In vivo Protein Evolution, Next Generation Protein Engineering Strategy: from Random Approach to Target-specific Approach
In vivo protein evolution is a protein engineering approach that is performed by both generating mutagenesis libraries and selecting desired mutants in a cell. Despite its clear advantages in some aspects, the approach has not much been popularized compared to in vitro protein evolution methods whic...
Saved in:
Published in | Biotechnology and bioprocess engineering Vol. 24; no. 1; pp. 85 - 94 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Seoul
The Korean Society for Biotechnology and Bioengineering
01.02.2019
Springer Nature B.V 한국생물공학회 |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In vivo
protein evolution is a protein engineering approach that is performed by both generating mutagenesis libraries and selecting desired mutants in a cell. Despite its clear advantages in some aspects, the approach has not much been popularized compared to
in vitro
protein evolution methods which employ
in vitro
mutagenesis. The reason behind this unpopularity is the limitations in the low library diversity and specificity of in vivo mutagenic methods compared to those of
in vitro
mutagenic methods. While various non-specific and specific
in vitro
mutagenic methods, which allowed us to use computational design principles as well as random approach in the design of mutant library, had been developed, in vivo mutagenic methods were stalled at the step of random mutagenesis since the in vivo generation of target-specific library with high specificity and broad mutational spectra is quite challenging. Recently, various in vivo protein mutagenesis methods have been developed to generate rather focused libraries in a target-specific manner, thanks to the significant decrease in the price of oligomer synthesis and better understanding of DNA targeting systems. In this review, we examined the trends of in vivo protein evolution and inspect some of the state-of-the-art techniques that were recently introduced for in vivo protein mutagenesis in a target-specific manner. In vivo protein mutagenesis is a subject undergoing intense study and will become more specific and thorough simultaneously. |
---|---|
AbstractList | In vivo protein evolution is a protein engineering approach that is performed by both generating mutagenesis libraries and selecting desired mutants in a cell. Despite its clear advantages in some aspects, the approach has not much been popularized compared to in vitro protein evolution methods which employ in vitro mutagenesis. The reason behind this unpopularity is the limitations in the low library diversity and specificity of in vivo mutagenic methods compared to those of in vitro mutagenic methods. While various non-specific and specific in vitro mutagenic methods, which allowed us to use computational design principles as well as random approach in the design of mutant library, had been developed, in vivo mutagenic methods were stalled at the step of random mutagenesis since the in vivo generation of target-specific library with high specificity and broad mutational spectra is quite challenging. Recently, various in vivo protein mutagenesis methods have been developed to generate rather focused libraries in a target-specific manner, thanks to the significant decrease in the price of oligomer synthesis and better understanding of DNA targeting systems. In this review, we examined the trends of in vivo protein evolution and inspect some of the state-of-the-art techniques that were recently introduced for in vivo protein mutagenesis in a target-specific manner. In vivo protein mutagenesis is a subject undergoing intense study and will become more specific and thorough simultaneously. In vivo protein evolution is a protein engineering approach that is performed by both generating mutagenesis libraries and selecting desired mutants in a cell. Despite its clear advantages in some aspects, the approach has not much been popularized compared to in vitro protein evolution methods which employ in vitro mutagenesis. The reason behind this unpopularity is the limitations in the low library diversity and specificity of in vivo mutagenic methods compared to those of in vitro mutagenic methods. While various non-specific and specific in vitro mutagenic methods, which allowed us to use computational design principles as well as random approach in the design of mutant library, had been developed, in vivo mutagenic methods were stalled at the step of random mutagenesis since the in vivo generation of target-specific library with high specificity and broad mutational spectra is quite challenging. Recently, various in vivo protein mutagenesis methods have been developed to generate rather focused libraries in a target-specific manner, thanks to the significant decrease in the price of oligomer synthesis and better understanding of DNA targeting systems. In this review, we examined the trends of in vivo protein evolution and inspect some of the state-of-the-art techniques that were recently introduced for in vivo protein mutagenesis in a target-specific manner. In vivo protein mutagenesis is a subject undergoing intense study and will become more specific and thorough simultaneously. KCI Citation Count: 1 In vivo protein evolution is a protein engineering approach that is performed by both generating mutagenesis libraries and selecting desired mutants in a cell. Despite its clear advantages in some aspects, the approach has not much been popularized compared to in vitro protein evolution methods which employ in vitro mutagenesis. The reason behind this unpopularity is the limitations in the low library diversity and specificity of in vivo mutagenic methods compared to those of in vitro mutagenic methods. While various non-specific and specific in vitro mutagenic methods, which allowed us to use computational design principles as well as random approach in the design of mutant library, had been developed, in vivo mutagenic methods were stalled at the step of random mutagenesis since the in vivo generation of target-specific library with high specificity and broad mutational spectra is quite challenging. Recently, various in vivo protein mutagenesis methods have been developed to generate rather focused libraries in a target-specific manner, thanks to the significant decrease in the price of oligomer synthesis and better understanding of DNA targeting systems. In this review, we examined the trends of in vivo protein evolution and inspect some of the state-of-the-art techniques that were recently introduced for in vivo protein mutagenesis in a target-specific manner. In vivo protein mutagenesis is a subject undergoing intense study and will become more specific and thorough simultaneously. |
