Strategic design of covalent organic frameworks (COFs) for photocatalytic hydrogen generation

Covalent organic frameworks (COFs) are an emerging class of crystalline materials that are attracting increasing attention due to their high porosity, crystallinity, and tunable properties. Consequently, the strategic design of COF-based photocatalysts for various applications, including energy and...

Full description

Saved in:
Bibliographic Details
Published inJournal of materials chemistry. A, Materials for energy and sustainability Vol. 11; no. 27; pp. 14489 - 14538
Main Authors Prakash, Kamal, Mishra, Bikash, Díaz, David Díaz, Nagaraja, C. M, Pachfule, Pradip
Format Journal Article
LanguageEnglish
Published Cambridge Royal Society of Chemistry 11.07.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Covalent organic frameworks (COFs) are an emerging class of crystalline materials that are attracting increasing attention due to their high porosity, crystallinity, and tunable properties. Consequently, the strategic design of COF-based photocatalysts for various applications, including energy and environmental remediation, has attracted considerable interest. In particular, the sustainable production of clean fuel - hydrogen (H 2 ) - by water splitting is a promising means to meet the global energy demand and to address the atmospheric CO 2 concentration caused by the excessive use of fossil fuels. In this regard, COFs offer potential advantages due to their modular nature, which facilitates their rational design from suitable organic building blocks to achieve optimal properties of visible light harvesting properties and easy charge transport. As a result, extensive research has been devoted to the design of photoresponsive COFs for efficient water splitting to generate hydrogen. Here, we provide a comprehensive review of recent developments in the strategic design of COF-based photocatalysts for solar fuel production via water splitting. The various organic linkers used in the construction of photocatalytic COFs and their structure-property correlations are discussed in detail. The role of bandgap engineering in tuning the hydrogen evolution efficiency of COFs is also discussed. Furthermore, the current challenges and future perspectives of COF-based solid catalysts for green and sustainable clean fuel production are presented. Indeed, this review demonstrates the importance of COF-based photocatalysts for the visible-light-driven hydrogen evolution reaction (HER) and can be beneficial for the future design of photocatalytic systems. Covalent organic frameworks provide a platform for the integration of functional organic linkers into ordered yet tunable two-dimensional frameworks to yield π-π stacked conjugated materials for photocatalytic water splitting for hydrogen generation.
AbstractList Covalent organic frameworks (COFs) are an emerging class of crystalline materials that are attracting increasing attention due to their high porosity, crystallinity, and tunable properties. Consequently, the strategic design of COF-based photocatalysts for various applications, including energy and environmental remediation, has attracted considerable interest. In particular, the sustainable production of clean fuel – hydrogen (H 2 ) – by water splitting is a promising means to meet the global energy demand and to address the atmospheric CO 2 concentration caused by the excessive use of fossil fuels. In this regard, COFs offer potential advantages due to their modular nature, which facilitates their rational design from suitable organic building blocks to achieve optimal properties of visible light harvesting properties and easy charge transport. As a result, extensive research has been devoted to the design of photoresponsive COFs for efficient water splitting to generate hydrogen. Here, we provide a comprehensive review of recent developments in the strategic design of COF-based photocatalysts for solar fuel production via water splitting. The various organic linkers used in the construction of photocatalytic COFs and their structure–property correlations are discussed in detail. The role of bandgap engineering in tuning the hydrogen evolution efficiency of COFs is also discussed. Furthermore, the current challenges and future perspectives of COF-based solid catalysts for green and sustainable clean fuel production are presented. Indeed, this review demonstrates the importance of COF-based photocatalysts for the visible-light-driven hydrogen evolution reaction (HER) and can be beneficial for the future design of photocatalytic systems.
Covalent organic frameworks (COFs) are an emerging class of crystalline materials that are attracting increasing attention due to their high porosity, crystallinity, and tunable properties. Consequently, the strategic design of COF-based photocatalysts for various applications, including energy and environmental remediation, has attracted considerable interest. In particular, the sustainable production of clean fuel – hydrogen (H2) – by water splitting is a promising means to meet the global energy demand and to address the atmospheric CO2 concentration caused by the excessive use of fossil fuels. In this regard, COFs offer potential advantages due to their modular nature, which facilitates their rational design from suitable organic building blocks to achieve optimal properties of visible light harvesting properties and easy charge transport. As a result, extensive research has been devoted to the design of photoresponsive COFs for efficient water splitting to generate hydrogen. Here, we provide a comprehensive review of recent developments in the strategic design of COF-based photocatalysts for solar fuel production via water splitting. The various organic linkers used in the construction of photocatalytic COFs and their structure–property correlations are discussed in detail. The role of bandgap engineering in tuning the hydrogen evolution efficiency of COFs is also discussed. Furthermore, the current challenges and future perspectives of COF-based solid catalysts for green and sustainable clean fuel production are presented. Indeed, this review demonstrates the importance of COF-based photocatalysts for the visible-light-driven hydrogen evolution reaction (HER) and can be beneficial for the future design of photocatalytic systems.
Covalent organic frameworks (COFs) are an emerging class of crystalline materials that are attracting increasing attention due to their high porosity, crystallinity, and tunable properties. Consequently, the strategic design of COF-based photocatalysts for various applications, including energy and environmental remediation, has attracted considerable interest. In particular, the sustainable production of clean fuel - hydrogen (H 2 ) - by water splitting is a promising means to meet the global energy demand and to address the atmospheric CO 2 concentration caused by the excessive use of fossil fuels. In this regard, COFs offer potential advantages due to their modular nature, which facilitates their rational design from suitable organic building blocks to achieve optimal properties of visible light harvesting properties and easy charge transport. As a result, extensive research has been devoted to the design of photoresponsive COFs for efficient water splitting to generate hydrogen. Here, we provide a comprehensive review of recent developments in the strategic design of COF-based photocatalysts for solar fuel production via water splitting. The various organic linkers used in the construction of photocatalytic COFs and their structure-property correlations are discussed in detail. The role of bandgap engineering in tuning the hydrogen evolution efficiency of COFs is also discussed. Furthermore, the current challenges and future perspectives of COF-based solid catalysts for green and sustainable clean fuel production are presented. Indeed, this review demonstrates the importance of COF-based photocatalysts for the visible-light-driven hydrogen evolution reaction (HER) and can be beneficial for the future design of photocatalytic systems. Covalent organic frameworks provide a platform for the integration of functional organic linkers into ordered yet tunable two-dimensional frameworks to yield π-π stacked conjugated materials for photocatalytic water splitting for hydrogen generation.
