Solid additives in organic solar cells: progress and perspectives

The rapid development of organic solar cells (OSCs) has drawn enormous attention during the past few decades. Improving the power conversion efficiency (PCE) is the most important target in the research of OSCs. Active layer morphology plays an essential role in the performance of OSC devices; there...

Full description

Saved in:
Bibliographic Details
Published inJournal of materials chemistry. C, Materials for optical and electronic devices Vol. 1; no. 7; pp. 2364 - 2374
Main Authors Ma, Yi-Fan, Zhang, Yamin, Zhang, Hao-Li
Format Journal Article
LanguageEnglish
Published Cambridge Royal Society of Chemistry 17.02.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The rapid development of organic solar cells (OSCs) has drawn enormous attention during the past few decades. Improving the power conversion efficiency (PCE) is the most important target in the research of OSCs. Active layer morphology plays an essential role in the performance of OSC devices; therefore, great efforts have been made to develop morphology optimization methodologies in order to realize the full potential of photoactive materials. Employing various additives during the fabrication of active layers has been widely used as a very effective method in morphology control. Recently, solid additives have drawn great attention owing to many attractive advantages including good morphology-directing abilities, simple post treatments and enhanced device stabilities. Research has demonstrated that many solid additives can significantly improve the PCE of OSCs, so that they are becoming the key elements for future high-performance OSC devices. However, there is still limited knowledge of the working mechanism of these solid additives, and hence, the general design rules for ideal solid additives are still under development. In this account, we provide a brief overview of the recently reported solid additives, which are categorized into non-volatile and volatile types based on their physical properties. Focused on their basic structures and function mechanisms, both organic and inorganic solid additives are reviewed, which could provide a useful guidance for the design of solid additives. Finally, the challenges and future perspectives of solid additives in OSCs are discussed. The use of solid additives in organic solar cells has drawn great attention owing to its great morphology-tuning ability. Here we review both organic and inorganic solid additives, which could provide useful guidance for the design of solid additives.
AbstractList The rapid development of organic solar cells (OSCs) has drawn enormous attention during the past few decades. Improving the power conversion efficiency (PCE) is the most important target in the research of OSCs. Active layer morphology plays an essential role in the performance of OSC devices; therefore, great efforts have been made to develop morphology optimization methodologies in order to realize the full potential of photoactive materials. Employing various additives during the fabrication of active layers has been widely used as a very effective method in morphology control. Recently, solid additives have drawn great attention owing to many attractive advantages including good morphology-directing abilities, simple post treatments and enhanced device stabilities. Research has demonstrated that many solid additives can significantly improve the PCE of OSCs, so that they are becoming the key elements for future high-performance OSC devices. However, there is still limited knowledge of the working mechanism of these solid additives, and hence, the general design rules for ideal solid additives are still under development. In this account, we provide a brief overview of the recently reported solid additives, which are categorized into non-volatile and volatile types based on their physical properties. Focused on their basic structures and function mechanisms, both organic and inorganic solid additives are reviewed, which could provide a useful guidance for the design of solid additives. Finally, the challenges and future perspectives of solid additives in OSCs are discussed.
The rapid development of organic solar cells (OSCs) has drawn enormous attention during the past few decades. Improving the power conversion efficiency (PCE) is the most important target in the research of OSCs. Active layer morphology plays an essential role in the performance of OSC devices; therefore, great efforts have been made to develop morphology optimization methodologies in order to realize the full potential of photoactive materials. Employing various additives during the fabrication of active layers has been widely used as a very effective method in morphology control. Recently, solid additives have drawn great attention owing to many attractive advantages including good morphology-directing abilities, simple post treatments and enhanced device stabilities. Research has demonstrated that many solid additives can significantly improve the PCE of OSCs, so that they are becoming the key elements for future high-performance OSC devices. However, there is still limited knowledge of the working mechanism of these solid additives, and hence, the general design rules for ideal solid additives are still under development. In this account, we provide a brief overview of the recently reported solid additives, which are categorized into non-volatile and volatile types based on their physical properties. Focused on their basic structures and function mechanisms, both organic and inorganic solid additives are reviewed, which could provide a useful guidance for the design of solid additives. Finally, the challenges and future perspectives of solid additives in OSCs are discussed. The use of solid additives in organic solar cells has drawn great attention owing to its great morphology-tuning ability. Here we review both organic and inorganic solid additives, which could provide useful guidance for the design of solid additives.
