Organic Single‐Crystalline Semiconductors for Light‐Emitting Applications: Recent Advances and Developments
Organic single‐crystalline semiconductors (OSCSs), as a vital branch of organic semiconductors, have recently attracted intense interest due to their numerous advantages such as highly ordered structure, high carrier mobility, high thermal stability, and low impurity levels, and they have worldwide...
Saved in:
Published in | Laser & photonics reviews Vol. 13; no. 10 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
01.10.2019
|
Subjects | |
Online Access | Get full text |
ISSN | 1863-8880 1863-8899 |
DOI | 10.1002/lpor.201900009 |
Cover
Loading…
Abstract | Organic single‐crystalline semiconductors (OSCSs), as a vital branch of organic semiconductors, have recently attracted intense interest due to their numerous advantages such as highly ordered structure, high carrier mobility, high thermal stability, and low impurity levels, and they have worldwide use in different kinds of applications. In particular, the nature of better luminescence properties and remarkable charge‐transport characteristics is a prerequisite for light‐emitting aspects. Here, a concise overview of the recent progress on OSCSs research is provided, highlighting the prominent properties of OSCSs which are pertinent to light‐emitting behavior. Various crystal‐growth strategies are surveyed for the preparation of high‐quality OSCSs via solution, melting, and vapor phases. Two typical electrical‐pumping light‐emitting devices, including organic light‐emitting transistors and organic light‐emitting diodes, are summarized with recent advances and developments exhibiting the latent potentialities of OSCSs in optoelectronics.
Recent advances and developments in organic single‐crystalline semiconductors in terms of their optoelectronic properties for their light‐emitting aspects, crystal‐growth strategies for high‐quality crystals, and two typical light‐emitting devices are reviewed. The nature of the better luminescence properties and remarkable charge‐transport characteristics for light‐emitting applications is summarized, and their thorough understanding is the key factor to the material functionalization. |
---|---|
AbstractList | Organic single‐crystalline semiconductors (OSCSs), as a vital branch of organic semiconductors, have recently attracted intense interest due to their numerous advantages such as highly ordered structure, high carrier mobility, high thermal stability, and low impurity levels, and they have worldwide use in different kinds of applications. In particular, the nature of better luminescence properties and remarkable charge‐transport characteristics is a prerequisite for light‐emitting aspects. Here, a concise overview of the recent progress on OSCSs research is provided, highlighting the prominent properties of OSCSs which are pertinent to light‐emitting behavior. Various crystal‐growth strategies are surveyed for the preparation of high‐quality OSCSs via solution, melting, and vapor phases. Two typical electrical‐pumping light‐emitting devices, including organic light‐emitting transistors and organic light‐emitting diodes, are summarized with recent advances and developments exhibiting the latent potentialities of OSCSs in optoelectronics.
