Formic Acid to Power towards Low‐Carbon Economy
The storage and utilization of low‐carbon electricity and decarbonization of transportation are essential components for the future energy transition into a low‐carbon economy. While hydrogen has been identified as a potential energy carrier, the lack of viable technologies for safe and efficient st...
Saved in:
Published in | Advanced energy materials Vol. 12; no. 15 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
01.04.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The storage and utilization of low‐carbon electricity and decarbonization of transportation are essential components for the future energy transition into a low‐carbon economy. While hydrogen has been identified as a potential energy carrier, the lack of viable technologies for safe and efficient storage and transportation of H2 greatly limits its applications and deployment at scale. Formic acid (FA) is considered one of the promising H2 energy carriers because of its high volumetric H2 storage capacity of 53 g H2/L, and relatively low toxicity and flammability for convenient and low‐cost storage and transportation. FA can be employed to generate electricity either in direct FA fuel cells (FCs) or indirectly as an H2 source for hydrogen FCs. FA can enable large‐scale chemical H2 storage to eliminate energy‐intensive and expensive processes for H2 liquefaction and compression and thus to achieve higher efficiency and broader utilization. This perspective summarizes recent advances in catalyst development for selective dehydrogenation of FA and high‐pressure H2 production. The advantages and limitations of FA‐to‐power options are highlighted. Existing life cycle assessment (LCA) and economic analysis studies are reviewed to discuss the feasibility and future potential of FA as a fuel.
The utilization of low‐carbon electricity and decarbonization of transportation are essential to a low‐carbon economy. Hydrogen has been identified as an energy carrier, but the lack of viable storage and distribution technologies greatly limits its uses. A chemical hydrogen storage system powered by formic acid can replace energy‐intensive liquefaction and compression processes for hydrogen, enabling higher efficiency and broader applications. |
---|---|
AbstractList | The storage and utilization of low‐carbon electricity and decarbonization of transportation are essential components for the future energy transition into a low‐carbon economy. While hydrogen has been identified as a potential energy carrier, the lack of viable technologies for safe and efficient storage and transportation of H2 greatly limits its applications and deployment at scale. Formic acid (FA) is considered one of the promising H2 energy carriers because of its high volumetric H2 storage capacity of 53 g H2/L, and relatively low toxicity and flammability for convenient and low‐cost storage and transportation. FA can be employed to generate electricity either in direct FA fuel cells (FCs) or indirectly as an H2 source for hydrogen FCs. FA can enable large‐scale chemical H2 storage to eliminate energy‐intensive and expensive processes for H2 liquefaction and compression and thus to achieve higher efficiency and broader utilization. This perspective summarizes recent advances in catalyst development for selective dehydrogenation of FA and high‐pressure H2 production. The advantages and limitations of FA‐to‐power options are highlighted. Existing life cycle assessment (LCA) and economic analysis studies are reviewed to discuss the feasibility and future potential of FA as a fuel. The storage and utilization of low‐carbon electricity and decarbonization of transportation are essential components for the future energy transition into a low‐carbon economy. While hydrogen has been identified as a potential energy carrier, the lack of viable technologies for safe and efficient storage and transportation of H 2 greatly limits its applications and deployment at scale. Formic acid (FA) is considered one of the promising H 2 energy carriers because of its high volumetric H 2 storage capacity of 53 g H 2 /L, and relatively low toxicity and flammability for convenient and low‐cost storage and transportation. FA can be employed to generate electricity either in direct FA fuel cells (FCs) or indirectly as an H 2 source for hydrogen FCs. FA can enable large‐scale chemical H 2 storage to eliminate energy‐intensive and expensive processes for H 2 liquefaction and compression and thus to achieve higher efficiency and broader utilization. This perspective summarizes recent advances in catalyst development for selective dehydrogenation of FA and high‐pressure H 2 production. The advantages and limitations of FA‐to‐power options are highlighted. Existing life cycle assessment (LCA) and economic analysis studies are reviewed to discuss the feasibility and future potential of FA as a fuel. The storage and utilization of low‐carbon electricity and decarbonization of transportation are essential components for the future energy transition into a low‐carbon economy. While hydrogen has been identified as a potential energy carrier, the lack of viable technologies for safe and efficient storage and transportation of H2 greatly limits its applications and deployment at scale. Formic acid (FA) is considered one of the promising H2 energy carriers because of its high volumetric H2 storage capacity of 53 g H2/L, and relatively low toxicity and flammability for convenient and low‐cost storage and transportation. FA can be employed to generate electricity either in direct FA fuel cells (FCs) or indirectly as an H2 source for hydrogen FCs. FA can