Author | Lee, Sun-Gu Kim, Jin Young Yoo, Hee-Wang Kim, Byung-Gee Lee, Pyung-Gang Seo, Joo-Hyun |
Author_xml | – sequence: 1 givenname: Jin Young surname: Kim fullname: Kim, Jin Young organization: Interdisciplinary Program in Bioengineering, Seoul National University – sequence: 2 givenname: Hee-Wang surname: Yoo fullname: Yoo, Hee-Wang organization: Interdisciplinary Program in Bioengineering, Seoul National University – sequence: 3 givenname: Pyung-Gang surname: Lee fullname: Lee, Pyung-Gang organization: School of Chemical and Biological Engineering · Institute of Engineering Research, Seoul National University, Institute of Molecular Biology and Genetics, Seoul National University – sequence: 4 givenname: Sun-Gu surname: Lee fullname: Lee, Sun-Gu organization: Department of Chemical and Biochemical Engineering, Pusan National University – sequence: 5 givenname: Joo-Hyun surname: Seo fullname: Seo, Joo-Hyun organization: Department of Bio and Fermentation Convergence Technology, Kookmin University – sequence: 6 givenname: Byung-Gee surname: Kim fullname: Kim, Byung-Gee email: byungkim@snu.ac.kr organization: Interdisciplinary Program in Bioengineering, Seoul National University, School of Chemical and Biological Engineering · Institute of Engineering Research, Seoul National University, Institute of Molecular Biology and Genetics, Seoul National University |
BackLink | https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002466881$$DAccess content in National Research Foundation of Korea (NRF) |
BookMark | eNp9kV9rFDEUxQepYFv9AL4FfFFwdHIz-TO-LaXWhaJS1-eQyd6saWeTMZld3G9vtiMWCvp0Lrm_E-6956w6CTFgVb2kzTvaNPJ9pgBc1g1VdcO6toYn1SntpKiZouKk1ACiVkzCs-os59umaaVS6rQ6LAPZ-30kX1Oc0AdyuY_DbvIxvCWf8ddErjBgMseHByRsfEBMPmzIt6k0cXP4QFyKW3JjwrrIYhxTNPYHmSJZmbTBqc4jWu-8_dt7Xj11Zsj44o-eV98_Xq4uPtXXX66WF4vr2jLFpppS3rXAmMC-BQm9lKbjrkFBnTUO2n4trLGd63tYd44KxZnlHND2PaOAa3ZevZn_DcnpO-t1NP5eN1HfJb24WS01bwUVvC3s65ktI_7cYZ701meLw2ACxl3WAExyEIzygr56hN7GXQplEw1KCioV5bRQcqZsijkndNr66f6a5W5-0LTRx_j0HJ8u8eljfBqKkz5yjslvTTr81wOzJ4_HcDA9zPRv029ROK7q |
CitedBy_id | crossref_primary_10_3390_ijms22030990 crossref_primary_10_1016_j_copbio_2020_06_001 crossref_primary_10_1016_j_chemosphere_2021_131535 crossref_primary_10_1080_19420862_2024_2442750 crossref_primary_10_1016_j_ab_2021_114266 crossref_primary_10_1007_s11427_022_2214_2 crossref_primary_10_1016_j_biotechadv_2023_108116 crossref_primary_10_1007_s12257_019_0363_4 crossref_primary_10_1007_s12257_020_0320_2 crossref_primary_10_1093_jambio_lxad075 crossref_primary_10_1002_advs_202309004 crossref_primary_10_1007_s12257_020_0181_8 crossref_primary_10_1007_s12257_021_0112_3 |
Cites_doi | 10.1002/prot.340230306 10.1073/pnas.022039799 10.1093/nar/16.15.7351 10.1038/nmeth.1971 10.1128/AEM.01758-08 10.1002/cbic.200800836 10.1016/0014-5793(95)00557-P 10.1002/bit.26385 10.1073/pnas.94.9.4504 10.1038/nature17938 10.1002/anie.200352100 10.1007/s00253-017-8584-y 10.1038/s41586-018-0384-8 10.1016/j.jmb.2012.11.015 10.1038/nrg3927 10.1128/AEM.71.8.4220-4224.2005 10.1093/bioinformatics/bty481 10.1038/s41467-017-01055-9 10.1016/S0022-2836(05)80038-5 10.1073/pnas.83.3.576 10.1073/pnas.90.12.5618 10.1038/nature19946 10.1093/nar/19.21.6052 10.1038/nature26155 10.1038/s41467-018-07488-0 10.1126/science.aac7041 10.1038/347631a0 10.1038/ncomms9425 10.1038/7939 10.1093/protein/gzp017 10.1038/370389a0 10.1038/nmeth899 10.1007/s00253-017-8636-3 10.1016/j.gene.2006.10.022 10.1007/BF02761755 10.1073/pnas.1215994110 10.1007/s12010-010-9052-7 10.1038/nature09929 10.1007/s002530050886 10.1038/nbt0396-315 10.1038/nbt0597-436 10.1016/j.ymben.2017.02.009 10.1093/glycob/cwt092 10.1073/pnas.89.8.3576 10.1126/science.1205822 10.1038/nbt0496-458 10.1007/s00018-010-0610-5 10.1038/nature08187 10.1016/j.copbio.2005.06.004 10.1038/nbt.3718 10.1016/j.copbio.2017.05.012 |
ContentType | Journal Article |
Copyright | The Korean Society for Biotechnology and Bioengineering and Springer 2019 The Korean Society for Biotechnology and Bioengineering and Springer 2019. |
Copyright_xml | – notice: The Korean Society for Biotechnology and Bioengineering and Springer 2019 – notice: The Korean Society for Biotechnology and Bioengineering and Springer 2019. |
DBID | AAYXX CITATION 3V. 7QO 7QP 7T7 7WY 7WZ 7X7 7XB 87Z 88A 88I 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK 8FL ABJCF ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BEZIV BGLVJ BHPHI C1K CCPQU DWQXO FR3 FRNLG FYUFA F~G GHDGH GNUQQ HCIFZ K60 K6~ K9. L.- L6V LK8 M0C M0S M2P M7P M7S P5Z P62 P64 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U 7S9 L.6 ACYCR |
DOI | 10.1007/s12257-018-0394-2 |
DatabaseName | CrossRef ProQuest Central (Corporate) Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ABI/INFORM Collection ABI/INFORM Global (PDF only) Health & Medical Collection ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Biology Database (Alumni Edition) Science Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) Materials Science & Engineering Collection (ProQuest) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Database ProQuest Central Essentials Biological Science Collection ProQuest Central (New) Business Premium Collection Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea Engineering Research Database Business Premium Collection (Alumni) Health Research Premium Collection ABI/INFORM Global (Corporate) Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection ProQuest Health & Medical Complete (Alumni) ABI/INFORM Professional Advanced ProQuest Engineering Collection Biological Sciences ABI/INFORM Global ProQuest Health & Medical Collection Science Database Biological Science Database Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering collection ProQuest Central Basic AGRICOLA AGRICOLA - Academic Korean Citation Index |
DatabaseTitle | CrossRef ProQuest Business Collection (Alumni Edition) ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials SciTech Premium Collection ProQuest Central China ABI/INFORM Complete Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Biological Science Collection Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest Business Collection ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) ABI/INFORM Global (Corporate) ProQuest One Business Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central ABI/INFORM Professional Advanced ProQuest Engineering Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea ABI/INFORM Complete (Alumni Edition) ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest SciTech Collection Advanced Technologies & Aerospace Database Materials Science & Engineering Collection ProQuest One Business (Alumni) ProQuest Central (Alumni) Business Premium Collection (Alumni) AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA ProQuest Business Collection (Alumni Edition) |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1976-3816 |
