Formic Acid to Power towards Low‐Carbon Economy

The storage and utilization of low‐carbon electricity and decarbonization of transportation are essential components for the future energy transition into a low‐carbon economy. While hydrogen has been identified as a potential energy carrier, the lack of viable technologies for safe and efficient st...

Full description

Saved in:
Bibliographic Details
Published inAdvanced energy materials Vol. 12; no. 15
Main Authors Dutta, Indranil, Chatterjee, Sudipta, Cheng, Hongfei, Parsapur, Rajesh Kumar, Liu, Zhaolin, Li, Zibiao, Ye, Enyi, Kawanami, Hajime, Low, Jonathan Sze Choong, Lai, Zhiping, Loh, Xian Jun, Huang, Kuo‐Wei
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 01.04.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The storage and utilization of low‐carbon electricity and decarbonization of transportation are essential components for the future energy transition into a low‐carbon economy. While hydrogen has been identified as a potential energy carrier, the lack of viable technologies for safe and efficient storage and transportation of H2 greatly limits its applications and deployment at scale. Formic acid (FA) is considered one of the promising H2 energy carriers because of its high volumetric H2 storage capacity of 53 g H2/L, and relatively low toxicity and flammability for convenient and low‐cost storage and transportation. FA can be employed to generate electricity either in direct FA fuel cells (FCs) or indirectly as an H2 source for hydrogen FCs. FA can enable large‐scale chemical H2 storage to eliminate energy‐intensive and expensive processes for H2 liquefaction and compression and thus to achieve higher efficiency and broader utilization. This perspective summarizes recent advances in catalyst development for selective dehydrogenation of FA and high‐pressure H2 production. The advantages and limitations of FA‐to‐power options are highlighted. Existing life cycle assessment (LCA) and economic analysis studies are reviewed to discuss the feasibility and future potential of FA as a fuel. The utilization of low‐carbon electricity and decarbonization of transportation are essential to a low‐carbon economy. Hydrogen has been identified as an energy carrier, but the lack of viable storage and distribution technologies greatly limits its uses. A chemical hydrogen storage system powered by formic acid can replace energy‐intensive liquefaction and compression processes for hydrogen, enabling higher efficiency and broader applications.
AbstractList The storage and utilization of low‐carbon electricity and decarbonization of transportation are essential components for the future energy transition into a low‐carbon economy. While hydrogen has been identified as a potential energy carrier, the lack of viable technologies for safe and efficient storage and transportation of H2 greatly limits its applications and deployment at scale. Formic acid (FA) is considered one of the promising H2 energy carriers because of its high volumetric H2 storage capacity of 53 g H2/L, and relatively low toxicity and flammability for convenient and low‐cost storage and transportation. FA can be employed to generate electricity either in direct FA fuel cells (FCs) or indirectly as an H2 source for hydrogen FCs. FA can enable large‐scale chemical H2 storage to eliminate energy‐intensive and expensive processes for H2 liquefaction and compression and thus to achieve higher efficiency and broader utilization. This perspective summarizes recent advances in catalyst development for selective dehydrogenation of FA and high‐pressure H2 production. The advantages and limitations of FA‐to‐power options are highlighted. Existing life cycle assessment (LCA) and economic analysis studies are reviewed to discuss the feasibility and future potential of FA as a fuel.
The storage and utilization of low‐carbon electricity and decarbonization of transportation are essential components for the future energy transition into a low‐carbon economy. While hydrogen has been identified as a potential energy carrier, the lack of viable technologies for safe and efficient storage and transportation of H 2 greatly limits its applications and deployment at scale. Formic acid (FA) is considered one of the promising H 2 energy carriers because of its high volumetric H 2 storage capacity of 53 g H 2 /L, and relatively low toxicity and flammability for convenient and low‐cost storage and transportation. FA can be employed to generate electricity either in direct FA fuel cells (FCs) or indirectly as an H 2 source for hydrogen FCs. FA can enable large‐scale chemical H 2 storage to eliminate energy‐intensive and expensive processes for H 2 liquefaction and compression and thus to achieve higher efficiency and broader utilization. This perspective summarizes recent advances in catalyst development for selective dehydrogenation of FA and high‐pressure H 2 production. The advantages and limitations of FA‐to‐power options are highlighted. Existing life cycle assessment (LCA) and economic analysis studies are reviewed to discuss the feasibility and future potential of FA as a fuel.
The storage and utilization of low‐carbon electricity and decarbonization of transportation are essential components for the future energy transition into a low‐carbon economy. While hydrogen has been identified as a potential energy carrier, the lack of viable technologies for safe and efficient storage and transportation of H2 greatly limits its applications and deployment at scale. Formic acid (FA) is considered one of the promising H2 energy carriers because of its high volumetric H2 storage capacity of 53 g H2/L, and relatively low toxicity and flammability for convenient and low‐cost storage and transportation. FA can be employed to generate electricity either in direct FA fuel cells (FCs) or indirectly as an H2 source for hydrogen FCs. FA can enable large‐scale chemical H2 storage to eliminate energy‐intensive and expensive processes for H2 liquefaction and compression and thus to achieve higher efficiency and broader utilization. This perspective summarizes recent advances in catalyst development for selective dehydrogenation of FA and high‐pressure H2 production. The advantages and limitations of FA‐to‐power options are highlighted. Existing life cycle assessment (LCA) and economic analysis studies are reviewed to discuss the feasibility and future potential of FA as a fuel. The utilization of low‐carbon electricity and decarbonization of transportation are essential to a low‐carbon economy. Hydrogen has been identified as an energy carrier, but the lack of viable storage and distribution technologies greatly limits its uses. A chemical hydrogen storage system powered by formic acid can replace energy‐intensive liquefaction and compression processes for hydrogen, enabling higher efficiency and broader applications.