Author Zhang, Yamin
Zhang, Hao-Li
Ma, Yi-Fan
AuthorAffiliation State Key Laboratory of Applied Organic Chemistry
Key Laboratory of Special Function Materials and Structure Design
College of Chemistry and Chemical Engineering
Lanzhou University
Tianjin Key Laboratory of Molecular Optoelectronic Sciences Collaborative Innovation Center of Chemical Science and Engineering
AuthorAffiliation_xml – name: Tianjin Key Laboratory of Molecular Optoelectronic Sciences Collaborative Innovation Center of Chemical Science and Engineering
– name: College of Chemistry and Chemical Engineering
– name: State Key Laboratory of Applied Organic Chemistry
– name: Lanzhou University
– name: Key Laboratory of Special Function Materials and Structure Design
Author_xml – sequence: 1
  givenname: Yi-Fan
  surname: Ma
  fullname: Ma, Yi-Fan
– sequence: 2
  givenname: Yamin
  surname: Zhang
  fullname: Zhang, Yamin
– sequence: 3
  givenname: Hao-Li
  surname: Zhang
  fullname: Zhang, Hao-Li
BookMark eNptkM1LAzEQxYNUsNZevAsBb8JqPjbZxFupVoWCB-t5ySbZkrJu1iQV_O-NrVQQ5zJzeL_3hncKRr3vLQDnGF1jROWNwUmjkpCyPQJjghgqKkbL0eEm_ARMY9ygPAJzweUYzF585wxUxrjkPmyEroc-rFXvNIy-UwFq23XxFg7Br4ONEarewMGGOFi9I87Acau6aKc_ewJeF_er-WOxfH54ms-WhaaCpoJIxqViFFFhGLZYNBVrJdeYN5XV3KjGEoSpRIpqhEkphCgtadoGMcNxJekEXO598yfvWxtTvfHb0OfImvDsntkcNAFXe5UOPsZg23oI7k2Fzxqj-rul-g6v5ruWFlmM_oi1Syo536egXPc_crFHQtQH69_i6RdLAnPb
CitedBy_id crossref_primary_10_1021_acsami_3c02787
crossref_primary_10_1016_j_cej_2023_143289
crossref_primary_10_1016_j_matlet_2024_136663
crossref_primary_10_1039_D3EE02953K
crossref_primary_10_6023_A23070353
crossref_primary_10_1016_j_mtphys_2024_101538
crossref_primary_10_1016_j_synthmet_2024_117586
crossref_primary_10_1134_S0018143923090084
crossref_primary_10_1002_anie_202313791
crossref_primary_10_1002_cssc_202400361
crossref_primary_10_1002_solr_202200994
crossref_primary_10_1007_s11426_023_1564_8
crossref_primary_10_1002_cjoc_202300402
crossref_primary_10_1016_j_cej_2025_161037
crossref_primary_10_1016_j_cej_2024_153417
crossref_primary_10_1002_adma_202402833
crossref_primary_10_1002_smll_202302127
crossref_primary_10_1002_ifm2_25
crossref_primary_10_1002_anie_202417643
crossref_primary_10_1016_j_dyepig_2024_111980
crossref_primary_10_1002_aenm_202405257
crossref_primary_10_1016_j_matpr_2023_01_053
crossref_primary_10_1021_acs_macromol_4c00362
crossref_primary_10_1002_adma_202307161
crossref_primary_10_1039_D4TC01791A
crossref_primary_10_1021_acsapm_3c01831
crossref_primary_10_1039_D4EE03394A
crossref_primary_10_3390_polym14214612
crossref_primary_10_1021_acsenergylett_3c01178
crossref_primary_10_1021_acsaem_2c03023
crossref_primary_10_1002_adma_202301583
crossref_primary_10_1002_solr_202200805
crossref_primary_10_1002_pol_20240093
crossref_primary_10_1002_ange_202417643
crossref_primary_10_1016_j_nanoen_2024_110016
crossref_primary_10_1021_acsaem_2c03180
crossref_primary_10_1016_j_cej_2023_145201
crossref_primary_10_1021_acsami_4c21699
crossref_primary_10_1007_s40843_024_3191_4
crossref_primary_10_1021_acsaem_4c03087
crossref_primary_10_1039_D2EE02553A
crossref_primary_10_1002_ange_202313791
crossref_primary_10_1039_D3MA00106G
crossref_primary_10_1002_smll_202201769
crossref_primary_10_1002_solr_202201076
crossref_primary_10_1002_smll_202405573