Author Díaz, David Díaz
Prakash, Kamal
Pachfule, Pradip
Nagaraja, C. M
Mishra, Bikash
AuthorAffiliation Department of Chemistry
S. N. Bose National Centre for Basic Sciences
Instituto Universitario de Bio-Orgánica Antonio González y Departamento de Química Orgánica
Universidad de La Laguna
Indian Institute of Technology Ropar
Department of Chemical and Biological Sciences
AuthorAffiliation_xml – sequence: 0
  name: S. N. Bose National Centre for Basic Sciences
– sequence: 0
  name: Department of Chemistry
– sequence: 0
  name: Instituto Universitario de Bio-Orgánica Antonio González y Departamento de Química Orgánica
– sequence: 0
  name: Indian Institute of Technology Ropar
– sequence: 0
  name: Universidad de La Laguna
– sequence: 0
  name: Department of Chemical and Biological Sciences
Author_xml – sequence: 1
  givenname: Kamal
  surname: Prakash
  fullname: Prakash, Kamal
– sequence: 2
  givenname: Bikash
  surname: Mishra
  fullname: Mishra, Bikash
– sequence: 3
  givenname: David Díaz
  surname: Díaz
  fullname: Díaz, David Díaz
– sequence: 4
  givenname: C. M
  surname: Nagaraja
  fullname: Nagaraja, C. M
– sequence: 5
  givenname: Pradip
  surname: Pachfule
  fullname: Pachfule, Pradip
BookMark eNptkU1LAzEQhoMoWGsv3oWAFxVWs5n9yB5LtSoWerAeZUmzyXbbbVKTVOm_N7ZSQRwYZmCe-eCdE3SojZYIncXkJiZQ3FbgOaExKxYHqENJSqI8KbLDfc7YMeo5NyfBGCFZUXTQ24u33Mu6EbiSrqk1NgoL88FbqT02tuY6lJTlS_lp7MLhy8F46K6wMhavZsYbwT1vNz5As01lTS01Di7D0MboU3SkeOtk7yd20evwfjJ4jEbjh6dBfxQJYOAjqhQXoNIpT3KVSwaygERRmky5TFWsmKQCUkUgj5lirMoSgBxiKYRgGVQFdNHFbu7Kmve1dL6cm7XVYWVJGaQpTVKAQJEdJaxxzkpVisZv7wwaNG0Zk_Jbx_IOJv2tjs-h5fpPy8o2S243_8PnO9g6sed-nwJfcVZ_yQ
CitedBy_id crossref_primary_10_1016_j_chemosphere_2023_141028
crossref_primary_10_1002_smll_202400344
crossref_primary_10_1039_D4CC01743A
crossref_primary_10_1016_j_polymer_2024_127014
crossref_primary_10_1016_j_jhazmat_2024_135075
crossref_primary_10_1038_s41598_024_77287_9
crossref_primary_10_1002_ange_202410300
crossref_primary_10_1039_D4TA06982J
crossref_primary_10_1002_anie_202416039
crossref_primary_10_1016_j_surfin_2024_105399
crossref_primary_10_1002_smll_202408140
crossref_primary_10_1039_D3TA06192B
crossref_primary_10_1039_D4NR03796K
crossref_primary_10_1002_smll_202401168
crossref_primary_10_1039_D4DT03277B
crossref_primary_10_1002_advs_202307227
crossref_primary_10_1039_D4CE00630E
crossref_primary_10_1021_acsaem_4c02073
crossref_primary_10_3390_nano15010059
crossref_primary_10_1016_j_cej_2025_160631
crossref_primary_10_1016_j_jcis_2024_03_164
crossref_primary_10_1016_j_micromeso_2024_113118
crossref_primary_10_1002_adfm_202413943
crossref_primary_10_1002_cctc_202301522
crossref_primary_10_1002_smtd_202500059
crossref_primary_10_1039_D4SE01764A
crossref_primary_10_1021_acsanm_4c06557
crossref_primary_10_1039_D3TA06222H
crossref_primary_10_1016_j_mcat_2025_114976
crossref_primary_10_1039_D3TA05715A
crossref_primary_10_1002_anie_202410300
crossref_primary_10_1016_j_jece_2024_115142
crossref_primary_10_1021_acsanm_4c02796
crossref_primary_10_1021_acs_jpclett_4c00818
crossref_primary_10_1039_D3TA04552H
crossref_primary_10_1016_j_jcis_2025_01_247
crossref_primary_10_3390_polym16040539
crossref_primary_10_1039_D4CC04284K
crossref_primary_10_1016_j_seppur_2024_130960
crossref_primary_10_1039_D4TC00999A
crossref_primary_10_1016_j_microc_2024_109976
crossref_primary_10_1021_acsmaterialslett_4c00414
crossref_primary_10_1039_D4TA02453B
crossref_primary_10_1016_j_ijbiomac_2025_140524
crossref_primary_10_1016_j_fuel_2023_130654
crossref_primary_10_1021_acsmaterialslett_4c00418
crossref_primary_10_1002_cjoc_202400437
crossref_primary_10_1002_chem_202401122
crossref_primary_10_1016_j_gee_2024_09_001
crossref_primary_10_1002_adma_202413118
crossref_primary_10_1039_D4QI01480D
crossref_primary_10_1016_j_partic_2023_12_008
crossref_primary_10_1016_j_watres_2024_122919
crossref_primary_10_1039_D4TC02995J
crossref_primary_10_1016_j_jmst_2025_02_009
crossref_primary_10_1016_j_foodchem_2024_140352
crossref_primary_10_1002_chem_202403733
crossref_primary_10_1016_S1872_2067_23_64580_2
crossref_primary_10_1021_acs_chemmater_4c03161
crossref_primary_10_1039_D4TA04576A
crossref_primary_10_1016_j_jscs_2024_101955
crossref_primary_10_1039_D4GC03467H
crossref_primary_10_1039_D4CC04439H
crossref_primary_10_1002_ange_202416039
Cites_doi 10.1039/D0EE04013D
10.1021/acscentsci.9b00047
10.1038/natrevmats.2016.68
10.1021/jacs.0c03418
10.1039/C3CY00845B
10.1039/D1TA00690H
10.1039/C9EE00717B
10.1002/er.3549
10.1021/ja308278w
10.3390/catal11060754
10.1021/acs.accounts.2c00200
10.1038/s41467-022-30035-x
10.1016/j.chempr.2019.04.015
10.1126/science.aal1585
10.1039/C5EE03019F
10.1039/c39850000474
10.1021/jacs.8b01320
10.1021/acsaem.0c01545
10.1039/C9CS00313D
10.1039/C8TA12442F
10.1021/jacs.2c02346
10.1021/acssuschemeng.7b00325
10.1002/anie.201708548
10.1002/ange.201908513
10.1039/D0CC05222A
10.1039/C8TA05430D
10.1021/jacs.7b01240
10.1002/anie.201900046
10.1016/j.ijhydene.2020.02.103
10.1021/cr1002326
10.1039/D0TA02202K
10.1016/j.cclet.2016.05.020
10.1038/238037a0
10.1039/C9CC02144B
10.1021/acscatal.9b01951
10.1038/s41586-021-03907-3
10.1016/j.ccr.2021.213989
10.1016/j.cej.2021.129984
10.1039/D1PY00247C
10.1038/s41467-021-21527-3
10.1039/D1EE00505G
10.26434/chemrxiv-2022-p0pjr
10.1002/marc.201300227
10.1039/D1CC00854D
10.1021/acs.accounts.0c00357
10.1002/aenm.201703278
10.1038/ncomms13638
10.1021/acs.chemrev.1c00978
10.1002/anie.202016618
10.1021/acsami.1c24713
10.1002/chem.201300133
10.1246/bcsj.20200389
10.1021/jacs.9b03243
10.1021/ja809307s
10.1039/C5CC04680G
10.1039/D0CY02094J
10.1002/anie.201806862
10.1038/s42004-019-0158-8
10.1002/adma.201705454
10.1021/acs.chemrev.0c00955
10.1039/C4SC00016A
10.1039/C4CC02553A
10.1021/jacs.7b07489
10.1039/C7CC01827D
10.1021/acsnano.9b03649
10.1002/chem.202101587
10.1016/j.apcatb.2018.11.027
10.1016/j.ijhydene.2021.08.004
10.1021/jacs.2c11893
10.1002/asia.202100357
10.1016/S0961-9534(02)00017-X
10.1016/j.apcatb.2020.118586
10.1126/science.1120411
10.1021/acs.chemrev.9b00201
10.1038/s41467-022-29076-z
10.1039/C9TA14047F
10.1016/j.ccr.2021.213778
10.1021/ja0269643
10.1016/j.cej.2019.122342
10.1038/s41467-021-26817-4
10.1038/s41467-021-24179-5
10.1002/adfm.201705553
10.1039/C9QM00633H
