Organic Single‐Crystalline Semiconductors for Light‐Emitting Applications: Recent Advances and Developments

Organic single‐crystalline semiconductors (OSCSs), as a vital branch of organic semiconductors, have recently attracted intense interest due to their numerous advantages such as highly ordered structure, high carrier mobility, high thermal stability, and low impurity levels, and they have worldwide...

Full description

Saved in:
Bibliographic Details
Published inLaser & photonics reviews Vol. 13; no. 10
Main Authors Ding, Ran, An, Ming‐Hui, Feng, Jing, Sun, Hong‐Bo
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 01.10.2019
Subjects
Online AccessGet full text
ISSN1863-8880
1863-8899
DOI10.1002/lpor.201900009

Cover

Loading…
Abstract Organic single‐crystalline semiconductors (OSCSs), as a vital branch of organic semiconductors, have recently attracted intense interest due to their numerous advantages such as highly ordered structure, high carrier mobility, high thermal stability, and low impurity levels, and they have worldwide use in different kinds of applications. In particular, the nature of better luminescence properties and remarkable charge‐transport characteristics is a prerequisite for light‐emitting aspects. Here, a concise overview of the recent progress on OSCSs research is provided, highlighting the prominent properties of OSCSs which are pertinent to light‐emitting behavior. Various crystal‐growth strategies are surveyed for the preparation of high‐quality OSCSs via solution, melting, and vapor phases. Two typical electrical‐pumping light‐emitting devices, including organic light‐emitting transistors and organic light‐emitting diodes, are summarized with recent advances and developments exhibiting the latent potentialities of OSCSs in optoelectronics. Recent advances and developments in organic single‐crystalline semiconductors in terms of their optoelectronic properties for their light‐emitting aspects, crystal‐growth strategies for high‐quality crystals, and two typical light‐emitting devices are reviewed. The nature of the better luminescence properties and remarkable charge‐transport characteristics for light‐emitting applications is summarized, and their thorough understanding is the key factor to the material functionalization.
AbstractList Organic single‐crystalline semiconductors (OSCSs), as a vital branch of organic semiconductors, have recently attracted intense interest due to their numerous advantages such as highly ordered structure, high carrier mobility, high thermal stability, and low impurity levels, and they have worldwide use in different kinds of applications. In particular, the nature of better luminescence properties and remarkable charge‐transport characteristics is a prerequisite for light‐emitting aspects. Here, a concise overview of the recent progress on OSCSs research is provided, highlighting the prominent properties of OSCSs which are pertinent to light‐emitting behavior. Various crystal‐growth strategies are surveyed for the preparation of high‐quality OSCSs via solution, melting, and vapor phases. Two typical electrical‐pumping light‐emitting devices, including organic light‐emitting transistors and organic light‐emitting diodes, are summarized with recent advances and developments exhibiting the latent potentialities of OSCSs in optoelectronics. Recent advances and developments in organic single‐crystalline semiconductors in terms of their optoelectronic properties for their light‐emitting aspects, crystal‐growth strategies for high‐quality crystals, and two typical light‐emitting devices are reviewed. The nature of the better luminescence properties and remarkable charge‐transport characteristics for light‐emitting applications is summarized, and their thorough understanding is the key factor to the material functionalization.
Organic single‐crystalline semiconductors (OSCSs), as a vital branch of organic semiconductors, have recently attracted intense interest due to their numerous advantages such as highly ordered structure, high carrier mobility, high thermal stability, and low impurity levels, and they have worldwide use in different kinds of applications. In particular, the nature of better luminescence properties and remarkable charge‐transport characteristics is a prerequisite for light‐emitting aspects. Here, a concise overview of the recent progress on OSCSs research is provided, highlighting the prominent properties of OSCSs which are pertinent to light‐emitting behavior. Various crystal‐growth strategies are surveyed for the preparation of high‐quality OSCSs via solution, melting, and vapor phases. Two typical electrical‐pumping light‐emitting devices, including organic light‐emitting transistors and organic light‐emitting diodes, are summarized with recent advances and developments exhibiting the latent potentialities of OSCSs in optoelectronics.
Author Ding, Ran
An, Ming‐Hui
Sun, Hong‐Bo
Feng, Jing
Author_xml – sequence: 1
  givenname: Ran
  surname: Ding
  fullname: Ding, Ran
  organization: The Hong Kong Polytechnic University
– sequence: 2
  givenname: Ming‐Hui
  surname: An
  fullname: An, Ming‐Hui
  organization: Jilin University
– sequence: 3
  givenname: Jing
  surname: Feng
  fullname: Feng, Jing
  email: jingfeng@jlu.edu.cn
  organization: Jilin University
– sequence: 4
  givenname: Hong‐Bo
  orcidid: 0000-0003-2127-8610
  surname: Sun
  fullname: Sun, Hong‐Bo
  email: hbsun@jlu.edu.cn, hbsun@tsinghua.edu.cn
  organization: Tsinghua University
BookMark eNqFkM9OAjEQxhuDiYBePTfxDLZddmm9EcQ_ySYY0POm2-1iSWnXtmC4-Qg-o09iEYOJiXEuM5P5fjOZrwNaxhoJwDlGfYwQudSNdX2CMEMx2BFoY5olPUoZax1qik5Ax_slQmmMrA3s1C24UQLOlVlo-fH2PnZbH7jWykg4lyslrKnWIljnYW0dzNXiOUTZZKVCiAwcNY1Wggdljb-CMymkCXBUbbgR0kNuKngtN1LbZhUH_hQc11x7efadu-DpZvI4vuvl09v78SjviYQmrCdKQocyKUkWeyqGGCNCMiZ4IgUntUjLtGQUEYbLqiQpojUmNREYD4aVkHFFF1zs9zbOvqylD8XSrp2JJwuSoDSjLMmyqBrsVcJZ752sC6HC1yvBcaULjIqdtcXO2uJgbcT6v7DGqRV3278BtgdelZbbf9RF_jCd_bCfP6CSfw
CitedBy_id crossref_primary_10_1021_acsami_4c20265
crossref_primary_10_1002_smll_202203961
crossref_primary_10_1016_j_orgel_2021_106089
crossref_primary_10_1021_acs_langmuir_4c02733
crossref_primary_10_1364_OL_404873
crossref_primary_10_1002_chem_202101326
crossref_primary_10_1002_adom_201901670
crossref_primary_10_1039_D1TC04286F
crossref_primary_10_1002_smll_202208174
crossref_primary_10_1002_ange_202419213
crossref_primary_10_3788_CJL241149
crossref_primary_10_1039_D2TC04151K
crossref_primary_10_1016_j_optlastec_2024_112379
crossref_primary_10_3390_cryst13040595
crossref_primary_10_1039_D2QO00926A
crossref_primary_10_1063_5_0045036
crossref_primary_10_1002_adma_202100704