EndPage | 94 |
ExternalDocumentID | oai_kci_go_kr_ARTI_5461654 10_1007_s12257_018_0394_2 |
GroupedDBID | --- -4Y -58 -5G -BR -EM -Y2 -~C .86 .UV .VR 06C 06D 0R~ 0VY 1N0 203 23N 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2WC 2~H 30V 3V. 4.4 406 408 40D 40E 53G 5GY 5VS 6NX 7WY 7X7 88A 88I 8AO 8FE 8FG 8FH 8FI 8FJ 8FL 8UJ 95- 95. 95~ 96X 9ZL A8Z AAAVM AABHQ AACDK AAHBH AAHNG AAIAL AAIKT AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABDZT ABECU ABFTV ABHQN ABJCF ABJNI ABJOX ABKCH ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACSNA ACZOJ ADBBV ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AFBBN AFGCZ AFKRA AFLOW AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHMBA AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBNVY BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BHPHI BPHCQ BVXVI CAG CCPQU COF CS3 CSCUP DDRTE DNIVK DPUIP DU5 DWQXO E3Z EBD EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC FYUFA G-Y G-Z GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GROUPED_ABI_INFORM_COMPLETE H13 HCIFZ HF~ HG6 HMCUK HMJXF HRMNR HVGLF HZ~ I-F IJ- IKXTQ IWAJR IXC IXD I~X I~Z J-C J0Z JBSCW JZLTJ K60 K6~ KOV KVFHK L6V LK8 LLZTM M0C M0L M2P M4Y M7P M7S MA- ML0 MZR N2Q NDZJH NF0 NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OK1 P19 P2P P62 P9N PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 PTHSS Q2X QOK QOR QOS R89 R9I RHV RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCG SCLPG SCM SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TUC TUS U2A UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W48 W4F WK8 YLTOR Z45 Z7U Z7V Z7W Z8Q ZMTXR ZZE ~A9 AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT 7QO 7QP 7T7 7XB 8FD 8FK ABRTQ C1K FR3 K9. L.- P64 PKEHL PQEST PQGLB PQUKI PRINS Q9U 7S9 L.6 85H AABYN AAFGU AAGCJ AAPBV AAUCO AAYFA ABFGW ABKAS ACBMV ACBRV ACBYP ACIGE ACIPQ ACTTH ACVWB ACWMK ACYCR ADMDM ADOXG AEEQQ AEFTE AESTI AEVTX AFNRJ AGGBP AIMYW AJDOV AJGSW AKQUC ESTFP SQXTU UNUBA Z5O |
ID | FETCH-LOGICAL-c383t-115942336eb4272b77a95f0e61fcaf24bd6cac9fbb2d9f16853c552ecbb312ed3 |
IEDL.DBID | 7X7 |
ISSN | 1226-8372 |
IngestDate | Tue Nov 21 21:39:42 EST 2023 Fri Jul 11 03:18:05 EDT 2025 Fri Jul 25 18:59:17 EDT 2025 Thu Apr 24 22:58:34 EDT 2025 Tue Jul 01 02:05:43 EDT 2025 Fri Feb 21 02:42:31 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | random focused library protein evolution screening method target-specific |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c383t-115942336eb4272b77a95f0e61fcaf24bd6cac9fbb2d9f16853c552ecbb312ed3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PQID | 2876178151 |
PQPubID | 54768 |
PageCount | 10 |
ParticipantIDs | nrf_kci_oai_kci_go_kr_ARTI_5461654 proquest_miscellaneous_2237526315 proquest_journals_2876178151 crossref_citationtrail_10_1007_s12257_018_0394_2 crossref_primary_10_1007_s12257_018_0394_2 springer_journals_10_1007_s12257_018_0394_2 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20190200 2019-02-00 20190201 2019-02 |
PublicationDateYYYYMMDD | 2019-02-01 |
PublicationDate_xml | – month: 2 year: 2019 text: 20190200 |
PublicationDecade | 2010 |
PublicationPlace | Seoul |
PublicationPlace_xml | – name: Seoul – name: Dordrecht |
PublicationTitle | Biotechnology and bioprocess engineering |
PublicationTitleAbbrev | Biotechnol Bioproc E |
PublicationYear | 2019 |
Publisher | The Korean Society for Biotechnology and Bioengineering Springer Nature B.V 한국생물공학회 |
Publisher_xml | – name: The Korean Society for Biotechnology and Bioengineering – name: Springer Nature B.V – name: 한국생물공학회 |
References | ŠaliA.PottertonL.YuanF.van VlijmenH.KarplusM.Evaluation of comparative protein modeling by MODELLERProteins: Structure, Function, and Bioinformatics19952331832610.1002/prot.340230306 HiguchiR.KrummelB.SaikiR.A general method of in vitro preparation and specific mutagenesis of DNA fragments: study of protein and DNA interactionsNucleic Acids Research198816735173671:CAS:528:DyaL1cXls1Cqu74%3D304575633841310.1093/nar/16.15.7351 ChoiY. H.KimJ. H.ParkJ. H.LeeN.KimD.H.JangK.S.ParkI.H.KimB.G.Protein engineering of α2, 3/2, 6-sialyltransferase to improve the yield and productivity of in vitro sialyllactose synthesisGlycobiology2013241591692414296110.1093/glycob/cwt092 KarplusM.PetskoG. A.Molecular dynamics simulations in biologyNature19903476311:CAS:528:DyaK3MXitVaqsQ%3D%3D221569510.1038/347631a0 ChenK.ArnoldF. H.Tuning the activity of an enzyme for unusual environments: sequential random mutagenesis of subtilisin E for catalysis in dimethylformamideProceedings of the National Academy of Sciences199390561856221:CAS:528:DyaK3sXks1Kgtrg%3D10.1073/pnas.90.12.5618 CherryJ. R.LamsaM. H.SchneiderP.VindJ.SvendsenA.JonesA.PedersenA. H.Directed evolution of a fungal peroxidaseNature Biotechnology1999173791:CAS:528:DyaK1MXitl2hurg%3D1020788810.1038/7939 CarrR.AlexeevaM.EnrightA.EveT. S.DawsonM. J.TurnerN. J.Directed evolution of an amine oxidase possessing both broad substrate specificity and high enantioselectivityAngewandte Chemie International Edition200342480748101:CAS:528:DC%2BD3sXosFKmtr8%3D1456235510.1002/anie.200352100 ReynoldsT. S.CourtneyC. M.EricksonK. E.WolfeL. M.ChatterjeeA.NagpalP.GillR. T.ROS mediated selection for increased NADPH availability in Escherichia coliBiotechnology and Bioengineering2017114268526891:CAS:528:DC%2BC2sXhtlClt7fK2871085710.1002/bit.26385 WangH. H.KimH.CongL.JeongJ.BangD.ChurchG. M.Genome-scale promoter engineering by coselection MAGENature Methods2012959122484848342821710.1038/nmeth.1971 YeomS.J.KimM.KwonK. K.FuY.RhaE.ParkS.H.LeeH.KimH.LeeD.H.KimD.M.A synthetic microbial biosensor for high-throughput screening of lactam biocatalystsNature Communications20189505330498220626524410.1038/s41467-018-07488-0 LongwellC. K.LabaniehL.CochranJ. R.Highthroughput screening technologies for enzyme engineeringCurrent Opinion in Biotechnology2017481962021:CAS:528:DC%2BC2sXpsVGqtbg%3D2862472410.1016/j.copbio.2017.05.012 BadranA. H.GuzovV. M.HuaiQ.KempM. M.VishwanathP.KainW.NanceA. M.EvdokimovA.MoshiriF.TurnerK. H.Continuous evolution of Bacillus thuringiensis toxins overcomes insect resistanceNature2016533581:CAS:528:DC%2BC28XmvVGnt7Y%3D27120167486540010.1038/nature17938 HuangP.S.BoykenS. E.BakerD.The coming of age of de novo protein designNature20165373201:CAS:528:DC%2BC28XhsFajsrzL2762963810.1038/nature19946 