enable large‐scale chemical H2 storage to eliminate energy‐intensive and expensive processes for H2 liquefaction and compression and thus to achieve higher efficiency and broader utilization. This perspective summarizes recent advances in catalyst development for selective dehydrogenation of FA and high‐pressure H2 production. The advantages and limitations of FA‐to‐power options are highlighted. Existing life cycle assessment (LCA) and economic analysis studies are reviewed to discuss the feasibility and future potential of FA as a fuel. The utilization of low‐carbon electricity and decarbonization of transportation are essential to a low‐carbon economy. Hydrogen has been identified as an energy carrier, but the lack of viable storage and distribution technologies greatly limits its uses. A chemical hydrogen storage system powered by formic acid can replace energy‐intensive liquefaction and compression processes for hydrogen, enabling higher efficiency and broader applications. |
Author | Chatterjee, Sudipta Li, Zibiao Low, Jonathan Sze Choong Cheng, Hongfei Kawanami, Hajime Dutta, Indranil Lai, Zhiping Loh, Xian Jun Huang, Kuo‐Wei Parsapur, Rajesh Kumar Liu, Zhaolin Ye, Enyi |
Author_xml | – sequence: 1 givenname: Indranil surname: Dutta fullname: Dutta, Indranil organization: King Abdullah University of Science and Technology – sequence: 2 givenname: Sudipta surname: Chatterjee fullname: Chatterjee, Sudipta organization: King Abdullah University of Science and Technology – sequence: 3 givenname: Hongfei surname: Cheng fullname: Cheng, Hongfei organization: Institute of Materials Research and Engineering – sequence: 4 givenname: Rajesh Kumar surname: Parsapur fullname: Parsapur, Rajesh Kumar organization: King Abdullah University of Science and Technology – sequence: 5 givenname: Zhaolin surname: Liu fullname: Liu, Zhaolin email: zl-liu@imre.a-star.edu.sg organization: Institute of Materials Research and Engineering – sequence: 6 givenname: Zibiao surname: Li fullname: Li, Zibiao organization: Institute of Materials Research and Engineering – sequence: 7 givenname: Enyi surname: Ye fullname: Ye, Enyi organization: Institute of Materials Research and Engineering – sequence: 8 givenname: Hajime surname: Kawanami fullname: Kawanami, Hajime email: h-kawanami@aist.go.jp organization: National Institute of Advanced Industrial Science and Technology – sequence: 9 givenname: Jonathan Sze Choong surname: Low fullname: Low, Jonathan Sze Choong organization: Singapore Institute of Manufacturing Technology – sequence: 10 givenname: Zhiping surname: Lai fullname: Lai, Zhiping organization: King Abdullah University of Science and Technology – sequence: 11 givenname: Xian Jun surname: Loh fullname: Loh, Xian Jun email: lohxj@imre.a-star.edu.sg organization: Institute of Materials Research and Engineering – sequence: 12 givenname: Kuo‐Wei orcidid: 0000-0003-1900-2658 surname: Huang fullname: Huang, Kuo‐Wei email: hkw@kaust.edu.sa organization: Institute of Materials Research and Engineering |
BookMark | eNqFkM1KAzEUhYNUsNZuXQ-4npqfmcxkWUprhfqz0HW4k2QgpTOpyZShOx_BZ_RJTKlUEMS7OWdxvnvgXKJB61qD0DXBE4IxvQXTNhOKKcGsEOIMDQknWcrLDA9OntELNA5hjeNlIibZEJGF841VyVRZnXQueXa98dH04HVIVq7_fP-Yga9cm8yVa12zv0LnNWyCGX_rCL0u5i-zZbp6urufTVepYiUTqcbACSOUUyFEBaWuOI-9CiDTwCmjoHQheJELXDBTlTnUZU2YNsBLkumajdDN8e_Wu7edCZ1cu51vY6WkPKcFJ3lOYmpyTCnvQvCmlltvG_B7SbA8LCMPy8jTMhHIfgHKdtBZ13Ye7OZvTByx3m7M_p8SOZ0_PvywXw0eeWQ |
CitedBy_id | crossref_primary_10_1021_acscatal_2c04113 crossref_primary_10_1007_s11708_022_0843_7 crossref_primary_10_1007_s12598_024_02852_0 crossref_primary_10_1002_celc_202200272 crossref_primary_10_1021_acsanm_4c00279 crossref_primary_10_1016_j_apcatb_2023_123073 crossref_primary_10_1088_2053_1583_acae34 crossref_primary_10_1021_jacs_3c03317 crossref_primary_10_1038_s41467_024_51658_2 crossref_primary_10_1007_s13738_024_03002_0 crossref_primary_10_1016_j_ijhydene_2023_07_317 crossref_primary_10_1021_acs_inorgchem_4c05024 crossref_primary_10_1016_j_joule_2024_01_003 crossref_primary_10_1021_acs_energyfuels_4c02594 crossref_primary_10_1021_acsnano_3c11523 crossref_primary_10_1002_cssc_202300871 crossref_primary_10_1016_j_seppur_2024_126520 crossref_primary_10_1016_j_ijhydene_2023_06_004 crossref_primary_10_1016_j_jcat_2024_115633 crossref_primary_10_3390_en16041723 crossref_primary_10_1002_cssc_202301282 crossref_primary_10_1016_j_ijhydene_2024_01_146 crossref_primary_10_1016_j_psep_2024_02_060 crossref_primary_10_1039_D3CC04987F crossref_primary_10_1016_j_apcatb_2024_123750 crossref_primary_10_1016_j_ccr_2024_215775 crossref_primary_10_1002_adma_202404980 crossref_primary_10_1016_j_fuel_2024_131170 crossref_primary_10_1016_j_mtchem_2022_101120 crossref_primary_10_1016_j_seppur_2025_131791 crossref_primary_10_1016_j_jechem_2023_06_027 crossref_primary_10_1016_j_ijhydene_2024_06_226 crossref_primary_10_1021_acs_inorgchem_2c01027 crossref_primary_10_1021_acs_energyfuels_4c05903 crossref_primary_10_1039_D3CP01876H crossref_primary_10_1039_D3SE00407D crossref_primary_10_1016_j_jcis_2023_12_085 crossref_primary_10_1002_aesr_202400399 crossref_primary_10_1016_j_apcatb_2024_124792 crossref_primary_10_1021_acscatal_3c00009 crossref_primary_10_1039_D3NA00663H crossref_primary_10_1016_j_cej_2025_160396 crossref_primary_10_1016_j_jcou_2023_102635 crossref_primary_10_1021_acsenergylett_3c00489 crossref_primary_10_1002_aenm_202301597 crossref_primary_10_1002_adma_202407266 crossref_primary_10_1002_cctc_202400393 crossref_primary_10_1002_cctc_202401481 crossref_primary_10_1016_j_envres_2024_118897 crossref_primary_10_1016_j_cej_2024_156261 crossref_primary_10_1038_s41560_022_01030_9 crossref_primary_10_3389_fpubh_2023_1152809 