crossref_primary_10_1021_acs_cgd_3c01402
crossref_primary_10_1016_j_optmat_2024_115964
crossref_primary_10_1016_j_apmt_2022_101407
crossref_primary_10_1002_adom_202403209
crossref_primary_10_1002_smm2_1329
crossref_primary_10_1021_acs_jpcc_0c09702
crossref_primary_10_1038_s41377_024_01484_4
crossref_primary_10_1002_adma_202208789
crossref_primary_10_1039_D0TC05004K
crossref_primary_10_1039_D3RA03095D
crossref_primary_10_1364_OME_457226
crossref_primary_10_1038_s41566_022_01138_0
crossref_primary_10_1039_D1TC04333A
crossref_primary_10_1063_5_0152338
crossref_primary_10_1364_OPTICA_442016
crossref_primary_10_1002_adom_202201644
crossref_primary_10_1039_D0TC03326J
crossref_primary_10_1021_acs_nanolett_2c03754
crossref_primary_10_1021_acsmaterialslett_1c00056
crossref_primary_10_1364_OL_470393
crossref_primary_10_1038_s41377_024_01428_y
crossref_primary_10_1002_adfm_202205092
crossref_primary_10_1039_D0CE00404A
crossref_primary_10_1007_s12200_022_00022_7
crossref_primary_10_1039_D3TC00320E
crossref_primary_10_1016_j_cplett_2024_141203
crossref_primary_10_1002_advs_202203997
crossref_primary_10_1002_lpor_202100343
crossref_primary_10_1021_acsami_0c12842
crossref_primary_10_1002_aelm_202300616
crossref_primary_10_1021_jacs_4c11208
crossref_primary_10_1002_adfm_202002422
crossref_primary_10_1002_anie_202419213
crossref_primary_10_3390_ma15207119
crossref_primary_10_1002_smll_202104922
crossref_primary_10_1038_s41467_022_35745_w
Cites_doi 10.1016/j.jlumin.2004.09.101
10.1166/jnn.2010.1798
10.1364/OL.35.000441
10.1063/1.1742723
10.1021/acs.chemrev.6b00127
10.1002/adma.200900503
10.1016/j.orgel.2010.04.026
10.1002/adma.201304346
10.1002/adfm.201100783
10.1016/j.jlumin.2004.09.100
10.1002/jhet.5570380417
10.1038/srep12445
10.1143/JJAP.44.L1367
10.1002/adma.200601259
10.1002/adma.200701008
10.1103/PhysRev.119.1226
10.1002/pssa.201228776
10.1002/adom.201500531
10.1166/jnn.2014.8619
10.1021/jp110646n
10.1021/jp054324r
10.1016/S0009-2614(99)00577-1
10.1103/PhysRevB.71.035332
10.1021/ar900233v
10.1002/adfm.200900028
10.1002/adma.201202252
10.1016/j.orgel.2012.01.028
10.1021/ja400881n
10.1021/nn203068q
10.1021/acs.chemrev.6b00172
10.1021/cr050152i
10.1063/1.1521933
10.1002/adma.19970091512
10.1016/S0022-0248(98)00034-7
10.1016/j.ssc.2010.10.004
10.1021/ja0476258
10.1364/JOSAB.26.001103
10.1002/pssc.201200286
10.1039/C4EE00688G
10.1016/j.orgel.2012.04.022
10.1016/j.synthmet.2011.06.026
10.1002/adma.201202470
10.1016/j.orgel.2009.06.017
10.1038/srep00985
10.1063/1.2179619
10.1002/adfm.201502151
10.1002/1521-3773(20010716)40:14<2591::AID-ANIE2591>3.0.CO;2-0
10.1021/cr900150b
10.1021/cm071051z
10.1021/cr100380z
10.1039/B612732K
10.1021/cm021715z
10.1063/1.124314
10.1002/jhet.5570370105
10.1063/1.3216047
10.1364/OE.16.011310
10.1021/cg070270u
10.1002/adfm.201101467
10.1126/science.268.5208.270
10.1063/1.1848179
10.1021/cg0502441
10.1038/nature05427
10.1002/adma.19970090118
10.1016/S0379-6779(98)80005-2
10.1103/PhysRevLett.92.116802
10.1002/adma.201004572
10.1166/jnn.2009.465
10.1002/adma.200390048
10.1126/science.1094196
10.1002/adfm.200305065
10.1063/1.3055519
10.1021/cr050140x
10.1039/C0JM02290J
10.1016/S0022-0248(08)80072-3
10.1002/adma.201000171
10.1063/1.2736208
10.1021/ja048342i
10.1063/1.3224902
10.1002/1521-4095(20020116)14:2<119::AID-ADMA119>3.0.CO;2-7
10.1002/adfm.200600070
10.1143/JJAP.47.4719
10.1021/cr040084k
10.1002/adma.200401017
10.1016/S1369-7021(12)70019-6
10.1021/cg9007125
10.1021/cm049563q
10.1007/s11426-007-0101-1
10.1063/1.1733929
10.1016/S0379-6779(97)80253-6
10.1039/C3TC31998A
10.1063/1.2919710
10.1063/1.4747148
10.1002/adfm.201604659
10.1063/1.1731216
10.1021/nn200027x
10.1021/ja973761j
10.1039/C7CS00490G
10.1021/ja2073643
10.1002/adma.200800123
10.1143/JJAP.48.04C174
10.1021/jp801033j
10.1021/ja045124g
10.1002/pi.5112
10.1039/C8TC04834G
10.1002/adma.201801048
10.1039/a908312j
10.1002/adma.201300456
10.1063/1.1787136
10.1002/adma.200600704
10.1063/1.3504690
10.1016/j.optcom.2017.02.010
10.1039/b914956m
10.1143/JJAP.46.7478
10.1002/adma.201000740
10.1016/j.orgel.2012.10.028
10.1016/S0379-6779(99)00073-9
10.1103/PhysRevLett.95.226601
10.1002/1521-4095(200110)13:19<1452::AID-ADMA1452>3.0.CO;2-P
10.1002/adom.201400083
10.1063/1.2719011
10.1021/ar100043u
10.1002/cphc.200500669
10.1016/j.orgel.2012.08.024
10.1002/adfm.201102284
10.1002/1521-4095(200107)13:14<1053::AID-ADMA1053>3.0.CO;2-7
10.1103/PhysRevB.77.045205
10.1002/adfm.201807606
10.1039/c2jm35394f
10.1021/cm402421p
10.1039/c3tc32206h
10.1002/(SICI)1521-4095(199903)11:3<234::AID-ADMA234>3.0.CO;2-B
10.1002/lpor.201200072
10.1002/pssa.200404810
10.1038/srep10221
10.1063/1.2181278
10.1002/adma.200500734
10.1103/PhysRevB.32.1172
10.1021/cm801427s
10.1063/1.3634117
10.1021/nn900063m
10.1002/jhet.5570400515
10.1103/PhysRevLett.91.157406
10.1063/1.1435797
10.1016/j.orgel.2010.10.003
10.1063/1.1744225
10.1002/adfm.201400832
10.1021/cm102419z
10.1111/j.1751-1097.1964.tb08155.x
10.1002/adma.200800942
10.2307/3571331
10.1557/mrs.2012.308
10.1002/adma.201103439
10.1002/adfm.200801180
10.1002/adma.201302514
10.1002/jhet.5570440417
10.1146/annurev-physchem-040513-103639
10.1002/adma.201304280
10.1021/cg101686q
10.1002/adma.200903094
10.1021/cr900182s
10.1002/adma.201200525
10.1143/APEX.1.091801
10.1002/adma.201801078
10.1021/ja0269082
10.1002/(SICI)1521-4095(200005)12:9<629::AID-ADMA629>3.0.CO;2-S
10.1103/PhysRevLett.100.066601
10.1021/cr900129a
10.1038/35087532
10.1002/adfm.200700046
10.1016/S0379-6779(03)00263-7
10.1021/nl051685
10.1533/9780857098948
10.1021/ja052940v
10.1002/lpor.201300222
10.1016/0009-2614(96)00450-2
10.1002/adom.201200066
10.1038/nature10313
10.1063/1.3466915
10.1103/PhysRevLett.93.086602
10.1002/poc.935
10.1002/smll.201202390
10.1016/j.solmat.2008.10.004
10.1002/adma.201002259
10.1021/am4012885
10.1021/cm0610130
10.1063/1.2138361
10.1002/adfm.200902339
10.1063/1.1631385
10.1021/cg100113h
10.1063/1.3298558
10.1021/cr050149z
10.1021/cr000013v
10.1166/jnn.2016.12281
10.1039/B816406C
10.1016/j.displa.2005.03.003
10.1002/jhet.5570370210
10.1002/adma.201504206
10.1002/adfm.201100474
10.1002/adma.201104182
10.1039/c3cp43800g
10.1038/ncomms4005
10.1002/adma.19960080610
10.1039/b805512b
10.1002/adma.200600929
10.1166/jnn.2010.1743
10.1039/b105159h
10.1002/adfm.200901363
10.1002/adma.200803588
10.1146/annurev.physchem.57.032905.104557
10.1063/1.1502023
ContentType Journal Article
Copyright 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
DBID AAYXX
CITATION
7SP
7U5
8FD
L7M
DOI 10.1002/lpor.201900009
DatabaseName CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
CrossRef
Solid State and Superconductivity Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISSN 1863-8899
EndPage n/a