De GroeveM. R.De BaereM.HoflackL.DesmetT.VandammeE. J.SoetaertW.Creating lactose phosphorylase enzymes by directed evolution of cellobiose phosphorylaseProtein Engineering, Design & Selection20092239339910.1093/protein/gzp017 LiaoH.McKenzieT.HagemanR.Isolation of a thermostable enzyme variant by cloning and selection in a thermophileProceedings of the National Academy of Sciences1986835765801:CAS:528:DyaL28Xht1Gksrw%3D10.1073/pnas.83.3.576 BlagodatskiA.KatanaevV. L.Technologies of directed protein evolution in vivoCellular and Molecular Life Sciences201168120712141:CAS:528:DC%2BC3MXjtVKiu7Y%3D2119005810.1007/s00018-010-0610-5 KanoH.TaguchiS.MomoseH.Cold adaptation of a mesophilic serine protease, subtilisin, by in vitro random mutagenesisApplied Microbiology and Biotechnology19974746511:CAS:528:DyaK2sXptVWhtw%3D%3D903541010.1007/s002530050886 ZhouY.ZhangX.EbrightR. H.Random mutagenesis of gene-sized DNA molecules by use of PCR with Taq DNA polymeraseNucleic Acids Research19911960521:CAS:528:DyaK38Xhtl2h165875132907010.1093/nar/19.21.6052 YunH.HwangB.Y.LeeJ.H.KimB.G.Use of enrichment culture for directed evolution of the Vibrio fluvialis JS17 ω-transaminase, which is resistant to product inhibition by aliphatic ketonesApplied and Environmental Microbiology200571422042241:CAS:528:DC%2BD2MXoslGitrg%3D16085806118328010.1128/AEM.71.8.4220-4224.2005 AharoniA.ThiemeK.ChiuC. P.BuchiniS.LairsonL. L.ChenH.StrynadkaN. C.WakarchukW. W.WithersS. G.High-throughput screening methodology for the directed evolution of glycosyltransferasesNature Methods200636091:CAS:528:DC%2BD28XntFCgtLk%3D1686213510.1038/nmeth899 StemmerW. P.Rapid evolution of a protein in vitro by DNA shufflingNature19943703891:CAS:528:DyaK2cXlvFOjsrs%3D804714710.1038/370389a0 PackerM. S.ReesH. A.LiuD. R.Phage-assisted continuous evolution of proteases with altered substrate specificityNature Communications2017895629038472564351510.1038/s41467-017-01055-9 WangT.BadranA. H.HuangT. P.LiuD. R.Continuous directed evolution of proteins with improved soluble expression. Nature Chemical Biology2018 JungE.ParkB. G.YooH.W.KimJ.ChoiK.Y.KimB.G.Semi-rational engineering of CYP153A35 to enhance ω-hydroxylation activity toward palmitic acidApplied Microbiology and Biotechnology20181022692771:CAS:528:DC%2BC2sXhslyktr%2FL2912428310.1007/s00253-017-8584-y HalperinS. O.TouC. J.WongE. B.ModaviC.SchafferD. V.DueberJ. E.CRISPR-guided DNA polymerases enable diversification of all nucleotides in a tunable window201810.1038/s41586-018-0384-8 GramH.MarconiL.A.BarbasC. F.ColletT. A.LernerR. A.KangA. S.In vitro selection and affinity maturation of antibodies from a naive combinatorial immunoglobulin libraryProceedings of the National Academy of Sciences199289357635801:CAS:528:DyaK38XisFeltr4%3D10.1073/pnas.89.8.3576 LeachA. R.Ligand docking to proteins with discrete side-chain flexibilityJournal of Molecular Biology19942353453561:CAS:528:DyaK2cXhvVKlu7c%3D828925510.1016/S0022-2836(05)80038-5 MooreC. L.Papa IIIL. J.ShouldersM. D.A processive protein chimera introduces mutations across defined DNA regions in vivo. Journal of the American Chemical Society2018 CrameriA.DawesG.RodriguezE.JrSilverS.StemmerW. P.Molecular evolution of an arsenate detoxification pathway by DNA shufflingNature Biotechnology1997154361:CAS:528:DyaK2sXivVOruro%3D913162110.1038/nbt0597-436 MullisK. B.US Patent No. US4683202A1985 ScottD. J.PlückthunA.Direct molecular evolution of detergent-stable G protein-coupled receptors using polymer encapsulated cellsJournal of Molecular Biology20134256626771:CAS:528:DC%2BC38XhvV2rsLfF2316456810.1016/j.jmb.2012.11.015 CallananM. J.RussellW. M.KlaenhammerT. R.Modification of Lactobacillus β-glucuronidase activity by random mutagenesisGene20073891221271:CAS:528:DC%2BD2sXht1Gjtr8%3D1717448210.1016/j.gene.2006.10.022 MorlockL. K.BöttcherD.BornscheuerU. T.Simultaneous detection of NADPH consumption and H 2O production using the Ampliflu™ Red assay for screening of P450 activities and uncouplingApplied Microbiology and Biotechnology2018102299410.1007/s00253-017-8636-3 HuJ. H.MillerS. M.GeurtsM. H.TangW.ChenL.SunN.ZeinaC. M.GaoX.ReesH. A.LinZ.Evolved Cas9 variants with broad PAM compatibility and high DNA specificityNature2018556571:CAS:528:DC%2BC1cXntVGjtrw%3D29512652595163310.1038/nature26155 HansonJ.PaliwalK.LitfinT.YangY.ZhouY.ValenciaA.Accurate prediction of protein contact maps by coupling residual two-dimensional bidirectional long short-term memory with convolutional neural networks201810.1093/bioinformatics/bty481 EsveltK. M.CarlsonJ. C.LiuD. R.A system for the continuous directed evolution of biomoleculesNature20114724991:CAS:528:DC%2BC3MXksFWgtb4%3D21478873308435210.1038/nature09929 KochD. J.ChenM. M.van BeilenJ. B.ArnoldF. H.In vivo evolution of butane oxidation by terminal alkane hydroxylases AlkB and CYP153A6Applied and Environmental Microbiology2009753373441:CAS:528:DC%2BD1MXktlejsL4%3D1901105710.1128/AEM.01758-08 GarstA. D.BassaloM. C.PinesG.LynchS. A.Halweg-EdwardsA. L.LiuR.LiangL.WangZ.ZeitounR.AlexanderW. G.Genome-wide mapping of mutations at singlenucleotide resolution for protein, metabolic and genome engineeringNature Biotechnology201735481:CAS:528:DC%2BC28XitFWnsbnJ2794180310.1038/nbt.3718 SantoroS. W.SchultzP. G.Directed evolution of the site specificity of Cre recombinaseProceedings of the National Academy of Sciences200299418541901:CAS:528:DC%2BD38XivFShsLo%3D10.1073/pnas.022039799 WangT.BirsoyK.HughesN. W.KrupczakK. M.PostY.WeiJ. J.LanderE. S.SabatiniD. M.Identification and characterization of essential genes in the human genomeScience2015350109611011:CAS:528:DC%2BC2MXhvFamtL3F26472758466292210.1126/science.aac7041 ChicaR. A.DoucetN.PelletierJ. N.Semi-rational approaches to engineering enzyme activity: combining the benefits of directed evolution and rational designCurrent Opinion in Biotechnology2005163783841:CAS:528:DC%2BD2MXntVCqtLs%3D1599407410.1016/j.copbio.2005.06.004 KimH.J.KangS. Y.ParkJ. J.KimP.Novel activity of UDP-galactose-4-epimerase for free monosaccharide and activity improvement by active site-saturation mutagenesisApplied Biochemistry and Biotechnology20111634444511:CAS:528:DC%2BC3MXhvVWlsLw%3D2071785210.1007/s12010-010-9052-7 IsaacsF. J.CarrP. A.WangH. H.LajoieM. J.SterlingB.KraalL.TolonenA. C.GianoulisT. A.GoodmanD. B.ReppasN. B.Precise manipulation of chromosomes in vivo enables genome-wide codon replacementScience20113333483531:CAS:528:DC%2BC3MXos1yltbk%3D21764749547233210.1126/science.1205822 MooreJ. C.ArnoldF. H.Directed evolution of a para-nitrobenzyl esterase for aqueous-organic solventsNature Biotechnology1996144581:CAS:528:DyaK28XislCmtbs%3D963092010.1038/nbt0496-458 