crossref_primary_10_1021_acsenergylett_4c01252
crossref_primary_10_1002_solr_202300751
crossref_primary_10_1002_aenm_202404507
crossref_primary_10_1002_smtd_202400172
crossref_primary_10_1002_aenm_202303661
crossref_primary_10_1016_j_jechem_2024_11_029
crossref_primary_10_1016_j_synthmet_2023_117480
crossref_primary_10_1016_j_surfin_2024_104686
crossref_primary_10_3390_nano14060502
crossref_primary_10_1002_adma_202301604
crossref_primary_10_1039_D4SE01240B
crossref_primary_10_1002_smll_202409411
crossref_primary_10_1002_adfm_202401823
crossref_primary_10_1016_j_eurpolymj_2022_111603
crossref_primary_10_1021_acsami_3c01121
crossref_primary_10_1080_1536383X_2023_2179618
crossref_primary_10_1016_j_xcrp_2024_102390
crossref_primary_10_1039_D2TC03838B
crossref_primary_10_1002_adfm_202302820
crossref_primary_10_1016_j_cej_2025_160133
crossref_primary_10_1016_j_dyepig_2022_111040
crossref_primary_10_3390_molecules29122879
Cites_doi 10.1039/C4TC00994K
10.1038/nenergy.2017.52
10.1063/1.1861123
10.1021/nl502114w
10.1126/science.270.5243.1789
10.1002/adma.201302563
10.1038/s41467-020-20580-8
10.1016/j.joule.2019.01.004
10.1002/adfm.202103283
10.1021/jp512721e
10.1038/s41467-018-07017-z
10.1021/acs.chemrev.6b00558
10.1039/C9TA13974E
10.1039/c3ee41773e
10.1002/adfm.202005426
10.1002/anie.201707510
10.1002/adfm.200500211
10.1016/j.orgel.2015.12.024
10.1002/smll.201903977
10.1088/1674-4926/42/1/010501
10.1039/C6TA08140A
10.1021/acs.accounts.0c00157
10.1002/adfm.201000975
10.1002/adfm.202008699
10.1021/acs.chemrev.6b00215
10.1039/D0TA10649F
10.1039/C4EE01529K
10.1039/C5EE02641E
10.1002/adma.202007231
10.1039/C8TA07214K
10.1021/ma400735a
10.1021/acs.jpcc.5b01733
10.1021/ja710079w
10.1002/anie.201507568
10.1039/D0EE02426K
10.1016/j.apsusc.2019.04.162
10.1038/nphoton.2010.186
10.1002/smll.202102558
10.1039/C4CS00227J
10.1126/science.aat2612
10.1002/inf2.12163
10.1002/adma.201501132
10.1002/adma.201907604
10.1016/j.solmat.2004.02.030
10.1039/C3TA15378A
10.1016/j.isci.2020.100965
10.1039/D1TC00240F
10.1038/nmat1849
10.1039/C5NR05113D
10.1038/s41598-019-40948-1
10.1002/adma.201102735
10.1016/j.nanoen.2021.105862
10.1039/C9TA00164F
10.1002/aenm.201602663
10.1038/s41467-019-10351-5
10.1002/adma.201600426
10.1039/B713926H
10.1063/1.2408661
10.1557/JMR.2004.0252
10.1002/adma.201300623
10.1002/adfm.202000456
10.1021/acsenergylett.0c00537
10.1002/aelm.201500167
10.1002/adma.200600188
10.1039/D0TC04096G
10.1021/ar4001235
10.1002/adma.202105301
10.1016/j.scib.2020.01.001
10.1021/acs.chemmater.5b04915
10.1021/ja103275u
10.1039/D0CS00084A
10.1002/adma.201900477
10.1021/acs.chemmater.5b04346
10.1002/adma.202003164
10.1002/adma.201605299
10.1126/science.1102896
10.3390/polym10020121
10.1002/adma.201404248
10.1063/1.2938865
10.1002/anie.202010856
10.1038/nmat4703
10.1002/adma.201904302
10.1002/agt2.31
10.1038/nmat1928
10.1002/adfm.201503273
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2022
Copyright_xml – notice: Copyright Royal Society of Chemistry 2022
DBID AAYXX
CITATION
7SP
7U5
8FD
L7M
DOI 10.1039/d1tc04224f
DatabaseName CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList CrossRef
Solid State and Superconductivity Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 2050-7534
EndPage 2374