ExternalDocumentID 10_1002_lpor_201900009
LPOR201900009
Genre reviewArticle
GrantInformation_xml – fundername: National Natural Science Foundation Program of China
  funderid: 61604018; 61675085; 61825402; 61705075; 61590930
– fundername: China Postdoctoral Science Foundation
  funderid: 2015M581377
– fundername: National Key Research and Development Program of China
  funderid: 2017YFB0404500
– fundername: Hong Kong Scholars Program
  funderid: XJ2018004
GroupedDBID 05W
0R~
1OC
31~
33P
3SF
3WU
4.4
52U
66C
8-1
A00
AAESR
AAEVG
AAHHS
AAHQN
AAIHA
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ABJNI
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZFZN
AZVAB
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
CS3
DCZOG
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F5P
FEDTE
G-S
GODZA
HGLYW
HVGLF
HZ~
IX1
LATKE
LAW
LEEKS
LH4
LITHE
LOXES
LUTES
LW6
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O9-
OIG
P2P
P2W
P4E
ROL
SUPJJ
W99
WBKPD
WIH
WIK
WOHZO
WXSBR
WYJ
XV2
ZZTAW
~S-
AAYXX
ADMLS
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
7SP
7U5
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
L7M
ID FETCH-LOGICAL-c3839-cb287e3b26c388c71102269ca3eca2fc5b5b980291bdb2508f12f2c1147dce383
IEDL.DBID DR2
ISSN 1863-8880
IngestDate Fri Jul 25 12:30:32 EDT 2025
Tue Jul 01 04:32:33 EDT 2025
Thu Apr 24 23:03:58 EDT 2025
Wed Jan 22 16:39:11 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3839-cb287e3b26c388c71102269ca3eca2fc5b5b980291bdb2508f12f2c1147dce383
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2127-8610
PQID 2305689366
PQPubID 1016358
PageCount 29
ParticipantIDs proquest_journals_2305689366
crossref_citationtrail_10_1002_lpor_201900009
crossref_primary_10_1002_lpor_201900009
wiley_primary_10_1002_lpor_201900009_LPOR201900009
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate October 2019
PublicationDateYYYYMMDD 2019-10-01
PublicationDate_xml – month: 10
  year: 2019
  text: October 2019
PublicationDecade 2010
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Laser & photonics reviews
PublicationYear 2019
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2010; 11
2011; 115
2002; 14
2010; 10
2007; 101
2010; 97
2007; 107
1960; 33
2013; 1
2004; 201
2014; 26
2014; 24
2017; 392
1960; 119
2008; 103
2012; 15
2013; 7
2012; 13
2008; 100
2013; 5
2001; 40
2011; 475
1997; 9
2018; 47
2013; 9
2011; 110
2010; 22
2010; 20
2009; 95
2009; 10
2000; 12
2009; 93
2006; 27
2000; 10
2010; 110
2014; 14
2005; 109
2007; 7
2019; 29
2018; 30
2005; 71
2007; 3
2008; 20
2008; 112
2012; 24
2009; 19
1996; 256
2003; 40
2012; 22
2001; 412
2006; 444
2007; 17
2019; 7
2007; 19
2004; 303
2012; 101
2010; 35
2006; 57
2005; 112
2010; 39
2017; 66
2007; 90
2005; 86
2005; 87
2002; 81
2002; 80
2016; 16
1999; 105
2011; 5
2011; 133
2016; 4
2010; 43
2012; 112
1958; 28
2002; 124
2005; 127
2005; 95
2005; 5
2008; 47
1956; 24
2013; 210
1995; 268
2001; 38
2016; 28
2009; 109
2005; 17
2005; 18
1990; 99
2013; 25
2003; 118
2004; 126
1997; 85
1964; 3
2003; 15
2011; 11
2008; 77
2011; 12
2008; 1
2011; 151
2009; 48
2014; 65
1997; 90
1963; 38
2014; 5
2013; 15
2013; 14
2003; 91
2014; 2
1999; 11
2011; 21
2011; 23
2016; 116
2001; 18
2014; 8
2003; 83
2014; 7
2001; 13
2011; 161
1996; 8
1998; 120
1963; 20
2004; 104
2015; 5
2003; 139
2009; 21
2006; 99
2017; 27
2006; 16
2008; 16
2006; 7
2006; 18
2008; 10
2007; 50
2009; 130
1999; 308
2005; 44
2009; 26
2004; 96
2015; 25
2012; 2
2004; 92
2004; 93
2013; 38
2000; 37
2004; 16
2006; 88
2004; 14
2009; 9
2017
2013; 135
1999; 75
2013
2009; 3
1998; 187
2007; 44
1985; 32
2007; 46
2010; 96
2012; 9
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_203_1
e_1_2_8_132_1
e_1_2_8_155_1
e_1_2_8_178_1
e_1_2_8_9_1
e_1_2_8_117_1
e_1_2_8_193_1
e_1_2_8_64_1
e_1_2_8_87_1
e_1_2_8_1_1
e_1_2_8_41_1
e_1_2_8_38_1
e_1_2_8_120_1
e_1_2_8_143_1
e_1_2_8_166_1
e_1_2_8_189_1
e_1_2_8_91_1
e_1_2_8_99_1
e_1_2_8_105_1
e_1_2_8_128_1
e_1_2_8_181_1
e_1_2_8_53_1
e_1_2_8_76_1
e_1_2_8_30_1
e_1_2_8_25_1
e_1_2_8_48_1
e_1_2_8_204_1
e_1_2_8_2_1
e_1_2_8_133_1
e_1_2_8_179_1
e_1_2_8_110_1
e_1_2_8_171_1
e_1_2_8_86_1
e_1_2_8_118_1
e_1_2_8_194_1
e_1_2_8_63_1
e_1_2_8_40_1
e_1_2_8_156_1
e_1_2_8_14_1
e_1_2_8_37_1
e_1_2_8_144_1
e_1_2_8_90_1
e_1_2_8_121_1
e_1_2_8_98_1
e_1_2_8_106_1
e_1_2_8_182_1
e_1_2_8_75_1
e_1_2_8_129_1
e_1_2_8_52_1
e_1_2_8_167_1
e_1_2_8_28_1
e_1_2_8_205_1
e_1_2_8_81_1
e_1_2_8_111_1
e_1_2_8_7_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_66_1
e_1_2_8_89_1
e_1_2_8_119_1
e_1_2_8_172_1
e_1_2_8_195_1
e_1_2_8_134_1
e_1_2_8_157_1
e_1_2_8_17_1
e_1_2_8_70_1
e_1_2_8_122_1
e_1_2_8_160_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_78_1
e_1_2_8_107_1
e_1_2_8_183_1
e_1_2_8_145_1
e_1_2_8_168_1
e_1_2_8_93_1
e_1_2_8_27_1
e_1_2_8_206_1
e_1_2_8_80_1
e_1_2_8_150_1
e_1_2_8_8_1
e_1_2_8_42_1
e_1_2_8_88_1
e_1_2_8_65_1
e_1_2_8_173_1
e_1_2_8_112_1
e_1_2_8_158_1
e_1_2_8_196_1
e_1_2_8_135_1
e_1_2_8_39_1
e_1_2_8_210_1
e_1_2_8_16_1
e_1_2_8_92_1
e_1_2_8_100_1
e_1_2_8_161_1
e_1_2_8_31_1
e_1_2_8_77_1
e_1_2_8_54_1
e_1_2_8_108_1
e_1_2_8_184_1
e_1_2_8_123_1
e_1_2_8_169_1
e_1_2_8_146_1
e_1_2_8_68_1
e_1_2_8_207_1
e_1_2_8_5_1
e_1_2_8_151_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_113_1
e_1_2_8_136_1
e_1_2_8_159_1
e_1_2_8_174_1
e_1_2_8_197_1
e_1_2_8_60_1
e_1_2_8_83_1
e_1_2_8_19_1
e_1_2_8_109_1
e_1_2_8_57_1
e_1_2_8_211_1
e_1_2_8_95_1
e_1_2_8_162_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_101_1
e_1_2_8_124_1
e_1_2_8_147_1
e_1_2_8_185_1
e_1_2_8_72_1
e_1_2_8_29_1
e_1_2_8_200_1
e_1_2_8_152_1
e_1_2_8_208_1
e_1_2_8_6_1
e_1_2_8_21_1
e_1_2_8_67_1
e_1_2_8_44_1
e_1_2_8_137_1
e_1_2_8_175_1
e_1_2_8_82_1
e_1_2_8_114_1
e_1_2_8_198_1
e_1_2_8_18_1
e_1_2_8_79_1
e_1_2_8_212_1
e_1_2_8_94_1
e_1_2_8_163_1
e_1_2_8_140_1
e_1_2_8_10_1
e_1_2_8_56_1
e_1_2_8_33_1
e_1_2_8_102_1
e_1_2_8_148_1
e_1_2_8_186_1
e_1_2_8_71_1
e_1_2_8_125_1
Zhao X. (e_1_2_8_15_1) 2017
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_201_1
e_1_2_8_3_1
e_1_2_8_130_1
e_1_2_8_153_1
e_1_2_8_209_1
e_1_2_8_138_1
e_1_2_8_62_1
e_1_2_8_85_1
e_1_2_8_115_1
e_1_2_8_176_1
e_1_2_8_199_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_190_1
e_1_2_8_213_1
e_1_2_8_141_1
e_1_2_8_164_1
e_1_2_8_97_1
e_1_2_8_149_1
e_1_2_8_51_1
e_1_2_8_74_1
e_1_2_8_103_1
e_1_2_8_126_1
e_1_2_8_187_1
e_1_2_8_46_1
e_1_2_8_69_1
e_1_2_8_180_1
e_1_2_8_202_1
e_1_2_8_154_1
e_1_2_8_4_1
e_1_2_8_131_1
e_1_2_8_192_1
e_1_2_8_116_1
e_1_2_8_23_1
e_1_2_8_139_1
e_1_2_8_84_1
e_1_2_8_61_1
e_1_2_8_177_1
Zhao Y. (e_1_2_8_170_1) 2009; 21
e_1_2_8_35_1
e_1_2_8_58_1
e_1_2_8_191_1
e_1_2_8_165_1
e_1_2_8_96_1
e_1_2_8_142_1
e_1_2_8_127_1
e_1_2_8_12_1
e_1_2_8_73_1
e_1_2_8_50_1
e_1_2_8_104_1
e_1_2_8_188_1
References_xml – volume: 110
  start-page: 3
  year: 2010
  publication-title: Chem. Rev.