EhrigT.O’KaneD. J.PrendergastF. G.Green fluorescent protein mutants with altered fluorescence excitation spectraFEBS Letters19953671631661:CAS:528:DyaK2MXms1yktL4%3D779691210.1016/0014-5793(95)00557-P LiangL.LiuR.GarstA. D.LeeT.BeckhamG. T.GillR. T.CRISPR EnAbled Trackable genome Engineering for isopropanol production in Escherichia coliMetabolic Engineering2017411101:CAS:528:DC%2BC2sXktVykt7g%3D2821610810.1016/j.ymben.2017.02.009 ZhangJ.H.DawesG.StemmerW. P.Directed evolution of a fucosidase from a galactosidase by DNA shuffling and screeningProceedings of the National Academy of Sciences19979445044509 J.H. Zhang (394_CR9) 1997; 94 S. O. Halperin (394_CR28) 2018 C. L. Moore (394_CR30) 2018 R. A. Chica (394_CR17) 2005; 16 P.S. Huang (394_CR16) 2016; 537 J. C. Moore (394_CR2) 1996; 14 L. K. Morlock (394_CR25) 2018; 102 H. H. Wang (394_CR46) 2009; 460 A. Šali (394_CR15) 1995; 23 T. Wang (394_CR45) 2018 M. S. Packer (394_CR23) 2015; 16 K. B. Mullis (394_CR1) 1985 H. Kano (394_CR8) 1997; 47 S. W. Santoro (394_CR33) 2002; 99 A. Crameri (394_CR12) 1997; 15 J. Hanson (394_CR18) 2018 A. D. Garst (394_CR29) 2017; 35 H. H. Wang (394_CR47) 2012; 9 M. J. Callanan (394_CR39) 2007; 389 L. Yi (394_CR34) 2013; 110 J. H. Hu (394_CR41) 2018; 556 D. J. Scott (394_CR21) 2013; 425 W. P. Stemmer (394_CR7) 1994; 370 A. H. Badran (394_CR40) 2015; 6 H.J. Kim (394_CR53) 2011; 163 E. Jung (394_CR27) 2018; 102 M. Karplus (394_CR13) 1990; 347 M. R. De Groeve (394_CR54) 2009; 22 H. Yun (394_CR32) 2005; 71 D. J. Koch (394_CR31) 2009; 75 Y. H. Choi (394_CR26) 2013; 24 T. Ehrig (394_CR37) 1995; 367 R. Higuchi (394_CR51) 1988; 16 A. R. Leach (394_CR14) 1994; 235 C. K. Longwell (394_CR24) 2017; 48 T. Wang (394_CR22) 2015; 350 Y. Zhou (394_CR6) 1991; 19 J. R. Cherry (394_CR10) 1999; 17 R. Carr (394_CR38) 2003; 42 A. Crameri (394_CR11) 1996; 14 A. Aharoni (394_CR35) 2006; 3 A. Greener (394_CR36) 1997; 7 K. M. Esvelt (394_CR42) 2011; 472 A. H. Badran (394_CR43) 2016; 533 S.J. Yeom (394_CR20) 2018; 9 M. S. Packer (394_CR44) 2017; 8 H. Liao (394_CR4) 1986; 83 A. Blagodatski (394_CR19) 2011; 68 R. Caglio (394_CR52) 2009; 10 H. Gram (394_CR3) 1992; 89 F. J. Isaacs (394_CR48) 2011; 333 K. Chen (394_CR5) 1993; 90 T. S. Reynolds (394_CR50) 2017; 114 L. Liang (394_CR49) 2017; 41 |
References_xml | – reference: HuJ. H.MillerS. M.GeurtsM. H.TangW.ChenL.SunN.ZeinaC. M.GaoX.ReesH. A.LinZ.Evolved Cas9 variants with broad PAM compatibility and high DNA specificityNature2018556571:CAS:528:DC%2BC1cXntVGjtrw%3D29512652595163310.1038/nature26155 – reference: HiguchiR.KrummelB.SaikiR.A general method of in vitro preparation and specific mutagenesis of DNA fragments: study of protein and DNA interactionsNucleic Acids Research198816735173671:CAS:528:DyaL1cXls1Cqu74%3D304575633841310.1093/nar/16.15.7351 – reference: HalperinS. O.TouC. J.WongE. B.ModaviC.SchafferD. V.DueberJ. E.CRISPR-guided DNA polymerases enable diversification of all nucleotides in a tunable window201810.1038/s41586-018-0384-8 – reference: CaglioR.ValettiF.CaposioP.GribaudoG.PessioneE.GiuntaC.Fine tuning of catalytic properties of catechol 1, 2 dioxygenase by active site tailoringChembiochem.200910101510241:CAS:528:DC%2BD1MXltVOls7Y%3D1930131610.1002/cbic.200800836 – reference: YunH.HwangB.Y.LeeJ.H.KimB.G.Use of enrichment culture for directed evolution of the Vibrio fluvialis JS17 ω-transaminase, which is resistant to product inhibition by aliphatic ketonesApplied and Environmental Microbiology200571422042241:CAS:528:DC%2BD2MXoslGitrg%3D16085806118328010.1128/AEM.71.8.4220-4224.2005 – reference: ŠaliA.PottertonL.YuanF.van VlijmenH.KarplusM.Evaluation of comparative protein modeling by MODELLERProteins: Structure, Function, and Bioinformatics19952331832610.1002/prot.340230306 – reference: MullisK. B.US Patent No. US4683202A1985 – reference: JungE.ParkB. G.YooH.W.KimJ.ChoiK.Y.KimB.G.Semi-rational engineering of CYP153A35 to enhance ω-hydroxylation activity toward palmitic acidApplied Microbiology and Biotechnology20181022692771:CAS:528:DC%2BC2sXhslyktr%2FL2912428310.1007/s00253-017-8584-y – reference: AharoniA.ThiemeK.ChiuC. P.BuchiniS.LairsonL. L.ChenH.StrynadkaN. C.WakarchukW. W.WithersS. G.High-throughput screening methodology for the directed evolution of glycosyltransferasesNature Methods200636091:CAS:528:DC%2BD28XntFCgtLk%3D1686213510.1038/nmeth899 – reference: BadranA. H.GuzovV. M.HuaiQ.KempM. M.VishwanathP.KainW.NanceA. M.EvdokimovA.MoshiriF.TurnerK. H.Continuous evolution of Bacillus thuringiensis toxins overcomes insect resistanceNature2016533581:CAS:528:DC%2BC28XmvVGnt7Y%3D27120167486540010.1038/nature17938 – reference: WangH. H.IsaacsF. J.CarrP. A.SunZ. Z.XuG.ForestC. R.ChurchG. M.Programming cells by multiplex genome engineering and accelerated evolutionNature20094608941:CAS:528:DC%2BD1MXovFymtb4%3D19633652459077010.1038/nature08187 – reference: EhrigT.O’KaneD. J.PrendergastF. G.Green fluorescent protein mutants with altered fluorescence excitation spectraFEBS Letters19953671631661:CAS:528:DyaK2MXms1yktL4%3D779691210.1016/0014-5793(95)00557-P – reference: KochD. J.ChenM. M.van BeilenJ. B.ArnoldF. H.In vivo evolution of butane oxidation by terminal alkane hydroxylases AlkB and CYP153A6Applied and Environmental Microbiology2009753373441:CAS:528:DC%2BD1MXktlejsL4%3D1901105710.1128/AEM.01758-08 – reference: KimH.J.KangS. Y.ParkJ. J.KimP.Novel activity of UDP-galactose-4-epimerase for free monosaccharide and activity improvement by active site-saturation mutagenesisApplied Biochemistry and Biotechnology20111634444511:CAS:528:DC%2BC3MXhvVWlsLw%3D2071785210.1007/s12010-010-9052-7 – reference: KarplusM.PetskoG. A.Molecular dynamics simulations in biologyNature19903476311:CAS:528:DyaK3MXitVaqsQ%3D%3D221569510.1038/347631a0 – reference: WangT.BadranA. H.HuangT. P.LiuD. R.Continuous directed evolution of proteins with improved soluble expression. Nature Chemical Biology2018 – reference: De GroeveM. R.De BaereM.HoflackL.DesmetT.VandammeE. J.SoetaertW.Creating lactose phosphorylase enzymes by directed evolution of cellobiose phosphorylaseProtein Engineering, Design & Selection20092239339910.1093/protein/gzp017 – reference: MooreC. L.Papa IIIL. J.ShouldersM. D.A processive protein chimera introduces mutations across defined DNA regions in vivo. Journal of the American Chemical Society2018 – reference: HuangP.S.BoykenS. E.BakerD.The coming of age of de novo protein designNature20165373201:CAS:528:DC%2BC28XhsFajsrzL2762963810.1038/nature19946 – reference: ChoiY. H.KimJ. H.ParkJ. H.LeeN.KimD.H.JangK.S.ParkI.H.KimB.G.Protein engineering of α2, 3/2, 6-sialyltransferase to improve the yield and productivity of in