10.1039/D0TA00364F
10.1039/C9CS00911F
10.1038/s41467-022-33501-8
10.1016/j.ijhydene.2018.10.200
10.1038/ncomms9508
10.1021/acsami.8b16013
10.1021/jp036890x
10.1038/srep41978
10.1002/advs.202202417
10.1021/acscatal.0c04820
10.1039/C6CS00851H
10.1021/acscatal.1c05233
10.1039/C9TA07319A
10.1002/adma.202107480
10.1016/j.rser.2021.111230
10.1016/j.apcatb.2020.119802
10.1039/D0CS00278J
10.1038/s41557-018-0141-5
10.1002/smll.202101017
10.1021/acsami.9b21903
10.1021/acs.chemmater.9b02825
10.3389/fpls.2018.00273
10.1002/anie.201914424
10.3390/molecules25102425
10.1002/chem.202100595
10.1002/aenm.201701620
10.1021/ja4017842
10.1016/j.mtchem.2018.12.002
10.1039/D0TA10165F
10.3390/polym14071363
10.1021/acsami.1c06008
10.1039/b207642j
10.1080/17518253.2018.1440324
10.3390/membranes12020173
10.1039/C4CC08063G
10.1021/jacs.6b08815
10.1038/s41563-019-0399-z
10.1038/s43586-022-00181-z
10.1002/anie.202014408
10.1002/anie.201806664
10.1002/chem.202004683
10.1016/j.jclepro.2019.02.046
10.1021/acsenergylett.7b01123
10.1039/D2CE01296K
10.1021/acs.energyfuels.1c03426
10.1021/acs.chemrev.9b00550
10.1039/D0CS00199F
10.1039/D0CS00620C
10.1021/jacs.9b02997
10.1016/j.rser.2014.07.113
10.1039/c0cc04057f
10.1021/acs.cgd.3c00379
10.1021/acsami.0c15780
10.1002/chem.201501692
10.1021/jacs.9b01226
10.1016/j.jallcom.2021.159565
10.1039/C7EE03640J
10.1021/ja048912e
10.1039/C9TA12870K
10.1002/anie.202104870
10.1016/j.apenergy.2020.114885
10.1039/D0CY02330B
10.1016/j.jallcom.2020.155057
10.1039/D0TA05894G
10.1021/acssuschemeng.1c05162
10.1039/D2CC04190A
10.1021/jacs.7b11255
10.1021/ja058087h
10.1016/j.jclepro.2021.125822
10.1039/c0cc01562h
10.1016/j.jcis.2022.01.190
10.1039/D1MA00158B
10.1002/adma.201807865
10.1039/D2TA01646J
10.1002/adts.201700015
10.1021/jacs.0c02155
10.1016/j.apsusc.2020.148082
10.1002/marc.201500270
10.1002/chem.201403800
10.1016/j.rser.2021.111180
10.1039/D0TA05834C
10.1039/C9DT03307F
10.1002/anie.202006925
10.1021/ja511802c
10.1002/ente.201500478
10.1039/D1TA04493A
10.1002/solr.202100226
10.1039/D1QI00543J
10.1016/j.apcatb.2019.118271
10.1021/acs.chemrev.0c00107
10.1039/C9SC04663A
10.1039/D0AN01734E
10.1039/D2TA01058E
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2023
Copyright_xml – notice: Copyright Royal Society of Chemistry 2023
DBID AAYXX
CITATION
7SP
7SR
7ST
7U5
8BQ
8FD
C1K
JG9
L7M
SOI
DOI 10.1039/d3ta02189k
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Environment Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
Materials Research Database
Advanced Technologies Database with Aerospace
Environment Abstracts
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Environment Abstracts
Advanced Technologies Database with Aerospace
METADEX
Environmental Sciences and Pollution Management
DatabaseTitleList CrossRef
Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2050-7496
EndPage 14538
ExternalDocumentID 10_1039_D3TA02189K
d3ta02189k
GroupedDBID -JG
0-7
0R~
705
AAEMU
AAIWI
AAJAE
AANOJ
AAWGC
AAXHV
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFS
ACIWK
ACLDK
ADMRA
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRAH
AFRDS
AFVBQ
AGEGJ
AGRSR
AGSTE
AHGCF
ALMA_UNASSIGNED_HOLDINGS
ANUXI
APEMP
ASKNT
AUDPV
BLAPV
BSQNT
C6K
EBS
ECGLT
EE0
EF-
GGIMP
GNO
H13
HZ~
H~N
J3I
O-G
O9-
R7C
RAOCF
RCNCU
RNS
RPMJG
RRC
RSCEA
SKA
SKF
SLH
UCJ
AAYXX
AFRZK
AKMSF
ALUYA
CITATION
7SP
7SR
7ST
7U5
8BQ
8FD
C1K
JG9
L7M
SOI
ID FETCH-LOGICAL-c383t-2ffac3f5ba47f7e83e934f224bae5f1f8e2c35f03718f88d6433731eccc863d93
ISSN 2050-7488
IngestDate Mon Jun 30 11:59:37 EDT 2025
Tue Jul 01 01:13:41 EDT 2025
Thu Apr 24 22:54:39 EDT 2025
Tue Dec 17 20:58:55 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 27
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c383t-2ffac3f5ba47f7e83e934f224bae5f1f8e2c35f03718f88d6433731eccc863d93
Notes reduction/conversion.
2
Dr David Díaz Díaz received his PhD in Chemistry from the University of La Laguna (ULL) (2002). Then he joined Prof. Finn's group at TSRI, USA. Since 2006, he has held positions in academia and industry (Ramón y Cajal, UAM, Spain, 2006; Dow, Switzerland, 2007; CSIC, Spain, 2009; University of Regensburg, Germany, Alexander von Humboldt Researcher (2010), Heisenberg Professor (2013), and Privatdozent (since 2018)). In 2020, he was appointed as Distinguished Researcher (ULL). His main research interest focuses on the development of new functional materials for biomedical, environmental, and energy applications.
Dr Pradip Pachfule studied chemistry at Solapur University, India and graduated in 2008. He received his PhD at CSIR-National Chemical Laboratory, Pune, India under the supervision of Prof. Rahul Banerjee in 2014. Later, he worked as a JSPS postdoctoral research fellow in the laboratory of Prof. Qiang Xu at AIST, Kansai, Japan. This was followed by working in the group of Prof. Arne Thomas as an Alexander von Humboldt postdoctoral fellow and a postdoctoral research fellow at the Technische Universität Berlin, Germany (2017-2021). He is currently working as an assistant professor at S. N. Bose National Centre for Basic Sciences, Kolkata, India. His research is focused on covalent organic frameworks and their applications in photocatalytic water splitting and CO
Dr Kamal Prakash received his PhD degree in Chemistry from the Indian Institute of Technology (IIT) Roorkee, India in May 2018. Following his PhD, he worked as a Postdoctoral Fellow at the University of Houston, Texas, USA in 2018-2019. Later, he joined the Indian Institute of Technology Ropar as an Institute Postdoctoral Fellow in 2021. His current research interests focus on the design and synthesis of novel covalent organic frameworks (COFs) and their photocatalytic application in hydrogen evolution and CO
Bikash Mishra is currently pursuing his doctor of philosophy at the department of chemical and biological sciences at S. N. Bose National Centre for Basic Sciences, Kolkata, India. He was awarded his Bachelor of sciences in chemistry from Sidho-Kanho-Birsha University, Purulia. He pursued his master of science in organic chemistry from Banaras Hindu University, Varanasi. Currently, his research focusses on water splitting by covalent organic frameworks (COF) for hydrogen production.
reduction.