Author Chatterjee, Sudipta
Li, Zibiao
Low, Jonathan Sze Choong
Cheng, Hongfei
Kawanami, Hajime
Dutta, Indranil
Lai, Zhiping
Loh, Xian Jun
Huang, Kuo‐Wei
Parsapur, Rajesh Kumar
Liu, Zhaolin
Ye, Enyi
Author_xml – sequence: 1
  givenname: Indranil
  surname: Dutta
  fullname: Dutta, Indranil
  organization: King Abdullah University of Science and Technology
– sequence: 2
  givenname: Sudipta
  surname: Chatterjee
  fullname: Chatterjee, Sudipta
  organization: King Abdullah University of Science and Technology
– sequence: 3
  givenname: Hongfei
  surname: Cheng
  fullname: Cheng, Hongfei
  organization: Institute of Materials Research and Engineering
– sequence: 4
  givenname: Rajesh Kumar
  surname: Parsapur
  fullname: Parsapur, Rajesh Kumar
  organization: King Abdullah University of Science and Technology
– sequence: 5
  givenname: Zhaolin
  surname: Liu
  fullname: Liu, Zhaolin
  email: zl-liu@imre.a-star.edu.sg
  organization: Institute of Materials Research and Engineering
– sequence: 6
  givenname: Zibiao
  surname: Li
  fullname: Li, Zibiao
  organization: Institute of Materials Research and Engineering
– sequence: 7
  givenname: Enyi
  surname: Ye
  fullname: Ye, Enyi
  organization: Institute of Materials Research and Engineering
– sequence: 8
  givenname: Hajime
  surname: Kawanami
  fullname: Kawanami, Hajime
  email: h-kawanami@aist.go.jp
  organization: National Institute of Advanced Industrial Science and Technology
– sequence: 9
  givenname: Jonathan Sze Choong
  surname: Low
  fullname: Low, Jonathan Sze Choong
  organization: Singapore Institute of Manufacturing Technology
– sequence: 10
  givenname: Zhiping
  surname: Lai
  fullname: Lai, Zhiping
  organization: King Abdullah University of Science and Technology
– sequence: 11
  givenname: Xian Jun
  surname: Loh
  fullname: Loh, Xian Jun
  email: lohxj@imre.a-star.edu.sg
  organization: Institute of Materials Research and Engineering
– sequence: 12
  givenname: Kuo‐Wei
  orcidid: 0000-0003-1900-2658
  surname: Huang
  fullname: Huang, Kuo‐Wei
  email: hkw@kaust.edu.sa
  organization: Institute of Materials Research and Engineering
BookMark eNqFkM1KAzEUhYNUsNZuXQ-4npqfmcxkWUprhfqz0HW4k2QgpTOpyZShOx_BZ_RJTKlUEMS7OWdxvnvgXKJB61qD0DXBE4IxvQXTNhOKKcGsEOIMDQknWcrLDA9OntELNA5hjeNlIibZEJGF841VyVRZnXQueXa98dH04HVIVq7_fP-Yga9cm8yVa12zv0LnNWyCGX_rCL0u5i-zZbp6urufTVepYiUTqcbACSOUUyFEBaWuOI-9CiDTwCmjoHQheJELXDBTlTnUZU2YNsBLkumajdDN8e_Wu7edCZ1cu51vY6WkPKcFJ3lOYmpyTCnvQvCmlltvG_B7SbA8LCMPy8jTMhHIfgHKdtBZ13Ye7OZvTByx3m7M_p8SOZ0_PvywXw0eeWQ
CitedBy_id crossref_primary_10_1021_acscatal_2c04113
crossref_primary_10_1007_s11708_022_0843_7
crossref_primary_10_1007_s12598_024_02852_0
crossref_primary_10_1002_celc_202200272
crossref_primary_10_1021_acsanm_4c00279
crossref_primary_10_1016_j_apcatb_2023_123073
crossref_primary_10_1088_2053_1583_acae34
crossref_primary_10_1021_jacs_3c03317
crossref_primary_10_1038_s41467_024_51658_2
crossref_primary_10_1007_s13738_024_03002_0
crossref_primary_10_1016_j_ijhydene_2023_07_317
crossref_primary_10_1021_acs_inorgchem_4c05024
crossref_primary_10_1016_j_joule_2024_01_003
crossref_primary_10_1021_acs_energyfuels_4c02594
crossref_primary_10_1021_acsnano_3c11523
crossref_primary_10_1002_cssc_202300871
crossref_primary_10_1016_j_seppur_2024_126520
crossref_primary_10_1016_j_ijhydene_2023_06_004
crossref_primary_10_1016_j_jcat_2024_115633
crossref_primary_10_3390_en16041723
crossref_primary_10_1002_cssc_202301282
crossref_primary_10_1016_j_ijhydene_2024_01_146
crossref_primary_10_1016_j_psep_2024_02_060
crossref_primary_10_1039_D3CC04987F
crossref_primary_10_1016_j_apcatb_2024_123750
crossref_primary_10_1016_j_ccr_2024_215775
crossref_primary_10_1002_adma_202404980
crossref_primary_10_1016_j_fuel_2024_131170
crossref_primary_10_1016_j_mtchem_2022_101120
crossref_primary_10_1016_j_seppur_2025_131791
crossref_primary_10_1016_j_jechem_2023_06_027
crossref_primary_10_1016_j_ijhydene_2024_06_226
crossref_primary_10_1021_acs_inorgchem_2c01027
crossref_primary_10_1021_acs_energyfuels_4c05903
crossref_primary_10_1039_D3CP01876H
crossref_primary_10_1039_D3SE00407D
crossref_primary_10_1016_j_jcis_2023_12_085
crossref_primary_10_1002_aesr_202400399
crossref_primary_10_1016_j_apcatb_2024_124792
crossref_primary_10_1021_acscatal_3c00009
crossref_primary_10_1039_D3NA00663H
crossref_primary_10_1016_j_cej_2025_160396
crossref_primary_10_1016_j_jcou_2023_102635
crossref_primary_10_1021_acsenergylett_3c00489
crossref_primary_10_1002_aenm_202301597
crossref_primary_10_1002_adma_202407266
crossref_primary_10_1002_cctc_202400393
crossref_primary_10_1002_cctc_202401481
crossref_primary_10_1016_j_envres_2024_118897
crossref_primary_10_1016_j_cej_2024_156261
crossref_primary_10_1038_s41560_022_01030_9
crossref_primary_10_3389_fpubh_2023_1152809
crossref_primary_10_1021_acs_inorgchem_3c03125
crossref_primary_10_1016_j_apenergy_2024_123972
crossref_primary_10_1016_j_cej_2024_158846
crossref_primary_10_1016_j_cattod_2025_115272
crossref_primary_10_1039_D3GC03892K
crossref_primary_10_1016_j_jece_2024_114761
crossref_primary_10_1021_acsanm_4c03972
crossref_primary_10_1002_ange_202317628
crossref_primary_10_1002_advs_202402651
crossref_primary_10_1021_jacsau_4c00583
crossref_primary_10_1021_acs_inorgchem_2c04079
crossref_primary_10_3390_en16062613
crossref_primary_10_1002_cmt2_10
crossref_primary_10_1016_j_cej_2024_156491
crossref_primary_10_1007_s11814_024_00355_3
crossref_primary_10_1016_S1872_2067_22_64202_5
crossref_primary_10_1002_anie_202423661
crossref_primary_10_1016_j_fuel_2024_131908
crossref_primary_10_3390_cryst13121609
crossref_primary_10_1002_celc_202300018
crossref_primary_10_1016_j_ijhydene_2022_04_220
crossref_primary_10_1016_j_ijhydene_2023_04_244
crossref_primary_10_1002_adfm_202412311
crossref_primary_10_1016_j_fuproc_2022_107493
crossref_primary_10_1016_j_compchemeng_2024_108921
crossref_primary_10_1016_j_matre_2024_100249
crossref_primary_10_1016_j_jcat_2023_07_014
crossref_primary_10_1039_D4DT03521F
crossref_primary_10_3390_en16166035
crossref_primary_10_1002_anie_202317628
crossref_primary_10_1016_j_cattod_2024_114966
crossref_primary_10_1002_ange_202423661
crossref_primary_10_1016_j_apcatb_2023_123439
crossref_primary_10_1016_j_est_2025_115915
crossref_primary_10_3390_nano13101670
crossref_primary_10_1016_j_jcis_2024_06_216
crossref_primary_10_1021_acsami_4c20216
crossref_primary_10_1021_acs_organomet_4c00229
crossref_primary_10_1002_cssc_202401811
crossref_primary_10_1038_s41467_024_52517_w
crossref_primary_10_1627_jpi_67_147
crossref_primary_10_1021_acs_inorgchem_2c02672
crossref_primary_10_1021_acscatal_4c04109
crossref_primary_10_1002_smll_202402459
crossref_primary_10_1016_j_chemosphere_2024_143017
crossref_primary_10_1039_D2CC03768H
crossref_primary_10_1039_D3DT03340F
crossref_primary_10_1016_j_apsusc_2024_161398
crossref_primary_10_1016_j_cej_2024_158011