vitro sialyllactose synthesisGlycobiology2013241591692414296110.1093/glycob/cwt092 – reference: MooreJ. C.ArnoldF. H.Directed evolution of a para-nitrobenzyl esterase for aqueous-organic solventsNature Biotechnology1996144581:CAS:528:DyaK28XislCmtbs%3D963092010.1038/nbt0496-458 – reference: BadranA. H.LiuD. R.Development of potent in vivo mutagenesis plasmids with broad mutational spectraNature Communications2015684251:CAS:528:DC%2BC2MXhs1elu7rK2644302110.1038/ncomms9425 – reference: CarrR.AlexeevaM.EnrightA.EveT. S.DawsonM. J.TurnerN. J.Directed evolution of an amine oxidase possessing both broad substrate specificity and high enantioselectivityAngewandte Chemie International Edition200342480748101:CAS:528:DC%2BD3sXosFKmtr8%3D1456235510.1002/anie.200352100 – reference: CrameriA.WhitehornE. A.TateE.StemmerW. P.Improved green fluorescent protein by molecular evolution using DNA shufflingNature Biotechnology1996143151:CAS:528:DyaK28XhsFOjsrg%3D963089210.1038/nbt0396-315 – reference: MorlockL. K.BöttcherD.BornscheuerU. T.Simultaneous detection of NADPH consumption and H 2O production using the Ampliflu™ Red assay for screening of P450 activities and uncouplingApplied Microbiology and Biotechnology2018102299410.1007/s00253-017-8636-3 – reference: WangH. H.KimH.CongL.JeongJ.BangD.ChurchG. M.Genome-scale promoter engineering by coselection MAGENature Methods2012959122484848342821710.1038/nmeth.1971 – reference: CallananM. J.RussellW. M.KlaenhammerT. R.Modification of Lactobacillus β-glucuronidase activity by random mutagenesisGene20073891221271:CAS:528:DC%2BD2sXht1Gjtr8%3D1717448210.1016/j.gene.2006.10.022 – reference: IsaacsF. J.CarrP. A.WangH. H.LajoieM. J.SterlingB.KraalL.TolonenA. C.GianoulisT. A.GoodmanD. B.ReppasN. B.Precise manipulation of chromosomes in vivo enables genome-wide codon replacementScience20113333483531:CAS:528:DC%2BC3MXos1yltbk%3D21764749547233210.1126/science.1205822 – reference: YeomS.J.KimM.KwonK. K.FuY.RhaE.ParkS.H.LeeH.KimH.LeeD.H.KimD.M.A synthetic microbial biosensor for high-throughput screening of lactam biocatalystsNature Communications20189505330498220626524410.1038/s41467-018-07488-0 – reference: LiangL.LiuR.GarstA. D.LeeT.BeckhamG. T.GillR. T.CRISPR EnAbled Trackable genome Engineering for isopropanol production in Escherichia coliMetabolic Engineering2017411101:CAS:528:DC%2BC2sXktVykt7g%3D2821610810.1016/j.ymben.2017.02.009 – reference: GramH.MarconiL.A.BarbasC. F.ColletT. A.LernerR. A.KangA. S.In vitro selection and affinity maturation of antibodies from a naive combinatorial immunoglobulin libraryProceedings of the National Academy of Sciences199289357635801:CAS:528:DyaK38XisFeltr4%3D10.1073/pnas.89.8.3576 – reference: ReynoldsT. S.CourtneyC. M.EricksonK. E.WolfeL. M.ChatterjeeA.NagpalP.GillR. T.ROS mediated selection for increased NADPH availability in Escherichia coliBiotechnology and Bioengineering2017114268526891:CAS:528:DC%2BC2sXhtlClt7fK2871085710.1002/bit.26385 – reference: CherryJ. R.LamsaM. H.SchneiderP.VindJ.SvendsenA.JonesA.PedersenA. H.Directed evolution of a fungal peroxidaseNature Biotechnology1999173791:CAS:528:DyaK1MXitl2hurg%3D1020788810.1038/7939 – reference: ScottD. J.PlückthunA.Direct molecular evolution of detergent-stable G protein-coupled receptors using polymer encapsulated cellsJournal of Molecular Biology20134256626771:CAS:528:DC%2BC38XhvV2rsLfF2316456810.1016/j.jmb.2012.11.015 – reference: BlagodatskiA.KatanaevV. L.Technologies of directed protein evolution in vivoCellular and Molecular Life Sciences201168120712141:CAS:528:DC%2BC3MXjtVKiu7Y%3D2119005810.1007/s00018-010-0610-5 – reference: ZhouY.ZhangX.EbrightR. H.Random mutagenesis of gene-sized DNA molecules by use of PCR with Taq DNA polymeraseNucleic Acids Research19911960521:CAS:528:DyaK38Xhtl2h165875132907010.1093/nar/19.21.6052 – reference: SantoroS. W.SchultzP. G.Directed evolution of the site specificity of Cre recombinaseProceedings of the National Academy of Sciences200299418541901:CAS:528:DC%2BD38XivFShsLo%3D10.1073/pnas.022039799 – reference: PackerM. S.LiuD. R.Methods for the directed evolution of proteinsNature Reviews Genetics2015163791:CAS:528:DC%2BC2MXhtFeju73O2605515510.1038/nrg3927 – reference: WangT.BirsoyK.HughesN. W.KrupczakK. M.PostY.WeiJ. J.LanderE. S.SabatiniD. M.Identification and characterization of essential genes in the human genomeScience2015350109611011:CAS:528:DC%2BC2MXhvFamtL3F26472758466292210.1126/science.aac7041 – reference: LiaoH.McKenzieT.HagemanR.Isolation of a thermostable enzyme variant by cloning and selection in a thermophileProceedings of the National Academy of Sciences1986835765801:CAS:528:DyaL28Xht1Gksrw%3D10.1073/pnas.83.3.576 – reference: StemmerW. P.Rapid evolution of a protein in vitro by DNA shufflingNature19943703891:CAS:528:DyaK2cXlvFOjsrs%3D804714710.1038/370389a0 – reference: CrameriA.DawesG.RodriguezE.JrSilverS.StemmerW. P.Molecular evolution of an arsenate detoxification pathway by DNA shufflingNature Biotechnology1997154361:CAS:528:DyaK2sXivVOruro%3D913162110.1038/nbt0597-436 – reference: ChicaR. A.DoucetN.PelletierJ. N.Semi-rational approaches to engineering enzyme activity: combining the benefits of directed evolution and rational designCurrent Opinion in Biotechnology2005163783841:CAS:528:DC%2BD2MXntVCqtLs%3D1599407410.1016/j.copbio.2005.06.004 – reference: GarstA. D.BassaloM. C.PinesG.LynchS. A.Halweg-EdwardsA. L.LiuR.LiangL.WangZ.ZeitounR.AlexanderW. G.Genome-wide mapping of mutations at singlenucleotide resolution for protein, metabolic and genome engineeringNature Biotechnology201735481:CAS:528:DC%2BC28XitFWnsbnJ2794180310.1038/nbt.3718 – reference: EsveltK. M.CarlsonJ. C.LiuD. R.A system for the continuous directed evolution of biomoleculesNature20114724991:CAS:528:DC%2BC3MXksFWgtb4%3D21478873308435210.1038/nature09929 – reference: ChenK.ArnoldF. H.Tuning the activity of an enzyme for unusual environments: sequential random mutagenesis of subtilisin E for catalysis in dimethylformamideProceedings of the National Academy of Sciences199390561856221:CAS:528:DyaK3sXks1Kgtrg%3D10.1073/pnas.90.12.5618 – reference: GreenerA.CallahanM.JerpsethB.An efficient random mutagenesis technique using an E. coli mutator strainMolecular Biotechnology199771891951:CAS:528:DyaK2sXkslCktrg%3D921923410.1007/BF02761755 – reference: HansonJ.PaliwalK.LitfinT.YangY.ZhouY.ValenciaA.Accurate prediction of protein contact maps by coupling residual two-dimensional bidirectional long short-term memory with convolutional neural networks201810.1093/bioinformatics/bty481 – reference: LongwellC. K.LabaniehL.CochranJ. R.Highthroughput screening technologies for enzyme engineeringCurrent Opinion in