crossref_primary_10_1021_acs_inorgchem_3c03125 crossref_primary_10_1016_j_apenergy_2024_123972 crossref_primary_10_1016_j_cej_2024_158846 crossref_primary_10_1016_j_cattod_2025_115272 crossref_primary_10_1039_D3GC03892K crossref_primary_10_1016_j_jece_2024_114761 crossref_primary_10_1021_acsanm_4c03972 crossref_primary_10_1002_ange_202317628 crossref_primary_10_1002_advs_202402651 crossref_primary_10_1021_jacsau_4c00583 crossref_primary_10_1021_acs_inorgchem_2c04079 crossref_primary_10_3390_en16062613 crossref_primary_10_1002_cmt2_10 crossref_primary_10_1016_j_cej_2024_156491 crossref_primary_10_1007_s11814_024_00355_3 crossref_primary_10_1016_S1872_2067_22_64202_5 crossref_primary_10_1002_anie_202423661 crossref_primary_10_1016_j_fuel_2024_131908 crossref_primary_10_3390_cryst13121609 crossref_primary_10_1002_celc_202300018 crossref_primary_10_1016_j_ijhydene_2022_04_220 crossref_primary_10_1016_j_ijhydene_2023_04_244 crossref_primary_10_1002_adfm_202412311 crossref_primary_10_1016_j_fuproc_2022_107493 crossref_primary_10_1016_j_compchemeng_2024_108921 crossref_primary_10_1016_j_matre_2024_100249 crossref_primary_10_1016_j_jcat_2023_07_014 crossref_primary_10_1039_D4DT03521F crossref_primary_10_3390_en16166035 crossref_primary_10_1002_anie_202317628 crossref_primary_10_1016_j_cattod_2024_114966 crossref_primary_10_1002_ange_202423661 crossref_primary_10_1016_j_apcatb_2023_123439 crossref_primary_10_1016_j_est_2025_115915 crossref_primary_10_3390_nano13101670 crossref_primary_10_1016_j_jcis_2024_06_216 crossref_primary_10_1021_acsami_4c20216 crossref_primary_10_1021_acs_organomet_4c00229 crossref_primary_10_1002_cssc_202401811 crossref_primary_10_1038_s41467_024_52517_w crossref_primary_10_1627_jpi_67_147 crossref_primary_10_1021_acs_inorgchem_2c02672 crossref_primary_10_1021_acscatal_4c04109 crossref_primary_10_1002_smll_202402459 crossref_primary_10_1016_j_chemosphere_2024_143017 crossref_primary_10_1039_D2CC03768H crossref_primary_10_1039_D3DT03340F crossref_primary_10_1016_j_apsusc_2024_161398 crossref_primary_10_1016_j_cej_2024_158011 crossref_primary_10_1016_j_rechem_2024_101496 crossref_primary_10_1186_s40807_024_00102_6 crossref_primary_10_1021_acs_accounts_4c00442 crossref_primary_10_1149_1945_7111_adada4 crossref_primary_10_1002_smll_202407578 crossref_primary_10_1016_j_jcis_2024_02_204 crossref_primary_10_1021_acsenergylett_3c01098 crossref_primary_10_1039_D2QI02762C crossref_primary_10_1016_j_seppur_2024_127926 crossref_primary_10_1016_j_mcat_2022_112671 crossref_primary_10_1021_acscatal_2c04137 crossref_primary_10_1016_j_colsurfa_2022_130645 crossref_primary_10_1021_acs_accounts_4c00418 crossref_primary_10_1016_j_sftr_2024_100182 crossref_primary_10_1016_j_ijhydene_2025_02_369 crossref_primary_10_3390_catal14100720 crossref_primary_10_1002_cssc_202301616 crossref_primary_10_1016_j_jclepro_2024_142125 crossref_primary_10_1039_D4TA06649A crossref_primary_10_1016_j_clet_2025_100929 crossref_primary_10_1002_aenm_202402650 crossref_primary_10_1002_cctc_202401202 crossref_primary_10_1002_aenm_202203893 crossref_primary_10_34133_energymatadv_0067 crossref_primary_10_1002_ange_202305843 crossref_primary_10_1039_D4SC01221F crossref_primary_10_1038_s41467_024_55612_0 crossref_primary_10_1002_advs_202405725 crossref_primary_10_1039_D3NJ01188G crossref_primary_10_1021_acs_iecr_3c03235 crossref_primary_10_1002_smll_202204100 crossref_primary_10_1016_j_ijhydene_2024_05_143 crossref_primary_10_1021_acs_organomet_4c00116 crossref_primary_10_1021_acs_iecr_4c03344 crossref_primary_10_1021_acs_organomet_3c00523 crossref_primary_10_1039_D3SU00149K crossref_primary_10_1002_anie_202408412 crossref_primary_10_1016_j_ijhydene_2024_04_106 crossref_primary_10_1002_ange_202408412 crossref_primary_10_1016_j_buildenv_2025_112817 crossref_primary_10_1002_adfm_202408300 crossref_primary_10_1021_acsanm_3c00668 crossref_primary_10_1016_j_ijhydene_2023_11_071 crossref_primary_10_1016_j_ijhydene_2024_01_317 crossref_primary_10_1002_anie_202305843 crossref_primary_10_3390_fire7080290 crossref_primary_10_1002_adma_202414283 crossref_primary_10_1016_j_nanoen_2022_108124 |
Cites_doi | 10.32604/jrm.2020.011197 10.1016/j.scitotenv.2019.01.395 10.1016/j.jpowsour.2006.12.012 10.1002/er.713 10.1021/cr60261a005 10.1016/j.electacta.2016.03.062 10.1039/C8EE02700E 10.1093/nsr/nww099 10.1016/j.electacta.2005.02.082 10.1002/anie.201503873 10.1016/j.energy.2014.07.044 10.1021/cm0310519 10.1039/C5CY01276G 10.1016/j.ijhydene.2018.10.112 10.1016/j.jpowsour.2008.03.075 10.1016/S1381-1169(02)00576-9 10.1021/acs.chemrev.6b00816 10.1016/j.isci.2021.102813 10.1016/j.jpowsour.2008.09.039 10.1039/C9TA02035G 10.1021/ja301696e 10.1021/acs.energyfuels.0c01820 10.1126/science.1206613 10.1002/aenm.201702609 10.1021/ja054236k 10.1038/nnano.2011.42 10.1038/s41929-021-00575-4 10.1038/nature11115 10.1021/acsenergylett.1c02189 10.1016/j.ijhydene.2012.04.095 10.1002/anie.200705972 10.1016/j.apenergy.2020.115033 10.1039/D0NR00307G 10.1016/S0378-7753(03)00352-5 10.1016/j.ijhydene.2019.01.153 10.1016/j.jpowsour.2004.06.054 10.1021/jp061891l 10.1021/ja205747j 10.1016/j.jpowsour.2004.05.004 10.1021/acsami.6b00416 10.1002/cssc.201000447 10.1016/j.jpowsour.2005.09.048 10.1016/j.jelechem.2003.08.010 10.1016/j.electacta.2012.10.033 10.1016/j.jpowsour.2007.12.016 10.1002/aenm.202000179 10.1021/ja505241x 10.1039/C8TA01093E 10.1021/acscatal.7b02482 10.1002/chem.200801568 10.1002/fuce.200400052 10.1002/chem.200801824 10.1021/acscatal.8b04414 10.1039/c1cp22498k 10.1021/ja5008917 10.1002/adma.202101536 10.1039/C5CS00618J 10.1073/pnas.1809342115 10.1016/j.ijhydene.2019.07.032 10.1021/cs300809j 10.1016/j.apcatb.2019.118304 10.1021/cs400347u 10.1039/c3cc43836h 