crossref_primary_10_1016_j_rechem_2024_101496
crossref_primary_10_1186_s40807_024_00102_6
crossref_primary_10_1021_acs_accounts_4c00442
crossref_primary_10_1149_1945_7111_adada4
crossref_primary_10_1002_smll_202407578
crossref_primary_10_1016_j_jcis_2024_02_204
crossref_primary_10_1021_acsenergylett_3c01098
crossref_primary_10_1039_D2QI02762C
crossref_primary_10_1016_j_seppur_2024_127926
crossref_primary_10_1016_j_mcat_2022_112671
crossref_primary_10_1021_acscatal_2c04137
crossref_primary_10_1016_j_colsurfa_2022_130645
crossref_primary_10_1021_acs_accounts_4c00418
crossref_primary_10_1016_j_sftr_2024_100182
crossref_primary_10_1016_j_ijhydene_2025_02_369
crossref_primary_10_3390_catal14100720
crossref_primary_10_1002_cssc_202301616
crossref_primary_10_1016_j_jclepro_2024_142125
crossref_primary_10_1039_D4TA06649A
crossref_primary_10_1016_j_clet_2025_100929
crossref_primary_10_1002_aenm_202402650
crossref_primary_10_1002_cctc_202401202
crossref_primary_10_1002_aenm_202203893
crossref_primary_10_34133_energymatadv_0067
crossref_primary_10_1002_ange_202305843
crossref_primary_10_1039_D4SC01221F
crossref_primary_10_1038_s41467_024_55612_0
crossref_primary_10_1002_advs_202405725
crossref_primary_10_1039_D3NJ01188G
crossref_primary_10_1021_acs_iecr_3c03235
crossref_primary_10_1002_smll_202204100
crossref_primary_10_1016_j_ijhydene_2024_05_143
crossref_primary_10_1021_acs_organomet_4c00116
crossref_primary_10_1021_acs_iecr_4c03344
crossref_primary_10_1021_acs_organomet_3c00523
crossref_primary_10_1039_D3SU00149K
crossref_primary_10_1002_anie_202408412
crossref_primary_10_1016_j_ijhydene_2024_04_106
crossref_primary_10_1002_ange_202408412
crossref_primary_10_1016_j_buildenv_2025_112817
crossref_primary_10_1002_adfm_202408300
crossref_primary_10_1021_acsanm_3c00668
crossref_primary_10_1016_j_ijhydene_2023_11_071
crossref_primary_10_1016_j_ijhydene_2024_01_317
crossref_primary_10_1002_anie_202305843
crossref_primary_10_3390_fire7080290
crossref_primary_10_1002_adma_202414283
crossref_primary_10_1016_j_nanoen_2022_108124
Cites_doi 10.32604/jrm.2020.011197
10.1016/j.scitotenv.2019.01.395
10.1016/j.jpowsour.2006.12.012
10.1002/er.713
10.1021/cr60261a005
10.1016/j.electacta.2016.03.062
10.1039/C8EE02700E
10.1093/nsr/nww099
10.1016/j.electacta.2005.02.082
10.1002/anie.201503873
10.1016/j.energy.2014.07.044
10.1021/cm0310519
10.1039/C5CY01276G
10.1016/j.ijhydene.2018.10.112
10.1016/j.jpowsour.2008.03.075
10.1016/S1381-1169(02)00576-9
10.1021/acs.chemrev.6b00816
10.1016/j.isci.2021.102813
10.1016/j.jpowsour.2008.09.039
10.1039/C9TA02035G
10.1021/ja301696e
10.1021/acs.energyfuels.0c01820
10.1126/science.1206613
10.1002/aenm.201702609
10.1021/ja054236k
10.1038/nnano.2011.42
10.1038/s41929-021-00575-4
10.1038/nature11115
10.1021/acsenergylett.1c02189
10.1016/j.ijhydene.2012.04.095
10.1002/anie.200705972
10.1016/j.apenergy.2020.115033
10.1039/D0NR00307G
10.1016/S0378-7753(03)00352-5
10.1016/j.ijhydene.2019.01.153
10.1016/j.jpowsour.2004.06.054
10.1021/jp061891l
10.1021/ja205747j
10.1016/j.jpowsour.2004.05.004
10.1021/acsami.6b00416
10.1002/cssc.201000447
10.1016/j.jpowsour.2005.09.048
10.1016/j.jelechem.2003.08.010
10.1016/j.electacta.2012.10.033
10.1016/j.jpowsour.2007.12.016
10.1002/aenm.202000179
10.1021/ja505241x
10.1039/C8TA01093E
10.1021/acscatal.7b02482
10.1002/chem.200801568
10.1002/fuce.200400052
10.1002/chem.200801824
10.1021/acscatal.8b04414
10.1039/c1cp22498k
10.1021/ja5008917
10.1002/adma.202101536
10.1039/C5CS00618J
10.1073/pnas.1809342115
10.1016/j.ijhydene.2019.07.032
10.1021/cs300809j
10.1016/j.apcatb.2019.118304
10.1021/cs400347u
10.1039/c3cc43836h
10.1016/j.ijhydene.2012.09.155
10.1016/j.ijhydene.2013.12.148
10.1039/b203392e
10.1021/jacs.6b03518
10.1021/acsenergylett.6b00574
10.1038/nchem.1295
10.1021/cs400148n
10.1016/j.jece.2021.106130
10.1016/j.joule.2017.07.007
10.1021/acscatal.5b02381
10.1073/pnas.1006669107
10.1016/j.jpowsour.2003.11.051
10.1002/asia.201901676
10.1016/j.jpowsour.2011.10.033
10.1016/j.jpowsour.2006.07.013
10.1039/C3CS60373C
10.1149/1.3054278
10.1002/9781118528372
10.1016/j.ijhydene.2014.04.149
10.1002/cctc.201402119
10.1021/ja954126l
10.1021/acscatal.8b00294
10.1016/B978-044452745-5.00864-9
10.1016/j.jpowsour.2009.04.021
10.1002/anie.200800320
10.1002/cctc.201501296
10.1016/S0022-0728(83)80137-5
10.1016/j.jpowsour.2009.11.085
10.1590/S1516-14392012005000112
10.1021/jo01333a048
10.1021/acs.inorgchem.6b02334
10.1021/la060928q
10.1016/j.ijhydene.2019.01.199
10.1021/cr020415y
10.1016/j.jpowsour.2008.11.107
10.1002/cssc.201600697
10.1021/acscatal.0c00791
10.1002/chem.201702969
10.1016/j.ijhydene.2020.06.145
10.1002/anie.201004782
10.1039/D0EE03011B
10.1039/b808799g
10.1016/j.ijhydene.2016.05.199
10.1038/35104599
10.1016/j.ijhydene.2018.02.146
10.1021/jp055220j
10.1039/C9GC01280J
10.1002/cssc.201801679
10.1021/acs.est.9b02944
10.1016/j.apcata.2005.07.011
10.1016/j.ijhydene.2005.11.014
10.1002/asia.201600169
10.1126/science.aau0630
10.1016/j.jpowsour.2007.02.062
10.1016/j.ijhydene.2019.12.059
10.1002/cssc.201000327
10.1039/b914442k
10.1016/j.ccr.2017.11.021
10.1039/D1CC00528F
10.1002/adsu.201700161
10.1016/j.enconman.2018.03.088
10.1021/ja403578s
10.1016/j.electacta.2014.02.040
10.1016/j.jpowsour.2021.229816
10.1016/j.electacta.2010.04.014
10.3390/app8060914
10.1098/rstl.1670.0052
10.1002/chem.201301383
10.1039/C6GC02852G
10.1126/science.aaw7493
10.1002/cctc.201300246
10.1016/j.ijggc.2015.05.018
10.1039/c2ee21928j
10.1038/ncomms11308
10.1016/S0022-0728(73)80158-5
10.1021/cs200661z
10.1002/cssc.201300186
10.1002/chem.201502086
10.1021/ja200122f
10.1016/j.jcat.2020.10.032
10.1021/acscatal.6b00476
10.1016/j.jpowsour.2006.02.072
10.1021/nn1017395
10.1007/s11244-021-01458-5
10.1002/anie.201308620
10.1016/S0378-7753(02)00227-6
10.1039/b004234j
ContentType Journal Article
Copyright 2022 Wiley‐VCH GmbH
Copyright_xml – notice: 2022 Wiley‐VCH GmbH
DBID AAYXX
CITATION
7SP
7TB
8FD
F28
FR3
H8D
L7M
DOI 10.1002/aenm.202103799
DatabaseName CrossRef
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList Aerospace Database
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1614-6840
EndPage n/a
ExternalDocumentID 10_1002_aenm_202103799
AENM202103799
Genre article
GrantInformation_xml – fundername: CANON foundation in Japan
– fundername: Agency for Science, Technology and Research
– fundername: New Energy and Industrial Technology Development Organization
– fundername: King Abdullah University of Science and Technology
GroupedDBID 05W
0R~
1OC
33P
4.4
50Y
5VS
8-0
8-1
A00
AAESR
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AAXRX
AAYCA
AAZKR
ABCUV
ABJNI
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADKYN
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFWVQ
AFZJQ
AHBTC
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
AZVAB
BDRZF
BFHJK
BMXJE
BRXPI
D-A
DCZOG
EBS
G-S
HGLYW
HZ~
KBYEO
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MY.