Biotechnology2017481962021:CAS:528:DC%2BC2sXpsVGqtbg%3D2862472410.1016/j.copbio.2017.05.012 – reference: LeachA. R.Ligand docking to proteins with discrete side-chain flexibilityJournal of Molecular Biology19942353453561:CAS:528:DyaK2cXhvVKlu7c%3D828925510.1016/S0022-2836(05)80038-5 – reference: PackerM. S.ReesH. A.LiuD. R.Phage-assisted continuous evolution of proteases with altered substrate specificityNature Communications2017895629038472564351510.1038/s41467-017-01055-9 – reference: ZhangJ.H.DawesG.StemmerW. P.Directed evolution of a fucosidase from a galactosidase by DNA shuffling and screeningProceedings of the National Academy of Sciences199794450445091:CAS:528:DyaK2sXjtV2jsr8%3D10.1073/pnas.94.9.4504 – reference: KanoH.TaguchiS.MomoseH.Cold adaptation of a mesophilic serine protease, subtilisin, by in vitro random mutagenesisApplied Microbiology and Biotechnology19974746511:CAS:528:DyaK2sXptVWhtw%3D%3D903541010.1007/s002530050886 – reference: YiL.GebhardM. C.LiQ.TaftJ. M.GeorgiouG.IversonB. L.Engineering of TEV protease variants by yeast ER sequestration screening (YESS) of combinatorial librariesProceedings of the National Academy of Sciences2013110722972341:CAS:528:DC%2BC3sXos1OisLw%3D10.1073/pnas.1215994110 – volume: 23 start-page: 318 year: 1995 ident: 394_CR15 publication-title: Proteins: Structure, Function, and Bioinformatics doi: 10.1002/prot.340230306 – volume: 99 start-page: 4185 year: 2002 ident: 394_CR33 publication-title: Proceedings of the National Academy of Sciences doi: 10.1073/pnas.022039799 – volume: 16 start-page: 7351 year: 1988 ident: 394_CR51 publication-title: Nucleic Acids Research doi: 10.1093/nar/16.15.7351 – volume-title: Continuous directed evolution of proteins with improved soluble expression. Nature Chemical Biology year: 2018 ident: 394_CR45 – volume: 9 start-page: 591 year: 2012 ident: 394_CR47 publication-title: Nature Methods doi: 10.1038/nmeth.1971 – volume: 75 start-page: 337 year: 2009 ident: 394_CR31 publication-title: Applied and Environmental Microbiology doi: 10.1128/AEM.01758-08 – volume: 10 start-page: 1015 year: 2009 ident: 394_CR52 publication-title: Chembiochem. doi: 10.1002/cbic.200800836 – volume: 367 start-page: 163 year: 1995 ident: 394_CR37 publication-title: FEBS Letters doi: 10.1016/0014-5793(95)00557-P – volume: 114 start-page: 2685 year: 2017 ident: 394_CR50 publication-title: Biotechnology and Bioengineering doi: 10.1002/bit.26385 – volume: 94 start-page: 4504 year: 1997 ident: 394_CR9 publication-title: Proceedings of the National Academy of Sciences doi: 10.1073/pnas.94.9.4504 – volume: 533 start-page: 58 year: 2016 ident: 394_CR43 publication-title: Nature doi: 10.1038/nature17938 – volume: 42 start-page: 4807 year: 2003 ident: 394_CR38 publication-title: Angewandte Chemie International Edition doi: 10.1002/anie.200352100 – volume: 102 start-page: 269 year: 2018 ident: 394_CR27 publication-title: Applied Microbiology and Biotechnology doi: 10.1007/s00253-017-8584-y – volume-title: CRISPR-guided DNA polymerases enable diversification of all nucleotides in a tunable window year: 2018 ident: 394_CR28 doi: 10.1038/s41586-018-0384-8 – volume: 425 start-page: 662 year: 2013 ident: 394_CR21 publication-title: Journal of Molecular Biology doi: 10.1016/j.jmb.2012.11.015 – volume: 16 start-page: 379 year: 2015 ident: 394_CR23 publication-title: Nature Reviews Genetics doi: 10.1038/nrg3927 – volume-title: A processive protein chimera introduces mutations across defined DNA regions in vivo. Journal of the American Chemical Society year: 2018 ident: 394_CR30 – volume: 71 start-page: 4220 year: 2005 ident: 394_CR32 publication-title: Applied and Environmental Microbiology doi: 10.1128/AEM.71.8.4220-4224.2005 – volume-title: Accurate prediction of protein contact maps by coupling residual two-dimensional bidirectional long short-term memory with convolutional neural networks year: 2018 ident: 394_CR18 doi: 10.1093/bioinformatics/bty481 – volume: 8 start-page: 956 year: 2017 ident: 394_CR44 publication-title: Nature Communications doi: 10.1038/s41467-017-01055-9 – volume: 235 start-page: 345 year: 1994 ident: 394_CR14 publication-title: Journal of Molecular Biology doi: 10.1016/S0022-2836(05)80038-5 – volume: 83 start-page: 576 year: 1986 ident: 394_CR4 publication-title: Proceedings of the National Academy of Sciences doi: 10.1073/pnas.83.3.576 – volume: 90 start-page: 5618 year: 1993 ident: 394_CR5 publication-title: Proceedings of the National Academy of Sciences doi: 10.1073/pnas.90.12.5618 – volume: 537 start-page: 320 year: 2016 ident: 394_CR16 publication-title: Nature doi: 10.1038/nature19946 – volume: 19 start-page: 6052 year: 1991 ident: 394_CR6 publication-title: Nucleic Acids Research doi: 10.1093/nar/19.21.6052 – volume: 556 start-page: 57 year: 2018 ident: 394_CR41 publication-title: Nature doi: 10.1038/nature26155 – volume: 9 start-page: 5053 year: 2018 ident: 394_CR20 publication-title: Nature Communications doi: 10.1038/s41467-018-07488-0 – volume: 350 start-page: 1096 year: 2015 ident: 394_CR22 publication-title: Science doi: 10.1126/science.aac7041 – volume: 347 start-page: 631 year: 1990 ident: 394_CR13 publication-title: Nature doi: 10.1038/347631a0 – volume: 6 start-page: 8425 year: 2015 ident: 394_CR40 publication-title: Nature Communications doi: 10.1038/ncomms9425 – volume: 17 start-page: 379 year: 1999 ident: 394_CR10 publication-title: Nature Biotechnology doi: 10.1038/7939 – volume: 22 start-page: 393 year: 2009 ident: 394_CR54 publication-title: Protein Engineering, Design & Selection doi: 10.1093/protein/gzp017 – volume: 370 start-page: 389 year: 1994 ident: 394_CR7 publication-title: Nature doi: 10.1038/370389a0 – volume: 3 start-page: 609 year: 2006 ident: 394_CR35 publication-title: Nature Methods doi: 10.1038/nmeth899 – volume: 102 start-page: 2 year: 2018 ident: 394_CR25 publication-title: Applied Microbiology and Biotechnology doi: 10.1007/s00253-017-8636-3 – volume: 389 start-page: 122 year: 2007 ident: 394_CR39 publication-title: Gene doi: 10.1016/j.gene.2006.10.022 – volume-title: US Patent No. US4683202A year: 1985 ident: 394_CR1 – volume: 7 start-page: 189 year: 1997 ident: 394_CR36 publication-title: Molecular Biotechnology doi: 10.1007/BF02761755 – volume: 110 start-page: 7229 year: 2013 ident: 394_CR34 publication-title: Proceedings of the National Academy of Sciences doi: 10.1073/pnas.1215994110 – volume: 163 start-page: 444 year: 2011 ident: 394_CR53 publication-title: Applied Biochemistry and Biotechnology doi: 10.1007/s12010-010-9052-7 – volume: 472 start-page: 499 year: 2011 ident: 394_CR42 publication-title: Nature doi: 10.1038/nature09929 – volume: 47 start-page: 