10.1016/j.ijhydene.2012.09.155 10.1016/j.ijhydene.2013.12.148 10.1039/b203392e 10.1021/jacs.6b03518 10.1021/acsenergylett.6b00574 10.1038/nchem.1295 10.1021/cs400148n 10.1016/j.jece.2021.106130 10.1016/j.joule.2017.07.007 10.1021/acscatal.5b02381 10.1073/pnas.1006669107 10.1016/j.jpowsour.2003.11.051 10.1002/asia.201901676 10.1016/j.jpowsour.2011.10.033 10.1016/j.jpowsour.2006.07.013 10.1039/C3CS60373C 10.1149/1.3054278 10.1002/9781118528372 10.1016/j.ijhydene.2014.04.149 10.1002/cctc.201402119 10.1021/ja954126l 10.1021/acscatal.8b00294 10.1016/B978-044452745-5.00864-9 10.1016/j.jpowsour.2009.04.021 10.1002/anie.200800320 10.1002/cctc.201501296 10.1016/S0022-0728(83)80137-5 10.1016/j.jpowsour.2009.11.085 10.1590/S1516-14392012005000112 10.1021/jo01333a048 10.1021/acs.inorgchem.6b02334 10.1021/la060928q 10.1016/j.ijhydene.2019.01.199 10.1021/cr020415y 10.1016/j.jpowsour.2008.11.107 10.1002/cssc.201600697 10.1021/acscatal.0c00791 10.1002/chem.201702969 10.1016/j.ijhydene.2020.06.145 10.1002/anie.201004782 10.1039/D0EE03011B 10.1039/b808799g 10.1016/j.ijhydene.2016.05.199 10.1038/35104599 10.1016/j.ijhydene.2018.02.146 10.1021/jp055220j 10.1039/C9GC01280J 10.1002/cssc.201801679 10.1021/acs.est.9b02944 10.1016/j.apcata.2005.07.011 10.1016/j.ijhydene.2005.11.014 10.1002/asia.201600169 10.1126/science.aau0630 10.1016/j.jpowsour.2007.02.062 10.1016/j.ijhydene.2019.12.059 10.1002/cssc.201000327 10.1039/b914442k 10.1016/j.ccr.2017.11.021 10.1039/D1CC00528F 10.1002/adsu.201700161 10.1016/j.enconman.2018.03.088 10.1021/ja403578s 10.1016/j.electacta.2014.02.040 10.1016/j.jpowsour.2021.229816 10.1016/j.electacta.2010.04.014 10.3390/app8060914 10.1098/rstl.1670.0052 10.1002/chem.201301383 10.1039/C6GC02852G 10.1126/science.aaw7493 10.1002/cctc.201300246 10.1016/j.ijggc.2015.05.018 10.1039/c2ee21928j 10.1038/ncomms11308 10.1016/S0022-0728(73)80158-5 10.1021/cs200661z 10.1002/cssc.201300186 10.1002/chem.201502086 10.1021/ja200122f 10.1016/j.jcat.2020.10.032 10.1021/acscatal.6b00476 10.1016/j.jpowsour.2006.02.072 10.1021/nn1017395 10.1007/s11244-021-01458-5 10.1002/anie.201308620 10.1016/S0378-7753(02)00227-6 10.1039/b004234j |
ContentType | Journal Article |
Copyright | 2022 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2022 Wiley‐VCH GmbH |
DBID | AAYXX CITATION 7SP 7TB 8FD F28 FR3 H8D L7M |
DOI | 10.1002/aenm.202103799 |
DatabaseName | CrossRef Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering |
DatabaseTitleList | Aerospace Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1614-6840 |
EndPage | n/a |
ExternalDocumentID | 10_1002_aenm_202103799 AENM202103799 |
Genre | article |
GrantInformation_xml | – fundername: CANON foundation in Japan – fundername: Agency for Science, Technology and Research – fundername: New Energy and Industrial Technology Development Organization – fundername: King Abdullah University of Science and Technology |
GroupedDBID | 05W 0R~ 1OC 33P 4.4 50Y 5VS 8-0 8-1 A00 AAESR AAHHS AAHQN AAIHA AAMNL AANLZ AAXRX AAYCA AAZKR ABCUV ABJNI ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADKYN ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AENEX AEQDE AEUYR AFBPY AFFPM AFWVQ AFZJQ AHBTC AIACR AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB AZVAB BDRZF BFHJK BMXJE BRXPI D-A DCZOG EBS G-S HGLYW HZ~ KBYEO LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MY. MY~ O9- P2W P4E RNS ROL RX1 SUPJJ WBKPD WOHZO WXSBR WYJ ZZTAW ~S- 31~ AANHP AASGY AAYXX ACBWZ ACRPL ACYXJ ADMLS ADNMO AEYWJ AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION EJD FEDTE GODZA HVGLF 7SP 7TB 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY F28 FR3 H8D L7M |
ID | FETCH-LOGICAL-c3839-d0a6131262999ba8db66000caa4da6232acd796759073eb85af8f13dea6814df3 |
ISSN | 1614-6832 |
IngestDate | Fri Jul 25 12:24:58 EDT 2025 Tue Jul 01 01:43:43 EDT 2025 Thu Apr 24 23:09:24 EDT 2025 Wed Jan 22 16:24:59 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 15 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c3839-d0a6131262999ba8db66000caa4da6232acd796759073eb85af8f13dea6814df3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-1900-2658 |
PQID | 2652761551 |
PQPubID | 886389 |
PageCount | 17 |
ParticipantIDs | proquest_journals_2652761551 crossref_primary_10_1002_aenm_202103799 crossref_citationtrail_10_1002_aenm_202103799 wiley_primary_10_1002_aenm_202103799_AENM202103799 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-04-01 |
PublicationDateYYYYMMDD | 2022-04-01 |
PublicationDate_xml | – month: 04 year: 2022 text: 2022-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Advanced energy materials |
PublicationYear | 2022 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2021; 64 2006; 31 2005; 296 2008 2008; 47 47 2019 2018 2020; 566 362 10 2009 2004; 188 136 2004; 4 2016 2019; 11 2012; 15 2020; 10 2003 2021; 15 2018; 43 2013; 5 2014; 136 2018; 8 2012; 134 2017; 70 1973 1983; 45 148 2016 2019 2019 2019 2021; 41 21 663 53 9 2006; 162 2003 2004 2014; 117 562 39 2021; 394 2018 2018; 8 2 2001; 414 2016; 45 2019; 7 2007; 168 2019; 9 2021 2021 1670; 5 2020; 34 2020; 268 2011 2013; 133 88 2018 2016; 8 8 2011; 6 2011; 133 2011 2009 2008 2005; 4 11 14 127 2016; 6 2016; 7 2016; 2 2019; 44 2013 2009; 6 15 2019 2012; 44 486 2018; 115 2017; 56 2021; 496 2011 2009 2007 2001; 5 193 165 25 2016; 8 2019 2019; 44 12 2016; 9 2010; 55 2021; 24 2017; 7 2017; 1 2017; 2 2003 2000 1996 1979; 195 118 44 2017; 4 2013 2014; 3 39 2013 2014; 49 66 2017; 117 2013 2013; 3 3 2013; 19 2020; 8 2008 2008 2006 2008; 182 185 163 178 2005 2020 2002; 50 45 110 2021; 33 2015; 40 2002 2005 2006 2011 2012 2011 2006 2013 2014; 109 110 13 2 50 22 135 129 2014; 6 2012 2005 2011 2009; 199 139 196 12 2020 2020; 263 12 