Solid additives in organic solar cells: progress and perspectives
The rapid development of organic solar cells (OSCs) has drawn enormous attention during the past few decades. Improving the power conversion efficiency (PCE) is the most important target in the research of OSCs. Active layer morphology plays an essential role in the performance of OSC devices; there...
Saved in:
Published in | Journal of materials chemistry. C, Materials for optical and electronic devices Vol. 1; no. 7; pp. 2364 - 2374 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Cambridge
Royal Society of Chemistry
17.02.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The rapid development of organic solar cells (OSCs) has drawn enormous attention during the past few decades. Improving the power conversion efficiency (PCE) is the most important target in the research of OSCs. Active layer morphology plays an essential role in the performance of OSC devices; therefore, great efforts have been made to develop morphology optimization methodologies in order to realize the full potential of photoactive materials. Employing various additives during the fabrication of active layers has been widely used as a very effective method in morphology control. Recently, solid additives have drawn great attention owing to many attractive advantages including good morphology-directing abilities, simple post treatments and enhanced device stabilities. Research has demonstrated that many solid additives can significantly improve the PCE of OSCs, so that they are becoming the key elements for future high-performance OSC devices. However, there is still limited knowledge of the working mechanism of these solid additives, and hence, the general design rules for ideal solid additives are still under development. In this account, we provide a brief overview of the recently reported solid additives, which are categorized into non-volatile and volatile types based on their physical properties. Focused on their basic structures and function mechanisms, both organic and inorganic solid additives are reviewed, which could provide a useful guidance for the design of solid additives. Finally, the challenges and future perspectives of solid additives in OSCs are discussed.
The use of solid additives in organic solar cells has drawn great attention owing to its great morphology-tuning ability. Here we review both organic and inorganic solid additives, which could provide useful guidance for the design of solid additives. |
---|---|
AbstractList | The rapid development of organic solar cells (OSCs) has drawn enormous attention during the past few decades. Improving the power conversion efficiency (PCE) is the most important target in the research of OSCs. Active layer morphology plays an essential role in the performance of OSC devices; therefore, great efforts have been made to develop morphology optimization methodologies in order to realize the full potential of photoactive materials. Employing various additives during the fabrication of active layers has been widely used as a very effective method in morphology control. Recently, solid additives have drawn great attention owing to many attractive advantages including good morphology-directing abilities, simple post treatments and enhanced device stabilities. Research has demonstrated that many solid additives can significantly improve the PCE of OSCs, so that they are becoming the key elements for future high-performance OSC devices. However, there is still limited knowledge of the working mechanism of these solid additives, and hence, the general design rules for ideal solid additives are still under development. In this account, we provide a brief overview of the recently reported solid additives, which are categorized into non-volatile and volatile types based on their physical properties. Focused on their basic structures and function mechanisms, both organic and inorganic