Recent advances and developments in organic single‐crystalline semiconductors in terms of their optoelectronic properties for their light‐emitting aspects, crystal‐growth strategies for high‐quality crystals, and two typical light‐emitting devices are reviewed. The nature of the better luminescence properties and remarkable charge‐transport characteristics for light‐emitting applications is summarized, and their thorough understanding is the key factor to the material functionalization. Organic single‐crystalline semiconductors (OSCSs), as a vital branch of organic semiconductors, have recently attracted intense interest due to their numerous advantages such as highly ordered structure, high carrier mobility, high thermal stability, and low impurity levels, and they have worldwide use in different kinds of applications. In particular, the nature of better luminescence properties and remarkable charge‐transport characteristics is a prerequisite for light‐emitting aspects. Here, a concise overview of the recent progress on OSCSs research is provided, highlighting the prominent properties of OSCSs which are pertinent to light‐emitting behavior. Various crystal‐growth strategies are surveyed for the preparation of high‐quality OSCSs via solution, melting, and vapor phases. Two typical electrical‐pumping light‐emitting devices, including organic light‐emitting transistors and organic light‐emitting diodes, are summarized with recent advances and developments exhibiting the latent potentialities of OSCSs in optoelectronics. |
Author | Ding, Ran An, Ming‐Hui Sun, Hong‐Bo Feng, Jing |
Author_xml | – sequence: 1 givenname: Ran surname: Ding fullname: Ding, Ran organization: The Hong Kong Polytechnic University – sequence: 2 givenname: Ming‐Hui surname: An fullname: An, Ming‐Hui organization: Jilin University – sequence: 3 givenname: Jing surname: Feng fullname: Feng, Jing email: jingfeng@jlu.edu.cn organization: Jilin University – sequence: 4 givenname: Hong‐Bo orcidid: 0000-0003-2127-8610 surname: Sun fullname: Sun, Hong‐Bo email: hbsun@jlu.edu.cn, hbsun@tsinghua.edu.cn organization: Tsinghua University |
BookMark | eNqFkM9OAjEQxhuDiYBePTfxDLZddmm9EcQ_ySYY0POm2-1iSWnXtmC4-Qg-o09iEYOJiXEuM5P5fjOZrwNaxhoJwDlGfYwQudSNdX2CMEMx2BFoY5olPUoZax1qik5Ax_slQmmMrA3s1C24UQLOlVlo-fH2PnZbH7jWykg4lyslrKnWIljnYW0dzNXiOUTZZKVCiAwcNY1Wggdljb-CMymkCXBUbbgR0kNuKngtN1LbZhUH_hQc11x7efadu-DpZvI4vuvl09v78SjviYQmrCdKQocyKUkWeyqGGCNCMiZ4IgUntUjLtGQUEYbLqiQpojUmNREYD4aVkHFFF1zs9zbOvqylD8XSrp2JJwuSoDSjLMmyqBrsVcJZ752sC6HC1yvBcaULjIqdtcXO2uJgbcT6v7DGqRV3278BtgdelZbbf9RF_jCd_bCfP6CSfw |