2014; 53 2021; 6 2011; 333 2004; 104 2019 2019 2012; 44 37 2016 2020 2018; 6 15 373 2021; 4 2012 2011 2016 2018; 197 1 2020 2018; 45 165 2017; 23 2009 2008; 10 2006; 158 2021; 14 2021 2015; 57 54 2011; 108 2018 2016; 6 138 2021 2015; 21 2018 2016; 11 6 2019 1969; 69 2017; 19 2016 2004 2013; 130 38 2012; 4 2012; 5 2011 2014; 4 43 2014; 77 e_1_2_8_45_2 NOAA (e_1_2_8_2_1) 2021 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_68_1 IEA (e_1_2_8_3_1) 2019 e_1_2_8_5_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_64_1 e_1_2_8_87_1 e_1_2_8_41_1 e_1_2_8_60_1 e_1_2_8_83_1 e_1_2_8_60_2 e_1_2_8_19_1 e_1_2_8_19_2 e_1_2_8_34_2 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 e_1_2_8_99_3 e_1_2_8_99_4 e_1_2_8_99_5 e_1_2_8_91_1 e_1_2_8_95_1 e_1_2_8_99_1 e_1_2_8_99_2 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_76_1 e_1_2_8_11_2 e_1_2_8_53_2 e_1_2_8_101_1 e_1_2_8_30_1 e_1_2_8_72_1 e_1_2_8_48_4 e_1_2_8_29_1 e_1_2_8_48_3 e_1_2_8_29_2 e_1_2_8_29_3 e_1_2_8_25_1 e_1_2_8_48_2 e_1_2_8_48_1 e_1_2_8_29_8 e_1_2_8_29_9 Bulushev D. A. (e_1_2_8_82_1) 2021 e_1_2_8_29_4 e_1_2_8_29_5 e_1_2_8_29_6 e_1_2_8_29_7 e_1_2_8_6_1 e_1_2_8_21_1 e_1_2_8_67_1 e_1_2_8_44_1 e_1_2_8_86_1 e_1_2_8_63_1 e_1_2_8_40_1 e_1_2_8_37_4 e_1_2_8_18_1 e_1_2_8_37_3 e_1_2_8_14_1 e_1_2_8_37_2 e_1_2_8_37_1 e_1_2_8_79_1 e_1_2_8_94_1 e_1_2_8_98_1 e_1_2_8_98_2 e_1_2_8_10_1 e_1_2_8_56_1 e_1_2_8_106_1 e_1_2_8_52_2 e_1_2_8_106_2 e_1_2_8_33_1 e_1_2_8_75_1 e_1_2_8_52_1 e_1_2_8_102_1 e_1_2_8_71_1 e_1_2_8_28_1 IEA (e_1_2_8_1_1) 2019 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_24_2 e_1_2_8_47_3 e_1_2_8_47_2 e_1_2_8_89_2 e_1_2_8_81_1 e_1_2_8_7_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_66_1 e_1_2_8_89_1 Behr A. (e_1_2_8_21_2) 2014 e_1_2_8_43_3 e_1_2_8_43_2 e_1_2_8_62_1 e_1_2_8_85_1 e_1_2_8_81_2 e_1_2_8_17_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_32_4 Sandström R. (e_1_2_8_41_2) 2018; 1 e_1_2_8_70_1 e_1_2_8_97_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_78_1 e_1_2_8_32_3 e_1_2_8_107_1 e_1_2_8_32_2 e_1_2_8_51_1 e_1_2_8_74_1 e_1_2_8_51_2 e_1_2_8_93_2 e_1_2_8_103_1 e_1_2_8_93_1 e_1_2_8_103_2 e_1_2_8_27_2 e_1_2_8_23_2 e_1_2_8_46_2 e_1_2_8_23_3 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_46_3 e_1_2_8_69_1 e_1_2_8_88_3 e_1_2_8_80_1 e_1_2_8_4_2 e_1_2_8_4_1 e_1_2_8_8_1 e_1_2_8_88_2 e_1_2_8_42_1 e_1_2_8_88_1 e_1_2_8_23_1 e_1_2_8_65_1 e_1_2_8_84_2 e_1_2_8_84_1 e_1_2_8_61_1 e_1_2_8_39_2 e_1_2_8_39_1 e_1_2_8_39_3 e_1_2_8_35_2 e_1_2_8_35_1 Kawanami H. (e_1_2_8_90_1) 2017 e_1_2_8_54_4 e_1_2_8_16_1 e_1_2_8_58_1 Reutemann W. (e_1_2_8_9_1) 2011 e_1_2_8_92_1 e_1_2_8_96_1 e_1_2_8_100_1 e_1_2_8_31_2 e_1_2_8_54_2 e_1_2_8_77_2 e_1_2_8_31_1 e_1_2_8_54_3 e_1_2_8_77_1 e_1_2_8_50_4 Haperen R. (e_1_2_8_105_1) 2016 e_1_2_8_12_1 e_1_2_8_54_1 e_1_2_8_108_1 e_1_2_8_50_2 e_1_2_8_50_3 e_1_2_8_73_1 e_1_2_8_50_1 e_1_2_8_104_1 |
References_xml | – year: 2011 – volume: 49 66 start-page: 8735 223 year: 2013 2014 publication-title: Chem. Commun. – volume: 5 start-page: 8171 year: 2012 publication-title: Energy Environ. Sci. – volume: 9 start-page: 2749 year: 2016 publication-title: ChemSusChem – volume: 136 year: 2014 publication-title: J. Am. Chem. Soc. – volume: 136 start-page: 4861 year: 2014 publication-title: J. Am. Chem. Soc. – volume: 56 start-page: 438 year: 2017 publication-title: Inorg. Chem. – start-page: 172 year: 2009 – volume: 296 start-page: 1 year: 2005 publication-title: Appl. Catal., A – volume: 496 year: 2021 publication-title: J. Power Sources – volume: 8 start-page: 914 year: 2018 publication-title: Appl. Sci. – volume: 14 start-page: 1194 year: 2021 publication-title: Energy Environ. Sci. – volume: 5 start-page: 2063 year: 1670 publication-title: Philos. Trans. R. Soc. London – volume: 115 year: 2018 publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 50 45 110 start-page: 5189 117 year: 2005 2020 2002 publication-title: Electrochim. Acta Int. J. Hydrogen Energy J. Power Sources – volume: 19 start-page: 2244 year: 2017 publication-title: Green Chem. – volume: 15 start-page: 837 year: 2012 publication-title: Mat. Res. – volume: 21 year: 2015 publication-title: Chem. ‐ Eur. J. – volume: 4 start-page: 163 year: 2017 publication-title: Natl. Sci. Rev. – volume: 197 1 start-page: 32 7106 year: 2016 2018 publication-title: Electrochim. Acta ACS Appl. Mater. Interfaces – volume: 41 21 663 53 9 start-page: 3442 738 year: 2016 2019 2019 2019 2021 publication-title: Int. J. Hydrogen Energy Green Chem. Sci. Total Environ. Environ. Sci. Technol. J. Environ. Chem. Eng. – volume: 4 43 start-page: 1216 7982 year: 2011 2014 publication-title: ChemSusChem Chem. Soc. Rev. – year: 2019 – volume: 11 start-page: 1357 year: 2016 2019 publication-title: Chem. ‐ Asian J. – volume: 2 start-page: 188 year: 2016 publication-title: ACS Energy Lett. – volume: 2 start-page: 188 year: 2017 publication-title: ACS Energy Lett. – volume: 108 start-page: 917 year: 2011 publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 7 year: 2019 publication-title: J. Mater. Chem. A – volume: 23 year: 2017 publication-title: Chem. ‐ Eur. J. – volume: 53 start-page: 122 year: 2014 publication-title: Angew. Chem., Int. Ed. – volume: 57 54 start-page: 3070 year: 2021 2015 publication-title: Chem. Commun. Angew. Chem., Int. Ed. – volume: 133 88 start-page: 384 year: 2011 2013 publication-title: J. Am. Chem. Soc. Electrochim. Acta – volume: 394 start-page: 342 year: 2021 publication-title: J. Catal. – volume: 77 start-page: 235 year: 2014 publication-title: Energy – volume: 199 139 196 12 start-page: 165 15 4573 B23 year: 2012 2005 2011 2009 publication-title: J. Power Sources J. Power Sources J. Power Sources Electrochem. Solid‐State