– volume: 2
  start-page: 985
  year: 2012
  publication-title: Sci. Rep.
– volume: 93
  year: 2004
  publication-title: Phys. Rev. Lett.
– volume: 23
  start-page: 2753
  year: 2011
  publication-title: Adv. Mater.
– volume: 107
  start-page: 1272
  year: 2007
  publication-title: Chem. Rev.
– volume: 18
  start-page: 1740
  year: 2001
  publication-title: Chem. Commun.
– volume: 151
  start-page: 93
  year: 2011
  publication-title: Solid State Commun.
– volume: 112
  start-page: 2208
  year: 2012
  publication-title: Chem. Rev.
– volume: 392
  start-page: 247
  year: 2017
  publication-title: Opt. Commun.
– volume: 14
  start-page: 970
  year: 2004
  publication-title: Adv. Funct. Mater.
– volume: 21
  start-page: 2854
  year: 2011
  publication-title: Adv. Funct. Mater.
– volume: 43
  start-page: 1396
  year: 2010
  publication-title: Acc. Chem. Res.
– volume: 27
  start-page: 2
  year: 2006
  publication-title: Displays
– volume: 109
  start-page: 5868
  year: 2009
  publication-title: Chem. Rev.
– volume: 29
  year: 2019
  publication-title: Adv. Funct. Mater.
– volume: 75
  start-page: 187
  year: 1999
  publication-title: Appl. Phys. Lett.
– volume: 97
  year: 2010
  publication-title: Appl. Phys. Lett.
– volume: 9
  start-page: 2545
  year: 2012
  publication-title: Phys. Status Solidi C
– volume: 77
  year: 2008
  publication-title: Phys. Rev. B
– volume: 66
  start-page: 223
  year: 2017
  publication-title: Polym. Int.
– volume: 65
  start-page: 477
  year: 2014
  publication-title: Annu. Rev. Phys. Chem.
– volume: 210
  start-page: 1353
  year: 2013
  publication-title: Phys. Status Solidi A
– volume: 120
  start-page: 1289
  year: 1998
  publication-title: J. Am. Chem. Soc.
– volume: 23
  start-page: 5091
  year: 2011
  publication-title: Adv. Mater.
– volume: 90
  year: 2007
  publication-title: Appl. Phys. Lett.
– volume: 16
  start-page: 4497
  year: 2004
  publication-title: Chem. Mater.
– volume: 26
  start-page: 1319
  year: 2014
  publication-title: Adv. Mater.
– volume: 47
  start-page: 4719
  year: 2008
  publication-title: Jpn. J. Appl. Phys.
– volume: 7
  start-page: 2145
  year: 2014
  publication-title: Energy Environ. Sci.
– volume: 21
  start-page: 4034
  year: 2009
  publication-title: Adv. Mater.
– volume: 475
  start-page: 364
  year: 2011
  publication-title: Nature
– volume: 15
  start-page: 36
  year: 2012
  publication-title: Mater. Today
– volume: 8
  start-page: 687
  year: 2014
  publication-title: Laser Photonics Rev.
– volume: 19
  start-page: 678
  year: 2007
  publication-title: Adv. Mater.
– volume: 32
  start-page: 1172
  year: 1985
  publication-title: Phys. Rev. B
– volume: 14
  start-page: 119
  year: 2002
  publication-title: Adv. Mater.
– volume: 303
  start-page: 1644
  year: 2004
  publication-title: Science
– volume: 19
  start-page: 3653
  year: 2007
  publication-title: Adv. Mater.
– volume: 3
  start-page: 317
  year: 1964
  publication-title: Photochem. Photobiol.
– volume: 1
  start-page: 422
  year: 2013
  publication-title: Adv. Opt. Mater.
– volume: 17
  start-page: 2073
  year: 2005
  publication-title: Adv. Mater.
– volume: 22
  start-page: 4905
  year: 2010
  publication-title: Adv. Mater.
– volume: 20
  start-page: 1610
  year: 2010
  publication-title: Adv. Funct. Mater.
– volume: 133
  year: 2011
  publication-title: J. Am. Chem. Soc.
– volume: 25
  start-page: 2860
  year: 2013
  publication-title: Adv. Mater.
– volume: 127
  start-page: 1348
  year: 2005
  publication-title: J. Am. Chem. Soc.
– volume: 21
  start-page: 1295
  year: 2011
  publication-title: J. Mater. Chem.
– volume: 39
  start-page: 2354
  year: 2010
  publication-title: Chem. Soc. Rev.
– volume: 43
  start-page: 429
  year: 2010
  publication-title: Acc. Chem. Res.
– volume: 112
  start-page: 9066
  year: 2008
  publication-title: J. Phys. Chem. C
– volume: 11
  start-page: 2273
  year: 2011
  publication-title: Cryst. Growth Des.
– year: 2013
– volume: 13
  start-page: 1602
  year: 2012
  publication-title: Org. Electron.
– volume: 28
  start-page: 721
  year: 1958
  publication-title: J. Chem. Phys.
– volume: 38
  start-page: 923
  year: 2001
  publication-title: J. Heterocycl. Chem.
– volume: 10
  start-page: 1017
  year: 2010
  publication-title: J. Nanosci. Nanotechnol.
– volume: 20
  start-page: 1661
  year: 2008
  publication-title: Adv. Mater.
– volume: 18
  start-page: 4049
  year: 2006
  publication-title: Chem. Mater.
– volume: 96
  year: 2010
  publication-title: Appl. Phys. Lett.
– volume: 71
  year: 2005
  publication-title: Phys. Rev. B
– volume: 95
  year: 2009
  publication-title: Appl. Phys. Lett.
– volume: 112
  start-page: 325
  year: 2005
  publication-title: J. Lumin.
– volume: 118
  start-page: 981
  year: 2003
  publication-title: J. Chem. Phys.
– volume: 25
  start-page: 5669
  year: 2015
  publication-title: Adv. Funct. Mater.
– volume: 308
  start-page: 99
  year: 1999
  publication-title: Chem. Phys. Lett.
– volume: 21
  start-page: 6165
  year: 2009
  publication-title: Adv. Mater.
– volume: 50
  start-page: 433
  year: 2007
  publication-title: Sci. China, Ser. B: Chem.
– volume: 48
  start-page: 04C174
  year: 2009
  publication-title: Jpn. J. Appl. Phys.
– volume: 93
  start-page: 394
  year: 2009
  publication-title: Sol. Energy Mater. Sol. Cells
– volume: 26
  start-page: 647
  year: 2014
  publication-title: Chem. Mater.
– volume: 9
  start-page: 1178
  year: 1997
  publication-title: Adv. Mater.
– volume: 22
  year: 2012
  publication-title: J. Mater. Chem.
– volume: 35
  start-page: 441
  year: 2010
  publication-title: Opt. Lett.
– volume: 22
  start-page: 1631
  year: 2010
  publication-title: Adv. Mater.
– volume: 25
  start-page: 6158
  year: 2013
  publication-title: Adv. Mater.
– volume: 8
  start-page: 500
  year: 1996
  publication-title: Adv. Mater.
– volume: 101
  year: 2007
  publication-title: J. Appl. Phys.
– volume: 87
  year: 2005
  publication-title: Appl. Phys. Lett.
– volume: 15
  start-page: 1535
  year: 2003
  publication-title: Chem. Mater.
– volume: 3
  start-page: 231
  year: 2007
  publication-title: Chem. Commun.
– volume: 100
  year: 2008
  publication-title: Phys. Rev. Lett.
– volume: 139
  start-page: 735
  year: 2003
  publication-title: Synth. Met.
– volume: 9
  start-page: 4945
  year: 2009
  publication-title: Cryst. Growth Des.
– volume: 33
  start-page: 626
  year: 1960
  publication-title: J. Chem. Phys.
– volume: 81
  start-page: 1512
  year: 2002
  publication-title: Appl. Phys. Lett.
– volume: 38
  start-page: 2042
  year: 1963
  publication-title: J. Chem. Phys.
– volume: 201
  start-page: 2288
  year: 2004
  publication-title: Phys. Status Solidi A
– volume: 80
  start-page: 544
  year: 2002
  publication-title: Appl. Phys. Lett.
– volume: 16
  start-page: 2097
  year: 2004
  publication-title: Adv. Mater.
– volume: 44
  start-page: L1367
  year: 2005
  publication-title: Jpn. J. Appl. Phys.
– volume: 19
  start-page: 1728
  year: 2009
  publication-title: Adv. Funct. Mater.