CitedBy_id | crossref_primary_10_1021_acsami_4c20265 crossref_primary_10_1002_smll_202203961 crossref_primary_10_1016_j_orgel_2021_106089 crossref_primary_10_1021_acs_langmuir_4c02733 crossref_primary_10_1364_OL_404873 crossref_primary_10_1002_chem_202101326 crossref_primary_10_1002_adom_201901670 crossref_primary_10_1039_D1TC04286F crossref_primary_10_1002_smll_202208174 crossref_primary_10_1002_ange_202419213 crossref_primary_10_3788_CJL241149 crossref_primary_10_1039_D2TC04151K crossref_primary_10_1016_j_optlastec_2024_112379 crossref_primary_10_3390_cryst13040595 crossref_primary_10_1039_D2QO00926A crossref_primary_10_1063_5_0045036 crossref_primary_10_1002_adma_202100704 crossref_primary_10_1021_acs_cgd_3c01402 crossref_primary_10_1016_j_optmat_2024_115964 crossref_primary_10_1016_j_apmt_2022_101407 crossref_primary_10_1002_adom_202403209 crossref_primary_10_1002_smm2_1329 crossref_primary_10_1021_acs_jpcc_0c09702 crossref_primary_10_1038_s41377_024_01484_4 crossref_primary_10_1002_adma_202208789 crossref_primary_10_1039_D0TC05004K crossref_primary_10_1039_D3RA03095D crossref_primary_10_1364_OME_457226 crossref_primary_10_1038_s41566_022_01138_0 crossref_primary_10_1039_D1TC04333A crossref_primary_10_1063_5_0152338 crossref_primary_10_1364_OPTICA_442016 crossref_primary_10_1002_adom_202201644 crossref_primary_10_1039_D0TC03326J crossref_primary_10_1021_acs_nanolett_2c03754 crossref_primary_10_1021_acsmaterialslett_1c00056 crossref_primary_10_1364_OL_470393 crossref_primary_10_1038_s41377_024_01428_y crossref_primary_10_1002_adfm_202205092 crossref_primary_10_1039_D0CE00404A crossref_primary_10_1007_s12200_022_00022_7 crossref_primary_10_1039_D3TC00320E crossref_primary_10_1016_j_cplett_2024_141203 crossref_primary_10_1002_advs_202203997 crossref_primary_10_1002_lpor_202100343 crossref_primary_10_1021_acsami_0c12842 crossref_primary_10_1002_aelm_202300616 crossref_primary_10_1021_jacs_4c11208 crossref_primary_10_1002_adfm_202002422 crossref_primary_10_1002_anie_202419213 crossref_primary_10_3390_ma15207119 crossref_primary_10_1002_smll_202104922 crossref_primary_10_1038_s41467_022_35745_w |
Cites_doi | 10.1016/j.jlumin.2004.09.101 10.1166/jnn.2010.1798 10.1364/OL.35.000441 10.1063/1.1742723 10.1021/acs.chemrev.6b00127 10.1002/adma.200900503 10.1016/j.orgel.2010.04.026 10.1002/adma.201304346 10.1002/adfm.201100783 10.1016/j.jlumin.2004.09.100 10.1002/jhet.5570380417 10.1038/srep12445 10.1143/JJAP.44.L1367 10.1002/adma.200601259 10.1002/adma.200701008 10.1103/PhysRev.119.1226 10.1002/pssa.201228776 10.1002/adom.201500531 10.1166/jnn.2014.8619 10.1021/jp110646n 10.1021/jp054324r 10.1016/S0009-2614(99)00577-1 10.1103/PhysRevB.71.035332 10.1021/ar900233v 10.1002/adfm.200900028 10.1002/adma.201202252 10.1016/j.orgel.2012.01.028 10.1021/ja400881n 10.1021/nn203068q 10.1021/acs.chemrev.6b00172 10.1021/cr050152i 10.1063/1.1521933 10.1002/adma.19970091512 10.1016/S0022-0248(98)00034-7 10.1016/j.ssc.2010.10.004 