MY~
O9-
P2W
P4E
RNS
ROL
RX1
SUPJJ
WBKPD
WOHZO
WXSBR
WYJ
ZZTAW
~S-
31~
AANHP
AASGY
AAYXX
ACBWZ
ACRPL
ACYXJ
ADMLS
ADNMO
AEYWJ
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
GODZA
HVGLF
7SP
7TB
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
F28
FR3
H8D
L7M
ID FETCH-LOGICAL-c3839-d0a6131262999ba8db66000caa4da6232acd796759073eb85af8f13dea6814df3
ISSN 1614-6832
IngestDate Fri Jul 25 12:24:58 EDT 2025
Tue Jul 01 01:43:43 EDT 2025
Thu Apr 24 23:09:24 EDT 2025
Wed Jan 22 16:24:59 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 15
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c3839-d0a6131262999ba8db66000caa4da6232acd796759073eb85af8f13dea6814df3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-1900-2658
PQID 2652761551
PQPubID 886389
PageCount 17
ParticipantIDs proquest_journals_2652761551
crossref_primary_10_1002_aenm_202103799
crossref_citationtrail_10_1002_aenm_202103799
wiley_primary_10_1002_aenm_202103799_AENM202103799
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-04-01
PublicationDateYYYYMMDD 2022-04-01
PublicationDate_xml – month: 04
  year: 2022
  text: 2022-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Advanced energy materials
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2021; 64
2006; 31
2005; 296
2008 2008; 47 47
2019 2018 2020; 566 362 10
2009 2004; 188 136
2004; 4
2016 2019; 11
2012; 15
2020; 10
2003 2021; 15
2018; 43
2013; 5
2014; 136
2018; 8
2012; 134
2017; 70
1973 1983; 45 148
2016 2019 2019 2019 2021; 41 21 663 53 9
2006; 162
2003 2004 2014; 117 562 39
2021; 394
2018 2018; 8 2
2001; 414
2016; 45
2019; 7
2007; 168
2019; 9
2021 2021
1670; 5
2020; 34
2020; 268
2011 2013; 133 88
2018 2016; 8 8
2011; 6
2011; 133
2011 2009 2008 2005; 4 11 14 127
2016; 6
2016; 7
2016; 2
2019; 44
2013 2009; 6 15
2019 2012; 44 486
2018; 115
2017; 56
2021; 496
2011 2009 2007 2001; 5 193 165 25
2016; 8
2019 2019; 44 12
2016; 9
2010; 55
2021; 24
2017; 7
2017; 1
2017; 2
2003 2000 1996 1979; 195 118 44
2017; 4
2013 2014; 3 39
2013 2014; 49 66
2017; 117
2013 2013; 3 3
2013; 19
2020; 8
2008 2008 2006 2008; 182 185 163 178
2005 2020 2002; 50 45 110
2021; 33
2015; 40
2002 2005 2006 2011 2012 2011 2006 2013 2014; 109 110 13 2 50 22 135 129
2014; 6
2012 2005 2011 2009; 199 139 196 12
2020 2020; 263 12
2014; 53
2021; 6
2011; 333
2004; 104
2019 2019 2012; 44 37
2016 2020 2018; 6 15 373
2021; 4
2012
2011
2016 2018; 197 1
2020 2018; 45 165
2017; 23
2009
2008; 10
2006; 158
2021; 14
2021 2015; 57 54
2011; 108
2018 2016; 6 138
2021
2015; 21
2018 2016; 11 6
2019
1969; 69
2017; 19
2016
2004 2013; 130 38
2012; 4
2012; 5
2011 2014; 4 43
2014; 77
e_1_2_8_45_2
NOAA (e_1_2_8_2_1) 2021
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_68_1
IEA (e_1_2_8_3_1) 2019
e_1_2_8_5_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_64_1
e_1_2_8_87_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_83_1
e_1_2_8_60_2
e_1_2_8_19_1
e_1_2_8_19_2
e_1_2_8_34_2
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
e_1_2_8_99_3
e_1_2_8_99_4
e_1_2_8_99_5
e_1_2_8_91_1
e_1_2_8_95_1
e_1_2_8_99_1
e_1_2_8_99_2
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_76_1
e_1_2_8_11_2
e_1_2_8_53_2
e_1_2_8_101_1
e_1_2_8_30_1
e_1_2_8_72_1
e_1_2_8_48_4
e_1_2_8_29_1
e_1_2_8_48_3
e_1_2_8_29_2
e_1_2_8_29_3
e_1_2_8_25_1
e_1_2_8_48_2
e_1_2_8_48_1
e_1_2_8_29_8
e_1_2_8_29_9
Bulushev D. A. (e_1_2_8_82_1) 2021
e_1_2_8_29_4
e_1_2_8_29_5
e_1_2_8_29_6
e_1_2_8_29_7
e_1_2_8_6_1
e_1_2_8_21_1
e_1_2_8_67_1
e_1_2_8_44_1
e_1_2_8_86_1
e_1_2_8_63_1
e_1_2_8_40_1
e_1_2_8_37_4
e_1_2_8_18_1
e_1_2_8_37_3
e_1_2_8_14_1
e_1_2_8_37_2
e_1_2_8_37_1
e_1_2_8_79_1
e_1_2_8_94_1
e_1_2_8_98_1
e_1_2_8_98_2
e_1_2_8_10_1
e_1_2_8_56_1
e_1_2_8_106_1
e_1_2_8_52_2
e_1_2_8_106_2
e_1_2_8_33_1
e_1_2_8_75_1
e_1_2_8_52_1
e_1_2_8_102_1
e_1_2_8_71_1
e_1_2_8_28_1
IEA (e_1_2_8_1_1) 2019
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_24_2
e_1_2_8_47_3
e_1_2_8_47_2
e_1_2_8_89_2
e_1_2_8_81_1
e_1_2_8_7_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_66_1
e_1_2_8_89_1
Behr A. (e_1_2_8_21_2) 2014
e_1_2_8_43_3
e_1_2_8_43_2
e_1_2_8_62_1
e_1_2_8_85_1
e_1_2_8_81_2
e_1_2_8_17_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_32_4
Sandström R. (e_1_2_8_41_2) 2018; 1
e_1_2_8_70_1
e_1_2_8_97_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_78_1
e_1_2_8_32_3
e_1_2_8_107_1
e_1_2_8_32_2
e_1_2_8_51_1
e_1_2_8_74_1
e_1_2_8_51_2
e_1_2_8_93_2
e_1_2_8_103_1
e_1_2_8_93_1
e_1_2_8_103_2
e_1_2_8_27_2
e_1_2_8_23_2
e_1_2_8_46_2
e_1_2_8_23_3
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_46_3
e_1_2_8_69_1
e_1_2_8_88_3
e_1_2_8_80_1
e_1_2_8_4_2
e_1_2_8_4_1
e_1_2_8_8_1
e_1_2_8_88_2
e_1_2_8_42_1
e_1_2_8_88_1
e_1_2_8_23_1
e_1_2_8_65_1
e_1_2_8_84_2
e_1_2_8_84_1
e_1_2_8_61_1
e_1_2_8_39_2
e_1_2_8_39_1
e_1_2_8_39_3
e_1_2_8_35_2
e_1_2_8_35_1
Kawanami H. (e_1_2_8_90_1) 2017
e_1_2_8_54_4
e_1_2_8_16_1
e_1_2_8_58_1
Reutemann W. (e_1_2_8_9_1) 2011
e_1_2_8_92_1
e_1_2_8_96_1
e_1_2_8_100_1
e_1_2_8_31_2
e_1_2_8_54_2
e_1_2_8_77_2
e_1_2_8_31_1
e_1_2_8_54_3
e_1_2_8_77_1
e_1_2_8_50_4
Haperen R. (e_1_2_8_105_1) 2016
e_1_2_8_12_1
e_1_2_8_54_1
e_1_2_8_108_1
e_1_2_8_50_2
e_1_2_8_50_3
e_1_2_8_73_1
e_1_2_8_50_1
e_1_2_8_104_1
References_xml – year: 2011
– volume: 49 66
  start-page: 8735 223
  year: 2013 2014
  publication-title: Chem. Commun.