– volume: 26
  start-page: 1103
  year: 2009
  publication-title: J. Opt. Soc. Am. B
– volume: 44
  start-page: 853
  year: 2007
  publication-title: J. Heterocycl. Chem.
– volume: 13
  start-page: 1452
  year: 2001
  publication-title: Adv. Mater.
– volume: 14
  start-page: 389
  year: 2013
  publication-title: Org. Electron.
– volume: 22
  start-page: 1005
  year: 2012
  publication-title: Adv. Funct. Mater.
– volume: 16
  start-page: 1985
  year: 2006
  publication-title: Adv. Funct. Mater.
– volume: 47
  start-page: 422
  year: 2018
  publication-title: Chem. Soc. Rev.
– volume: 7
  start-page: 1881
  year: 2006
  publication-title: ChemPhysChem
– volume: 99
  start-page: 1009
  year: 1990
  publication-title: J. Cryst. Growth
– volume: 107
  start-page: 926
  year: 2007
  publication-title: Chem. Rev.
– volume: 23
  start-page: 733
  year: 2011
  publication-title: Chem. Mater.
– volume: 2
  start-page: 965
  year: 2014
  publication-title: J. Mater. Chem. C
– volume: 24
  start-page: 5744
  year: 2012
  publication-title: Adv. Mater.
– volume: 15
  start-page: 3527
  year: 2013
  publication-title: Phys. Chem. Chem. Phys.
– volume: 27
  year: 2017
  publication-title: Adv. Funct. Mater.
– volume: 91
  year: 2003
  publication-title: Phys. Rev. Lett.
– volume: 115
  start-page: 9171
  year: 2011
  publication-title: J. Phys. Chem. C
– volume: 10
  start-page: 440
  year: 2010
  publication-title: J. Nanosci. Nanotechnol.
– volume: 110
  year: 2011
  publication-title: J. Appl. Phys.
– volume: 95
  year: 2005
  publication-title: Phys. Rev. Lett.
– volume: 37
  start-page: 281
  year: 2000
  publication-title: J. Heterocycl. Chem.
– volume: 110
  start-page: 268
  year: 2010
  publication-title: Chem. Rev.
– volume: 5
  start-page: 2422
  year: 2005
  publication-title: Nano Lett.
– volume: 444
  start-page: 913
  year: 2006
  publication-title: Nature
– volume: 112
  start-page: 321
  year: 2005
  publication-title: J. Lumin.
– volume: 17
  start-page: 1623
  year: 2007
  publication-title: Adv. Funct. Mater.
– volume: 2
  start-page: 2827
  year: 2014
  publication-title: J. Mater. Chem. C
– volume: 7
  start-page: 281
  year: 2013
  publication-title: Laser Photonics Rev.
– volume: 19
  start-page: 704
  year: 2009
  publication-title: Adv. Funct. Mater.
– volume: 24
  start-page: 7085
  year: 2014
  publication-title: Adv. Funct. Mater.
– volume: 5
  start-page: 1959
  year: 2005
  publication-title: Cryst. Growth Des.
– volume: 24
  start-page: 2404
  year: 2012
  publication-title: Adv. Mater.
– volume: 19
  start-page: 3748
  year: 2007
  publication-title: Chem. Mater.
– volume: 9
  start-page: 990
  year: 2013
  publication-title: Small
– volume: 28
  start-page: 2475
  year: 2016
  publication-title: Adv. Mater.
– volume: 135
  start-page: 6724
  year: 2013
  publication-title: J. Am. Chem. Soc.
– volume: 9
  start-page: 2582
  year: 2009
  publication-title: J. Nanosci. Nanotechnol.
– volume: 11
  start-page: 1192
  year: 2010
  publication-title: Org. Electron.
– volume: 12
  start-page: 629
  year: 2000
  publication-title: Adv. Mater.
– volume: 40
  start-page: 845
  year: 2003
  publication-title: J. Heterocycl. Chem.
– volume: 5
  start-page: 2923
  year: 2011
  publication-title: ACS Nano
– volume: 21
  start-page: 3770
  year: 2011
  publication-title: Adv. Funct. Mater.
– volume: 21
  start-page: 3649
  year: 2009
  publication-title: Adv. Mater.
– volume: 18
  start-page: 962
  year: 2005
  publication-title: J. Phys. Org. Chem.
– volume: 16
  year: 2008
  publication-title: Opt. Express
– volume: 5
  year: 2015
  publication-title: Sci. Rep.
– volume: 3
  start-page: 1506
  year: 2009
  publication-title: ACS Nano
– volume: 7
  start-page: 2512
  year: 2007
  publication-title: Cryst. Growth Des.
– volume: 105
  start-page: 171
  year: 1999
  publication-title: Synth. Met.
– volume: 412
  start-page: 517
  year: 2001
  publication-title: Nature
– volume: 46
  start-page: 7478
  year: 2007
  publication-title: Jpn. J. Appl. Phys.
– volume: 11
  start-page: 234
  year: 1999
  publication-title: Adv. Mater.
– volume: 124
  year: 2002
  publication-title: J. Am. Chem. Soc.
– volume: 22
  start-page: 33
  year: 2012
  publication-title: Adv. Funct. Mater.
– volume: 103
  year: 2008
  publication-title: J. Appl. Phys.
– volume: 20
  start-page: 55
  year: 1963
  publication-title: Radiat. Res.
– volume: 15
  start-page: 213
  year: 2003
  publication-title: Adv. Mater.
– volume: 126
  start-page: 8138
  year: 2004
  publication-title: J. Am. Chem. Soc.
– volume: 26
  start-page: 1176
  year: 2014
  publication-title: Adv. Mater.
– volume: 127
  year: 2005
  publication-title: J. Am. Chem. Soc.
– volume: 9
  start-page: 75
  year: 1997
  publication-title: Adv. Mater.
– volume: 10
  start-page: 1241
  year: 2009
  publication-title: Org. Electron.
– volume: 107
  start-page: 1324
  year: 2007
  publication-title: Chem. Rev.
– volume: 104
  start-page: 4971
  year: 2004
  publication-title: Chem. Rev.
– volume: 37
  start-page: 25
  year: 2000
  publication-title: J. Heterocycl. Chem.
– volume: 22
  start-page: 3708
  year: 2010
  publication-title: Adv. Mater.
– volume: 12
  start-page: 8
  year: 2011
  publication-title: Org. Electron.
– volume: 7
  start-page: 3190
  year: 2019
  publication-title: J. Mater. Chem. C
– volume: 130
  year: 2009
  publication-title: J. Chem. Phys.
– volume: 86
  year: 2005
  publication-title: Appl. Phys. Lett.
– volume: 5
  start-page: 8352
  year: 2011
  publication-title: ACS Nano
– volume: 40
  start-page: 2591
  year: 2001
  publication-title: Angew. Chem., Int. Ed.
– volume: 92
  year: 2004
  publication-title: Phys. Rev. Lett.
– volume: 268
  start-page: 270
  year: 1995
  publication-title: Science
– volume: 13
  start-page: 762
  year: 2012
  publication-title: Org. Electron.
– volume: 57
  start-page: 217
  year: 2006
  publication-title: Annu. Rev. Phys. Chem.
– volume: 22
  start-page: 4427
  year: 2010
  publication-title: Adv. Mater.
– volume: 83
  start-page: 4494
  year: 2003
  publication-title: Appl. Phys. Lett.
– volume: 1
  year: 2008
  publication-title: Appl. Phys. Express
– volume: 24
  start-page: 966
  year: 1956
  publication-title: J. Chem. Phys.
– volume: 10
  start-page: 2342
  year: 2010
  publication-title: Cryst. Growth Des.
– volume: 18
  start-page: 2369
  year: 2006
  publication-title: Adv. Mater.
– volume: 38
  start-page: 28
  year: 2013
  publication-title: MRS Bull.
– volume: 119
  start-page: 1226
  year: 1960
  publication-title: Phys. Rev.
– volume: 109
  year: 2005
  publication-title: J. Phys. Chem. B
– volume: 5
  start-page: 3005
  year: 2014
  publication-title: Nat. Commun.
– volume: 19
  start-page: 688
  year: 2007
  publication-title: Adv. Mater.
– volume: 101
  year: 2012
  publication-title: Appl. Phys. Lett.
– volume: 20
  start-page: 4109
  year: 2008
  publication-title: Adv. Mater.
– volume: 2
  start-page: 529
  year: 2014
  publication-title: Adv. Opt. Mater.
– volume: 24
  start-page: 6141
  year: 2012
  publication-title: Adv. Mater.
– volume: 161
  start-page: 1869
  year: 2011
  publication-title: Synth. Met.
– volume: 16
  start-page: 3312
  year: 2016
  publication-title: J. Nanosci. Nanotechnol.
– volume: 85
  start-page: 1309
  year: 1997
  publication-title: Synth. Met.