ExternalDocumentID 10_1039_D1TC04224F
d1tc04224f
GroupedDBID 0-7
0R
4.4
705
AAEMU
AAGNR
AAIWI
AANOJ
ABASK
ABDVN
ABGFH
ABRYZ
ACGFS
ACLDK
ADMRA
ADSRN
AENEX
AFVBQ
AGSTE
AGSWI
ALMA_UNASSIGNED_HOLDINGS
ANUXI
ASKNT
AUDPV
BLAPV
BSQNT
C6K
CKLOX
EBS
ECGLT
EE0
EF-
GNO
HZ
H~N
J3I
JG
O-G
O9-
R7C
RCNCU
RIG
RNS
RPMJG
RRC
RSCEA
SKA
SKF
SLH
UCJ
0R~
AAJAE
AAWGC
AAXHV
AAYXX
ABEMK
ABJNI
ABPDG
ABXOH
AEFDR
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRDS
AFRZK
AGEGJ
AGRSR
AHGCF
AKMSF
ALUYA
APEMP
CITATION
GGIMP
H13
HZ~
RAOCF
7SP
7U5
8FD
L7M
ID FETCH-LOGICAL-c383t-29569a53038d51e18b75f96c16b7ec6dabe201390a3c01248884e2bfb05d61793
ISSN 2050-7526
IngestDate Mon Jun 30 06:02:28 EDT 2025
Thu Apr 24 23:04:37 EDT 2025
Tue Jul 01 04:26:34 EDT 2025
Fri Feb 18 08:28:21 EST 2022
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c383t-29569a53038d51e18b75f96c16b7ec6dabe201390a3c01248884e2bfb05d61793
Notes Yi-Fan Ma received his BS degree from Dalian University of Technology in 2019. Currently, he is a postgraduate under the supervision of Prof. Hao-Li Zhang at the State Key Laboratory of Applied Organic Chemistry (SKLAOC) of Lanzhou University. His research mainly focuses on the design and synthesis of organic semiconductors and the fabrication of organic solar cells.
Hao-Li Zhang received his BS and PhD degrees from Lanzhou University, and then worked in the University of Leeds and Oxford University as a postdoc. In 2004, he joined the State Key Laboratory of Applied Organic Chemistry (SKLAOC) of Lanzhou University and became a full professor. Prof. Zhang works on organic semiconductors and nanodevices. He is currently a Fellow of Royal Society of Chemistry (FRSC). He is board member of several academic journals, including Chin. Sci. Bull., Acta Physico-Chimica Sinica, Chin. Chem. Lett. and Chem. Soc. Rev.
Yamin Zhang received her BS degree from Lanzhou University in 2014 and PhD degree from Nankai University in 2019 under the supervision of Prof. Yongsheng Chen and Prof. Xiangjian Wan. In 2019, she joined the State Key Laboratory of Applied Organic Chemistry (SKLAOC) of Lanzhou University as an assistant professor. Her research focuses on the design of small-molecule organic semiconductors and the fabrication of organic functional devices.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6322-5202
OpenAccessLink https://pubs.rsc.org/en/content/articlepdf/2022/tc/d1tc04224f
PQID 2629513938
PQPubID 2047521
PageCount 11
ParticipantIDs proquest_journals_2629513938
crossref_primary_10_1039_D1TC04224F
rsc_primary_d1tc04224f
crossref_citationtrail_10_1039_D1TC04224F
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-02-17
PublicationDateYYYYMMDD 2022-02-17
PublicationDate_xml – month: 02
  year: 2022
  text: 2022-02-17
  day: 17
PublicationDecade 2020
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
PublicationTitle Journal of materials chemistry. C, Materials for optical and electronic devices
PublicationYear 2022
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Geim (D1TC04224F/cit63/1) 2007; 6
Wu (D1TC04224F/cit51/1) 2014; 2
Qin (D1TC04224F/cit9/1) 2021; 42
Zhang (D1TC04224F/cit74/1) 2016; 55
Meng (D1TC04224F/cit8/1) 2018; 361
Liu (D1TC04224F/cit10/1) 2020; 65
Yu (D1TC04224F/cit46/1) 2018; 9
Zhan (D1TC04224F/cit12/1) 2021; 33