– volume: 5
  start-page: 8171
  year: 2012
  publication-title: Energy Environ. Sci.
– volume: 9
  start-page: 2749
  year: 2016
  publication-title: ChemSusChem
– volume: 136
  year: 2014
  publication-title: J. Am. Chem. Soc.
– volume: 136
  start-page: 4861
  year: 2014
  publication-title: J. Am. Chem. Soc.
– volume: 56
  start-page: 438
  year: 2017
  publication-title: Inorg. Chem.
– start-page: 172
  year: 2009
– volume: 296
  start-page: 1
  year: 2005
  publication-title: Appl. Catal., A
– volume: 496
  year: 2021
  publication-title: J. Power Sources
– volume: 8
  start-page: 914
  year: 2018
  publication-title: Appl. Sci.
– volume: 14
  start-page: 1194
  year: 2021
  publication-title: Energy Environ. Sci.
– volume: 5
  start-page: 2063
  year: 1670
  publication-title: Philos. Trans. R. Soc. London
– volume: 115
  year: 2018
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 50 45 110
  start-page: 5189 117
  year: 2005 2020 2002
  publication-title: Electrochim. Acta Int. J. Hydrogen Energy J. Power Sources
– volume: 19
  start-page: 2244
  year: 2017
  publication-title: Green Chem.
– volume: 15
  start-page: 837
  year: 2012
  publication-title: Mat. Res.
– volume: 21
  year: 2015
  publication-title: Chem. ‐ Eur. J.
– volume: 4
  start-page: 163
  year: 2017
  publication-title: Natl. Sci. Rev.
– volume: 197 1
  start-page: 32 7106
  year: 2016 2018
  publication-title: Electrochim. Acta ACS Appl. Mater. Interfaces
– volume: 41 21 663 53 9
  start-page: 3442 738
  year: 2016 2019 2019 2019 2021
  publication-title: Int. J. Hydrogen Energy Green Chem. Sci. Total Environ. Environ. Sci. Technol. J. Environ. Chem. Eng.
– volume: 4 43
  start-page: 1216 7982
  year: 2011 2014
  publication-title: ChemSusChem Chem. Soc. Rev.
– year: 2019
– volume: 11
  start-page: 1357
  year: 2016 2019
  publication-title: Chem. ‐ Asian J.
– volume: 2
  start-page: 188
  year: 2016
  publication-title: ACS Energy Lett.
– volume: 2
  start-page: 188
  year: 2017
  publication-title: ACS Energy Lett.
– volume: 108
  start-page: 917
  year: 2011
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 7
  year: 2019
  publication-title: J. Mater. Chem. A
– volume: 23
  year: 2017
  publication-title: Chem. ‐ Eur. J.
– volume: 53
  start-page: 122
  year: 2014
  publication-title: Angew. Chem., Int. Ed.
– volume: 57 54
  start-page: 3070
  year: 2021 2015
  publication-title: Chem. Commun. Angew. Chem., Int. Ed.
– volume: 133 88
  start-page: 384
  year: 2011 2013
  publication-title: J. Am. Chem. Soc. Electrochim. Acta
– volume: 394
  start-page: 342
  year: 2021
  publication-title: J. Catal.
– volume: 77
  start-page: 235
  year: 2014
  publication-title: Energy
– volume: 199 139 196 12
  start-page: 165 15 4573 B23
  year: 2012 2005 2011 2009
  publication-title: J. Power Sources J. Power Sources J. Power Sources Electrochem. Solid‐State Lett.
– volume: 45 165
  start-page: 3847 602
  year: 2020 2018
  publication-title: Int. J. Hydrogen Energy Energy Convers. Manag.
– volume: 263 12
  year: 2020 2020
  publication-title: Appl. Catal., B Nanoscale
– volume: 7
  year: 2016
  publication-title: Nat. Commun.
– volume: 31
  start-page: 1348
  year: 2006
  publication-title: Int. J. Hydrogen Energy
– volume: 4
  start-page: 193
  year: 2021
  publication-title: Nat. Catal.
– year: 2021
  publication-title: Catal. Rev.
– volume: 168
  start-page: 119
  year: 2007
  publication-title: J. Power Sources
– volume: 7
  start-page: 8139
  year: 2017
  publication-title: ACS Catal.
– volume: 15
  start-page: 4896
  year: 2003 2021
  publication-title: Chem. Mater.
– volume: 43
  start-page: 7055
  year: 2018
  publication-title: Int. J. Hydrogen Energy
– volume: 8
  start-page: 886
  year: 2016
  publication-title: ChemCatChem
– volume: 55
  start-page: 5024
  year: 2010
  publication-title: Electrochim. Acta
– volume: 70
  start-page: 395
  year: 2017
– volume: 4
  start-page: 383
  year: 2012
  publication-title: Nat. Chem.
– volume: 4 11 14 127
  start-page: 487 2018
  year: 2011 2009 2008 2005
  publication-title: ChemSusChem Green Chem. Chem. ‐ Eur. J. J. Am. Chem. Soc.
– volume: 133
  year: 2011
  publication-title: J. Am. Chem. Soc.
– volume: 6
  start-page: 302
  year: 2011
  publication-title: Nat. Nanotechnol.
– volume: 414
  start-page: 332
  year: 2001
  publication-title: Nature
– volume: 8 2
  start-page: 5355
  year: 2018 2018
  publication-title: ACS Catal. Adv. Sustainable Syst.
– volume: 11 6
  start-page: 3724 681
  year: 2018 2016
  publication-title: ChemSusChem ACS Catal.
– volume: 162
  start-page: 532
  year: 2006
  publication-title: J. Power Sources
– volume: 40
  start-page: 378
  year: 2015
  publication-title: Int. J. Greenhouse Gas Control
– volume: 6 15 373
  start-page: 12 937 317
  year: 2016 2020 2018
  publication-title: Catal. Sci. Technol. Chem. ‐ Asian J. Coord. Chem. Rev.
– volume: 117
  start-page: 9804
  year: 2017
  publication-title: Chem. Rev.
– volume: 44
  year: 2019
  publication-title: Int. J. Hydrogen Energy
– volume: 566 362 10
  start-page: 850 1276
  year: 2019 2018 2020
  publication-title: Science Science Adv. Energy Mater.