Lett. – volume: 45 165 start-page: 3847 602 year: 2020 2018 publication-title: Int. J. Hydrogen Energy Energy Convers. Manag. – volume: 263 12 year: 2020 2020 publication-title: Appl. Catal., B Nanoscale – volume: 7 year: 2016 publication-title: Nat. Commun. – volume: 31 start-page: 1348 year: 2006 publication-title: Int. J. Hydrogen Energy – volume: 4 start-page: 193 year: 2021 publication-title: Nat. Catal. – year: 2021 publication-title: Catal. Rev. – volume: 168 start-page: 119 year: 2007 publication-title: J. Power Sources – volume: 7 start-page: 8139 year: 2017 publication-title: ACS Catal. – volume: 15 start-page: 4896 year: 2003 2021 publication-title: Chem. Mater. – volume: 43 start-page: 7055 year: 2018 publication-title: Int. J. Hydrogen Energy – volume: 8 start-page: 886 year: 2016 publication-title: ChemCatChem – volume: 55 start-page: 5024 year: 2010 publication-title: Electrochim. Acta – volume: 70 start-page: 395 year: 2017 – volume: 4 start-page: 383 year: 2012 publication-title: Nat. Chem. – volume: 4 11 14 127 start-page: 487 2018 year: 2011 2009 2008 2005 publication-title: ChemSusChem Green Chem. Chem. ‐ Eur. J. J. Am. Chem. Soc. – volume: 133 year: 2011 publication-title: J. Am. Chem. Soc. – volume: 6 start-page: 302 year: 2011 publication-title: Nat. Nanotechnol. – volume: 414 start-page: 332 year: 2001 publication-title: Nature – volume: 8 2 start-page: 5355 year: 2018 2018 publication-title: ACS Catal. Adv. Sustainable Syst. – volume: 11 6 start-page: 3724 681 year: 2018 2016 publication-title: ChemSusChem ACS Catal. – volume: 162 start-page: 532 year: 2006 publication-title: J. Power Sources – volume: 40 start-page: 378 year: 2015 publication-title: Int. J. Greenhouse Gas Control – volume: 6 15 373 start-page: 12 937 317 year: 2016 2020 2018 publication-title: Catal. Sci. Technol. Chem. ‐ Asian J. Coord. Chem. Rev. – volume: 117 start-page: 9804 year: 2017 publication-title: Chem. Rev. – volume: 44 year: 2019 publication-title: Int. J. Hydrogen Energy – volume: 566 362 10 start-page: 850 1276 year: 2019 2018 2020 publication-title: Science Science Adv. Energy Mater. – volume: 182 185 163 178 start-page: 124 857 71 34 year: 2008 2008 2006 2008 publication-title: J. Power Sources J. Power Sources J. Power Sources J. Power Sources – year: 2021 – volume: 4 start-page: 337 year: 2004 publication-title: Fuel Cells – year: 2021 2021 – volume: 10 start-page: 3607 year: 2008 publication-title: Phys. Chem. Chem. Phys. – volume: 45 start-page: 3954 year: 2016 publication-title: Chem. Soc. Rev. – volume: 6 138 start-page: 5544 7484 year: 2018 2016 publication-title: J. Mater. Chem. A J. Am. Chem. Soc. – volume: 34 start-page: 9137 year: 2020 publication-title: Energy & Fuels – volume: 45 148 start-page: 205 147 year: 1973 1983 publication-title: J. Electroanal. Chem. Interfacial Electrochem. J. Electroanal. Chem. Interfacial Electrochem. – volume: 6 start-page: 1526 year: 2014 publication-title: ChemCatChem – volume: 33 year: 2021 publication-title: Adv. Mater. – volume: 3 39 start-page: 1114 4850 year: 2013 2014 publication-title: ACS Catal. Int. J. Hydrogen Energy – volume: 24 year: 2021 publication-title: iScience – volume: 333 start-page: 1733 year: 2011 publication-title: Science – volume: 6 start-page: 3442 year: 2016 publication-title: ACS Catal. – volume: 8 start-page: 939 year: 2020 publication-title: J. Renewable Mater. – volume: 104 start-page: 5803 year: 2004 publication-title: Chem. Rev. – volume: 44 37 year: 2019 2019 2012 publication-title: Int. J. Hydrogen Energy Int. J. Hydrogen Energy – volume: 69 start-page: 673 year: 1969 publication-title: Chem. Rev. – volume: 44 486 start-page: 43 year: 2019 2012 publication-title: Int. J. Hydrogen Energy Nature – volume: 9 start-page: 819 year: 2019 publication-title: ACS Catal. – volume: 195 118 44 start-page: 95 3212 2521 3442 year: 2003 2000 1996 1979 publication-title: J. Mol. Catal. A: Chem. J. Chem. Soc., Dalton Trans. J. Am. Chem. Soc. J. Org. Chem. – year: 2016 publication-title: Formic Acid as Energy Carrier, Topsector Energie – volume: 6 start-page: 4390 year: 2021 publication-title: ACS Energy Lett. – volume: 8 8 start-page: 7133 year: 2018 2016 publication-title: Adv. Energy Mater. ACS Appl. Mater. Interfaces – volume: 10 start-page: 8120 year: 2020 publication-title: ACS Catal. – volume: 188 136 start-page: 141 45 year: 2009 2004 publication-title: J. Power Sources J. Power Sources – volume: 1 start-page: 689 year: 2017 publication-title: Joule – volume: 109 110 13 2 50 22 135 129 start-page: 1500 728 1159 9991 127 year: 2002 2005 2006 2011 2012 2011 2006 2013 2014 publication-title: Chem. Commun. J. Phys. Chem. B J. Phys. Chem. B Phys. Chem. Chem. Phys. ACS Catal. Angew. Chem., Int. Ed. Langmuir J. Am. Chem. Soc. Electrochim. Acta – volume: 64 start-page: 481 year: 2021 publication-title: Top. Catal. – volume: 134 start-page: 8926 year: 2012 publication-title: J. Am. Chem. Soc. – year: 2012 – volume: 5 193 165 25 start-page: 805 691 739 695 year: 2011 2009 2007 2001 publication-title: ACS Nano J. Power Sources J. Power Sources Int. J. Energy Res. – volume: 158 start-page: 129 year: 2006 publication-title: J. Power Sources – volume: 3 3 start-page: 1709 437 year: 2013 2013 publication-title: ACS Catal. ACS Catal. – volume: 5 start-page: 3124 year: 2013 publication-title: ChemCatChem – volume: 268 year: 2020 publication-title: Appl. Energy – volume: 117 562 39 start-page: 35 73 year: 2003 2004 2014 publication-title: J. Power Sources J. Electroanal. Chem. Int. J. Hydrogen Energy – volume: 19 start-page: 8068 year: 2013 publication-title: Chem. ‐ Eur. J. – volume: 44 12 start-page: 6631 290 year: 2019 2019 