Dr C. M. Nagaraja is an associate professor at the Indian Institute of Technology Ropar. He received his PhD from the Indian Institute of Science, Bangalore in 2007. Subsequently, he carried out postdoctoral research at Brandeis University, USA and Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore. Prior to joining the Indian Institute of Technology Ropar in 2012, he worked as an Assistant Professor at IIT Jodhpur. His research mainly focuses on the design of framework materials for utilization of carbon dioxide and inorganic nanostructured materials for generation of solar fuels.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4271-6424
0000-0002-0557-3364
0000-0002-0804-541X
OpenAccessLink https://riull.ull.es/xmlui/bitstream/915/42226/1/d3ta02189k.pdf
PQID 2835524533
PQPubID 2047523
PageCount 5
ParticipantIDs crossref_citationtrail_10_1039_D3TA02189K
proquest_journals_2835524533
crossref_primary_10_1039_D3TA02189K
rsc_primary_d3ta02189k
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-07-11
PublicationDateYYYYMMDD 2023-07-11
PublicationDate_xml – month: 07
  year: 2023
  text: 2023-07-11
  day: 11
PublicationDecade 2020
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
PublicationTitle Journal of materials chemistry. A, Materials for energy and sustainability
PublicationYear 2023
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Thote (D3TA02189K/cit107/1) 2014; 20
Liu (D3TA02189K/cit126/1) 2020; 12
Banerjee (D3TA02189K/cit79/1) 2017; 139
Kandambeth (D3TA02189K/cit152/1) 2012; 134
Dong (D3TA02189K/cit157/1) 2020; 379
Ellabban (D3TA02189K/cit3/1) 2014; 39
McKeown (D3TA02189K/cit40/1) 2002
Debnath (D3TA02189K/cit29/1) 2021; 5
Li (D3TA02189K/cit86/1) 2020; 8
Xu (D3TA02189K/cit164/1) 2021; 871
Ozawa (D3TA02189K/cit73/1) 2006; 128
Wang (D3TA02189K/cit82/1) 2020; 56
Wang (D3TA02189K/cit100/1) 2020; 49
Chen (D3TA02189K/cit151/1) 2021; 12
Chen (D3TA02189K/cit132/1) 2022; 12
Xing (D3TA02189K/cit169/1) 2020; 12
Vyas (D3TA02189K/cit78/1) 2015; 6
Li (D3TA02189K/cit115/1) 2023; 145
Mi (D3TA02189K/cit106/1) 2021; 60
Jin (D3TA02189K/cit140/1) 2019; 5
Li (D3TA02189K/cit144/1) 2021; 60
Yao (D3TA02189K/cit108/1) 2020; 8
Joseph (D3TA02189K/cit149/1) 2020; 45
Tan (D3TA02189K/cit39/1) 2017; 46
Natali (D3TA02189K/cit72/1) 2013; 19
Huang (D3TA02189K/cit119/1) 2019; 58
Chen (D3TA02189K/cit95/1) 2021; 435
Gottschling (D3TA02189K/cit112/1) 2020; 142
Ghosh (D3TA02189K/cit63/1) 2020; 142
Ishikawa (D3TA02189K/cit24/1) 2004; 108
Li (D3TA02189K/cit159/1) 2020; 266
Elewa (D3TA02189K/cit71/1) 2021; 285
Fajrina (D3TA02189K/cit75/1) 2019; 44
Li (D3TA02189K/cit87/1) 2020; 49
Yu (D3TA02189K/cit97/1) 2022; 10
Diercks (D3TA02189K/cit44/1) 2017; 355
Kim (D3TA02189K/cit37/1) 2021; 8
Humayun (D3TA02189K/cit20/1) 2018; 11
You (D3TA02189K/cit76/1) 2021; 291
Alnouss (D3TA02189K/cit15/1) 2020; 266
Zhang (D3TA02189K/cit74/1) 2010; 46
Agyekum (D3TA02189K/cit8/1) 2022; 12
Karaeva (D3TA02189K/cit17/1) 2021; 46
Wang (D3TA02189K/cit23/1) 2019; 18
Dhingra (D3TA02189K/cit30/1) 2022; 615
Zhou (D3TA02189K/cit56/1) 2019; 131
Ruigómez (D3TA02189K/cit90/1) 2015; 21
Li (D3TA02189K/cit101/1) 2018; 1
Cheng (D3TA02189K/cit21/1) 2016; 7
Luo (D3TA02189K/cit10/1) 2019; 13
Luo (D3TA02189K/cit110/1) 2019; 55
Kaur (D3TA02189K/cit31/1) 2017; 5
Battula (D3TA02189K/cit137/1) 2019; 244
Cheng (D3TA02189K/cit133/1) 2022; 34
Wang (D3TA02189K/cit50/1) 2022; 6
Cheng (D3TA02189K/cit118/1) 2018; 10
Zhang (D3TA02189K/cit125/1) 2020; 59
Karak (D3TA02189K/cit93/1) 2017; 139
Chen (D3TA02189K/cit105/1) 2020; 262
Banerjee (D3TA02189K/cit64/1) 2018; 3
Weng (D3TA02189K/cit155/1) 2022; 13
Matsumoto (D3TA02189K/cit91/1) 2017; 139
Shen (D3TA02189K/cit70/1) 2020; 8
Xie (D3TA02189K/cit19/1) 2017; 33
Yuan (D3TA02189K/cit41/1) 2019; 5
Wang (D3TA02189K/cit98/1) 2021; 17
Li (D3TA02189K/cit145/1) 2022; 13
Ai (D3TA02189K/cit85/1) 2021; 27
Huang (D3TA02189K/cit162/1) 2020; 833
Deng (D3TA02189K/cit36/1) 2021; 16
Singh (D3TA02189K/cit58/1) 2021; 2
Walter (D3TA02189K/cit66/1) 2010; 110
Rogdakis (D3TA02189K/cit6/1) 2021; 14
Zhang (D3TA02189K/cit166/1) 2018; 57
Schwab (D3TA02189K/cit47/1) 2010; 46
Wang (D3TA02189K/cit80/1) 2018; 10
Sprachmann (D3TA02189K/cit60/1) 2022
Nasir (D3TA02189K/cit28/1) 2020; 8
Tan (D3TA02189K/cit163/1) 2021; 11
Cassia (D3TA02189K/cit2/1) 2018; 9
Xiong (D3TA02189K/cit177/1) 2014; 4
Li (D3TA02189K/cit69/1) 2020; 25
Rahman (D3TA02189K/cit65/1) 2020; 49
Zhao (D3TA02189K/cit103/1) 2019; 141
Wei (D3TA02189K/cit88/1) 2015; 51
Haung (D3TA02189K/cit49/1) 2016; 1
Hou (D3TA02189K/cit109/1) 2019; 48
Wang (D3TA02189K/cit113/1) 2021; 57
Kumar (D3TA02189K/cit130/1) 2022; 10
Zhao (D3TA02189K/cit143/1) 2021; 11
Wang (D3TA02189K/cit141/1) 2020; 142
Kumar (D3TA02189K/cit138/1) 2018; 6
Skorjanc (D3TA02189K/cit55/1) 2020; 11
Côté (D3TA02189K/cit43/1) 2005; 310
Yue (D3TA02189K/cit9/1) 2021; 146
Yang (D3TA02189K/cit83/1) 2021; 60
Jiang (D3TA02189K/cit61/1) 2021; 94
Kailasam (D3TA02189K/cit135/1) 2016; 4
Li (D3TA02189K/cit84/1) 2022; 13
Xie (D3TA02189K/cit102/1) 2022; 14
Geng (D3TA02189K/cit59/1) 2020; 120
Lin (D3TA02189K/cit170/1) 2021; 11
Zhong (D3TA02189K/cit104/1) 2019; 141
Zhao (D3TA02189K/cit136/1) 2022; 9
Guan (D3TA02189K/cit89/1) 2018; 140
Fujishima (D3TA02189K/cit18/1) 1972; 238
Shen (D3TA02189K/cit34/1) 2017; 7
Bi (D3TA02189K/cit116/1) 2015; 36
Gonclaves (D3TA02189K/cit148/1) 2021; 146
Sharma (D3TA02189K/cit131/1) 2021; 27
Wang (D3TA02189K/cit146/1) 2016; 27
Watanabe (D3TA02189K/cit16/1) 2021; 22
Li (D3TA02189K/cit174/1) 2022; 58
Ahmed (D3TA02189K/cit62/1) 2021; 441
Wang (D3TA02189K/cit33/1) 2009; 131
Kokkonen (D3TA02189K/cit4/1) 2021; 9
Acar (D3TA02189K/cit11/1) 2016; 40
Zhang (D3TA02189K/cit158/1) 2020; 8
Audebert (D3TA02189K/cit129/1) 2021; 121
Tan (D3TA02189K/cit53/1) 2023; 3
Liu (D3TA02189K/cit127/1) 2019; 31
Liu (D3TA02189K/cit42/1) 2019; 7
Ishikawa (D3TA02189K/cit25/1) 2002; 124
Low (D3TA02189K/cit168/1) 2014; 50
Wang (D3TA02189K/cit68/1) 2020; 120
Haldar (D3TA02189K/cit48/1) 2022; 20
Romero (D3TA02189K/cit67/1) 2021; 11
Liu (D3TA02189K/cit14/1) 2016; 9
Wang (D3TA02189K/cit35/1) 2020; 8
Flores (D3TA02189K/cit147/1) 2020; 3
Zheng (D3TA02189K/cit161/1) 2020; 8
Lohse (D3TA02189K/cit99/1) 2018; 28
Fávaro (D3TA02189K/cit121/1) 2022; 14
Hu (D3TA02189K/cit128/1) 2021; 12