solid additives are reviewed, which could provide a useful guidance for the design of solid additives. Finally, the challenges and future perspectives of solid additives in OSCs are discussed. The rapid development of organic solar cells (OSCs) has drawn enormous attention during the past few decades. Improving the power conversion efficiency (PCE) is the most important target in the research of OSCs. Active layer morphology plays an essential role in the performance of OSC devices; therefore, great efforts have been made to develop morphology optimization methodologies in order to realize the full potential of photoactive materials. Employing various additives during the fabrication of active layers has been widely used as a very effective method in morphology control. Recently, solid additives have drawn great attention owing to many attractive advantages including good morphology-directing abilities, simple post treatments and enhanced device stabilities. Research has demonstrated that many solid additives can significantly improve the PCE of OSCs, so that they are becoming the key elements for future high-performance OSC devices. However, there is still limited knowledge of the working mechanism of these solid additives, and hence, the general design rules for ideal solid additives are still under development. In this account, we provide a brief overview of the recently reported solid additives, which are categorized into non-volatile and volatile types based on their physical properties. Focused on their basic structures and function mechanisms, both organic and inorganic solid additives are reviewed, which could provide a useful guidance for the design of solid additives. Finally, the challenges and future perspectives of solid additives in OSCs are discussed. The use of solid additives in organic solar cells has drawn great attention owing to its great morphology-tuning ability. Here we review both organic and inorganic solid additives, which could provide useful guidance for the design of solid additives. |
Author | Zhang, Yamin Zhang, Hao-Li Ma, Yi-Fan |
AuthorAffiliation | State Key Laboratory of Applied Organic Chemistry Key Laboratory of Special Function Materials and Structure Design College of Chemistry and Chemical Engineering Lanzhou University Tianjin Key Laboratory of Molecular Optoelectronic Sciences Collaborative Innovation Center of Chemical Science and Engineering |
AuthorAffiliation_xml | – name: Tianjin Key Laboratory of Molecular Optoelectronic Sciences Collaborative Innovation Center of Chemical Science and Engineering – name: College of Chemistry and Chemical Engineering – name: State Key Laboratory of Applied Organic Chemistry – name: Lanzhou University – name: Key Laboratory of Special Function Materials and Structure Design |
Author_xml | – sequence: 1 givenname: Yi-Fan surname: Ma fullname: Ma, Yi-Fan – sequence: 2 givenname: Yamin surname: Zhang fullname: Zhang, Yamin – sequence: 3 givenname: Hao-Li surname: Zhang fullname: Zhang, Hao-Li |
BookMark | eNptkM1LAzEQxYNUsNZevAsBb8JqPjbZxFupVoWCB-t5ySbZkrJu1iQV_O-NrVQQ5zJzeL_3hncKRr3vLQDnGF1jROWNwUmjkpCyPQJjghgqKkbL0eEm_ARMY9ygPAJzweUYzF585wxUxrjkPmyEroc-rFXvNIy-UwFq23XxFg7Br4ONEarewMGGOFi9I87Acau6aKc_ewJeF_er-WOxfH54ms-WhaaCpoJIxqViFFFhGLZYNBVrJdeYN5XV3KjGEoSpRIpqhEkphCgtadoGMcNxJekEXO598yfvWxtTvfHb0OfImvDsntkcNAFXe5UOPsZg23oI7k2Fzxqj-rul-g6v5ruWFlmM_oi1Syo536egXPc_crFHQtQH69_i6RdLAnPb |