10.1021/ja0476258 10.1364/JOSAB.26.001103 10.1002/pssc.201200286 10.1039/C4EE00688G 10.1016/j.orgel.2012.04.022 10.1016/j.synthmet.2011.06.026 10.1002/adma.201202470 10.1016/j.orgel.2009.06.017 10.1038/srep00985 10.1063/1.2179619 10.1002/adfm.201502151 10.1002/1521-3773(20010716)40:14<2591::AID-ANIE2591>3.0.CO;2-0 10.1021/cr900150b 10.1021/cm071051z 10.1021/cr100380z 10.1039/B612732K 10.1021/cm021715z 10.1063/1.124314 10.1002/jhet.5570370105 10.1063/1.3216047 10.1364/OE.16.011310 10.1021/cg070270u 10.1002/adfm.201101467 10.1126/science.268.5208.270 10.1063/1.1848179 10.1021/cg0502441 10.1038/nature05427 10.1002/adma.19970090118 10.1016/S0379-6779(98)80005-2 10.1103/PhysRevLett.92.116802 10.1002/adma.201004572 10.1166/jnn.2009.465 10.1002/adma.200390048 10.1126/science.1094196 10.1002/adfm.200305065 10.1063/1.3055519 10.1021/cr050140x 10.1039/C0JM02290J 10.1016/S0022-0248(08)80072-3 10.1002/adma.201000171 10.1063/1.2736208 10.1021/ja048342i 10.1063/1.3224902 10.1002/1521-4095(20020116)14:2<119::AID-ADMA119>3.0.CO;2-7 10.1002/adfm.200600070 10.1143/JJAP.47.4719 10.1021/cr040084k 10.1002/adma.200401017 10.1016/S1369-7021(12)70019-6 10.1021/cg9007125 10.1021/cm049563q 10.1007/s11426-007-0101-1 10.1063/1.1733929 10.1016/S0379-6779(97)80253-6 10.1039/C3TC31998A 10.1063/1.2919710 10.1063/1.4747148 10.1002/adfm.201604659 10.1063/1.1731216 10.1021/nn200027x 10.1021/ja973761j 10.1039/C7CS00490G 10.1021/ja2073643 10.1002/adma.200800123 10.1143/JJAP.48.04C174 10.1021/jp801033j 10.1021/ja045124g 10.1002/pi.5112 10.1039/C8TC04834G 10.1002/adma.201801048 10.1039/a908312j 10.1002/adma.201300456 10.1063/1.1787136 10.1002/adma.200600704 10.1063/1.3504690 10.1016/j.optcom.2017.02.010 10.1039/b914956m 10.1143/JJAP.46.7478 10.1002/adma.201000740 10.1016/j.orgel.2012.10.028 10.1016/S0379-6779(99)00073-9 10.1103/PhysRevLett.95.226601 10.1002/1521-4095(200110)13:19<1452::AID-ADMA1452>3.0.CO;2-P 10.1002/adom.201400083 10.1063/1.2719011 10.1021/ar100043u 10.1002/cphc.200500669 10.1016/j.orgel.2012.08.024 10.1002/adfm.201102284 10.1002/1521-4095(200107)13:14<1053::AID-ADMA1053>3.0.CO;2-7 10.1103/PhysRevB.77.045205 10.1002/adfm.201807606 10.1039/c2jm35394f 10.1021/cm402421p 10.1039/c3tc32206h 10.1002/(SICI)1521-4095(199903)11:3<234::AID-ADMA234>3.0.CO;2-B 10.1002/lpor.201200072 10.1002/pssa.200404810 10.1038/srep10221 10.1063/1.2181278 10.1002/adma.200500734 10.1103/PhysRevB.32.1172 10.1021/cm801427s 10.1063/1.3634117 10.1021/nn900063m 10.1002/jhet.5570400515 10.1103/PhysRevLett.91.157406 10.1063/1.1435797 10.1016/j.orgel.2010.10.003 10.1063/1.1744225 10.1002/adfm.201400832 10.1021/cm102419z 10.1111/j.1751-1097.1964.tb08155.x 10.1002/adma.200800942 10.2307/3571331 10.1557/mrs.2012.308 10.1002/adma.201103439 10.1002/adfm.200801180 10.1002/adma.201302514 10.1002/jhet.5570440417 10.1146/annurev-physchem-040513-103639 10.1002/adma.201304280 10.1021/cg101686q 10.1002/adma.200903094 10.1021/cr900182s 10.1002/adma.201200525 