Guan (D3TA02189K/cit94/1) 2020; 49
Liao (D3TA02189K/cit26/1) 2019; 12
Zhou (D3TA02189K/cit154/1) 2021; 12
Ma (D3TA02189K/cit7/1) 2021; 14
Altintas (D3TA02189K/cit173/1) 2022; 24
Qi (D3TA02189K/cit13/1) 2018; 8
Cheng (D3TA02189K/cit156/1) 2018; 11
Kailasam (D3TA02189K/cit134/1) 2013; 34
Lau (D3TA02189K/cit27/1) 2015; 137
Wu (D3TA02189K/cit32/1) 2014; 50
Peng (D3TA02189K/cit165/1) 2018; 30
Liu (D3TA02189K/cit124/1) 2018; 57
Stegbauer (D3TA02189K/cit139/1) 2018; 8
Zhang (D3TA02189K/cit167/1) 2021; 9
Pachfule (D3TA02189K/cit96/1) 2018; 140
Liu (D3TA02189K/cit114/1) 2021; 537
Shang (D3TA02189K/cit176/1) 2021; 9
Calautit (D3TA02189K/cit1/1) 2021; 147
Meier (D3TA02189K/cit122/1) 2019; 31
Zhou (D3TA02189K/cit171/1) 2021; 12
Zheng (D3TA02189K/cit172/1) 2019; 12
Kim (D3TA02189K/cit5/1) 2020; 120
Yanagida (D3TA02189K/cit45/1) 1985
Jiang (D3TA02189K/cit46/1) 2004; 126
Wang (D3TA02189K/cit123/1) 2017; 56
Mishra (D3TA02189K/cit178/1) 2023; 23
Nishiyama (D3TA02189K/cit22/1) 2021; 598
He (D3TA02189K/cit51/1) 2022; 11
Kumar (D3TA02189K/cit175/1) 2021; 27
Liu (D3TA02189K/cit54/1) 2021; 50
Zhang (D3TA02189K/cit38/1) 2020; 4
Biswal (D3TA02189K/cit153/1) 2019; 141
Kuecken (D3TA02189K/cit117/1) 2017; 53
Chen (D3TA02189K/cit142/1) 2020; 59
Acer (D3TA02189K/cit12/1) 2019; 218
Biswal (D3TA02189K/cit92/1) 2013; 135
Gui (D3TA02189K/cit57/1) 2020; 53
Guan (D3TA02189K/cit52/1) 2022; 55
Gao (D3TA02189K/cit160/1) 2019; 7
Wang (D3TA02189K/cit111/1) 2021; 13
Gao (D3TA02189K/cit120/1) 2019; 9
Stegbauer (D3TA02189K/cit77/1) 2014; 5
Fan (D3TA02189K/cit150/1) 2019; 2
Yin (D3TA02189K/cit81/1) 2021; 419
References_xml – issn: 2022
  publication-title: ChemRxiv
  doi: Sprachmann Wachsmuth Bhosale Burmeister Smales Kochovski Grabicki Esser Dumele
– volume: 14
  start-page: 3352
  year: 2021
  ident: D3TA02189K/cit6/1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D0EE04013D
– volume: 5
  start-page: 409
  year: 2019
  ident: D3TA02189K/cit41/1
  publication-title: ACS Cent. Sci.
  doi: 10.1021/acscentsci.9b00047
– volume: 1
  start-page: 16068
  year: 2016
  ident: D3TA02189K/cit49/1
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/natrevmats.2016.68
– volume: 142
  start-page: 11131
  year: 2020
  ident: D3TA02189K/cit141/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.0c03418
– volume: 4
  start-page: 325
  year: 2014
  ident: D3TA02189K/cit177/1
  publication-title: Catal. Sci. Technol.
  doi: 10.1039/C3CY00845B
– volume: 9
  start-page: 10527
  year: 2021
  ident: D3TA02189K/cit4/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D1TA00690H
– volume: 12
  start-page: 2080
  year: 2019
  ident: D3TA02189K/cit26/1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C9EE00717B
– volume: 40
  start-page: 1449
  year: 2016
  ident: D3TA02189K/cit11/1
  publication-title: Int. J. Energy Res.
  doi: 10.1002/er.3549
– volume: 134
  start-page: 19524
  year: 2012
  ident: D3TA02189K/cit152/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja308278w
– volume: 11
  start-page: 754
  year: 2021
  ident: D3TA02189K/cit67/1
  publication-title: Catalysts
  doi: 10.3390/catal11060754
– volume: 55
  start-page: 1912
  year: 2022
  ident: D3TA02189K/cit52/1
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.2c00200
– volume: 13
  start-page: 2357
  year: 2022
  ident: D3TA02189K/cit84/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-30035-x
– volume: 5
  start-page: 1632
  year: 2019
  ident: D3TA02189K/cit140/1
  publication-title: Chem
  doi: 10.1016/j.chempr.2019.04.015
– volume: 355
  start-page: 923
  year: 2017
  ident: D3TA02189K/cit44/1
  publication-title: Science
  doi: 10.1126/science.aal1585
– volume: 9
  start-page: 467
  year: 2016
  ident: D3TA02189K/cit14/1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C5EE03019F
– start-page: 474
  year: 1985
  ident: D3TA02189K/cit45/1
  publication-title: J. Chem. Soc., Chem. Commun.
  doi: 10.1039/c39850000474
– volume: 142
  start-page: 9752
  year: 2020
  ident: D3TA02189K/cit63/1
  publication-title: J. Am. Chem. Soc.
– volume: 140
  start-page: 4494
  year: 2018
  ident: D3TA02189K/cit89/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b01320
– volume: 3
  start-page: 9848
  year: 2020
  ident: D3TA02189K/cit147/1
  publication-title: ACS Appl. Energy Mater.
  doi: 10.1021/acsaem.0c01545
– volume: 49
  start-page: 1887
  year: 2020
  ident: D3TA02189K/cit65/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C9CS00313D
– volume: 7
  start-page: 5153
  year: 2019
  ident: D3TA02189K/cit42/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA12442F
– volume: 20
  start-page: 9101
  year: 2022
  ident: D3TA02189K/cit48/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.2c02346
– volume: 5
  start-page: 4293
  year: 2017
  ident: D3TA02189K/cit31/1
  publication-title: ACS Sustainable Chem. Eng.
  doi: 10.1021/acssuschemeng.7b00325
– volume: 56
  start-page: 14149
  year: 2017
  ident: D3TA02189K/cit123/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201708548
– volume: 131
  start-page: 16951
  year: 2019
  ident: D3TA02189K/cit56/1
  publication-title: Angew. Chem.
  doi: 10.1002/ange.201908513
– volume: 56
  start-page: 12612
  year: 2020
  ident: D3TA02189K/cit82/1
  publication-title: Chem. Commun.
  doi: 10.1039/D0CC05222A
– volume: 6
  start-page: 21719
  year: 2018
  ident: D3TA02189K/cit138/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA05430D
– volume: 139
  start-page: 4999
  year: 2017
  ident: D3TA02189K/cit91/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b01240
– volume: 58
  start-page: 8676
  year: 2019
  ident: D3TA02189K/cit119/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201900046
– volume: 45
  start-page: 11954
  year: 2020
  ident: D3TA02189K/cit149/1
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2020.02.103
– volume: 110
  start-page: 6443
  year: 2010
  ident: D3TA02189K/cit66/1
  publication-title: Chem. Rev.
  doi: 10.1021/cr1002326
– volume: 8
  start-page: 8949
  year: 2020
  ident: D3TA02189K/cit108/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D0TA02202K
– volume: 27
  start-page: 1376
  year: 2016
  ident: D3TA02189K/cit146/1
  publication-title: Chin. Chem. Lett.