CitedBy_id | crossref_primary_10_1021_acsami_3c02787 crossref_primary_10_1016_j_cej_2023_143289 crossref_primary_10_1016_j_matlet_2024_136663 crossref_primary_10_1039_D3EE02953K crossref_primary_10_6023_A23070353 crossref_primary_10_1016_j_mtphys_2024_101538 crossref_primary_10_1016_j_synthmet_2024_117586 crossref_primary_10_1134_S0018143923090084 crossref_primary_10_1002_anie_202313791 crossref_primary_10_1002_cssc_202400361 crossref_primary_10_1002_solr_202200994 crossref_primary_10_1007_s11426_023_1564_8 crossref_primary_10_1002_cjoc_202300402 crossref_primary_10_1016_j_cej_2025_161037 crossref_primary_10_1016_j_cej_2024_153417 crossref_primary_10_1002_adma_202402833 crossref_primary_10_1002_smll_202302127 crossref_primary_10_1002_ifm2_25 crossref_primary_10_1002_anie_202417643 crossref_primary_10_1016_j_dyepig_2024_111980 crossref_primary_10_1002_aenm_202405257 crossref_primary_10_1016_j_matpr_2023_01_053 crossref_primary_10_1021_acs_macromol_4c00362 crossref_primary_10_1002_adma_202307161 crossref_primary_10_1039_D4TC01791A crossref_primary_10_1021_acsapm_3c01831 crossref_primary_10_1039_D4EE03394A crossref_primary_10_3390_polym14214612 crossref_primary_10_1021_acsenergylett_3c01178 crossref_primary_10_1021_acsaem_2c03023 crossref_primary_10_1002_adma_202301583 crossref_primary_10_1002_solr_202200805 crossref_primary_10_1002_pol_20240093 crossref_primary_10_1002_ange_202417643 crossref_primary_10_1016_j_nanoen_2024_110016 crossref_primary_10_1021_acsaem_2c03180 crossref_primary_10_1016_j_cej_2023_145201 crossref_primary_10_1021_acsami_4c21699 crossref_primary_10_1007_s40843_024_3191_4 crossref_primary_10_1021_acsaem_4c03087 crossref_primary_10_1039_D2EE02553A crossref_primary_10_1002_ange_202313791 crossref_primary_10_1039_D3MA00106G crossref_primary_10_1002_smll_202201769 crossref_primary_10_1002_solr_202201076 crossref_primary_10_1002_smll_202405573 crossref_primary_10_1021_acsenergylett_4c01252 crossref_primary_10_1002_solr_202300751 crossref_primary_10_1002_aenm_202404507 crossref_primary_10_1002_smtd_202400172 crossref_primary_10_1002_aenm_202303661 crossref_primary_10_1016_j_jechem_2024_11_029 crossref_primary_10_1016_j_synthmet_2023_117480 crossref_primary_10_1016_j_surfin_2024_104686 crossref_primary_10_3390_nano14060502 crossref_primary_10_1002_adma_202301604 crossref_primary_10_1039_D4SE01240B crossref_primary_10_1002_smll_202409411 crossref_primary_10_1002_adfm_202401823 crossref_primary_10_1016_j_eurpolymj_2022_111603 crossref_primary_10_1021_acsami_3c01121 crossref_primary_10_1080_1536383X_2023_2179618 crossref_primary_10_1016_j_xcrp_2024_102390 crossref_primary_10_1039_D2TC03838B crossref_primary_10_1002_adfm_202302820 crossref_primary_10_1016_j_cej_2025_160133 crossref_primary_10_1016_j_dyepig_2022_111040 crossref_primary_10_3390_molecules29122879 |
Cites_doi | 10.1039/C4TC00994K 10.1038/nenergy.2017.52 10.1063/1.1861123 10.1021/nl502114w 10.1126/science.270.5243.1789 10.1002/adma.201302563 10.1038/s41467-020-20580-8 10.1016/j.joule.2019.01.004 10.1002/adfm.202103283 10.1021/jp512721e 10.1038/s41467-018-07017-z 10.1021/acs.chemrev.6b00558 10.1039/C9TA13974E 10.1039/c3ee41773e 10.1002/adfm.202005426 10.1002/anie.201707510 10.1002/adfm.200500211 10.1016/j.orgel.2015.12.024 10.1002/smll.201903977 10.1088/1674-4926/42/1/010501 10.1039/C6TA08140A 10.1021/acs.accounts.0c00157 10.1002/adfm.201000975 10.1002/adfm.202008699 10.1021/acs.chemrev.6b00215 10.1039/D0TA10649F 10.1039/C4EE01529K 10.1039/C5EE02641E 10.1002/adma.202007231 10.1039/C8TA07214K 10.1021/ma400735a 10.1021/acs.jpcc.5b01733 10.1021/ja710079w 10.1002/anie.201507568 10.1039/D0EE02426K 10.1016/j.apsusc.2019.04.162 10.1038/nphoton.2010.186 10.1002/smll.202102558 10.1039/C4CS00227J 10.1126/science.aat2612 10.1002/inf2.12163 10.1002/adma.201501132 10.1002/adma.201907604 10.1016/j.solmat.2004.02.030 10.1039/C3TA15378A 10.1016/j.isci.2020.100965 10.1039/D1TC00240F 10.1038/nmat1849 10.1039/C5NR05113D 10.1038/s41598-019-40948-1 10.1002/adma.201102735 10.1016/j.nanoen.2021.105862 10.1039/C9TA00164F 10.1002/aenm.201602663 10.1038/s41467-019-10351-5 10.1002/adma.201600426 10.1039/B713926H 10.1063/1.2408661 10.1557/JMR.2004.0252 10.1002/adma.201300623 10.1002/adfm.202000456 10.1021/acsenergylett.0c00537 10.1002/aelm.201500167 10.1002/adma.200600188 10.1039/D0TC04096G 10.1021/ar4001235 10.1002/adma.202105301 10.1016/j.scib.2020.01.001 10.1021/acs.chemmater.5b04915 10.1021/ja103275u 10.1039/D0CS00084A 10.1002/adma.201900477 10.1021/acs.chemmater.5b04346 10.1002/adma.202003164 10.1002/adma.201605299 10.1126/science.1102896 10.3390/polym10020121 10.1002/adma.201404248 10.1063/1.2938865 10.1002/anie.202010856 10.1038/nmat4703 10.1002/adma.201904302 10.1002/agt2.31 10.1038/nmat1928 10.1002/adfm.201503273 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2022 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2022 |