Constantinou (D1TC04224F/cit27/1) 2015; 1
Zhu (D1TC04224F/cit84/1) 2013; 46
Tournebize (D1TC04224F/cit44/1) 2015; 119
Cui (D1TC04224F/cit39/1) 2019; 10
Wang (D1TC04224F/cit69/1) 2019; 15
Tan (D1TC04224F/cit65/1) 2017; 117
Liu (D1TC04224F/cit58/1) 2017; 56
Liu (D1TC04224F/cit7/1) 2021; 31
Cheng (D1TC04224F/cit14/1) 2020; 53
Hedley (D1TC04224F/cit25/1) 2017; 117
Mazzio (D1TC04224F/cit2/1) 2015; 44
Hoppe (D1TC04224F/cit6/1) 2004; 19
Doumon (D1TC04224F/cit41/1) 2019; 9
Bao (D1TC04224F/cit82/1) 2021
Kim (D1TC04224F/cit26/1) 2005; 86
Lee (D1TC04224F/cit61/1) 2015; 27
Liu (D1TC04224F/cit56/1) 2020; 32
Zhang (D1TC04224F/cit54/1) 2020; 8
Yu (D1TC04224F/cit23/1) 1995; 270
Choi (D1TC04224F/cit37/1) 2015; 27
Fu (D1TC04224F/cit80/1) 2021; 84
Ameri (D1TC04224F/cit5/1) 2013; 25
Bonaccorso (D1TC04224F/cit72/1) 2010; 4
Fu (D1TC04224F/cit77/1) 2020; 23
Dickey (D1TC04224F/cit32/1) 2006; 18
Ma (D1TC04224F/cit20/1) 2005; 15
Kniepert (D1TC04224F/cit33/1) 2015; 119
Liu (D1TC04224F/cit18/1) 2020; 30
Yi (D1TC04224F/cit28/1) 2014; 2
Miller (D1TC04224F/cit31/1) 2008; 18
Yuan (D1TC04224F/cit40/1) 2019; 3
Bai (D1TC04224F/cit71/1) 2017; 5
Jariwala (D1TC04224F/cit66/1) 2017; 16
Chen (D1TC04224F/cit11/1) 2020; 59
Pfannmöller (D1TC04224F/cit24/1) 2013; 6
Guo (D1TC04224F/cit48/1) 2020; 32
Plötzing (D1TC04224F/cit83/1) 2014; 14
Peet (D1TC04224F/cit36/1) 2007; 6
Lee (D1TC04224F/cit21/1) 2008; 130
Chen (D1TC04224F/cit79/1) 2021; 9
Fan (D1TC04224F/cit55/1) 2021; 31
Wan (D1TC04224F/cit62/1) 2011; 23
Xu (D1TC04224F/cit52/1) 2018; 10
Glavin (D1TC04224F/cit67/1) 2020; 32
Pearson (D1TC04224F/cit43/1) 2016; 30
Stylianakis (D1TC04224F/cit60/1) 2015; 7
Yu (D1TC04224F/cit47/1) 2019; 31
Du (D1TC04224F/cit49/1) 2019; 7
Yan (D1TC04224F/cit85/1) 2017; 2
Ye (D1TC04224F/cit78/1) 2020; 13
Kan (D1TC04224F/cit15/1) 2020; 3
Cui (D1TC04224F/cit22/1) 2021; 2
Liu (D1TC04224F/cit70/1) 2008; 92
Zhang (D1TC04224F/cit76/1) 2021; 17
Wan (D1TC04224F/cit16/1) 2020; 49
Piliego (D1TC04224F/cit34/1) 2010; 132
Novoselov (D1TC04224F/cit64/1) 2004; 306
Yan (D1TC04224F/cit81/1) 2021; 9
An (D1TC04224F/cit4/1) 2016; 9
Tremolet de Villers (D1TC04224F/cit42/1) 2016; 28
Zhang (D1TC04224F/cit13/1) 2021; 12
Li (D1TC04224F/cit17/1) 2020; 5
Lin (D1TC04224F/cit68/1) 2016; 26
Dou (D1TC04224F/cit3/1) 2013; 25
Sinturel (D1TC04224F/cit30/1) 2013; 46
Nguyen (D1TC04224F/cit38/1) 2014; 7
Zhou (D1TC04224F/cit19/1) 2020; 30
Li (D1TC04224F/cit45/1) 2017; 7
Moon (D1TC04224F/cit59/1) 2016; 28
Pumera (D1TC04224F/cit73/1) 2017; 29
Peet (D1TC04224F/cit35/1) 2006; 89
Cheng (D1TC04224F/cit50/1) 2016; 28
Xu (D1TC04224F/cit53/1) 2019; 484
Verploegen (D1TC04224F/cit29/1) 2010; 20
Cai (D1TC04224F/cit75/1) 2020; 8
Wang (D1TC04224F/cit57/1) 2018; 6
Brabec (D1TC04224F/cit1/1) 2004; 83
References_xml – volume: 2
  start-page: 7247
  year: 2014
  ident: D1TC04224F/cit28/1
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C4TC00994K
– volume: 2
  start-page: 17052
  year: 2017
  ident: D1TC04224F/cit85/1
  publication-title: Nat. Energy
  doi: 10.1038/nenergy.2017.52
– volume: 86
  start-page: 063502
  year: 2005
  ident: D1TC04224F/cit26/1
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1861123
– volume: 14
  start-page: 5371
  year: 2014
  ident: D1TC04224F/cit83/1
  publication-title: Nano Lett.