– volume: 10
  start-page: 1252
  year: 2008
  publication-title: CrystEngComm
– volume: 13
  start-page: 1053
  year: 2001
  publication-title: Adv. Mater.
– volume: 24
  start-page: 2171
  year: 2012
  publication-title: Adv. Mater.
– volume: 109
  start-page: 897
  year: 2009
  publication-title: Chem. Rev.
– volume: 256
  start-page: 424
  year: 1996
  publication-title: Chem. Phys. Lett.
– volume: 5
  start-page: 5757
  year: 2013
  publication-title: ACS Appl. Mater. Interfaces
– volume: 14
  start-page: 2102
  year: 2014
  publication-title: J. Nanosci. Nanotechnol.
– volume: 126
  start-page: 8546
  year: 2004
  publication-title: J. Am. Chem. Soc.
– volume: 99
  year: 2006
  publication-title: J. Appl. Phys.
– volume: 116
  year: 2016
  publication-title: Chem. Rev.
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 90
  start-page: 187
  year: 1997
  publication-title: Synth. Met.
– volume: 88
  year: 2006
  publication-title: Appl. Phys. Lett.
– volume: 187
  start-page: 449
  year: 1998
  publication-title: J. Cryst. Growth
– volume: 39
  start-page: 423
  year: 2010
  publication-title: Chem. Soc. Rev.
– year: 2017
– volume: 4
  start-page: 348
  year: 2016
  publication-title: Adv. Opt. Mater.
– volume: 10
  start-page: 571
  year: 2000
  publication-title: J. Mater. Chem.
– volume: 20
  start-page: 7312
  year: 2008
  publication-title: Chem. Mater.
– volume: 96
  start-page: 4240
  year: 2004
  publication-title: J. Appl. Phys.
– volume: 20
  start-page: 28
  year: 2010
  publication-title: Adv. Funct. Mater.
– volume: 13
  start-page: 2975
  year: 2012
  publication-title: Org. Electron.
– ident: e_1_2_8_108_1
  doi: 10.1016/j.jlumin.2004.09.101
– ident: e_1_2_8_199_1
  doi: 10.1166/jnn.2010.1798
– ident: e_1_2_8_141_1
  doi: 10.1364/OL.35.000441
– ident: e_1_2_8_49_1
  doi: 10.1063/1.1742723
– ident: e_1_2_8_46_1
  doi: 10.1021/acs.chemrev.6b00127
– ident: e_1_2_8_139_1
  doi: 10.1002/adma.200900503
– ident: e_1_2_8_165_1
  doi: 10.1016/j.orgel.2010.04.026
– ident: e_1_2_8_13_1
  doi: 10.1002/adma.201304346
– volume-title: Advances in Heterocyclic Chemistry
  year: 2017
  ident: e_1_2_8_15_1
– ident: e_1_2_8_90_1
  doi: 10.1002/adfm.201100783
– ident: e_1_2_8_80_1
  doi: 10.1016/j.jlumin.2004.09.100
– ident: e_1_2_8_94_1
  doi: 10.1002/jhet.5570380417
– ident: e_1_2_8_190_1
  doi: 10.1038/srep12445
– ident: e_1_2_8_196_1
  doi: 10.1143/JJAP.44.L1367
– ident: e_1_2_8_148_1
  doi: 10.1002/adma.200601259
– ident: e_1_2_8_166_1
  doi: 10.1002/adma.200701008
– ident: e_1_2_8_53_1
  doi: 10.1103/PhysRev.119.1226
– ident: e_1_2_8_171_1
  doi: 10.1002/pssa.201228776
– ident: e_1_2_8_30_1
  doi: 10.1002/adom.201500531
– ident: e_1_2_8_113_1
  doi: 10.1166/jnn.2014.8619
– ident: e_1_2_8_176_1
  doi: 10.1021/jp110646n
– ident: e_1_2_8_129_1
  doi: 10.1021/jp054324r
– ident: e_1_2_8_44_1
  doi: 10.1016/S0009-2614(99)00577-1
– ident: e_1_2_8_59_1
  doi: 10.1103/PhysRevB.71.035332
– ident: e_1_2_8_45_1
  doi: 10.1021/ar900233v
– ident: e_1_2_8_102_1
  doi: 10.1002/adfm.200900028
– ident: e_1_2_8_207_1
  doi: 10.1002/adma.201202252
– ident: e_1_2_8_187_1
  doi: 10.1016/j.orgel.2012.01.028
– ident: e_1_2_8_23_1
  doi: 10.1021/ja400881n
– ident: e_1_2_8_172_1
  doi: 10.1021/nn203068q
– ident: e_1_2_8_31_1
  doi: 10.1021/acs.chemrev.6b00172
– ident: e_1_2_8_5_1
  doi: 10.1021/cr050152i
– ident: e_1_2_8_43_1
  doi: 10.1063/1.1521933
– ident: e_1_2_8_69_1
  doi: 10.1002/adma.19970091512
– ident: e_1_2_8_174_1
  doi: 10.1016/S0022-0248(98)00034-7
– ident: e_1_2_8_206_1
  doi: 10.1016/j.ssc.2010.10.004
– ident: e_1_2_8_66_1
  doi: 10.1021/ja0476258
– ident: e_1_2_8_162_1
  doi: 10.1364/JOSAB.26.001103
– ident: e_1_2_8_209_1
  doi: 10.1002/pssc.201200286
– ident: e_1_2_8_19_1
  doi: 10.1039/C4EE00688G
– ident: e_1_2_8_133_1
  doi: 10.1016/j.orgel.2012.04.022
– ident: e_1_2_8_160_1
  doi: 10.1016/j.synthmet.2011.06.026
– ident: e_1_2_8_110_1
  doi: 10.1002/adma.201202470
– ident: e_1_2_8_175_1
  doi: 10.1016/j.orgel.2009.06.017
– ident: e_1_2_8_212_1
  doi: 10.1038/srep00985
– ident: e_1_2_8_186_1
  doi: 10.1063/1.2179619
– ident: e_1_2_8_184_1
  doi: 10.1002/adfm.201502151
– ident: e_1_2_8_1_1
  doi: 10.1002/1521-3773(20010716)40:14<2591::AID-ANIE2591>3.0.CO;2-0
– ident: e_1_2_8_9_1
  doi: 10.1021/cr900150b
– ident: e_1_2_8_159_1
  doi: 10.1021/cm071051z
– ident: e_1_2_8_12_1
  doi: 10.1021/cr100380z
– ident: e_1_2_8_85_1
  doi: 10.1039/B612732K
– ident: e_1_2_8_116_1
  doi: 10.1021/cm021715z
– ident: e_1_2_8_76_1
  doi: 10.1063/1.124314
– ident: e_1_2_8_93_1
  doi: 10.1002/jhet.5570370105
– ident: e_1_2_8_68_1
  doi: 10.1063/1.3216047
– ident: e_1_2_8_161_1
  doi: 10.1364/OE.16.011310
– ident: e_1_2_8_88_1
  doi: 10.1021/cg070270u
– ident: e_1_2_8_132_1
  doi: 10.1002/adfm.201101467
– ident: e_1_2_8_57_1
  doi: 10.1126/science.268.5208.270
– ident: e_1_2_8_151_1
  doi: 10.1063/1.1848179
– ident: e_1_2_8_87_1
  doi: 10.1021/cg0502441
– ident: e_1_2_8_177_1
  doi: 10.1038/nature05427
– ident: e_1_2_8_73_1
  doi: 10.1002/adma.19970090118
– volume: 21
  start-page: 6165
  year: 2009
  ident: e_1_2_8_170_1
  publication-title: Adv. Mater.