– volume: 182 185 163 178
  start-page: 124 857 71 34
  year: 2008 2008 2006 2008
  publication-title: J. Power Sources J. Power Sources J. Power Sources J. Power Sources
– year: 2021
– volume: 4
  start-page: 337
  year: 2004
  publication-title: Fuel Cells
– year: 2021 2021
– volume: 10
  start-page: 3607
  year: 2008
  publication-title: Phys. Chem. Chem. Phys.
– volume: 45
  start-page: 3954
  year: 2016
  publication-title: Chem. Soc. Rev.
– volume: 6 138
  start-page: 5544 7484
  year: 2018 2016
  publication-title: J. Mater. Chem. A J. Am. Chem. Soc.
– volume: 34
  start-page: 9137
  year: 2020
  publication-title: Energy & Fuels
– volume: 45 148
  start-page: 205 147
  year: 1973 1983
  publication-title: J. Electroanal. Chem. Interfacial Electrochem. J. Electroanal. Chem. Interfacial Electrochem.
– volume: 6
  start-page: 1526
  year: 2014
  publication-title: ChemCatChem
– volume: 33
  year: 2021
  publication-title: Adv. Mater.
– volume: 3 39
  start-page: 1114 4850
  year: 2013 2014
  publication-title: ACS Catal. Int. J. Hydrogen Energy
– volume: 24
  year: 2021
  publication-title: iScience
– volume: 333
  start-page: 1733
  year: 2011
  publication-title: Science
– volume: 6
  start-page: 3442
  year: 2016
  publication-title: ACS Catal.
– volume: 8
  start-page: 939
  year: 2020
  publication-title: J. Renewable Mater.
– volume: 104
  start-page: 5803
  year: 2004
  publication-title: Chem. Rev.
– volume: 44 37
  year: 2019 2019 2012
  publication-title: Int. J. Hydrogen Energy Int. J. Hydrogen Energy
– volume: 69
  start-page: 673
  year: 1969
  publication-title: Chem. Rev.
– volume: 44 486
  start-page: 43
  year: 2019 2012
  publication-title: Int. J. Hydrogen Energy Nature
– volume: 9
  start-page: 819
  year: 2019
  publication-title: ACS Catal.
– volume: 195 118 44
  start-page: 95 3212 2521 3442
  year: 2003 2000 1996 1979
  publication-title: J. Mol. Catal. A: Chem. J. Chem. Soc., Dalton Trans. J. Am. Chem. Soc. J. Org. Chem.
– year: 2016
  publication-title: Formic Acid as Energy Carrier, Topsector Energie
– volume: 6
  start-page: 4390
  year: 2021
  publication-title: ACS Energy Lett.
– volume: 8 8
  start-page: 7133
  year: 2018 2016
  publication-title: Adv. Energy Mater. ACS Appl. Mater. Interfaces
– volume: 10
  start-page: 8120
  year: 2020
  publication-title: ACS Catal.
– volume: 188 136
  start-page: 141 45
  year: 2009 2004
  publication-title: J. Power Sources J. Power Sources
– volume: 1
  start-page: 689
  year: 2017
  publication-title: Joule
– volume: 109 110 13 2 50 22 135 129
  start-page: 1500 728 1159 9991 127
  year: 2002 2005 2006 2011 2012 2011 2006 2013 2014
  publication-title: Chem. Commun. J. Phys. Chem. B J. Phys. Chem. B Phys. Chem. Chem. Phys. ACS Catal. Angew. Chem., Int. Ed. Langmuir J. Am. Chem. Soc. Electrochim. Acta
– volume: 64
  start-page: 481
  year: 2021
  publication-title: Top. Catal.
– volume: 134
  start-page: 8926
  year: 2012
  publication-title: J. Am. Chem. Soc.
– year: 2012
– volume: 5 193 165 25
  start-page: 805 691 739 695
  year: 2011 2009 2007 2001
  publication-title: ACS Nano J. Power Sources J. Power Sources Int. J. Energy Res.
– volume: 158
  start-page: 129
  year: 2006
  publication-title: J. Power Sources
– volume: 3 3
  start-page: 1709 437
  year: 2013 2013
  publication-title: ACS Catal. ACS Catal.
– volume: 5
  start-page: 3124
  year: 2013
  publication-title: ChemCatChem
– volume: 268
  year: 2020
  publication-title: Appl. Energy
– volume: 117 562 39
  start-page: 35 73
  year: 2003 2004 2014
  publication-title: J. Power Sources J. Electroanal. Chem. Int. J. Hydrogen Energy
– volume: 19
  start-page: 8068
  year: 2013
  publication-title: Chem. ‐ Eur. J.
– volume: 44 12
  start-page: 6631 290
  year: 2019 2019
  publication-title: Int. J. Hydrogen Energy Energy Environ. Sci.
– volume: 47 47
  start-page: 3962 3966
  year: 2008 2008
  publication-title: Angew. Chem., Int. Ed. Angew. Chem., Int. Ed.
– volume: 130 38
  start-page: 212
  year: 2004 2013
  publication-title: J. Power Sources Int. J. Hydrogen Energy
– volume: 6 15
  start-page: 1172 3752
  year: 2013 2009
  publication-title: ChemSusChem Chem. ‐ Eur. J.
– ident: e_1_2_8_86_1
  doi: 10.32604/jrm.2020.011197
– ident: e_1_2_8_99_3
  doi: 10.1016/j.scitotenv.2019.01.395
– ident: e_1_2_8_48_3
  doi: 10.1016/j.jpowsour.2006.12.012
– ident: e_1_2_8_48_4
  doi: 10.1002/er.713
– ident: e_1_2_8_60_2
– ident: e_1_2_8_49_1
  doi: 10.1021/cr60261a005
– ident: e_1_2_8_41_1
  doi: 10.1016/j.electacta.2016.03.062
– ident: e_1_2_8_11_2
  doi: 10.1039/C8EE02700E
– ident: e_1_2_8_20_1
  doi: 10.1093/nsr/nww099
– ident: e_1_2_8_88_1
  doi: 10.1016/j.electacta.2005.02.082
– ident: e_1_2_8_53_2
  doi: 10.1002/anie.201503873
– ident: e_1_2_8_96_1
  doi: 10.1016/j.energy.2014.07.044
– volume-title: World Energy Outlook 2019
  year: 2019
  ident: e_1_2_8_1_1
– ident: e_1_2_8_106_1
  doi: 10.1021/cm0310519
– ident: e_1_2_8_47_1
  doi: 10.1039/C5CY01276G
– ident: e_1_2_8_19_1
  doi: 10.1016/j.ijhydene.2018.10.112
– ident: e_1_2_8_37_1
  doi: 10.1016/j.jpowsour.2008.03.075
– ident: e_1_2_8_50_1
  doi: 10.1016/S1381-1169(02)00576-9
– ident: e_1_2_8_71_1
  doi: 10.1021/acs.chemrev.6b00816
– ident: e_1_2_8_104_1
  doi: 10.1016/j.isci.2021.102813
– year: 2021
  ident: e_1_2_8_82_1
  publication-title: Catal. Rev.