  doi: 10.1021/nl502114w
– volume: 270
  start-page: 1789
  year: 1995
  ident: D1TC04224F/cit23/1
  publication-title: Science
  doi: 10.1126/science.270.5243.1789
– volume: 25
  start-page: 6642
  year: 2013
  ident: D1TC04224F/cit3/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201302563
– volume: 12
  start-page: 309
  year: 2021
  ident: D1TC04224F/cit13/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-20580-8
– volume: 3
  start-page: 1140
  year: 2019
  ident: D1TC04224F/cit40/1
  publication-title: Joule
  doi: 10.1016/j.joule.2019.01.004
– volume: 31
  start-page: 2103283
  year: 2021
  ident: D1TC04224F/cit7/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202103283
– volume: 119
  start-page: 8310
  year: 2015
  ident: D1TC04224F/cit33/1
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp512721e
– volume: 9
  start-page: 4645
  year: 2018
  ident: D1TC04224F/cit46/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-07017-z
– volume: 117
  start-page: 6225
  year: 2017
  ident: D1TC04224F/cit65/1
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.6b00558
– volume: 8
  start-page: 4230
  year: 2020
  ident: D1TC04224F/cit75/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA13974E
– volume: 6
  start-page: 2871
  year: 2013
  ident: D1TC04224F/cit24/1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c3ee41773e
– volume: 30
  start-page: 2005426
  year: 2020
  ident: D1TC04224F/cit19/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202005426
– volume: 56
  start-page: 13717
  year: 2017
  ident: D1TC04224F/cit58/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201707510
– volume: 15
  start-page: 1617
  year: 2005
  ident: D1TC04224F/cit20/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.200500211
– volume: 30
  start-page: 225
  year: 2016
  ident: D1TC04224F/cit43/1
  publication-title: Org. Electron.
  doi: 10.1016/j.orgel.2015.12.024
– volume: 15
  start-page: 1903977
  year: 2019
  ident: D1TC04224F/cit69/1
  publication-title: Small
  doi: 10.1002/smll.201903977
– volume: 42
  start-page: 010501
  year: 2021
  ident: D1TC04224F/cit9/1
  publication-title: J. Semicond.
  doi: 10.1088/1674-4926/42/1/010501
– volume: 5
  start-page: 8280
  year: 2017
  ident: D1TC04224F/cit71/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C6TA08140A
– volume: 53
  start-page: 1218
  year: 2020
  ident: D1TC04224F/cit14/1
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.0c00157
– volume: 20
  start-page: 3519
  year: 2010
  ident: D1TC04224F/cit29/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201000975
– volume: 31
  start-page: 2008699
  year: 2021
  ident: D1TC04224F/cit55/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202008699
– volume: 117
  start-page: 796
  year: 2017
  ident: D1TC04224F/cit25/1
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.6b00215
– volume: 9
  start-page: 2857
  year: 2021
  ident: D1TC04224F/cit79/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D0TA10649F
– volume: 7
  start-page: 3040
  year: 2014
  ident: D1TC04224F/cit38/1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C4EE01529K
– volume: 9
  start-page: 281
  year: 2016
  ident: D1TC04224F/cit4/1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C5EE02641E
– volume: 33
  start-page: 2007231
  year: 2021
  ident: D1TC04224F/cit12/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202007231
– volume: 6
  start-page: 23773
  year: 2018
  ident: D1TC04224F/cit57/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA07214K
– volume: 46
  start-page: 5399
  year: 2013
  ident: D1TC04224F/cit30/1
  publication-title: Macromolecules
  doi: 10.1021/ma400735a
– volume: 119
  start-page: 9142
  year: 2015
  ident: D1TC04224F/cit44/1
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.5b01733
– volume: 130
  start-page: 3619
  year: 2008
  ident: D1TC04224F/cit21/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja710079w
– volume: 55
  start-page: 1666
  year: 2016
  ident: D1TC04224F/cit74/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201507568
– volume: 13
  start-page: 5117
  year: 2020
  ident: D1TC04224F/cit78/1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D0EE02426K
– volume: 484
  start-page: 825
  year: 2019
  ident: D1TC04224F/cit53/1
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2019.04.162
– volume: 4
  start-page: 611
  year: 2010
  ident: D1TC04224F/cit72/1
  publication-title: Nat. Photonics
  doi: 10.1038/nphoton.2010.186
– volume: 17
  start-page: 2102558
  year: 2021
  ident: D1TC04224F/cit76/1
  publication-title: Small
  doi: 10.1002/smll.202102558
– volume: 44
  start-page: 78
  year: 2015
  ident: D1TC04224F/cit2/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C4CS00227J
– volume: 361
  start-page: 1094
  year: 2018
  ident: D1TC04224F/cit8/1
  publication-title: Science
  doi: 10.1126/science.aat2612
– volume: 3
  start-page: 175
  year: 2020
  ident: D1TC04224F/cit15/1
  publication-title: InfoMat
  doi: 10.1002/inf2.12163
– volume: 27
  start-page: 3318
  year: 2015
  ident: D1TC04224F/cit37/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201501132
– volume: 32
  start-page: 1907604
  year: 2020
  ident: D1TC04224F/cit56/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201907604
– volume: 83
  start-page: 273
  year: 2004
  ident: D1TC04224F/cit1/1
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2004.02.030
– volume: 2
  start-page: 5295
  year: 2014
  ident: D1TC04224F/cit51/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C3TA15378A
– volume: 23
  start-page: 100965
  year: 2020
  ident: D1TC04224F/cit77/1
  publication-title: iScience
  doi: 10.1016/j.isci.2020.100965
– volume: 9
  start-page: 3835
  year: 2021
  ident: D1TC04224F/cit81/1
  publication-title: J. Mater. Chem. C
  doi: 10.1039/D1TC00240F
– volume: 6
  start-page: 183
  year: 2007
  ident: D1TC04224F/cit63/1
  publication-title: Nat. Mater.