10.1143/APEX.1.091801 10.1002/adma.201801078 10.1021/ja0269082 10.1002/(SICI)1521-4095(200005)12:9<629::AID-ADMA629>3.0.CO;2-S 10.1103/PhysRevLett.100.066601 10.1021/cr900129a 10.1038/35087532 10.1002/adfm.200700046 10.1016/S0379-6779(03)00263-7 10.1021/nl051685 10.1533/9780857098948 10.1021/ja052940v 10.1002/lpor.201300222 10.1016/0009-2614(96)00450-2 10.1002/adom.201200066 10.1038/nature10313 10.1063/1.3466915 10.1103/PhysRevLett.93.086602 10.1002/poc.935 10.1002/smll.201202390 10.1016/j.solmat.2008.10.004 10.1002/adma.201002259 10.1021/am4012885 10.1021/cm0610130 10.1063/1.2138361 10.1002/adfm.200902339 10.1063/1.1631385 10.1021/cg100113h 10.1063/1.3298558 10.1021/cr050149z 10.1021/cr000013v 10.1166/jnn.2016.12281 10.1039/B816406C 10.1016/j.displa.2005.03.003 10.1002/jhet.5570370210 10.1002/adma.201504206 10.1002/adfm.201100474 10.1002/adma.201104182 10.1039/c3cp43800g 10.1038/ncomms4005 10.1002/adma.19960080610 10.1039/b805512b 10.1002/adma.200600929 10.1166/jnn.2010.1743 10.1039/b105159h 10.1002/adfm.200901363 10.1002/adma.200803588 10.1146/annurev.physchem.57.032905.104557 10.1063/1.1502023 |
ContentType | Journal Article |
Copyright | 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | AAYXX CITATION 7SP 7U5 8FD L7M |
DOI | 10.1002/lpor.201900009 |
DatabaseName | CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | CrossRef Solid State and Superconductivity Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences |
EISSN | 1863-8899 |
EndPage | n/a |
ExternalDocumentID | 10_1002_lpor_201900009 LPOR201900009 |
Genre | reviewArticle |
GrantInformation_xml | – fundername: National Natural Science Foundation Program of China funderid: 61604018; 61675085; 61825402; 61705075; 61590930 – fundername: China Postdoctoral Science Foundation funderid: 2015M581377 – fundername: National Key Research and Development Program of China funderid: 2017YFB0404500 – fundername: Hong Kong Scholars Program funderid: XJ2018004 |
GroupedDBID | 05W 0R~ 1OC 31~ 33P 3SF 3WU 4.4 52U 66C 8-1 A00 AAESR AAEVG AAHHS AAHQN AAIHA AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCUV ABJNI ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACRPL ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZFZN AZVAB BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BOGZA BRXPI CS3 DCZOG DR2 DRFUL DRSTM DU5 EBS EJD F5P FEDTE G-S GODZA HGLYW HVGLF HZ~ IX1 LATKE LAW LEEKS LH4 LITHE LOXES LUTES LW6 LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY~ O9- OIG P2P P2W P4E ROL SUPJJ W99 WBKPD WIH WIK WOHZO WXSBR WYJ XV2 ZZTAW ~S- AAYXX ADMLS AEYWJ AGHNM AGQPQ AGYGG CITATION 7SP 7U5 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY L7M |
ID | FETCH-LOGICAL-c3839-cb287e3b26c388c71102269ca3eca2fc5b5b980291bdb2508f12f2c1147dce383 |
IEDL.DBID | DR2 |
ISSN | 1863-8880 |