DBID | AAYXX CITATION 7SP 7U5 8FD L7M |
DOI | 10.1039/d1tc04224f |
DatabaseName | CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | CrossRef Solid State and Superconductivity Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 2050-7534 |
EndPage | 2374 |
ExternalDocumentID | 10_1039_D1TC04224F d1tc04224f |
GroupedDBID | 0-7 0R 4.4 705 AAEMU AAGNR AAIWI AANOJ ABASK ABDVN ABGFH ABRYZ ACGFS ACLDK ADMRA ADSRN AENEX AFVBQ AGSTE AGSWI ALMA_UNASSIGNED_HOLDINGS ANUXI ASKNT AUDPV BLAPV BSQNT C6K CKLOX EBS ECGLT EE0 EF- GNO HZ H~N J3I JG O-G O9- R7C RCNCU RIG RNS RPMJG RRC RSCEA SKA SKF SLH UCJ 0R~ AAJAE AAWGC AAXHV AAYXX ABEMK ABJNI ABPDG ABXOH AEFDR AENGV AESAV AETIL AFLYV AFOGI AFRDS AFRZK AGEGJ AGRSR AHGCF AKMSF ALUYA APEMP CITATION GGIMP H13 HZ~ RAOCF 7SP 7U5 8FD L7M |
ID | FETCH-LOGICAL-c383t-29569a53038d51e18b75f96c16b7ec6dabe201390a3c01248884e2bfb05d61793 |
ISSN | 2050-7526 |
IngestDate | Mon Jun 30 06:02:28 EDT 2025 Thu Apr 24 23:04:37 EDT 2025 Tue Jul 01 04:26:34 EDT 2025 Fri Feb 18 08:28:21 EST 2022 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c383t-29569a53038d51e18b75f96c16b7ec6dabe201390a3c01248884e2bfb05d61793 |
Notes | Yi-Fan Ma received his BS degree from Dalian University of Technology in 2019. Currently, he is a postgraduate under the supervision of Prof. Hao-Li Zhang at the State Key Laboratory of Applied Organic Chemistry (SKLAOC) of Lanzhou University. His research mainly focuses on the design and synthesis of organic semiconductors and the fabrication of organic solar cells. Hao-Li Zhang received his BS and PhD degrees from Lanzhou University, and then worked in the University of Leeds and Oxford University as a postdoc. In 2004, he joined the State Key Laboratory of Applied Organic Chemistry (SKLAOC) of Lanzhou University and became a full professor. Prof. Zhang works on organic semiconductors and nanodevices. He is currently a Fellow of Royal Society of Chemistry (FRSC). He is board member of several academic journals, including Chin. Sci. Bull., Acta Physico-Chimica Sinica, Chin. Chem. Lett. and Chem. Soc. Rev. Yamin Zhang received her BS degree from Lanzhou University in 2014 and PhD degree from Nankai University in 2019 under the supervision of Prof. Yongsheng Chen and Prof. Xiangjian Wan. In 2019, she joined the State Key Laboratory of Applied Organic Chemistry (SKLAOC) of Lanzhou University as an assistant professor. Her research focuses on the design of small-molecule organic semiconductors and the fabrication of organic functional devices. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-6322-5202 |
OpenAccessLink | https://pubs.rsc.org/en/content/articlepdf/2022/tc/d1tc04224f |
PQID | 2629513938 |
PQPubID | 2047521 |
PageCount | 11 |
ParticipantIDs | proquest_journals_2629513938 crossref_primary_10_1039_D1TC04224F rsc_primary_d1tc04224f crossref_citationtrail_10_1039_D1TC04224F |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-02-17 |
PublicationDateYYYYMMDD | 2022-02-17 |
PublicationDate_xml | – month: 02 year: 2022 text: 2022-02-17 day: 17 |
PublicationDecade | 2020 |
PublicationPlace | Cambridge |
PublicationPlace_xml | – name: Cambridge |
PublicationTitle | Journal of materials chemistry. C, Materials for optical and electronic devices |