  doi: 10.1038/nmat1849
– volume: 7
  start-page: 17827
  year: 2015
  ident: D1TC04224F/cit60/1
  publication-title: Nanoscale
  doi: 10.1039/C5NR05113D
– volume: 9
  start-page: 4350
  year: 2019
  ident: D1TC04224F/cit41/1
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-40948-1
– volume: 23
  start-page: 5342
  year: 2011
  ident: D1TC04224F/cit62/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201102735
– volume: 84
  start-page: 105862
  year: 2021
  ident: D1TC04224F/cit80/1
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2021.105862
– volume: 7
  start-page: 7437
  year: 2019
  ident: D1TC04224F/cit49/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA00164F
– volume: 7
  start-page: 1602663
  year: 2017
  ident: D1TC04224F/cit45/1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201602663
– volume: 10
  start-page: 2515
  year: 2019
  ident: D1TC04224F/cit39/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-10351-5
– volume: 28
  start-page: 5822
  year: 2016
  ident: D1TC04224F/cit50/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201600426
– volume: 18
  start-page: 306
  year: 2008
  ident: D1TC04224F/cit31/1
  publication-title: J. Mater. Chem.
  doi: 10.1039/B713926H
– volume: 89
  start-page: 252105
  year: 2006
  ident: D1TC04224F/cit35/1
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2408661
– volume: 19
  start-page: 1924
  year: 2004
  ident: D1TC04224F/cit6/1
  publication-title: J. Mater. Res.
  doi: 10.1557/JMR.2004.0252
– volume: 25
  start-page: 4245
  year: 2013
  ident: D1TC04224F/cit5/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201300623
– volume: 30
  start-page: 2000456
  year: 2020
  ident: D1TC04224F/cit18/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202000456
– volume: 5
  start-page: 1554
  year: 2020
  ident: D1TC04224F/cit17/1
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.0c00537
– volume: 1
  start-page: 1500167
  year: 2015
  ident: D1TC04224F/cit27/1
  publication-title: Adv. Electron. Mater.
  doi: 10.1002/aelm.201500167
– volume: 18
  start-page: 1721
  year: 2006
  ident: D1TC04224F/cit32/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200600188
– volume: 8
  start-page: 16551
  year: 2020
  ident: D1TC04224F/cit54/1
  publication-title: J. Mater. Chem. C
  doi: 10.1039/D0TC04096G
– volume: 46
  start-page: 1239
  year: 2013
  ident: D1TC04224F/cit84/1
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar4001235
– start-page: 2105301
  year: 2021
  ident: D1TC04224F/cit82/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202105301
– volume: 65
  start-page: 272
  year: 2020
  ident: D1TC04224F/cit10/1
  publication-title: Sci. Bull.