publication-title: Int. J. Hydrogen Energy Energy Environ. Sci. – volume: 47 47 start-page: 3962 3966 year: 2008 2008 publication-title: Angew. Chem., Int. Ed. Angew. Chem., Int. Ed. – volume: 130 38 start-page: 212 year: 2004 2013 publication-title: J. Power Sources Int. J. Hydrogen Energy – volume: 6 15 start-page: 1172 3752 year: 2013 2009 publication-title: ChemSusChem Chem. ‐ Eur. J. – ident: e_1_2_8_86_1 doi: 10.32604/jrm.2020.011197 – ident: e_1_2_8_99_3 doi: 10.1016/j.scitotenv.2019.01.395 – ident: e_1_2_8_48_3 doi: 10.1016/j.jpowsour.2006.12.012 – ident: e_1_2_8_48_4 doi: 10.1002/er.713 – ident: e_1_2_8_60_2 – ident: e_1_2_8_49_1 doi: 10.1021/cr60261a005 – ident: e_1_2_8_41_1 doi: 10.1016/j.electacta.2016.03.062 – ident: e_1_2_8_11_2 doi: 10.1039/C8EE02700E – ident: e_1_2_8_20_1 doi: 10.1093/nsr/nww099 – ident: e_1_2_8_88_1 doi: 10.1016/j.electacta.2005.02.082 – ident: e_1_2_8_53_2 doi: 10.1002/anie.201503873 – ident: e_1_2_8_96_1 doi: 10.1016/j.energy.2014.07.044 – volume-title: World Energy Outlook 2019 year: 2019 ident: e_1_2_8_1_1 – ident: e_1_2_8_106_1 doi: 10.1021/cm0310519 – ident: e_1_2_8_47_1 doi: 10.1039/C5CY01276G – ident: e_1_2_8_19_1 doi: 10.1016/j.ijhydene.2018.10.112 – ident: e_1_2_8_37_1 doi: 10.1016/j.jpowsour.2008.03.075 – ident: e_1_2_8_50_1 doi: 10.1016/S1381-1169(02)00576-9 – ident: e_1_2_8_71_1 doi: 10.1021/acs.chemrev.6b00816 – ident: e_1_2_8_104_1 doi: 10.1016/j.isci.2021.102813 – year: 2021 ident: e_1_2_8_82_1 publication-title: Catal. Rev. – ident: e_1_2_8_37_2 doi: 10.1016/j.jpowsour.2008.09.039 – ident: e_1_2_8_46_3 – ident: e_1_2_8_68_1 doi: 10.1039/C9TA02035G – ident: e_1_2_8_83_1 doi: 10.1021/ja301696e – ident: e_1_2_8_36_1 doi: 10.1021/acs.energyfuels.0c01820 – ident: e_1_2_8_63_1 doi: 10.1126/science.1206613 – ident: e_1_2_8_45_1 doi: 10.1002/aenm.201702609 – ident: e_1_2_8_54_4 doi: 10.1021/ja054236k – ident: e_1_2_8_73_1 doi: 10.1038/nnano.2011.42 – ident: e_1_2_8_67_1 doi: 10.1038/s41929-021-00575-4 – ident: e_1_2_8_19_2 doi: 10.1038/nature11115 – ident: e_1_2_8_15_1 doi: 10.1021/acsenergylett.1c02189 – ident: e_1_2_8_23_1 – ident: e_1_2_8_23_3 doi: 10.1016/j.ijhydene.2012.04.095 – ident: e_1_2_8_51_1 doi: 10.1002/anie.200705972 – ident: e_1_2_8_101_1 doi: 10.1016/j.apenergy.2020.115033 – ident: e_1_2_8_34_2 doi: 10.1039/D0NR00307G – ident: e_1_2_8_39_1 doi: 10.1016/S0378-7753(03)00352-5 – ident: e_1_2_8_23_2 doi: 10.1016/j.ijhydene.2019.01.153 – ident: e_1_2_8_32_2 doi: 10.1016/j.jpowsour.2004.06.054 – ident: e_1_2_8_29_3 doi: 10.1021/jp061891l – ident: e_1_2_8_31_1 doi: 10.1021/ja205747j – ident: e_1_2_8_89_2 doi: 10.1016/j.jpowsour.2004.05.004 – ident: e_1_2_8_45_2 doi: 10.1021/acsami.6b00416 – ident: e_1_2_8_98_1 doi: 10.1002/cssc.201000447 – ident: e_1_2_8_26_1 doi: 10.1016/j.jpowsour.2005.09.048 – ident: e_1_2_8_39_2 doi: 10.1016/j.jelechem.2003.08.010 – ident: e_1_2_8_31_2 doi: 10.1016/j.electacta.2012.10.033 – ident: e_1_2_8_37_4 doi: 10.1016/j.jpowsour.2007.12.016 – ident: e_1_2_8_43_3 doi: 10.1002/aenm.202000179 – ident: e_1_2_8_65_1 doi: 10.1021/ja505241x – ident: e_1_2_8_81_1 doi: 10.1039/C8TA01093E – volume-title: The Future of Hydrogen year: 2019 ident: e_1_2_8_3_1 – ident: e_1_2_8_46_2 – ident: e_1_2_8_62_1 doi: 10.1021/acscatal.7b02482 – ident: e_1_2_8_54_3 doi: 10.1002/chem.200801568 – ident: e_1_2_8_40_1 doi: 10.1002/fuce.200400052 – ident: e_1_2_8_52_2 doi: 10.1002/chem.200801824 – ident: e_1_2_8_69_1 doi: 10.1021/acscatal.8b04414 – ident: e_1_2_8_29_4 doi: 10.1039/c1cp22498k – start-page: 395 volume-title: Adv. Inorg. Chem. year: 2017 ident: e_1_2_8_90_1 – ident: e_1_2_8_85_1 doi: 10.1021/ja5008917 – ident: e_1_2_8_80_1 doi: 10.1002/adma.202101536 – ident: e_1_2_8_17_1 doi: 10.1039/C5CS00618J – ident: e_1_2_8_61_1 doi: 10.1073/pnas.1809342115 – ident: e_1_2_8_95_1 doi: 10.1016/j.ijhydene.2019.07.032 – ident: e_1_2_8_35_2 doi: 10.1021/cs300809j – ident: e_1_2_8_7_1 – ident: e_1_2_8_107_1 – ident: e_1_2_8_34_1 doi: 10.1016/j.apcatb.2019.118304 – ident: e_1_2_8_35_1 doi: 10.1021/cs400347u – ident: e_1_2_8_106_2 – ident: e_1_2_8_21_1 doi: 10.1039/c3cc43836h – ident: e_1_2_8_24_2 doi: 10.1016/j.ijhydene.2012.09.155 – ident: e_1_2_8_84_2 doi: 10.1016/j.ijhydene.2013.12.148 – ident: e_1_2_8_29_1 doi: 10.1039/b203392e – ident: e_1_2_8_81_2 doi: 10.1021/jacs.6b03518 – volume-title: Ullmann's Encyclopedia of Industrial Chemistry year: 2011 ident: e_1_2_8_9_1 – ident: e_1_2_8_14_1 doi: 10.1021/acsenergylett.6b00574 – ident: e_1_2_8_103_2 – ident: e_1_2_8_55_1 doi: 10.1038/nchem.1295 – ident: e_1_2_8_84_1 doi: 10.1021/cs400148n – ident: e_1_2_8_99_5 doi: 10.1016/j.jece.2021.106130 – ident: e_1_2_8_25_1 doi: 10.1016/j.joule.2017.07.007 – ident: e_1_2_8_77_2 doi: 10.1021/acscatal.5b02381 – ident: e_1_2_8_87_1 doi: 10.1073/pnas.1006669107 – ident: e_1_2_8_24_1 doi: 10.1016/j.jpowsour.2003.11.051 – ident: e_1_2_8_47_2 doi: 10.1002/asia.201901676 – ident: e_1_2_8_32_1 doi: 10.1016/j.jpowsour.2011.10.033 – ident: e_1_2_8_70_1 doi: 10.1021/acsenergylett.6b00574 – ident: e_1_2_8_10_1 doi: 10.1016/j.jpowsour.2006.07.013 – ident: e_1_2_8_98_2 doi: 10.1039/C3CS60373C – ident: e_1_2_8_32_4 doi: 10.1149/1.3054278 – ident: e_1_2_8_97_1 doi: 10.1002/9781118528372 – ident: e_1_2_8_39_3 doi: 10.1016/j.ijhydene.2014.04.149 – ident: e_1_2_8_59_1 doi: 10.1002/cctc.201402119 – ident: e_1_2_8_50_3 doi: 10.1021/ja954126l – ident: e_1_2_8_93_1 doi: 10.1021/acscatal.8b00294 – ident: e_1_2_8_103_1 – ident: e_1_2_8_22_1 doi: 10.1016/B978-044452745-5.00864-9 – ident: e_1_2_8_48_2 doi: 10.1016/j.jpowsour.2009.04.021 – ident: e_1_2_8_51_2 doi: 10.1002/anie.200800320 – ident: e_1_2_8_92_1 doi: 10.1002/cctc.201501296 – ident: e_1_2_8_27_2 doi: 10.1016/S0022-0728(83)80137-5 – ident: e_1_2_8_32_3 doi: 10.1016/j.jpowsour.2009.11.085 – ident: e_1_2_8_6_1 doi: 10.1590/S1516-14392012005000112 – start-page: 223 volume-title: Advances in Inorganic Chemistry year: 2014 ident: e_1_2_8_21_2 – volume: 1 start-page: 7106 year: 2018 ident: e_1_2_8_41_2 publication-title: ACS Appl. Mater. Interfaces – ident: e_1_2_8_50_4 doi: 10.1021/jo01333a048 – ident: e_1_2_8_58_1 doi: 10.1021/acs.inorgchem.6b02334 – ident: e_1_2_8_29_7 doi: 10.1021/la060928q – ident: e_1_2_8_11_1 doi: 10.1016/j.ijhydene.2019.01.199 – ident: e_1_2_8_16_1 doi: 10.1021/cr020415y – ident: e_1_2_8_89_1 doi: 10.1016/j.jpowsour.2008.11.107 – ident: e_1_2_8_56_1 doi: 10.1002/cssc.201600697 – ident: e_1_2_8_30_1 doi: 10.1021/acscatal.0c00791 – ident: e_1_2_8_94_1 doi: 10.1002/chem.201702969 – ident: e_1_2_8_88_2 doi: 10.1016/j.ijhydene.2020.06.145 – ident: e_1_2_8_29_6 doi: 10.1002/anie.201004782 – ident: e_1_2_8_18_1 doi: 10.1039/D0EE03011B – ident: e_1_2_8_28_1 doi: 10.1039/b808799g – ident: e_1_2_8_99_1 doi: 10.1016/j.ijhydene.2016.05.199 – ident: e_1_2_8_12_1 doi: 10.1038/35104599 – ident: e_1_2_8_72_1 doi: 10.1016/j.ijhydene.2018.02.146 – ident: e_1_2_8_29_2 doi: 10.1021/jp055220j – ident: e_1_2_8_99_2 doi: 10.1039/C9GC01280J – ident: e_1_2_8_77_1 doi: 10.1002/cssc.201801679 – ident: e_1_2_8_99_4 doi: 10.1021/acs.est.9b02944 – ident: e_1_2_8_13_1 doi: 10.1016/j.apcata.2005.07.011 – ident: e_1_2_8_91_1 doi: 10.1016/j.ijhydene.2005.11.014 – ident: e_1_2_8_60_1 doi: 10.1002/asia.201600169 – volume-title: Global Monitoring Laboratory: Trends in Atmospheric Carbon Dioxide year: 2021 ident: e_1_2_8_2_1 – ident: e_1_2_8_43_2 doi: 10.1126/science.aau0630 – ident: e_1_2_8_38_1 doi: 10.1016/j.jpowsour.2007.02.062 – ident: e_1_2_8_4_1 doi: 10.1016/j.ijhydene.2019.12.059 – ident: e_1_2_8_54_1 doi: 10.1002/cssc.201000327 – ident: e_1_2_8_54_2 doi: 10.1039/b914442k – ident: e_1_2_8_47_3 doi: 10.1016/j.ccr.2017.11.021 – year: 2016 ident: e_1_2_8_105_1 publication-title: Formic Acid as Energy Carrier, Topsector Energie – ident: e_1_2_8_53_1 doi: 10.1039/D1CC00528F – ident: e_1_2_8_93_2 doi: 10.1002/adsu.201700161 – ident: e_1_2_8_4_2 doi: 10.1016/j.enconman.2018.03.088 – ident: e_1_2_8_29_8 doi: 10.1021/ja403578s – ident: e_1_2_8_29_9 doi: 10.1016/j.electacta.2014.02.040 – ident: e_1_2_8_44_1 doi: 10.1016/j.jpowsour.2021.229816 – ident: e_1_2_8_33_1 doi: 10.1016/j.electacta.2010.04.014 – ident: e_1_2_8_102_1 doi: 10.3390/app8060914 – ident: e_1_2_8_5_1 doi: 10.1098/rstl.1670.0052 – ident: e_1_2_8_64_1 doi: 10.1002/chem.201301383 – ident: e_1_2_8_100_1 doi: 10.1039/C6GC02852G – ident: e_1_2_8_43_1 doi: 10.1126/science.aaw7493 – ident: e_1_2_8_8_1 – ident: e_1_2_8_78_1 doi: 10.1002/cctc.201300246 – ident: e_1_2_8_108_1 doi: 10.1016/j.ijggc.2015.05.018 – ident: e_1_2_8_46_1 doi: 10.1039/c2ee21928j – ident: e_1_2_8_66_1 doi: 10.1038/ncomms11308 – ident: e_1_2_8_27_1 doi: 10.1016/S0022-0728(73)80158-5 – ident: e_1_2_8_29_5 doi: 10.1021/cs200661z – ident: e_1_2_8_52_1 doi: 10.1002/cssc.201300186 – ident: e_1_2_8_57_1 doi: 10.1002/chem.201502086 – ident: e_1_2_8_76_1 doi: 10.1021/ja200122f – ident: e_1_2_8_74_1 doi: 10.1016/j.jcat.2020.10.032 – ident: e_1_2_8_79_1 doi: 10.1021/acscatal.6b00476 – ident: e_1_2_8_37_3 doi: 10.1016/j.jpowsour.2006.02.072 – ident: e_1_2_8_48_1 doi: 10.1021/nn1017395 – ident: e_1_2_8_75_1 doi: 10.1007/s11244-021-01458-5 – ident: e_1_2_8_42_1 doi: 10.1002/anie.201308620 – ident: e_1_2_8_88_3 doi: 10.1016/S0378-7753(02)00227-6 – ident: e_1_2_8_50_2 doi: 10.1039/b004234j |
SSID | ssj0000491033 |
Score | 2.6600976 |
Snippet | The storage and utilization of low‐carbon electricity and decarbonization of transportation are essential components for the future energy transition into a... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Carbon Dehydrogenation Economic analysis Energy storage Flammability Formic acid Fuel cells high pressure gas production hydrogen energy carrier Hydrogen production Hydrogen-based energy Life cycle assessment Liquefaction Potential energy Storage capacity Toxicity Transportation |
Title | Formic Acid to Power towards Low‐Carbon Economy |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faenm.202103799 https://www.proquest.com/docview/2652761551 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LjtMwFLVgZgMLxFMUBpQFEosq0Dhp6iyj0qqgtiDRSt1ZduzQjkbpqE2FNKv5BL6RL-E4zqvSAAObKLVSJ_I9uTnXvveYkDdepFnkKQQ5vi8RoADGLBmkbpBGEj5TsoiZQuHZPJwsg0-r_qpJty2qS3L5Lrm6sa7kf6yKNtjVVMn-g2XrTtGAc9gXR1gYx1vZeAzCuUm6cbJRhkN-MTue4cQkwu670-33OpNhKHYSZrZVyEcLuXGVA6BtESAIrH3yhuHmlmB-zBS-a01GxnBdSHOel0r7BwXv06T9rLV1IpNt9i3Vm2alarcXlweb1C3O9X7dLZK825MPiFubnJXbubiWawURcENWzmbqdpsVbKr9MW3jrn-jn7e6sUJnRkyAmlpHu83SsaD2_DMfL6dTvhitFnfJKUUkAVd4Gn-YTb_WE3EIkfD_ohCjesJK3LNH3x_f4pi8NBFJO64piMniIXlQRhRObOHxiNzR2WNyv6Uz-YR4FiiOAYqTb50CKE4JFAdA-Xn9w0LEKSHylCzHo8Vw4pZ7ZbiJD47rqp4AMfNoCHoRScGUDEFle4kQgRKguFQkahAhOozg07VkfZGy1POVFiHzApX6z8hJts30c-IwnQb4fPqR1AJkOpWUaSkk-h2wIPD9DnGrQeBJKSRv9jO54FYCm3IzaLwetA55W19_aSVUfnvlWTWmvHzN9pyGfTowq-deh9BinP_SC49H81n968Wf-3xJ7jW4PiMn-e6gX4Fm5vJ1CZRfsKl56A |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Formic+Acid+to+Power+towards+Low%E2%80%90Carbon+Economy&rft.jtitle=Advanced+energy+materials&rft.au=Dutta%2C+Indranil&rft.au=Chatterjee%2C+Sudipta&rft.au=Cheng%2C+Hongfei&rft.au=Parsapur%2C+Rajesh+Kumar&rft.date=2022-04-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1614-6832&rft.eissn=1614-6840&rft.volume=12&rft.issue=15&rft_id=info:doi/10.1002%2Faenm.202103799&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1614-6832&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1614-6832&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1614-6832&client=summon |