PublicationYear | 2022 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Geim (D1TC04224F/cit63/1) 2007; 6 Wu (D1TC04224F/cit51/1) 2014; 2 Qin (D1TC04224F/cit9/1) 2021; 42 Zhang (D1TC04224F/cit74/1) 2016; 55 Meng (D1TC04224F/cit8/1) 2018; 361 Liu (D1TC04224F/cit10/1) 2020; 65 Yu (D1TC04224F/cit46/1) 2018; 9 Zhan (D1TC04224F/cit12/1) 2021; 33 Constantinou (D1TC04224F/cit27/1) 2015; 1 Zhu (D1TC04224F/cit84/1) 2013; 46 Tournebize (D1TC04224F/cit44/1) 2015; 119 Cui (D1TC04224F/cit39/1) 2019; 10 Wang (D1TC04224F/cit69/1) 2019; 15 Tan (D1TC04224F/cit65/1) 2017; 117 Liu (D1TC04224F/cit58/1) 2017; 56 Liu (D1TC04224F/cit7/1) 2021; 31 Cheng (D1TC04224F/cit14/1) 2020; 53 Hedley (D1TC04224F/cit25/1) 2017; 117 Mazzio (D1TC04224F/cit2/1) 2015; 44 Hoppe (D1TC04224F/cit6/1) 2004; 19 Doumon (D1TC04224F/cit41/1) 2019; 9 Bao (D1TC04224F/cit82/1) 2021 Kim (D1TC04224F/cit26/1) 2005; 86 Lee (D1TC04224F/cit61/1) 2015; 27 Liu (D1TC04224F/cit56/1) 2020; 32 Zhang (D1TC04224F/cit54/1) 2020; 8 Yu (D1TC04224F/cit23/1) 1995; 270 Choi (D1TC04224F/cit37/1) 2015; 27 Fu (D1TC04224F/cit80/1) 2021; 84 Ameri (D1TC04224F/cit5/1) 2013; 25 Bonaccorso (D1TC04224F/cit72/1) 2010; 4 Fu (D1TC04224F/cit77/1) 2020; 23 Dickey (D1TC04224F/cit32/1) 2006; 18 Ma (D1TC04224F/cit20/1) 2005; 15 Kniepert (D1TC04224F/cit33/1) 2015; 119 Liu (D1TC04224F/cit18/1) 2020; 30 Yi (D1TC04224F/cit28/1) 2014; 2 Miller (D1TC04224F/cit31/1) 2008; 18 Yuan (D1TC04224F/cit40/1) 2019; 3 Bai (D1TC04224F/cit71/1) 2017; 5 Jariwala (D1TC04224F/cit66/1) 2017; 16 Chen (D1TC04224F/cit11/1) 2020; 59 Pfannmöller (D1TC04224F/cit24/1) 2013; 6 Guo (D1TC04224F/cit48/1) 2020; 32 Plötzing (D1TC04224F/cit83/1) 2014; 14 Peet (D1TC04224F/cit36/1) 2007; 6 Lee (D1TC04224F/cit21/1) 2008; 130 Chen (D1TC04224F/cit79/1) 2021; 9 Fan (D1TC04224F/cit55/1) 2021; 31 Wan (D1TC04224F/cit62/1) 2011; 23 Xu (D1TC04224F/cit52/1) 2018; 10 Glavin (D1TC04224F/cit67/1) 2020; 32 Pearson (D1TC04224F/cit43/1) 2016; 30 Stylianakis (D1TC04224F/cit60/1) 2015; 7 Yu (D1TC04224F/cit47/1) 2019; 31 Du (D1TC04224F/cit49/1) 2019; 7 Yan (D1TC04224F/cit85/1) 2017; 2 Ye (D1TC04224F/cit78/1) 2020; 13 Kan (D1TC04224F/cit15/1) 2020; 3 Cui (D1TC04224F/cit22/1) 2021; 2 Liu (D1TC04224F/cit70/1) 2008; 92 Zhang (D1TC04224F/cit76/1) 2021; 17 Wan (D1TC04224F/cit16/1) 2020; 49 Piliego (D1TC04224F/cit34/1) 2010; 132 Novoselov (D1TC04224F/cit64/1) 2004; 306 Yan (D1TC04224F/cit81/1) 2021; 9 An (D1TC04224F/cit4/1) 2016; 9 Tremolet de Villers (D1TC04224F/cit42/1) 2016; 28 Zhang (D1TC04224F/cit13/1) 2021; 12 Li (D1TC04224F/cit17/1) 2020; 5 Lin (D1TC04224F/cit68/1) 2016; 26 Dou (D1TC04224F/cit3/1) 2013; 25 Sinturel (D1TC04224F/cit30/1) 2013; 46 Nguyen (D1TC04224F/cit38/1) 2014; 7 Zhou (D1TC04224F/cit19/1) 2020; 30 Li (D1TC04224F/cit45/1) 2017; 7 Moon (D1TC04224F/cit59/1) 2016; 28 Pumera (D1TC04224F/cit73/1) 2017; 29 Peet (D1TC04224F/cit35/1) 2006; 89 Cheng (D1TC04224F/cit50/1) 2016; 28 Xu (D1TC04224F/cit53/1) 2019; 484 Verploegen (D1TC04224F/cit29/1) 2010; 20 Cai (D1TC04224F/cit75/1) 2020; 8 Wang (D1TC04224F/cit57/1) 2018; 6 Brabec (D1TC04224F/cit1/1) 2004; 83 |
References_xml | – volume: 2 start-page: 7247 year: 2014 ident: D1TC04224F/cit28/1 publication-title: J. Mater. Chem. C doi: 10.1039/C4TC00994K – volume: 2 start-page: 17052 year: 2017 ident: D1TC04224F/cit85/1 publication-title: Nat. Energy doi: 10.1038/nenergy.2017.52 – volume: 86 start-page: 063502 year: 2005 ident: D1TC04224F/cit26/1 publication-title: Appl. Phys. Lett. doi: 10.1063/1.1861123 – volume: 14 start-page: 5371 year: 2014 ident: D1TC04224F/cit83/1 publication-title: Nano Lett. doi: 10.1021/nl502114w – volume: 270 start-page: 1789 year: 1995 ident: D1TC04224F/cit23/1 publication-title: Science doi: 10.1126/science.270.5243.1789 – volume: 25 start-page: 6642 year: 2013 ident: D1TC04224F/cit3/1 publication-title: Adv. Mater. doi: 10.1002/adma.201302563 – volume: 12 start-page: 309 year: 2021 ident: D1TC04224F/cit13/1 publication-title: Nat. Commun. doi: 10.1038/s41467-020-20580-8 – volume: 3 start-page: 1140 year: 2019 ident: D1TC04224F/cit40/1 publication-title: Joule doi: 10.1016/j.joule.2019.01.004 – volume: 31 start-page: 2103283 year: 2021 ident: D1TC04224F/cit7/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202103283 – volume: 119 start-page: 8310 year: 2015 ident: D1TC04224F/cit33/1 publication-title: J. Phys. Chem. C doi: 10.1021/jp512721e – volume: 9 start-page: 4645 year: 2018 ident: D1TC04224F/cit46/1 publication-title: Nat. Commun. doi: 10.1038/s41467-018-07017-z – volume: 117 start-page: 6225 year: 2017 ident: D1TC04224F/cit65/1 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.6b00558 – volume: 8 start-page: 4230 year: 2020 ident: D1TC04224F/cit75/1 publication-title: J. Mater. Chem. A doi: 10.1039/C9TA13974E – volume: 6 start-page: 2871 year: 2013 ident: D1TC04224F/cit24/1 publication-title: Energy Environ. Sci. doi: 10.1039/c3ee41773e – volume: 30 start-page: 2005426 year: 2020 ident: D1TC04224F/cit19/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202005426 – volume: 56 start-page: 13717 year: 2017 ident: D1TC04224F/cit58/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201707510 – volume: 15 start-page: 1617 year: 2005 ident: D1TC04224F/cit20/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.200500211 – volume: 30 start-page: 225 year: 2016 ident: D1TC04224F/cit43/1 publication-title: Org. Electron. doi: 10.1016/j.orgel.2015.12.024 – volume: 15 start-page: 1903977 year: 2019 ident: D1TC04224F/cit69/1 publication-title: Small doi: 10.1002/smll.201903977 – volume: 42 start-page: 010501 year: 2021 ident: D1TC04224F/cit9/1 publication-title: J. Semicond. doi: 10.1088/1674-4926/42/1/010501 – volume: 5 start-page: 8280 year: 2017 ident: D1TC04224F/cit71/1 publication-title: J. Mater. Chem. A doi: 10.1039/C6TA08140A – volume: 53 start-page: 1218 year: 2020 ident: D1TC04224F/cit14/1 publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.0c00157 – volume: 20 start-page: 3519 year: 2010 ident: D1TC04224F/cit29/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201000975 – volume: 31 start-page: 2008699 year: 2021 ident: D1TC04224F/cit55/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202008699 – volume: 117 start-page: 796 year: 2017 ident: D1TC04224F/cit25/1 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.6b00215 – volume: 9 start-page: 2857 year: 2021 ident: D1TC04224F/cit79/1 publication-title: J. Mater. Chem. A doi: 10.1039/D0TA10649F – volume: 7 start-page: 3040 year: 2014 ident: D1TC04224F/cit38/1 publication-title: Energy Environ. Sci. doi: 10.1039/C4EE01529K – volume: 9 start-page: 281 year: 2016 ident: D1TC04224F/cit4/1 publication-title: Energy Environ. Sci. doi: 10.1039/C5EE02641E – volume: 33 start-page: 2007231 year: 2021 ident: D1TC04224F/cit12/1 publication-title: Adv. Mater. doi: 10.1002/adma.202007231 – volume: 6 start-page: 23773 year: 2018 ident: D1TC04224F/cit57/1 publication-title: J. Mater. Chem. A doi: 10.1039/C8TA07214K – volume: 46 start-page: 5399 year: 2013 ident: D1TC04224F/cit30/1 publication-title: Macromolecules doi: 10.1021/ma400735a – volume: 119 start-page: 9142 year: 2015 ident: D1TC04224F/cit44/1 publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.5b01733 – volume: 130 start-page: 3619 year: 2008 ident: D1TC04224F/cit21/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja710079w – volume: 55 start-page: 1666 year: 2016 ident: D1TC04224F/cit74/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201507568 – volume: 13 start-page: 5117 year: 2020 ident: D1TC04224F/cit78/1 publication-title: Energy Environ. Sci. doi: 10.1039/D0EE02426K – volume: 484 start-page: 825 year: 2019 ident: D1TC04224F/cit53/1 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2019.04.162 – volume: 4 start-page: 611 year: 2010 ident: D1TC04224F/cit72/1 publication-title: Nat. Photonics doi: 10.1038/nphoton.2010.186 – volume: 17 start-page: 2102558 year: 2021 ident: D1TC04224F/cit76/1 publication-title: Small doi: 10.1002/smll.202102558 – volume: 44 start-page: 78 year: 2015 ident: D1TC04224F/cit2/1 publication-title: Chem. Soc. Rev. doi: 10.1039/C4CS00227J – volume: 361 start-page: 1094 year: 2018 ident: D1TC04224F/cit8/1 