  doi: 10.1016/j.cclet.2016.05.020
– volume: 238
  start-page: 37
  year: 1972
  ident: D3TA02189K/cit18/1
  publication-title: Nature
  doi: 10.1038/238037a0
– volume: 55
  start-page: 5829
  year: 2019
  ident: D3TA02189K/cit110/1
  publication-title: Chem. Commun.
  doi: 10.1039/C9CC02144B
– volume: 9
  start-page: 9438
  year: 2019
  ident: D3TA02189K/cit120/1
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.9b01951
– volume: 598
  start-page: 304
  year: 2021
  ident: D3TA02189K/cit22/1
  publication-title: Nature
  doi: 10.1038/s41586-021-03907-3
– volume: 441
  start-page: 213989
  year: 2021
  ident: D3TA02189K/cit62/1
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2021.213989
– volume: 419
  start-page: 129984
  year: 2021
  ident: D3TA02189K/cit81/1
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2021.129984
– volume: 12
  start-page: 3250
  year: 2021
  ident: D3TA02189K/cit154/1
  publication-title: Polym. Chem.
  doi: 10.1039/D1PY00247C
– volume: 12
  start-page: 1354
  year: 2021
  ident: D3TA02189K/cit151/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-21527-3
– volume: 14
  start-page: 2883
  year: 2021
  ident: D3TA02189K/cit7/1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D1EE00505G
– volume-title: ChemRxiv
  year: 2022
  ident: D3TA02189K/cit60/1
  doi: 10.26434/chemrxiv-2022-p0pjr
– volume: 34
  start-page: 1008
  year: 2013
  ident: D3TA02189K/cit134/1
  publication-title: Macromol. Rapid Commun.
  doi: 10.1002/marc.201300227
– volume: 57
  start-page: 4464
  year: 2021
  ident: D3TA02189K/cit113/1
  publication-title: Chem. Commun.
  doi: 10.1039/D1CC00854D
– volume: 53
  start-page: 2225
  year: 2020
  ident: D3TA02189K/cit57/1
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.0c00357
– volume: 8
  start-page: 1703278
  year: 2018
  ident: D3TA02189K/cit139/1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201703278
– volume: 7
  start-page: 13638
  year: 2016
  ident: D3TA02189K/cit21/1
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms13638
– volume: 11
  start-page: 10087
  year: 2022
  ident: D3TA02189K/cit51/1
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.1c00978
– volume: 60
  start-page: 9642
  year: 2021
  ident: D3TA02189K/cit106/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202016618
– volume: 14
  start-page: 14182
  year: 2022
  ident: D3TA02189K/cit121/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.1c24713
– volume: 19
  start-page: 9261
  year: 2013
  ident: D3TA02189K/cit72/1
  publication-title: Chem.–Eur. J.
  doi: 10.1002/chem.201300133
– volume: 94
  start-page: 1215
  year: 2021
  ident: D3TA02189K/cit61/1
  publication-title: Bull. Chem. Soc. Jpn.
  doi: 10.1246/bcsj.20200389
– volume: 141
  start-page: 11082
  year: 2019
  ident: D3TA02189K/cit153/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b03243
– volume: 131
  start-page: 1680
  year: 2009
  ident: D3TA02189K/cit33/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja809307s
– volume: 51
  start-page: 12178
  year: 2015
  ident: D3TA02189K/cit88/1
  publication-title: Chem. Commun.
  doi: 10.1039/C5CC04680G
– volume: 11
  start-page: 1874
  year: 2021
  ident: D3TA02189K/cit163/1
  publication-title: Catal. Sci. Technol.
  doi: 10.1039/D0CY02094J
– volume: 57
  start-page: 12106
  year: 2018
  ident: D3TA02189K/cit166/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201806862
– volume: 2
  start-page: 55
  year: 2019
  ident: D3TA02189K/cit150/1
  publication-title: Commun. Chem.
  doi: 10.1038/s42004-019-0158-8
– volume: 30
  start-page: 1705454
  year: 2018
  ident: D3TA02189K/cit165/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201705454
– volume: 121
  start-page: 2515
  year: 2021
  ident: D3TA02189K/cit129/1
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.0c00955
– volume: 5
  start-page: 2789
  year: 2014
  ident: D3TA02189K/cit77/1
  publication-title: Chem. Sci.
  doi: 10.1039/C4SC00016A
– volume: 50
  start-page: 10768
  year: 2014
  ident: D3TA02189K/cit168/1
  publication-title: Chem. Commun.
  doi: 10.1039/C4CC02553A
– volume: 139
  start-page: 16228
  year: 2017
  ident: D3TA02189K/cit79/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b07489
– volume: 53
  start-page: 5854
  year: 2017
  ident: D3TA02189K/cit117/1
  publication-title: Chem. Commun.
  doi: 10.1039/C7CC01827D
– volume: 13
  start-page: 9811
  year: 2019
  ident: D3TA02189K/cit10/1
  publication-title: ACS Nano
  doi: 10.1021/acsnano.9b03649
– volume: 27
  start-page: 13669
  year: 2021
  ident: D3TA02189K/cit85/1
  publication-title: Chem.–Eur. J.
  doi: 10.1002/chem.202101587
– volume: 244
  start-page: 313
  year: 2019
  ident: D3TA02189K/cit137/1
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2018.11.027
– volume: 46
  start-page: 34089
  year: 2021
  ident: D3TA02189K/cit17/1
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2021.08.004
– volume: 145
  start-page: 8364
  year: 2023
  ident: D3TA02189K/cit115/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.2c11893
– volume: 16
  start-page: 1851
  year: 2021
  ident: D3TA02189K/cit36/1
  publication-title: Chem.–Asian J.
  doi: 10.1002/asia.202100357
– volume: 22
  start-page: 405
  year: 2021
  ident: D3TA02189K/cit16/1
  publication-title: Biomass Bioenergy
  doi: 10.1016/S0961-9534(02)00017-X
– volume: 266
  start-page: 118586
  year: 2020
  ident: D3TA02189K/cit159/1
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2020.118586
– volume: 310
  start-page: 1166
  year: 2005
  ident: D3TA02189K/cit43/1
  publication-title: Science
  doi: 10.1126/science.1120411
– volume: 120
  start-page: 919
  year: 2020
  ident: D3TA02189K/cit68/1
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.9b00201
– volume: 13
  start-page: 1355
  year: 2022
  ident: D3TA02189K/cit145/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-29076-z
– volume: 8
  start-page: 4850
  year: 2020
  ident: D3TA02189K/cit70/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA14047F
– volume: 435
  start-page: 213778
  year: 2021
  ident: D3TA02189K/cit95/1
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2021.213778
– volume: 124
  start-page: 13547
  year: 2002
  ident: D3TA02189K/cit25/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0269643
– volume: 379
  start-page: 122342
  year: 2020
  ident: D3TA02189K/cit157/1
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.122342
– volume: 12
  start-page: 6596
  year: 2021
  ident: D3TA02189K/cit128/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-26817-4
– volume: 12
  start-page: 3934
  year: 2021
  ident: D3TA02189K/cit171/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-24179-5
– volume: 28
  start-page: 1705553
  year: 2018
  ident: D3TA02189K/cit99/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201705553
– volume: 4
  start-page: 332
  year: 2020
  ident: D3TA02189K/cit38/1
  publication-title: Mater. Chem. Front.
  doi: 10.1039/C9QM00633H
– volume: 8
  start-page: 7003
  year: 2020
  ident: D3TA02189K/cit35/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D0TA00364F
– volume: 49
  start-page: 1357
  year: 2020
  ident: D3TA02189K/cit94/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C9CS00911F
– volume: 13
  start-page: 5768
  year: 2022
  ident: D3TA02189K/cit155/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-33501-8
– volume: 44
  start-page: 540
  year: 2019
  ident: D3TA02189K/cit75/1
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2018.10.200
– volume: 6
  start-page: 8508
  year: 2015
  ident: D3TA02189K/cit78/1
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms9508
– volume: 10
  start-page: 41415
  year: 2018
  ident: D3TA02189K/cit118/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b16013
– volume: 108
  start-page: 2637
  year: 2004
  ident: D3TA02189K/cit24/1
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp036890x
– volume: 7
  start-page: 41978
  year: 2017
  ident: D3TA02189K/cit34/1
  publication-title: Sci. Rep.
  doi: 10.1038/srep41978
– volume: 9
  start-page: 2202417
  year: 2022
  ident: D3TA02189K/cit136/1
  publication-title: Adv. Sci.
  doi: 10.1002/advs.202202417
– volume: 11
  start-page: 2098
  year: 2021
  ident: D3TA02189K/cit143/1
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.0c04820
– volume: 46
  start-page: 3322
  year: 2017
  ident: D3TA02189K/cit39/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C6CS00851H
– volume: 12
  start-page: 616
  year: 2022
  ident: D3TA02189K/cit132/1
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.1c05233
– volume: 33
  start-page: 177
  year: 2017
  ident: D3TA02189K/cit19/1
  publication-title: Chin. J. Inorg. Chem.