– ident: e_1_2_8_74_1
  doi: 10.1016/S0379-6779(98)80005-2
– ident: e_1_2_8_58_1
  doi: 10.1103/PhysRevLett.92.116802
– ident: e_1_2_8_204_1
  doi: 10.1002/adma.201004572
– ident: e_1_2_8_127_1
  doi: 10.1166/jnn.2009.465
– ident: e_1_2_8_105_1
  doi: 10.1002/adma.200390048
– ident: e_1_2_8_137_1
  doi: 10.1126/science.1094196
– ident: e_1_2_8_81_1
  doi: 10.1002/adfm.200305065
– ident: e_1_2_8_67_1
  doi: 10.1063/1.3055519
– ident: e_1_2_8_50_1
  doi: 10.1021/cr050140x
– ident: e_1_2_8_27_1
  doi: 10.1039/C0JM02290J
– ident: e_1_2_8_173_1
  doi: 10.1016/S0022-0248(08)80072-3
– ident: e_1_2_8_210_1
  doi: 10.1002/adma.201000171
– ident: e_1_2_8_63_1
  doi: 10.1063/1.2736208
– ident: e_1_2_8_150_1
  doi: 10.1021/ja048342i
– ident: e_1_2_8_112_1
  doi: 10.1063/1.3224902
– ident: e_1_2_8_98_1
  doi: 10.1002/1521-4095(20020116)14:2<119::AID-ADMA119>3.0.CO;2-7
– ident: e_1_2_8_183_1
  doi: 10.1002/adfm.200600070
– ident: e_1_2_8_144_1
  doi: 10.1143/JJAP.47.4719
– ident: e_1_2_8_52_1
  doi: 10.1021/cr040084k
– ident: e_1_2_8_62_1
  doi: 10.1002/adma.200401017
– ident: e_1_2_8_18_1
  doi: 10.1016/S1369-7021(12)70019-6
– ident: e_1_2_8_117_1
  doi: 10.1021/cg9007125
– ident: e_1_2_8_179_1
  doi: 10.1021/cm049563q
– ident: e_1_2_8_35_1
  doi: 10.1007/s11426-007-0101-1
– ident: e_1_2_8_37_1
  doi: 10.1063/1.1733929
– ident: e_1_2_8_71_1
  doi: 10.1016/S0379-6779(97)80253-6
– ident: e_1_2_8_26_1
  doi: 10.1039/C3TC31998A
– ident: e_1_2_8_125_1
  doi: 10.1063/1.2919710
– ident: e_1_2_8_182_1
  doi: 10.1063/1.4747148
– ident: e_1_2_8_192_1
  doi: 10.1002/adfm.201604659
– ident: e_1_2_8_54_1
  doi: 10.1063/1.1731216
– ident: e_1_2_8_131_1
  doi: 10.1021/nn200027x
– ident: e_1_2_8_47_1
  doi: 10.1021/ja973761j
– ident: e_1_2_8_25_1
  doi: 10.1039/C7CS00490G
– ident: e_1_2_8_22_1
  doi: 10.1021/ja2073643
– ident: e_1_2_8_130_1
  doi: 10.1002/adma.200800123
– ident: e_1_2_8_126_1
  doi: 10.1143/JJAP.48.04C174
– ident: e_1_2_8_91_1
  doi: 10.1021/jp801033j
– ident: e_1_2_8_65_1
  doi: 10.1021/ja045124g
– ident: e_1_2_8_28_1
  doi: 10.1002/pi.5112
– ident: e_1_2_8_167_1
  doi: 10.1039/C8TC04834G
– ident: e_1_2_8_213_1
  doi: 10.1002/adma.201801048
– ident: e_1_2_8_75_1
  doi: 10.1039/a908312j
– ident: e_1_2_8_208_1
  doi: 10.1002/adma.201300456
– ident: e_1_2_8_111_1
  doi: 10.1063/1.1787136
– ident: e_1_2_8_169_1
  doi: 10.1002/adma.200600704
– ident: e_1_2_8_100_1
  doi: 10.1063/1.3504690
– ident: e_1_2_8_191_1
  doi: 10.1016/j.optcom.2017.02.010
– ident: e_1_2_8_2_1
  doi: 10.1039/b914956m
– ident: e_1_2_8_146_1
  doi: 10.1143/JJAP.46.7478
– ident: e_1_2_8_56_1
  doi: 10.1002/adma.201000740
– ident: e_1_2_8_120_1
  doi: 10.1016/j.orgel.2012.10.028
– ident: e_1_2_8_97_1
  doi: 10.1016/S0379-6779(99)00073-9
– ident: e_1_2_8_61_1
  doi: 10.1103/PhysRevLett.95.226601
– ident: e_1_2_8_77_1
  doi: 10.1002/1521-4095(200110)13:19<1452::AID-ADMA1452>3.0.CO;2-P
– ident: e_1_2_8_128_1
  doi: 10.1002/adom.201400083
– ident: e_1_2_8_142_1
  doi: 10.1063/1.2719011
– ident: e_1_2_8_21_1
  doi: 10.1021/ar100043u
– ident: e_1_2_8_103_1
  doi: 10.1002/cphc.200500669
– ident: e_1_2_8_153_1
  doi: 10.1016/j.orgel.2012.08.024
– ident: e_1_2_8_154_1
  doi: 10.1002/adfm.201102284
– ident: e_1_2_8_48_1
  doi: 10.1002/1521-4095(200107)13:14<1053::AID-ADMA1053>3.0.CO;2-7
– ident: e_1_2_8_109_1
  doi: 10.1103/PhysRevB.77.045205
– ident: e_1_2_8_194_1
  doi: 10.1002/adfm.201807606
– ident: e_1_2_8_134_1
  doi: 10.1039/c2jm35394f
– ident: e_1_2_8_24_1
  doi: 10.1021/cm402421p
– ident: e_1_2_8_29_1
  doi: 10.1039/c3tc32206h
– ident: e_1_2_8_72_1
  doi: 10.1002/(SICI)1521-4095(199903)11:3<234::AID-ADMA234>3.0.CO;2-B
– ident: e_1_2_8_136_1
  doi: 10.1002/lpor.201200072
– ident: e_1_2_8_79_1
  doi: 10.1002/pssa.200404810
– ident: e_1_2_8_211_1
  doi: 10.1038/srep10221
– ident: e_1_2_8_124_1
  doi: 10.1063/1.2181278
– ident: e_1_2_8_122_1
  doi: 10.1002/adma.200500734
– ident: e_1_2_8_55_1
  doi: 10.1103/PhysRevB.32.1172
– ident: e_1_2_8_86_1
  doi: 10.1021/cm801427s
– ident: e_1_2_8_145_1
  doi: 10.1063/1.3634117
– ident: e_1_2_8_143_1
  doi: 10.1021/nn900063m
– ident: e_1_2_8_95_1
  doi: 10.1002/jhet.5570400515
– ident: e_1_2_8_195_1
  doi: 10.1103/PhysRevLett.91.157406
– ident: e_1_2_8_104_1
  doi: 10.1063/1.1435797
– ident: e_1_2_8_198_1
  doi: 10.1016/j.orgel.2010.10.003
– ident: e_1_2_8_41_1
  doi: 10.1063/1.1744225
– ident: e_1_2_8_189_1
  doi: 10.1002/adfm.201400832
– ident: e_1_2_8_11_1
  doi: 10.1021/cm102419z
– ident: e_1_2_8_39_1
  doi: 10.1111/j.1751-1097.1964.tb08155.x
– ident: e_1_2_8_197_1
  doi: 10.1002/adma.200800942
– ident: e_1_2_8_40_1
  doi: 10.2307/3571331
– ident: e_1_2_8_147_1
  doi: 10.1557/mrs.2012.308
– ident: e_1_2_8_156_1
  doi: 10.1002/adma.201103439
– ident: e_1_2_8_180_1
  doi: 10.1002/adfm.200801180
– ident: e_1_2_8_34_1
  doi: 10.1002/adma.201302514
– ident: e_1_2_8_96_1
  doi: 10.1002/jhet.5570440417
– ident: e_1_2_8_42_1
  doi: 10.1146/annurev-physchem-040513-103639
– ident: e_1_2_8_33_1
  doi: 10.1002/adma.201304280
– ident: e_1_2_8_181_1
  doi: 10.1021/cg101686q
– ident: e_1_2_8_168_1
  doi: 10.1002/adma.200903094
– ident: e_1_2_8_8_1
  doi: 10.1021/cr900182s
– ident: e_1_2_8_140_1
  doi: 10.1002/adma.201200525
– ident: e_1_2_8_203_1
  doi: 10.1143/APEX.1.091801
– ident: e_1_2_8_193_1
  doi: 10.1002/adma.201801078
– ident: e_1_2_8_115_1
  doi: 10.1021/ja0269082
– ident: e_1_2_8_78_1
  doi: 10.1002/(SICI)1521-4095(200005)12:9<629::AID-ADMA629>3.0.CO;2-S
– ident: e_1_2_8_202_1
  doi: 10.1103/PhysRevLett.100.066601
– ident: e_1_2_8_10_1
  doi: 10.1021/cr900129a
– ident: e_1_2_8_178_1
  doi: 10.1038/35087532
– ident: e_1_2_8_200_1
  doi: 10.1002/adfm.200700046
– ident: e_1_2_8_83_1
  doi: 10.1016/S0379-6779(03)00263-7
– ident: e_1_2_8_157_1
  doi: 10.1021/nl051685