publication-title: Science doi: 10.1126/science.aat2612 – volume: 3 start-page: 175 year: 2020 ident: D1TC04224F/cit15/1 publication-title: InfoMat doi: 10.1002/inf2.12163 – volume: 27 start-page: 3318 year: 2015 ident: D1TC04224F/cit37/1 publication-title: Adv. Mater. doi: 10.1002/adma.201501132 – volume: 32 start-page: 1907604 year: 2020 ident: D1TC04224F/cit56/1 publication-title: Adv. Mater. doi: 10.1002/adma.201907604 – volume: 83 start-page: 273 year: 2004 ident: D1TC04224F/cit1/1 publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2004.02.030 – volume: 2 start-page: 5295 year: 2014 ident: D1TC04224F/cit51/1 publication-title: J. Mater. Chem. A doi: 10.1039/C3TA15378A – volume: 23 start-page: 100965 year: 2020 ident: D1TC04224F/cit77/1 publication-title: iScience doi: 10.1016/j.isci.2020.100965 – volume: 9 start-page: 3835 year: 2021 ident: D1TC04224F/cit81/1 publication-title: J. Mater. Chem. C doi: 10.1039/D1TC00240F – volume: 6 start-page: 183 year: 2007 ident: D1TC04224F/cit63/1 publication-title: Nat. Mater. doi: 10.1038/nmat1849 – volume: 7 start-page: 17827 year: 2015 ident: D1TC04224F/cit60/1 publication-title: Nanoscale doi: 10.1039/C5NR05113D – volume: 9 start-page: 4350 year: 2019 ident: D1TC04224F/cit41/1 publication-title: Sci. Rep. doi: 10.1038/s41598-019-40948-1 – volume: 23 start-page: 5342 year: 2011 ident: D1TC04224F/cit62/1 publication-title: Adv. Mater. doi: 10.1002/adma.201102735 – volume: 84 start-page: 105862 year: 2021 ident: D1TC04224F/cit80/1 publication-title: Nano Energy doi: 10.1016/j.nanoen.2021.105862 – volume: 7 start-page: 7437 year: 2019 ident: D1TC04224F/cit49/1 publication-title: J. Mater. Chem. A doi: 10.1039/C9TA00164F – volume: 7 start-page: 1602663 year: 2017 ident: D1TC04224F/cit45/1 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201602663 – volume: 10 start-page: 2515 year: 2019 ident: D1TC04224F/cit39/1 publication-title: Nat. Commun. doi: 10.1038/s41467-019-10351-5 – volume: 28 start-page: 5822 year: 2016 ident: D1TC04224F/cit50/1 publication-title: Adv. Mater. doi: 10.1002/adma.201600426 – volume: 18 start-page: 306 year: 2008 ident: D1TC04224F/cit31/1 publication-title: J. Mater. Chem. doi: 10.1039/B713926H – volume: 89 start-page: 252105 year: 2006 ident: D1TC04224F/cit35/1 publication-title: Appl. Phys. Lett. doi: 10.1063/1.2408661 – volume: 19 start-page: 1924 year: 2004 ident: D1TC04224F/cit6/1 publication-title: J. Mater. Res. doi: 10.1557/JMR.2004.0252 – volume: 25 start-page: 4245 year: 2013 ident: D1TC04224F/cit5/1 publication-title: Adv. Mater. doi: 10.1002/adma.201300623 – volume: 30 start-page: 2000456 year: 2020 ident: D1TC04224F/cit18/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202000456 – volume: 5 start-page: 1554 year: 2020 ident: D1TC04224F/cit17/1 publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.0c00537 – volume: 1 start-page: 1500167 year: 2015 ident: D1TC04224F/cit27/1 publication-title: Adv. Electron. Mater. doi: 10.1002/aelm.201500167 – volume: 18 start-page: 1721 year: 2006 ident: D1TC04224F/cit32/1 publication-title: Adv. Mater. doi: 10.1002/adma.200600188 – volume: 8 start-page: 16551 year: 2020 ident: D1TC04224F/cit54/1 publication-title: J. Mater. Chem. C doi: 10.1039/D0TC04096G – volume: 46 start-page: 1239 year: 2013 ident: D1TC04224F/cit84/1 publication-title: Acc. Chem. Res. doi: 10.1021/ar4001235 – start-page: 2105301 year: 2021 ident: D1TC04224F/cit82/1 publication-title: Adv. Mater. doi: 10.1002/adma.202105301 – volume: 65 start-page: 272 year: 2020 ident: D1TC04224F/cit10/1 publication-title: Sci. Bull. doi: 10.1016/j.scib.2020.01.001 – volume: 28 start-page: 1481 year: 2016 ident: D1TC04224F/cit59/1 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.5b04915 – volume: 132 start-page: 7595 year: 2010 ident: D1TC04224F/cit34/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja103275u – volume: 49 start-page: 2828 year: 2020 ident: D1TC04224F/cit16/1 