– volume: 7
  start-page: 20193
  year: 2019
  ident: D3TA02189K/cit160/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA07319A
– volume: 34
  start-page: 2107480
  year: 2022
  ident: D3TA02189K/cit133/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202107480
– volume: 147
  start-page: 111230
  year: 2021
  ident: D3TA02189K/cit1/1
  publication-title: Renewable Sustainable Energy Rev.
  doi: 10.1016/j.rser.2021.111230
– volume: 285
  start-page: 119802
  year: 2021
  ident: D3TA02189K/cit71/1
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2020.119802
– volume: 49
  start-page: 4135
  year: 2020
  ident: D3TA02189K/cit100/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/D0CS00278J
– volume: 10
  start-page: 1180
  year: 2018
  ident: D3TA02189K/cit80/1
  publication-title: Nat. Chem.
  doi: 10.1038/s41557-018-0141-5
– volume: 17
  start-page: 2101017
  year: 2021
  ident: D3TA02189K/cit98/1
  publication-title: Small
  doi: 10.1002/smll.202101017
– volume: 12
  start-page: 12774
  year: 2020
  ident: D3TA02189K/cit126/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b21903
– volume: 31
  start-page: 8830
  year: 2019
  ident: D3TA02189K/cit122/1
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.9b02825
– volume: 9
  start-page: 473
  year: 2018
  ident: D3TA02189K/cit2/1
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2018.00273
– volume: 59
  start-page: 6007
  year: 2020
  ident: D3TA02189K/cit125/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201914424
– volume: 25
  start-page: 2425
  year: 2020
  ident: D3TA02189K/cit69/1
  publication-title: Molecules
  doi: 10.3390/molecules25102425
– volume: 27
  start-page: 10649
  year: 2021
  ident: D3TA02189K/cit131/1
  publication-title: Chem.–Eur. J.
  doi: 10.1002/chem.202100595
– volume: 8
  start-page: 1701620
  year: 2018
  ident: D3TA02189K/cit13/1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201701620
– volume: 135
  start-page: 5328
  year: 2013
  ident: D3TA02189K/cit92/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja4017842
– volume: 12
  start-page: 34
  year: 2019
  ident: D3TA02189K/cit172/1
  publication-title: Mater. Today Chem.
  doi: 10.1016/j.mtchem.2018.12.002
– volume: 8
  start-page: 25425
  year: 2020
  ident: D3TA02189K/cit161/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D0TA10165F
– volume: 14
  start-page: 1363
  year: 2022
  ident: D3TA02189K/cit102/1
  publication-title: Polymers
  doi: 10.3390/polym14071363
– volume: 13
  start-page: 29916
  year: 2021
  ident: D3TA02189K/cit111/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.1c06008
– start-page: 2780
  year: 2002
  ident: D3TA02189K/cit40/1
  publication-title: Chem. Commun.
  doi: 10.1039/b207642j
– volume: 11
  start-page: 86
  year: 2018
  ident: D3TA02189K/cit20/1
  publication-title: Green Chem. Lett. Rev.
  doi: 10.1080/17518253.2018.1440324
– volume: 12
  start-page: 173
  year: 2022
  ident: D3TA02189K/cit8/1
  publication-title: Membranes
  doi: 10.3390/membranes12020173
– volume: 50
  start-page: 15521
  year: 2014
  ident: D3TA02189K/cit32/1
  publication-title: Chem. Commun.
  doi: 10.1039/C4CC08063G
– volume: 139
  start-page: 1856
  year: 2017
  ident: D3TA02189K/cit93/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b08815
– volume: 18
  start-page: 827
  year: 2019
  ident: D3TA02189K/cit23/1
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-019-0399-z
– volume: 3
  start-page: 1
  year: 2023
  ident: D3TA02189K/cit53/1
  publication-title: Nat. Rev. Methods Primers
  doi: 10.1038/s43586-022-00181-z
– volume: 60
  start-page: 1869
  year: 2021
  ident: D3TA02189K/cit144/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202014408
– volume: 57
  start-page: 11968
  year: 2018
  ident: D3TA02189K/cit124/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201806664
– volume: 27
  start-page: 1
  year: 2021
  ident: D3TA02189K/cit175/1
  publication-title: Chem.–Eur. J.
  doi: 10.1002/chem.202004683
– volume: 218
  start-page: 835
  year: 2019
  ident: D3TA02189K/cit12/1
  publication-title: J. Cleaner Prod.
  doi: 10.1016/j.jclepro.2019.02.046
– volume: 3
  start-page: 400
  year: 2018
  ident: D3TA02189K/cit64/1
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.7b01123
– volume: 24
  start-page: 7360
  year: 2022
  ident: D3TA02189K/cit173/1
  publication-title: CrystEngComm
  doi: 10.1039/D2CE01296K
– volume: 6
  start-page: 2927
  year: 2022
  ident: D3TA02189K/cit50/1
  publication-title: Energy Fuels
  doi: 10.1021/acs.energyfuels.1c03426
– volume: 120
  start-page: 8814
  year: 2020
  ident: D3TA02189K/cit59/1
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.9b00550
– volume: 49
  start-page: 2852
  year: 2020
  ident: D3TA02189K/cit87/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/D0CS00199F
– volume: 50
  start-page: 120
  year: 2021
  ident: D3TA02189K/cit54/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/D0CS00620C
– volume: 141
  start-page: 7615
  year: 2019
  ident: D3TA02189K/cit104/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b02997
– volume: 39
  start-page: 748
  year: 2014
  ident: D3TA02189K/cit3/1
  publication-title: Renewable Sustainable Energy Rev.
  doi: 10.1016/j.rser.2014.07.113
– volume: 46
  start-page: 8932
  year: 2010
  ident: D3TA02189K/cit47/1
  publication-title: Chem. Commun.
  doi: 10.1039/c0cc04057f
– volume: 23
  start-page: 4701
  issue: 6
  year: 2023
  ident: D3TA02189K/cit178/1
  publication-title: Cryst. Growth Des.
  doi: 10.1021/acs.cgd.3c00379
– volume: 12
  start-page: 51555
  year: 2020
  ident: D3TA02189K/cit169/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.0c15780
– volume: 21
  start-page: 10666
  year: 2015
  ident: D3TA02189K/cit90/1
  publication-title: Chem.–Eur. J.
  doi: 10.1002/chem.201501692
– volume: 141
  start-page: 6623
  year: 2019
  ident: D3TA02189K/cit103/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b01226
– volume: 871
  start-page: 159565
  year: 2021
  ident: D3TA02189K/cit164/1
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2021.159565
– volume: 11
  start-page: 1362
  year: 2018
  ident: D3TA02189K/cit156/1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C7EE03640J
– volume: 126
  start-page: 12084
  year: 2004
  ident: D3TA02189K/cit46/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja048912e
– volume: 8
  start-page: 4334
  year: 2020
  ident: D3TA02189K/cit158/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA12870K
– volume: 60
  start-page: 19797
  year: 2021
  ident: D3TA02189K/cit83/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202104870
– volume: 266
  start-page: 144885
  year: 2020
  ident: D3TA02189K/cit15/1
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2020.114885
– volume: 11
  start-page: 2616
  year: 2021
  ident: D3TA02189K/cit170/1
  publication-title: Catal. Sci. Technol.