46 year: 1997 ident: 394_CR8 publication-title: Applied Microbiology and Biotechnology doi: 10.1007/s002530050886 – volume: 14 start-page: 315 year: 1996 ident: 394_CR11 publication-title: Nature Biotechnology doi: 10.1038/nbt0396-315 – volume: 15 start-page: 436 year: 1997 ident: 394_CR12 publication-title: Nature Biotechnology doi: 10.1038/nbt0597-436 – volume: 41 start-page: 1 year: 2017 ident: 394_CR49 publication-title: Metabolic Engineering doi: 10.1016/j.ymben.2017.02.009 – volume: 24 start-page: 159 year: 2013 ident: 394_CR26 publication-title: Glycobiology doi: 10.1093/glycob/cwt092 – volume: 89 start-page: 3576 year: 1992 ident: 394_CR3 publication-title: Proceedings of the National Academy of Sciences doi: 10.1073/pnas.89.8.3576 – volume: 333 start-page: 348 year: 2011 ident: 394_CR48 publication-title: Science doi: 10.1126/science.1205822 – volume: 14 start-page: 458 year: 1996 ident: 394_CR2 publication-title: Nature Biotechnology doi: 10.1038/nbt0496-458 – volume: 68 start-page: 1207 year: 2011 ident: 394_CR19 publication-title: Cellular and Molecular Life Sciences doi: 10.1007/s00018-010-0610-5 – volume: 460 start-page: 894 year: 2009 ident: 394_CR46 publication-title: Nature doi: 10.1038/nature08187 – volume: 16 start-page: 378 year: 2005 ident: 394_CR17 publication-title: Current Opinion in Biotechnology doi: 10.1016/j.copbio.2005.06.004 – volume: 35 start-page: 48 year: 2017 ident: 394_CR29 publication-title: Nature Biotechnology doi: 10.1038/nbt.3718 – volume: 48 start-page: 196 year: 2017 ident: 394_CR24 publication-title: Current Opinion in Biotechnology doi: 10.1016/j.copbio.2017.05.012 |
SSID | ssj0047888 |
Score | 2.2456427 |
SecondaryResourceType | review_article |
Snippet | In vivo
protein evolution is a protein engineering approach that is performed by both generating mutagenesis libraries and selecting desired mutants in a cell.... In vivo protein evolution is a protein engineering approach that is performed by both generating mutagenesis libraries and selecting desired mutants in a cell.... |
SourceID | nrf proquest crossref springer |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 85 |
SubjectTerms | Biotechnology Chemistry Chemistry and Materials Science DNA Evolution In vitro methods and tests In vivo methods and tests Industrial and Production Engineering Libraries Mutagenesis mutagens Mutants prices Protein engineering Proteins Random mutagenesis Review Paper 생물공학 |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Ra9swED627GHbQ9myjXpNhzb2tE1gy5I99S2ElmSwMEYDfROWLI_QYpfECeTf786x47Zsgz0JLFkY30n6Dt33HcBHJ2wRhjbiuZQ5l1J4niES51YmIooLqfRX4g5_nyfThfx2pa5aHve6y3bvriSbnbonu6HrUZokUcK05LjvPlEYulMe10KMu-2X5OAb_hviCo7Rl-iuMv80xb3D6HG5Ku7hzAdXo82Jc_ECjlqoyMZ7276ER74cwtNJV6FtCM_viAm-gt2sZNvltmI_SHphWbLzbetWX9gct2C2V5imB_2QfgLW6tTuzhhRTtjPrMyxGbea46yu2GWTNc6JnEkJRoe-17C4OL-cTHlbWIE7DEhrjihQI4yKE2-lSIVN00yrIvRJVLisENLmicucLqwVuS6iBI90p5Twzto4Ej6P38CgrEp_DCz1VEc2Cm1oY2l1pj3iw1DZHBc6Ig8bQNj9YeNa1XEqfnFjer1kMopBoxgyihEBfDq8cruX3PjX4A9oNnPtloaEsqn9VZnrlcFwYGaUTIitFcCos6ppl-jaYKhI9EhEPAG8P3SjBenGJCt9tcExIk6VSOJIBfC584Z-ir9-1dv_Gn0CzxCG6X0u-AgG9WrjTxHq1PZd49q_AWRO884 priority: 102 providerName: Springer Nature |
Title | In vivo Protein Evolution, Next Generation Protein Engineering Strategy: from Random Approach to Target-specific Approach |
URI | https://link.springer.com/article/10.1007/s12257-018-0394-2 https://www.proquest.com/docview/2876178151 https://www.proquest.com/docview/2237526315 https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002466881 |
Volume | 24 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Biotechnology and Bioprocess Engineering, 2019, 24(1), , pp.85-94 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwED-x7QUe0PgSgTEZxBNgkTh2MvOCuqndBqKaplUqT1bsOKgaSkbXVdp_v7vUabZJ7CWWbOdDubP9O_vudwAfnbBVHNuEl1KWXErheYFInFuZiSStpNJ7FDv8a5wdTeSPqZqGDbfL4FbZzYntRF02jvbIvyKyp2g2XKC-X_zjlDWKTldDCo0N2CLqMtLqfLo2uIgZvg2FQ4jB0RAT3almGzqHikxOlxRgpiUXd9aljXpe3YGc905J28VntA1PA2pkg5WYn8EjXz-HJ7e4BF_A9XHNlrNlw06IeWFWs-EyaNUXNsYZmK0Ipqmi79I_gAWa2utvjCJO2GlRl1gMAuU4WzTsrHUa5xSbSf5F67aXMBkNzw6OeMirwB3aowuOIFAjikozb6XIhc3zQqsq9llSuaIS0paZK5yurBWlrpIMV3SnlPDO2jQRvkxfwWbd1P41sNxTGtkktrFNpdWF9ggPY2VLHOcIPGwEcfdXjQuk45T74q_p6ZJJEAYFYUgQRkTwaX3LxYpx46HOH1BU5tzNDPFkU_mnMedzg9bAsVEyo2CtCHY6SZowQi9Nr08RvF8349iiA5Oi9s0V9hFprkSWJiqCz50G9I_471e9efiFb-Exwi698v3egc3F_Mq_Q2izsLut_uJ1b3S4C1uDw98_h1juD8cnp1g7EYMbKFf4fA |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwED5t4wF4QPwUGQMMghfAInHsBCMhNMFKy7YKoU7amxc7Dqo2JaPrivpP8Tdylx8NQ2Jve4rUuG6VO999ju_7DuCFE7YIQxvxXMqcSyk8zxCJcysTEcWFVPodcYf3x8nwQH49VIdr8LvjwlBZZRcT60CdV47ekb9FZE9sNkxQH09_cuoaRaerXQuNxi12_fIXbtnOPow-o31fCjHYmXwa8rarAHe4G5tzhEAaMUSceCtFKmyaZloVoU-iwmWFkDZPXOZ0Ya3IdRElmM-cUsI7a-NI-DzGedfhmowxkxMzffCli_ykRF9T7xDScNz4ie4Utabq4cKhIk8itGnJxYU8uF7OigsQ959T2TrZDW7DrRalsu3Gre7Ami_vws2_tAvvwXJUssV0UbFvpPQwLdnOovXiN2yMEZ81gtb0QT-kn4C1srjL94wYLux7VuZ42W4lztm8YpO6SJ0TF5TqmVb37sPBlTzxB7BRVqV_CCz11LY2Cm1oY2l1pj3C0VDZHOMKAh0bQNg9VeNakXPqtXFienlmMoRBQxgyhBEBvFp95bRR-Lhs8HM0lTl2U0O63HT9UZnjmcHdx8gomRA5LICtzpKmjQhnpvffAJ6tbuNapgOarPTVOY4RcapEEkcqgNedB_RT_PdfbV7-g0_h-nCyv2f2RuPdR3ADIZ9u6s63YGM-O_ePEVbN7ZPalxkcXfXi-QPyxzFG |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED9tnYTgYRpfItsAg-AFsJY4TkKQEBqs1cqgqqZN2puJHRtVm5LRdUX91_bXcZePhiGxtz1Fih0n8p19v4vvfgfwygjtfF8HPJcy51IKyzNE4lzLWAShk1H6nnKHv4_i_WP59SQ6WYGrNheGwirbPbHaqPPS0D_yHUT2lM2GBmrHNWER473Bp_NfnCpI0UlrW06jVpEDu_iN7tvFx-Eeyvq1EIP-0Zd93lQY4AY9sxlHOJQinghjq6VIhE6SLI2cb-PAmcwJqfPYZCZ1Wos8dUGMts1EkbBG6zAQNg9x3FVYS8gr6sHa5_5ofNjaAeKlrxLxEOBwdANFe6ZaJe7hMqKQT0pvSyUX16ziajF11wDvP2e0lekbbMB6g1nZbq1k92HFFg_g3l9Mhg9hMSzYfDIv2Zh4HyYF688bnX7HRjiJrKa3phtdl24A1pDkLj4wyndhh1mR42W3ITxns5IdVSHrnDJDKbpp2fYIjm9lzh9DrygL-wRYYqmIbeBrX4dSp1lqEZz6kc5xl0HYoz3w21lVpqE8p8obZ6ojayZBKBSEIkEo4cGb5SPnNd_HTZ1foqjUqZkoYumm689SnU4V-iJDFcmYUsU82G4lqZr94UJ12uzBi2Uzrmw6rskKW15iHxEmkYjDIPLgbasB3RD__arNm1_4HO7gwlHfhqODLbiL-C-tg9C3oTebXtqniLFm-lmjzAx-3Pb6-QNjnDbY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=In+vivo+Protein+Evolution%2C+Next+Generation+Protein+Engineering+Strategy%3A+from+Random+Approach+to+Target-specific+Approach&rft.jtitle=Biotechnology+and+bioprocess+engineering&rft.au=Kim%2C+Jin+Young&rft.au=Yoo%2C+Hee-Wang&rft.au=Lee%2C+Pyung-Gang&rft.au=Lee%2C+Sun-Gu&rft.date=2019-02-01&rft.pub=Springer+Nature+B.V&rft.issn=1226-8372&rft.eissn=1976-3816&rft.volume=24&rft.issue=1&rft.spage=85&rft.epage=94&rft_id=info:doi/10.1007%2Fs12257-018-0394-2&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1226-8372&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1226-8372&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1226-8372&client=summon |