publication-title: Chem. Soc. Rev. doi: 10.1039/D0CS00084A – volume: 31 start-page: 1900477 year: 2019 ident: D1TC04224F/cit47/1 publication-title: Adv. Mater. doi: 10.1002/adma.201900477 – volume: 28 start-page: 876 year: 2016 ident: D1TC04224F/cit42/1 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.5b04346 – volume: 32 start-page: 2003164 year: 2020 ident: D1TC04224F/cit48/1 publication-title: Adv. Mater. doi: 10.1002/adma.202003164 – volume: 29 start-page: 1605299 year: 2017 ident: D1TC04224F/cit73/1 publication-title: Adv. Mater. doi: 10.1002/adma.201605299 – volume: 306 start-page: 666 year: 2004 ident: D1TC04224F/cit64/1 publication-title: Science doi: 10.1126/science.1102896 – volume: 10 start-page: 121 year: 2018 ident: D1TC04224F/cit52/1 publication-title: Polymers doi: 10.3390/polym10020121 – volume: 27 start-page: 1519 year: 2015 ident: D1TC04224F/cit61/1 publication-title: Adv. Mater. doi: 10.1002/adma.201404248 – volume: 92 start-page: 223303 year: 2008 ident: D1TC04224F/cit70/1 publication-title: Appl. Phys. Lett. doi: 10.1063/1.2938865 – volume: 59 start-page: 22714 year: 2020 ident: D1TC04224F/cit11/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202010856 – volume: 16 start-page: 170 year: 2017 ident: D1TC04224F/cit66/1 publication-title: Nat. Mater. doi: 10.1038/nmat4703 – volume: 32 start-page: 1904302 year: 2020 ident: D1TC04224F/cit67/1 publication-title: Adv. Mater. doi: 10.1002/adma.201904302 – volume: 2 start-page: e31 year: 2021 ident: D1TC04224F/cit22/1 publication-title: Aggregate doi: 10.1002/agt2.31 – volume: 6 start-page: 497 year: 2007 ident: D1TC04224F/cit36/1 publication-title: Nat. Mater. doi: 10.1038/nmat1928 – volume: 26 start-page: 864 year: 2016 ident: D1TC04224F/cit68/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201503273 |
SSID | ssj0000816869 |
Score | 2.5462677 |
SecondaryResourceType | review_article |
Snippet | The rapid development of organic solar cells (OSCs) has drawn enormous attention during the past few decades. Improving the power conversion efficiency (PCE)... |
SourceID | proquest crossref rsc |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 2364 |
SubjectTerms | Additives Energy conversion efficiency Morphology Optimization Photovoltaic cells Physical properties Solar cells |
Title | Solid additives in organic solar cells: progress and perspectives |
URI | https://www.proquest.com/docview/2629513938 |
Volume | 1 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Rb9MwELa6TkjwgNhgojCQJXhBUUZiJ7HD29S1GqiMB1KpPEWJ40iRRjqt2Qv_gH_N2bGdIDYEe4kqO4kc3-fz3fX8HUJvWRnXqYrcUxEwPyrr1OcJoz6voSPhdVFXmu3zIjlfR5828WYy-TnKWrrpyhPx49ZzJfeRKrSBXNUp2f-QrHspNMBvkC9cQcJw_ScZf91eNpWnUoI6zR7btKZKk_B2ymX1VFhe57zpNCyl1DQvwHDAcneHcQp2bP8BnrAV4U68eX-4x_aoBMXtVefoBkYVdSqpFZBTKY2_7AOtn90u4CLV34rvTTsowq2_0gkGun8ckwB3VlVIYQ5FfeTDpp3qtBIz1EG7kSAOfBYTw4M9bjPRTauegxEM2VjX0p7_3OzbhPblfv7YEwKqKFWrsBOK7yyqh53P_tt_8SVfrlerPFtssj20T8DjIFO0f7rIPq5cwE5XKNElEt3QLd0tTd8Pr__dwBm8lr1rW1JGmy7ZE_TYiBWf9gA6QBPZHqJHIybKQ_RAZwKL3VPYZxWosAMVblpsQIU1qLAG1QdsIYVB9ngMqWdovVxk83Pf1NnwBeW08wn4yGkRgzHDqziUIS8ZLOBEhEnJpEiqopREeQpBAQsa7EHOeSRJWZdBXCVKwR-habtt5XOEYyKDOqzTIqpoBL45FywkymguFLMfYzP0zk5OLgwJvaqFcpnrZAia5mdhNtcTuZyhN-7eq5565da7ju0c52Zp7nKSwDfBiCmfoSOYd_f8IKYXf3_uJXo4APsYTbvrG_kKzM-ufG2A8QswH4W7 |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Solid+additives+in+organic+solar+cells%3A+progress+and+perspectives&rft.jtitle=Journal+of+materials+chemistry.+C%2C+Materials+for+optical+and+electronic+devices&rft.au=Yi-Fan%2C+Ma&rft.au=Zhang%2C+Yamin&rft.au=Hao-Li%2C+Zhang&rft.date=2022-02-17&rft.pub=Royal+Society+of+Chemistry&rft.issn=2050-7526&rft.eissn=2050-7534&rft.volume=10&rft.issue=7&rft.spage=2364&rft.epage=2374&rft_id=info:doi/10.1039%2Fd1tc04224f&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-7526&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-7526&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-7526&client=summon |