IngestDate | Fri Jul 25 12:30:32 EDT 2025 Tue Jul 01 04:32:33 EDT 2025 Thu Apr 24 23:03:58 EDT 2025 Wed Jan 22 16:39:11 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3839-cb287e3b26c388c71102269ca3eca2fc5b5b980291bdb2508f12f2c1147dce383 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-2127-8610 |
PQID | 2305689366 |
PQPubID | 1016358 |
PageCount | 29 |
ParticipantIDs | proquest_journals_2305689366 crossref_citationtrail_10_1002_lpor_201900009 crossref_primary_10_1002_lpor_201900009 wiley_primary_10_1002_lpor_201900009_LPOR201900009 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | October 2019 |
PublicationDateYYYYMMDD | 2019-10-01 |
PublicationDate_xml | – month: 10 year: 2019 text: October 2019 |
PublicationDecade | 2010 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Laser & photonics reviews |
PublicationYear | 2019 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2010; 11 2011; 115 2002; 14 2010; 10 2007; 101 2010; 97 2007; 107 1960; 33 2013; 1 2004; 201 2014; 26 2014; 24 2017; 392 1960; 119 2008; 103 2012; 15 2013; 7 2012; 13 2008; 100 2013; 5 2001; 40 2011; 475 1997; 9 2018; 47 2013; 9 2011; 110 2010; 22 2010; 20 2009; 95 2009; 10 2000; 12 2009; 93 2006; 27 2000; 10 2010; 110 2014; 14 2005; 109 2007; 7 2019; 29 2018; 30 2005; 71 2007; 3 2008; 20 2008; 112 2012; 24 2009; 19 1996; 256 2003; 40 2012; 22 2001; 412 2006; 444 2007; 17 2019; 7 2007; 19 2004; 303 2012; 101 2010; 35 2006; 57 2005; 112 2010; 39 2017; 66 2007; 90 2005; 86 2005; 87 2002; 81 2002; 80 2016; 16 1999; 105 2011; 5 2011; 133 2016; 4 2010; 43 2012; 112 1958; 28 2002; 124 2005; 127 2005; 95 2005; 5 2008; 47 1956; 24 2013; 210 1995; 268 2001; 38 2016; 28 2009; 109 2005; 17 2005; 18 1990; 99 2013; 25 2003; 118 2004; 126 1997; 85 1964; 3 2003; 15 2011; 11 2008; 77 2011; 12 2008; 1 2011; 151 2009; 48 2014; 65 1997; 90 1963; 38 2014; 5 2013; 15 2013; 14 2003; 91 2014; 2 1999; 11 2011; 21 2011; 23 2016; 116 2001; 18 2014; 8 2003; 83 2014; 7 2001; 13 2011; 161 1996; 8 1998; 120 1963; 20 2004; 104 2015; 5 2003; 139 2009; 21 2006; 99 2017; 27 2006; 16 2008; 16 2006; 7 2006; 18 2008; 10 2007; 50 2009; 130 1999; 308 2005; 44 2009; 26 2004; 96 2015; 25 2012; 2 2004; 92 2004; 93 2013; 38 2000; 37 2004; 16 2006; 88 2004; 14 2009; 9 2017 2013; 135 1999; 75 2013 2009; 3 1998; 187 2007; 44 1985; 32 2007; 46 2010; 96 2012; 9 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_203_1 e_1_2_8_132_1 e_1_2_8_155_1 e_1_2_8_178_1 e_1_2_8_9_1 e_1_2_8_117_1 e_1_2_8_193_1 e_1_2_8_64_1 e_1_2_8_87_1 e_1_2_8_1_1 e_1_2_8_41_1 e_1_2_8_38_1 e_1_2_8_120_1 e_1_2_8_143_1 e_1_2_8_166_1 e_1_2_8_189_1 e_1_2_8_91_1 e_1_2_8_99_1 e_1_2_8_105_1 e_1_2_8_128_1 e_1_2_8_181_1 e_1_2_8_53_1 e_1_2_8_76_1 e_1_2_8_30_1 e_1_2_8_25_1 e_1_2_8_48_1 e_1_2_8_204_1 e_1_2_8_2_1 e_1_2_8_133_1 e_1_2_8_179_1 e_1_2_8_110_1 e_1_2_8_171_1 e_1_2_8_86_1 e_1_2_8_118_1 e_1_2_8_194_1 e_1_2_8_63_1 e_1_2_8_40_1 e_1_2_8_156_1 e_1_2_8_14_1 e_1_2_8_37_1 e_1_2_8_144_1 e_1_2_8_90_1 e_1_2_8_121_1 e_1_2_8_98_1 e_1_2_8_106_1 e_1_2_8_182_1 e_1_2_8_75_1 e_1_2_8_129_1 e_1_2_8_52_1 e_1_2_8_167_1 e_1_2_8_28_1 e_1_2_8_205_1 