2019.118271 – volume: 120 start-page: 7867 year: 2020 ident: D3TA02189K/cit5/1 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.0c00107 – volume: 11 start-page: 845 year: 2020 ident: D3TA02189K/cit55/1 publication-title: Chem. Sci. doi: 10.1039/C9SC04663A – volume: 146 start-page: 365 year: 2021 ident: D3TA02189K/cit148/1 publication-title: Analyst doi: 10.1039/D0AN01734E – volume: 10 start-page: 11010 year: 2022 ident: D3TA02189K/cit97/1 publication-title: J. Mater. Chem. A doi: 10.1039/D2TA01058E |
SSID | ssj0000800699 |
Score | 2.6115353 |
SecondaryResourceType | review_article |
Snippet | Covalent organic frameworks (COFs) are an emerging class of crystalline materials that are attracting increasing attention due to their high porosity,... |
SourceID | proquest crossref rsc |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 14489 |
SubjectTerms | Carbon dioxide Carbon dioxide concentration Catalysts Charge transport Clean fuels Construction Design Energy demand Environmental cleanup Fossil fuels Fuel production Hydrogen Hydrogen evolution reactions Hydrogen production Photocatalysis Photocatalysts Porosity Splitting Sustainable production Water splitting |
Title | Strategic design of covalent organic frameworks (COFs) for photocatalytic hydrogen generation |
URI | https://www.proquest.com/docview/2835524533 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLe67QKHia-JwkCW4MAUpbRx3DjHqts0PgYcOmkXVDn-oGOsmdLssP2N_FE827GT0R0Gl6hy7ETx-_X5-fm930PorcoFlywh8ZiLNE6lojGTqYRdqy6okoxmicl3Pv4yPjpJP57S017vdydq6aouBuLmzryS_5EqtIFcTZbsP0g2PBQa4DfIF64gYbjeS8aeWlZE0gZiuBhxeIM94LdZliLSPvzK-lenXw9XxhNgogsvF2VdWv_NtaFtXVzLqoR3marKqmoltm66gpXrPi8Svl7cIJq41B9_x1KJu8RC65v3iVomFje48b9V_JyvFi6s44K3MYpnq0XlikKfmQ7B3Lbn-vv8JoTjR6EpuLX5D17xn3b0dBAdD7qODYCLoasctfovGdKhoTp16ll121wR3KDARx2gOqaBRh3DbtEVKGrW9lFKHZfM2sIxJIZ3dZ_MJsboyT-1y6MPCfhr1QyxjPYUn-TzduwG2kpg0wJad2tyMPvwOfj8jHU-tiVNw7d5xlySv28fcNtGajc-G5WvSmOtn9kjtN3IHk8cBh-jnlo-QQ87ZJZP0feARuzQiEuNPRpxg0bcohG_M1jcwwAUfBuJ2CMRt0h8hk4OD2bTo7gp3hELwkgdJ1pzQTQteJrpTDGicpJqMBgLrqgeaaYSQag2jJFMMybBMiYZGYFGEWxMZE520OayXKrnCDOmC5blYijSLFUwQ1rk41QPtRYwStI-2vPTNRcNs70psPJrvi6bPnoT-l46Ppc7e-36WZ83__fV3DAT0gQQRPpoByQRxktSczvu_MW9nv4SPWjxvos26-pKvQLTti5eN4j5AycxpBo |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Strategic+design+of+covalent+organic+frameworks+%28COFs%29+for+photocatalytic+hydrogen+generation&rft.jtitle=Journal+of+materials+chemistry.+A%2C+Materials+for+energy+and+sustainability&rft.au=Prakash%2C+Kamal&rft.au=Mishra%2C+Bikash&rft.au=D%C3%ADaz%2C+David+D%C3%ADaz&rft.au=Nagaraja%2C+C.+M.&rft.date=2023-07-11&rft.issn=2050-7488&rft.eissn=2050-7496&rft.volume=11&rft.issue=27&rft.spage=14489&rft.epage=14538&rft_id=info:doi/10.1039%2FD3TA02189K&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_D3TA02189K |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-7488&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-7488&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-7488&client=summon |