  doi: 10.1016/j.scib.2020.01.001
– volume: 28
  start-page: 1481
  year: 2016
  ident: D1TC04224F/cit59/1
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.5b04915
– volume: 132
  start-page: 7595
  year: 2010
  ident: D1TC04224F/cit34/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja103275u
– volume: 49
  start-page: 2828
  year: 2020
  ident: D1TC04224F/cit16/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/D0CS00084A
– volume: 31
  start-page: 1900477
  year: 2019
  ident: D1TC04224F/cit47/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201900477
– volume: 28
  start-page: 876
  year: 2016
  ident: D1TC04224F/cit42/1
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.5b04346
– volume: 32
  start-page: 2003164
  year: 2020
  ident: D1TC04224F/cit48/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202003164
– volume: 29
  start-page: 1605299
  year: 2017
  ident: D1TC04224F/cit73/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201605299
– volume: 306
  start-page: 666
  year: 2004
  ident: D1TC04224F/cit64/1
  publication-title: Science
  doi: 10.1126/science.1102896
– volume: 10
  start-page: 121
  year: 2018
  ident: D1TC04224F/cit52/1
  publication-title: Polymers
  doi: 10.3390/polym10020121
– volume: 27
  start-page: 1519
  year: 2015
  ident: D1TC04224F/cit61/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201404248
– volume: 92
  start-page: 223303
  year: 2008
  ident: D1TC04224F/cit70/1
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2938865
– volume: 59
  start-page: 22714
  year: 2020
  ident: D1TC04224F/cit11/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202010856
– volume: 16
  start-page: 170
  year: 2017
  ident: D1TC04224F/cit66/1
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4703
– volume: 32
  start-page: 1904302
  year: 2020
  ident: D1TC04224F/cit67/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201904302
– volume: 2
  start-page: e31
  year: 2021
  ident: D1TC04224F/cit22/1
  publication-title: Aggregate
  doi: 10.1002/agt2.31
– volume: 6
  start-page: 497
  year: 2007
  ident: D1TC04224F/cit36/1
  publication-title: Nat. Mater.
  doi: 10.1038/nmat1928
– volume: 26
  start-page: 864
  year: 2016
  ident: D1TC04224F/cit68/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201503273
SSID ssj0000816869
Score 2.5462677
SecondaryResourceType review_article
Snippet The rapid development of organic solar cells (OSCs) has drawn enormous attention during the past few decades. Improving the power conversion efficiency (PCE)...
SourceID proquest
crossref
rsc
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2364
SubjectTerms Additives
Energy conversion efficiency
Morphology
Optimization
Photovoltaic cells
Physical properties
Solar cells
Title Solid additives in organic solar cells: progress and perspectives
URI https://www.proquest.com/docview/2629513938
Volume 1
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Rb9MwELa6TkjwgNhgojCQJXhBUUZiJ7HD29S1GqiMB1KpPEWJ40iRRjqt2Qv_gH_N2bGdIDYEe4kqO4kc3-fz3fX8HUJvWRnXqYrcUxEwPyrr1OcJoz6voSPhdVFXmu3zIjlfR5828WYy-TnKWrrpyhPx49ZzJfeRKrSBXNUp2f-QrHspNMBvkC9cQcJw_ScZf91eNpWnUoI6zR7btKZKk_B2ymX1VFhe57zpNCyl1DQvwHDAcneHcQp2bP8BnrAV4U68eX-4x_aoBMXtVefoBkYVdSqpFZBTKY2_7AOtn90u4CLV34rvTTsowq2_0gkGun8ckwB3VlVIYQ5FfeTDpp3qtBIz1EG7kSAOfBYTw4M9bjPRTauegxEM2VjX0p7_3OzbhPblfv7YEwKqKFWrsBOK7yyqh53P_tt_8SVfrlerPFtssj20T8DjIFO0f7rIPq5cwE5XKNElEt3QLd0tTd8Pr__dwBm8lr1rW1JGmy7ZE_TYiBWf9gA6QBPZHqJHIybKQ_RAZwKL3VPYZxWosAMVblpsQIU1qLAG1QdsIYVB9ngMqWdovVxk83Pf1NnwBeW08wn4yGkRgzHDqziUIS8ZLOBEhEnJpEiqopREeQpBAQsa7EHOeSRJWZdBXCVKwR-habtt5XOEYyKDOqzTIqpoBL45FywkymguFLMfYzP0zk5OLgwJvaqFcpnrZAia5mdhNtcTuZyhN-7eq5565da7ju0c52Zp7nKSwDfBiCmfoSOYd_f8IKYXf3_uJXo4APsYTbvrG_kKzM-ufG2A8QswH4W7
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Solid+additives+in+organic+solar+cells%3A+progress+and+perspectives&rft.jtitle=Journal+of+materials+chemistry.+C%2C+Materials+for+optical+and+electronic+devices&rft.au=Yi-Fan%2C+Ma&rft.au=Zhang%2C+Yamin&rft.au=Hao-Li%2C+Zhang&rft.date=2022-02-17&rft.pub=Royal+Society+of+Chemistry&rft.issn=2050-7526&rft.eissn=2050-7534&rft.volume=10&rft.issue=7&rft.spage=2364&rft.epage=2374&rft_id=info:doi/10.1039%2Fd1tc04224f&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-7526&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-7526&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-7526&client=summon