– ident: e_1_2_8_3_1
  doi: 10.1533/9780857098948
– ident: e_1_2_8_149_1
  doi: 10.1021/ja052940v
– ident: e_1_2_8_32_1
  doi: 10.1002/lpor.201300222
– ident: e_1_2_8_82_1
  doi: 10.1016/0009-2614(96)00450-2
– ident: e_1_2_8_119_1
  doi: 10.1002/adom.201200066
– ident: e_1_2_8_17_1
  doi: 10.1038/nature10313
– ident: e_1_2_8_201_1
  doi: 10.1063/1.3466915
– ident: e_1_2_8_60_1
  doi: 10.1103/PhysRevLett.93.086602
– ident: e_1_2_8_92_1
  doi: 10.1002/poc.935
– ident: e_1_2_8_138_1
  doi: 10.1002/smll.201202390
– ident: e_1_2_8_16_1
  doi: 10.1016/j.solmat.2008.10.004
– ident: e_1_2_8_20_1
  doi: 10.1002/adma.201302514
– ident: e_1_2_8_152_1
  doi: 10.1002/adma.201002259
– ident: e_1_2_8_158_1
  doi: 10.1021/am4012885
– ident: e_1_2_8_163_1
  doi: 10.1021/cm0610130
– ident: e_1_2_8_99_1
  doi: 10.1063/1.2138361
– ident: e_1_2_8_118_1
  doi: 10.1002/adfm.200902339
– ident: e_1_2_8_107_1
  doi: 10.1063/1.1631385
– ident: e_1_2_8_164_1
  doi: 10.1021/cg100113h
– ident: e_1_2_8_188_1
  doi: 10.1063/1.3298558
– ident: e_1_2_8_6_1
  doi: 10.1021/cr050149z
– ident: e_1_2_8_7_1
  doi: 10.1021/cr000013v
– ident: e_1_2_8_135_1
  doi: 10.1166/jnn.2016.12281
– ident: e_1_2_8_51_1
  doi: 10.1039/B816406C
– ident: e_1_2_8_4_1
  doi: 10.1016/j.displa.2005.03.003
– ident: e_1_2_8_106_1
  doi: 10.1002/jhet.5570370210
– ident: e_1_2_8_155_1
  doi: 10.1002/adma.201504206
– ident: e_1_2_8_205_1
  doi: 10.1002/adfm.201100474
– ident: e_1_2_8_101_1
  doi: 10.1002/adma.201104182
– ident: e_1_2_8_121_1
  doi: 10.1039/c3cp43800g
– ident: e_1_2_8_36_1
  doi: 10.1038/ncomms4005
– ident: e_1_2_8_70_1
  doi: 10.1002/adma.19960080610
– ident: e_1_2_8_89_1
  doi: 10.1039/b805512b
– ident: e_1_2_8_64_1
  doi: 10.1002/adma.200600929
– ident: e_1_2_8_123_1
  doi: 10.1166/jnn.2010.1743
– ident: e_1_2_8_114_1
  doi: 10.1039/b105159h
– ident: e_1_2_8_14_1
  doi: 10.1002/adfm.200901363
– ident: e_1_2_8_84_1
  doi: 10.1002/adma.200803588
– ident: e_1_2_8_38_1
  doi: 10.1146/annurev.physchem.57.032905.104557
– ident: e_1_2_8_185_1
  doi: 10.1063/1.1502023
SSID ssj0055556
Score 2.4808047
SecondaryResourceType review_article
Snippet Organic single‐crystalline semiconductors (OSCSs), as a vital branch of organic semiconductors, have recently attracted intense interest due to their numerous...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Carrier mobility
Charge transport
charge‐carrier mobility
Crystal growth
Crystal structure
Crystallinity
Diodes
Light
Luminescence
Optical properties
Optoelectronics
Organic light emitting diodes
organic light‐emitting transistors
Organic semiconductors
organic single‐crystalline semiconductors
Semiconductors
spectrally narrowed emission
Thermal stability
Transistors
Transport properties
Vapor phases
Title Organic Single‐Crystalline Semiconductors for Light‐Emitting Applications: Recent Advances and Developments
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Flpor.201900009
https://www.proquest.com/docview/2305689366
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NS8MwGA6ykxfnJ06n5CB4ytambdp6G0MRmR9sDnYr-QRxdrJuBz35E_yN_hLftF3dBBG0pwaS0Hy8eZ83ffIEoROmQxm4ISMuixjxI-6RWFOPKDAl5TAOCN1uDVzfsMuhfzUKRkun-At9iGrDzVpGvl5bA-cia3-Jho4Bn1pqVpzDHFiELWHLoqJ-pR8VwJMfL4qYRyDUcxaqjQ5trxZf9UpfUHMZsOYe56KO-OJbC6LJY2s-Ey35-k3G8T-N2UQbJRzFnWL-bKE1nW6jeglNcWn42Q6aFGc2JR6Aqxvrj7f37vQFgKVV9NZ4YBn2k9RKx06mGQYcjHs26Ids508PObMad5b-lJ9hQKvg7XCnYCBkmKcKL_GXsl00vDi_716S8q4GIiHGjYkUEHppT1AG6UiGro0kWSy5pyWnRgYiEHHk0NgVSgDsioxLDZUQjYVKaqhiD9XSSar3ETZGe8r4vuKG-0yFkaTKmNjTjAWGOl4DkcVYJbIUMrf3aYyTQoKZJrY3k6o3G-i0yv9cSHj8mLO5GPqkNOUsoTbIAlTHWAPRfAx_qSXp3d32q9TBXwodonX7XpAGm6g2m871EYCfmTjOJ_gnMeUABA
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4VeoAL9IW6QFsfKvVkSJzESbittou27UIrHhK3KH5JqEsWbZYDnPgJ_Mb-ks7kxYKEKtHcHNlWYnsy30w-fwb4LG2sIz-W3JeJ5GGSBzy1IuAGTcl4MkeETqmBg0M5Og2_n0Utm5D2wtT6EF3CjSyj-l6TgVNCevdeNXSCAJW4WWmFc5bgJR3rTbb59ahTkIrwqjYYJTLgGOx5rW6jJ3Yftn_ol-7B5iJkrXzO_jqo9mlrqsnvnau52tE3j4Qc_-t1XsFag0hZv15Cr-GFLd7AeoNOWWP75VuY1ts2NTtGbzexf27vBrNrxJYk6m3ZMZHspwWpx05nJUMozMYU92O14cV5Ra5m_YWf5XsMASs6PNavSQglywvDFihM5Ts43R-eDEa8Oa6BawxzU64VRl82UEJiOdGxT8GkTHUeWJ0LpyMVqTTxROoroxB5Jc4XTmgMyGKjLXaxAcvFtLDvgTlnA-PC0OQuD6WJEy2Mc2lgpYyc8IIe8HayMt1omdORGpOsVmEWGY1m1o1mD7509S9rFY8na263c5811lxmguIsBHZS9kBUk_iPXrLxr59HXWnzOY0-wcro5GCcjb8d_tiCVbpfcwi3YXk-u7IfEAvN1cdqtf8FHxAEHQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB2xSIgLO6KsPiBxMiRO4iTcKqAqUApikbhFiRcJUVLUlAOc-AS-kS9hnKRpi4SQIDdHYyuxPZn3nPEzwC5XvvBsn1ObB5y6QezQUDGHSnQlafEYEbpZGrho8-ade3bv3Y_s4i_0IaoFN-MZ-ffaOPiz1AdD0dAO4lOTmhXmMGcSpl1uBYZ-HV9XAlIeXvn-ooA7FLmeNZBttNjBeP3xsDTEmqOINQ85jXmIBw9bZJo87r_0k33x9k3H8T9vswBzJR4l9WICLcKESpdgvsSmpPT8bBm6xaZNQW4w1nXU5_vHUe8VkaWR9FbkxqTYd1OjHdvtZQSBMGkZ1o9mJ08PeWo1qY_8Kj8kCFcx3JF6kYKQkTiVZCSBKVuBu8bJ7VGTloc1UIEkN6QiQe6lnIRxLAfCtw2V5KGIHSVipoWXeEkYWCy0E5kg7gq0zTQTSMd8KRQ2sQpTaTdVa0C0Vo7UritjHbtc-oFgUuvQUZx7mllODehgrCJRKpmbAzU6UaHBzCLTm1HVmzXYq-yfCw2PHy03B0Mflb6cRcywLIR1nNeA5WP4SytR6-ryuiqt_6XSDsxcHTei1mn7fANmze0igXATpvq9F7WFQKifbOdz_QsxGALV
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Organic+Single%E2%80%90Crystalline+Semiconductors+for+Light%E2%80%90Emitting+Applications%3A+Recent+Advances+and+Developments&rft.jtitle=Laser+%26+photonics+reviews&rft.au=Ding%2C+Ran&rft.au=An%2C+Ming%E2%80%90Hui&rft.au=Feng%2C+Jing&rft.au=Sun%2C+Hong%E2%80%90Bo&rft.date=2019-10-01&rft.issn=1863-8880&rft.eissn=1863-8899&rft.volume=13&rft.issue=10&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Flpor.201900009&rft.externalDBID=10.1002%252Flpor.201900009&rft.externalDocID=LPOR201900009
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1863-8880&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1863-8880&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1863-8880&client=summon