– ident: e_1_2_8_37_2
  doi: 10.1016/j.jpowsour.2008.09.039
– ident: e_1_2_8_46_3
– ident: e_1_2_8_68_1
  doi: 10.1039/C9TA02035G
– ident: e_1_2_8_83_1
  doi: 10.1021/ja301696e
– ident: e_1_2_8_36_1
  doi: 10.1021/acs.energyfuels.0c01820
– ident: e_1_2_8_63_1
  doi: 10.1126/science.1206613
– ident: e_1_2_8_45_1
  doi: 10.1002/aenm.201702609
– ident: e_1_2_8_54_4
  doi: 10.1021/ja054236k
– ident: e_1_2_8_73_1
  doi: 10.1038/nnano.2011.42
– ident: e_1_2_8_67_1
  doi: 10.1038/s41929-021-00575-4
– ident: e_1_2_8_19_2
  doi: 10.1038/nature11115
– ident: e_1_2_8_15_1
  doi: 10.1021/acsenergylett.1c02189
– ident: e_1_2_8_23_1
– ident: e_1_2_8_23_3
  doi: 10.1016/j.ijhydene.2012.04.095
– ident: e_1_2_8_51_1
  doi: 10.1002/anie.200705972
– ident: e_1_2_8_101_1
  doi: 10.1016/j.apenergy.2020.115033
– ident: e_1_2_8_34_2
  doi: 10.1039/D0NR00307G
– ident: e_1_2_8_39_1
  doi: 10.1016/S0378-7753(03)00352-5
– ident: e_1_2_8_23_2
  doi: 10.1016/j.ijhydene.2019.01.153
– ident: e_1_2_8_32_2
  doi: 10.1016/j.jpowsour.2004.06.054
– ident: e_1_2_8_29_3
  doi: 10.1021/jp061891l
– ident: e_1_2_8_31_1
  doi: 10.1021/ja205747j
– ident: e_1_2_8_89_2
  doi: 10.1016/j.jpowsour.2004.05.004
– ident: e_1_2_8_45_2
  doi: 10.1021/acsami.6b00416
– ident: e_1_2_8_98_1
  doi: 10.1002/cssc.201000447
– ident: e_1_2_8_26_1
  doi: 10.1016/j.jpowsour.2005.09.048
– ident: e_1_2_8_39_2
  doi: 10.1016/j.jelechem.2003.08.010
– ident: e_1_2_8_31_2
  doi: 10.1016/j.electacta.2012.10.033
– ident: e_1_2_8_37_4
  doi: 10.1016/j.jpowsour.2007.12.016
– ident: e_1_2_8_43_3
  doi: 10.1002/aenm.202000179
– ident: e_1_2_8_65_1
  doi: 10.1021/ja505241x
– ident: e_1_2_8_81_1
  doi: 10.1039/C8TA01093E
– volume-title: The Future of Hydrogen
  year: 2019
  ident: e_1_2_8_3_1
– ident: e_1_2_8_46_2
– ident: e_1_2_8_62_1
  doi: 10.1021/acscatal.7b02482
– ident: e_1_2_8_54_3
  doi: 10.1002/chem.200801568
– ident: e_1_2_8_40_1
  doi: 10.1002/fuce.200400052
– ident: e_1_2_8_52_2
  doi: 10.1002/chem.200801824
– ident: e_1_2_8_69_1
  doi: 10.1021/acscatal.8b04414
– ident: e_1_2_8_29_4
  doi: 10.1039/c1cp22498k
– start-page: 395
  volume-title: Adv. Inorg. Chem.
  year: 2017
  ident: e_1_2_8_90_1
– ident: e_1_2_8_85_1
  doi: 10.1021/ja5008917
– ident: e_1_2_8_80_1
  doi: 10.1002/adma.202101536
– ident: e_1_2_8_17_1
  doi: 10.1039/C5CS00618J
– ident: e_1_2_8_61_1
  doi: 10.1073/pnas.1809342115
– ident: e_1_2_8_95_1
  doi: 10.1016/j.ijhydene.2019.07.032
– ident: e_1_2_8_35_2
  doi: 10.1021/cs300809j
– ident: e_1_2_8_7_1
– ident: e_1_2_8_107_1
– ident: e_1_2_8_34_1
  doi: 10.1016/j.apcatb.2019.118304
– ident: e_1_2_8_35_1
  doi: 10.1021/cs400347u
– ident: e_1_2_8_106_2
– ident: e_1_2_8_21_1
  doi: 10.1039/c3cc43836h
– ident: e_1_2_8_24_2
  doi: 10.1016/j.ijhydene.2012.09.155
– ident: e_1_2_8_84_2
  doi: 10.1016/j.ijhydene.2013.12.148
– ident: e_1_2_8_29_1
  doi: 10.1039/b203392e
– ident: e_1_2_8_81_2
  doi: 10.1021/jacs.6b03518
– volume-title: Ullmann's Encyclopedia of Industrial Chemistry
  year: 2011
  ident: e_1_2_8_9_1
– ident: e_1_2_8_14_1
  doi: 10.1021/acsenergylett.6b00574
– ident: e_1_2_8_103_2
– ident: e_1_2_8_55_1
  doi: 10.1038/nchem.1295
– ident: e_1_2_8_84_1
  doi: 10.1021/cs400148n
– ident: e_1_2_8_99_5
  doi: 10.1016/j.jece.2021.106130
– ident: e_1_2_8_25_1
  doi: 10.1016/j.joule.2017.07.007
– ident: e_1_2_8_77_2
  doi: 10.1021/acscatal.5b02381
– ident: e_1_2_8_87_1
  doi: 10.1073/pnas.1006669107
– ident: e_1_2_8_24_1
  doi: 10.1016/j.jpowsour.2003.11.051
– ident: e_1_2_8_47_2
  doi: 10.1002/asia.201901676
– ident: e_1_2_8_32_1
  doi: 10.1016/j.jpowsour.2011.10.033
– ident: e_1_2_8_70_1
  doi: 10.1021/acsenergylett.6b00574
– ident: e_1_2_8_10_1
  doi: 10.1016/j.jpowsour.2006.07.013
– ident: e_1_2_8_98_2
  doi: 10.1039/C3CS60373C
– ident: e_1_2_8_32_4
  doi: 10.1149/1.3054278
– ident: e_1_2_8_97_1
  doi: 10.1002/9781118528372
– ident: e_1_2_8_39_3
  doi: 10.1016/j.ijhydene.2014.04.149
– ident: e_1_2_8_59_1
  doi: 10.1002/cctc.201402119
– ident: e_1_2_8_50_3
  doi: 10.1021/ja954126l
– ident: e_1_2_8_93_1
  doi: 10.1021/acscatal.8b00294
– ident: e_1_2_8_103_1
– ident: e_1_2_8_22_1
  doi: 10.1016/B978-044452745-5.00864-9
– ident: e_1_2_8_48_2
  doi: 10.1016/j.jpowsour.2009.04.021
– ident: e_1_2_8_51_2
  doi: 10.1002/anie.200800320
– ident: e_1_2_8_92_1
  doi: 10.1002/cctc.201501296
– ident: e_1_2_8_27_2
  doi: 10.1016/S0022-0728(83)80137-5
– ident: e_1_2_8_32_3
  doi: 10.1016/j.jpowsour.2009.11.085
– ident: e_1_2_8_6_1
  doi: 10.1590/S1516-14392012005000112
– start-page: 223
  volume-title: Advances in Inorganic Chemistry
  year: 2014
  ident: e_1_2_8_21_2
– volume: 1
  start-page: 7106
  year: 2018
  ident: e_1_2_8_41_2
  publication-title: ACS Appl. Mater. Interfaces
– ident: e_1_2_8_50_4
  doi: 10.1021/jo01333a048
– ident: e_1_2_8_58_1
  doi: 10.1021/acs.inorgchem.6b02334
– ident: e_1_2_8_29_7
  doi: 10.1021/la060928q
– ident: e_1_2_8_11_1
  doi: 10.1016/j.ijhydene.2019.01.199
– ident: e_1_2_8_16_1
  doi: 10.1021/cr020415y
– ident: e_1_2_8_89_1
  doi: 10.1016/j.jpowsour.2008.11.107
– ident: e_1_2_8_56_1
  doi: 10.1002/cssc.201600697
– ident: e_1_2_8_30_1