  doi: 10.1039/D0CY02330B
– volume: 833
  start-page: 155057
  year: 2020
  ident: D3TA02189K/cit162/1
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2020.155057
– volume: 8
  start-page: 16045
  year: 2020
  ident: D3TA02189K/cit86/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D0TA05894G
– volume: 9
  start-page: 14238
  year: 2021
  ident: D3TA02189K/cit176/1
  publication-title: ACS Sustainable Chem. Eng.
  doi: 10.1021/acssuschemeng.1c05162
– volume: 58
  start-page: 11488
  year: 2022
  ident: D3TA02189K/cit174/1
  publication-title: Chem. Commun.
  doi: 10.1039/D2CC04190A
– volume: 140
  start-page: 1423
  year: 2018
  ident: D3TA02189K/cit96/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b11255
– volume: 128
  start-page: 4926
  year: 2006
  ident: D3TA02189K/cit73/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja058087h
– volume: 291
  start-page: 125822
  year: 2021
  ident: D3TA02189K/cit76/1
  publication-title: J. Cleaner Prod.
  doi: 10.1016/j.jclepro.2021.125822
– volume: 46
  start-page: 7631
  year: 2010
  ident: D3TA02189K/cit74/1
  publication-title: Chem. Commun.
  doi: 10.1039/c0cc01562h
– volume: 615
  start-page: 346
  year: 2022
  ident: D3TA02189K/cit30/1
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2022.01.190
– volume: 2
  start-page: 3188
  year: 2021
  ident: D3TA02189K/cit58/1
  publication-title: Mater. Adv.
  doi: 10.1039/D1MA00158B
– volume: 31
  start-page: 1807865
  year: 2019
  ident: D3TA02189K/cit127/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201807865
– volume: 10
  start-page: 14568
  year: 2022
  ident: D3TA02189K/cit130/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D2TA01646J
– volume: 1
  start-page: 1700015
  year: 2018
  ident: D3TA02189K/cit101/1
  publication-title: Adv. Theory Simul.
  doi: 10.1002/adts.201700015
– volume: 142
  start-page: 12146
  year: 2020
  ident: D3TA02189K/cit112/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.0c02155
– volume: 537
  start-page: 148082
  year: 2021
  ident: D3TA02189K/cit114/1
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2020.148082
– volume: 36
  start-page: 1799
  year: 2015
  ident: D3TA02189K/cit116/1
  publication-title: Macromol. Rapid Commun.
  doi: 10.1002/marc.201500270
– volume: 20
  start-page: 15961
  year: 2014
  ident: D3TA02189K/cit107/1
  publication-title: Chem.–Eur. J.
  doi: 10.1002/chem.201403800
– volume: 146
  start-page: 111180
  year: 2021
  ident: D3TA02189K/cit9/1
  publication-title: Renewable Sustainable Energy Rev.
  doi: 10.1016/j.rser.2021.111180
– volume: 8
  start-page: 20752
  year: 2020
  ident: D3TA02189K/cit28/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D0TA05834C
– volume: 48
  start-page: 14989
  year: 2019
  ident: D3TA02189K/cit109/1
  publication-title: Dalton Trans.
  doi: 10.1039/C9DT03307F
– volume: 59
  start-page: 16902
  year: 2020
  ident: D3TA02189K/cit142/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202006925
– volume: 137
  start-page: 1064
  year: 2015
  ident: D3TA02189K/cit27/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja511802c
– volume: 4
  start-page: 744
  year: 2016
  ident: D3TA02189K/cit135/1
  publication-title: Energy Technol.
  doi: 10.1002/ente.201500478
– volume: 9
  start-page: 16743
  year: 2021
  ident: D3TA02189K/cit167/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D1TA04493A
– volume: 5
  start-page: 2100226
  year: 2021
  ident: D3TA02189K/cit29/1
  publication-title: Sol. RRL
  doi: 10.1002/solr.202100226
– volume: 8
  start-page: 4107
  year: 2021
  ident: D3TA02189K/cit37/1
  publication-title: Inorg. Chem. Front.
  doi: 10.1039/D1QI00543J
– volume: 262
  start-page: 118271
  year: 2020
  ident: D3TA02189K/cit105/1
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2019.118271
– volume: 120
  start-page: 7867
  year: 2020
  ident: D3TA02189K/cit5/1
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.0c00107
– volume: 11
  start-page: 845
  year: 2020
  ident: D3TA02189K/cit55/1
  publication-title: Chem. Sci.
  doi: 10.1039/C9SC04663A
– volume: 146
  start-page: 365
  year: 2021
  ident: D3TA02189K/cit148/1
  publication-title: Analyst
  doi: 10.1039/D0AN01734E
– volume: 10
  start-page: 11010
  year: 2022
  ident: D3TA02189K/cit97/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D2TA01058E
SSID ssj0000800699
Score 2.6115353
SecondaryResourceType review_article
Snippet Covalent organic frameworks (COFs) are an emerging class of crystalline materials that are attracting increasing attention due to their high porosity,...
SourceID proquest
crossref
rsc
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 14489
SubjectTerms Carbon dioxide
Carbon dioxide concentration
Catalysts
Charge transport
Clean fuels
Construction
Design
Energy demand
Environmental cleanup
Fossil fuels
Fuel production
Hydrogen
Hydrogen evolution reactions
Hydrogen production
Photocatalysis
Photocatalysts
Porosity
Splitting
Sustainable production
Water splitting
Title Strategic design of covalent organic frameworks (COFs) for photocatalytic hydrogen generation
URI https://www.proquest.com/docview/2835524533
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLe67QKHia-JwkCW4MAUpbRx3DjHqts0PgYcOmkXVDn-oGOsmdLssP2N_FE827GT0R0Gl6hy7ETx-_X5-fm930PorcoFlywh8ZiLNE6lojGTqYRdqy6okoxmicl3Pv4yPjpJP57S017vdydq6aouBuLmzryS_5EqtIFcTZbsP0g2PBQa4DfIF64gYbjeS8aeWlZE0gZiuBhxeIM94LdZliLSPvzK-lenXw9XxhNgogsvF2VdWv_NtaFtXVzLqoR3marKqmoltm66gpXrPi8Svl7cIJq41B9_x1KJu8RC65v3iVomFje48b9V_JyvFi6s44K3MYpnq0XlikKfmQ7B3Lbn-vv8JoTjR6EpuLX5D17xn3b0dBAdD7qODYCLoasctfovGdKhoTp16ll121wR3KDARx2gOqaBRh3DbtEVKGrW9lFKHZfM2sIxJIZ3dZ_MJsboyT-1y6MPCfhr1QyxjPYUn-TzduwG2kpg0wJad2tyMPvwOfj8jHU-tiVNw7d5xlySv28fcNtGajc-G5WvSmOtn9kjtN3IHk8cBh-jnlo-QQ87ZJZP0feARuzQiEuNPRpxg0bcohG_M1jcwwAUfBuJ2CMRt0h8hk4OD2bTo7gp3hELwkgdJ1pzQTQteJrpTDGicpJqMBgLrqgeaaYSQag2jJFMMybBMiYZGYFGEWxMZE520OayXKrnCDOmC5blYijSLFUwQ1rk41QPtRYwStI-2vPTNRcNs70psPJrvi6bPnoT-l46Ppc7e-36WZ83__fV3DAT0gQQRPpoByQRxktSczvu_MW9nv4SPWjxvos26-pKvQLTti5eN4j5AycxpBo
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Strategic+design+of+covalent+organic+frameworks+%28COFs%29+for+photocatalytic+hydrogen+generation&rft.jtitle=Journal+of+materials+chemistry.+A%2C+Materials+for+energy+and+sustainability&rft.au=Prakash%2C+Kamal&rft.au=Mishra%2C+Bikash&rft.au=D%C3%ADaz%2C+David+D%C3%ADaz&rft.au=Nagaraja%2C+C.+M.&rft.date=2023-07-11&rft.issn=2050-7488&rft.eissn=2050-7496&rft.volume=11&rft.issue=27&rft.spage=14489&rft.epage=14538&rft_id=info:doi/10.1039%2FD3TA02189K&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_D3TA02189K
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-7488&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-7488&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-7488&client=summon