  doi: 10.1021/acscatal.0c00791
– ident: e_1_2_8_94_1
  doi: 10.1002/chem.201702969
– ident: e_1_2_8_88_2
  doi: 10.1016/j.ijhydene.2020.06.145
– ident: e_1_2_8_29_6
  doi: 10.1002/anie.201004782
– ident: e_1_2_8_18_1
  doi: 10.1039/D0EE03011B
– ident: e_1_2_8_28_1
  doi: 10.1039/b808799g
– ident: e_1_2_8_99_1
  doi: 10.1016/j.ijhydene.2016.05.199
– ident: e_1_2_8_12_1
  doi: 10.1038/35104599
– ident: e_1_2_8_72_1
  doi: 10.1016/j.ijhydene.2018.02.146
– ident: e_1_2_8_29_2
  doi: 10.1021/jp055220j
– ident: e_1_2_8_99_2
  doi: 10.1039/C9GC01280J
– ident: e_1_2_8_77_1
  doi: 10.1002/cssc.201801679
– ident: e_1_2_8_99_4
  doi: 10.1021/acs.est.9b02944
– ident: e_1_2_8_13_1
  doi: 10.1016/j.apcata.2005.07.011
– ident: e_1_2_8_91_1
  doi: 10.1016/j.ijhydene.2005.11.014
– ident: e_1_2_8_60_1
  doi: 10.1002/asia.201600169
– volume-title: Global Monitoring Laboratory: Trends in Atmospheric Carbon Dioxide
  year: 2021
  ident: e_1_2_8_2_1
– ident: e_1_2_8_43_2
  doi: 10.1126/science.aau0630
– ident: e_1_2_8_38_1
  doi: 10.1016/j.jpowsour.2007.02.062
– ident: e_1_2_8_4_1
  doi: 10.1016/j.ijhydene.2019.12.059
– ident: e_1_2_8_54_1
  doi: 10.1002/cssc.201000327
– ident: e_1_2_8_54_2
  doi: 10.1039/b914442k
– ident: e_1_2_8_47_3
  doi: 10.1016/j.ccr.2017.11.021
– year: 2016
  ident: e_1_2_8_105_1
  publication-title: Formic Acid as Energy Carrier, Topsector Energie
– ident: e_1_2_8_53_1
  doi: 10.1039/D1CC00528F
– ident: e_1_2_8_93_2
  doi: 10.1002/adsu.201700161
– ident: e_1_2_8_4_2
  doi: 10.1016/j.enconman.2018.03.088
– ident: e_1_2_8_29_8
  doi: 10.1021/ja403578s
– ident: e_1_2_8_29_9
  doi: 10.1016/j.electacta.2014.02.040
– ident: e_1_2_8_44_1
  doi: 10.1016/j.jpowsour.2021.229816
– ident: e_1_2_8_33_1
  doi: 10.1016/j.electacta.2010.04.014
– ident: e_1_2_8_102_1
  doi: 10.3390/app8060914
– ident: e_1_2_8_5_1
  doi: 10.1098/rstl.1670.0052
– ident: e_1_2_8_64_1
  doi: 10.1002/chem.201301383
– ident: e_1_2_8_100_1
  doi: 10.1039/C6GC02852G
– ident: e_1_2_8_43_1
  doi: 10.1126/science.aaw7493
– ident: e_1_2_8_8_1
– ident: e_1_2_8_78_1
  doi: 10.1002/cctc.201300246
– ident: e_1_2_8_108_1
  doi: 10.1016/j.ijggc.2015.05.018
– ident: e_1_2_8_46_1
  doi: 10.1039/c2ee21928j
– ident: e_1_2_8_66_1
  doi: 10.1038/ncomms11308
– ident: e_1_2_8_27_1
  doi: 10.1016/S0022-0728(73)80158-5
– ident: e_1_2_8_29_5
  doi: 10.1021/cs200661z
– ident: e_1_2_8_52_1
  doi: 10.1002/cssc.201300186
– ident: e_1_2_8_57_1
  doi: 10.1002/chem.201502086
– ident: e_1_2_8_76_1
  doi: 10.1021/ja200122f
– ident: e_1_2_8_74_1
  doi: 10.1016/j.jcat.2020.10.032
– ident: e_1_2_8_79_1
  doi: 10.1021/acscatal.6b00476
– ident: e_1_2_8_37_3
  doi: 10.1016/j.jpowsour.2006.02.072
– ident: e_1_2_8_48_1
  doi: 10.1021/nn1017395
– ident: e_1_2_8_75_1
  doi: 10.1007/s11244-021-01458-5
– ident: e_1_2_8_42_1
  doi: 10.1002/anie.201308620
– ident: e_1_2_8_88_3
  doi: 10.1016/S0378-7753(02)00227-6
– ident: e_1_2_8_50_2
  doi: 10.1039/b004234j
SSID ssj0000491033
Score 2.6600976
Snippet The storage and utilization of low‐carbon electricity and decarbonization of transportation are essential components for the future energy transition into a...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Carbon
Dehydrogenation
Economic analysis
Energy storage
Flammability
Formic acid
Fuel cells
high pressure gas production
hydrogen energy carrier
Hydrogen production
Hydrogen-based energy
Life cycle assessment
Liquefaction
Potential energy
Storage capacity
Toxicity
Transportation
Title Formic Acid to Power towards Low‐Carbon Economy
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faenm.202103799
https://www.proquest.com/docview/2652761551
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LjtMwFLVgZgMLxFMUBpQFEosq0Dhp6iyj0qqgtiDRSt1ZduzQjkbpqE2FNKv5BL6RL-E4zqvSAAObKLVSJ_I9uTnXvveYkDdepFnkKQQ5vi8RoADGLBmkbpBGEj5TsoiZQuHZPJwsg0-r_qpJty2qS3L5Lrm6sa7kf6yKNtjVVMn-g2XrTtGAc9gXR1gYx1vZeAzCuUm6cbJRhkN-MTue4cQkwu670-33OpNhKHYSZrZVyEcLuXGVA6BtESAIrH3yhuHmlmB-zBS-a01GxnBdSHOel0r7BwXv06T9rLV1IpNt9i3Vm2alarcXlweb1C3O9X7dLZK825MPiFubnJXbubiWawURcENWzmbqdpsVbKr9MW3jrn-jn7e6sUJnRkyAmlpHu83SsaD2_DMfL6dTvhitFnfJKUUkAVd4Gn-YTb_WE3EIkfD_ohCjesJK3LNH3x_f4pi8NBFJO64piMniIXlQRhRObOHxiNzR2WNyv6Uz-YR4FiiOAYqTb50CKE4JFAdA-Xn9w0LEKSHylCzHo8Vw4pZ7ZbiJD47rqp4AMfNoCHoRScGUDEFle4kQgRKguFQkahAhOozg07VkfZGy1POVFiHzApX6z8hJts30c-IwnQb4fPqR1AJkOpWUaSkk-h2wIPD9DnGrQeBJKSRv9jO54FYCm3IzaLwetA55W19_aSVUfnvlWTWmvHzN9pyGfTowq-deh9BinP_SC49H81n968Wf-3xJ7jW4PiMn-e6gX4Fm5vJ1CZRfsKl56A
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Formic+Acid+to+Power+towards+Low%E2%80%90Carbon+Economy&rft.jtitle=Advanced+energy+materials&rft.au=Dutta%2C+Indranil&rft.au=Chatterjee%2C+Sudipta&rft.au=Cheng%2C+Hongfei&rft.au=Parsapur%2C+Rajesh+Kumar&rft.date=2022-04-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1614-6832&rft.eissn=1614-6840&rft.volume=12&rft.issue=15&rft_id=info:doi/10.1002%2Faenm.202103799&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1614-6832&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1614-6832&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1614-6832&client=summon