e_1_2_8_81_1 e_1_2_8_111_1 e_1_2_8_7_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_66_1 e_1_2_8_89_1 e_1_2_8_119_1 e_1_2_8_172_1 e_1_2_8_195_1 e_1_2_8_134_1 e_1_2_8_157_1 e_1_2_8_17_1 e_1_2_8_70_1 e_1_2_8_122_1 e_1_2_8_160_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_78_1 e_1_2_8_107_1 e_1_2_8_183_1 e_1_2_8_145_1 e_1_2_8_168_1 e_1_2_8_93_1 e_1_2_8_27_1 e_1_2_8_206_1 e_1_2_8_80_1 e_1_2_8_150_1 e_1_2_8_8_1 e_1_2_8_42_1 e_1_2_8_88_1 e_1_2_8_65_1 e_1_2_8_173_1 e_1_2_8_112_1 e_1_2_8_158_1 e_1_2_8_196_1 e_1_2_8_135_1 e_1_2_8_39_1 e_1_2_8_210_1 e_1_2_8_16_1 e_1_2_8_92_1 e_1_2_8_100_1 e_1_2_8_161_1 e_1_2_8_31_1 e_1_2_8_77_1 e_1_2_8_54_1 e_1_2_8_108_1 e_1_2_8_184_1 e_1_2_8_123_1 e_1_2_8_169_1 e_1_2_8_146_1 e_1_2_8_68_1 e_1_2_8_207_1 e_1_2_8_5_1 e_1_2_8_151_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_113_1 e_1_2_8_136_1 e_1_2_8_159_1 e_1_2_8_174_1 e_1_2_8_197_1 e_1_2_8_60_1 e_1_2_8_83_1 e_1_2_8_19_1 e_1_2_8_109_1 e_1_2_8_57_1 e_1_2_8_211_1 e_1_2_8_95_1 e_1_2_8_162_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_101_1 e_1_2_8_124_1 e_1_2_8_147_1 e_1_2_8_185_1 e_1_2_8_72_1 e_1_2_8_29_1 e_1_2_8_200_1 e_1_2_8_152_1 e_1_2_8_208_1 e_1_2_8_6_1 e_1_2_8_21_1 e_1_2_8_67_1 e_1_2_8_44_1 e_1_2_8_137_1 e_1_2_8_175_1 e_1_2_8_82_1 e_1_2_8_114_1 e_1_2_8_198_1 e_1_2_8_18_1 e_1_2_8_79_1 e_1_2_8_212_1 e_1_2_8_94_1 e_1_2_8_163_1 e_1_2_8_140_1 e_1_2_8_10_1 e_1_2_8_56_1 e_1_2_8_33_1 e_1_2_8_102_1 e_1_2_8_148_1 e_1_2_8_186_1 e_1_2_8_71_1 e_1_2_8_125_1 Zhao X. (e_1_2_8_15_1) 2017 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_201_1 e_1_2_8_3_1 e_1_2_8_130_1 e_1_2_8_153_1 e_1_2_8_209_1 e_1_2_8_138_1 e_1_2_8_62_1 e_1_2_8_85_1 e_1_2_8_115_1 e_1_2_8_176_1 e_1_2_8_199_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_190_1 e_1_2_8_213_1 e_1_2_8_141_1 e_1_2_8_164_1 e_1_2_8_97_1 e_1_2_8_149_1 e_1_2_8_51_1 e_1_2_8_74_1 e_1_2_8_103_1 e_1_2_8_126_1 e_1_2_8_187_1 e_1_2_8_46_1 e_1_2_8_69_1 e_1_2_8_180_1 e_1_2_8_202_1 e_1_2_8_154_1 e_1_2_8_4_1 e_1_2_8_131_1 e_1_2_8_192_1 e_1_2_8_116_1 e_1_2_8_23_1 e_1_2_8_139_1 e_1_2_8_84_1 e_1_2_8_61_1 e_1_2_8_177_1 Zhao Y. (e_1_2_8_170_1) 2009; 21 e_1_2_8_35_1 e_1_2_8_58_1 e_1_2_8_191_1 e_1_2_8_165_1 e_1_2_8_96_1 e_1_2_8_142_1 e_1_2_8_127_1 e_1_2_8_12_1 e_1_2_8_73_1 e_1_2_8_50_1 e_1_2_8_104_1 e_1_2_8_188_1 |
References_xml | – volume: 110 start-page: 3 year: 2010 publication-title: Chem. Rev. – volume: 2 start-page: 985 year: 2012 publication-title: Sci. Rep. – volume: 93 year: 2004 publication-title: Phys. Rev. Lett. – volume: 23 start-page: 2753 year: 2011 publication-title: Adv. Mater. – volume: 107 start-page: 1272 year: 2007 publication-title: Chem. Rev. – volume: 18 start-page: 1740 year: 2001 publication-title: Chem. Commun. – volume: 151 start-page: 93 year: 2011 publication-title: Solid State Commun. – volume: 112 start-page: 2208 year: 2012 publication-title: Chem. Rev. – volume: 392 start-page: 247 year: 2017 publication-title: Opt. Commun. – volume: 14 start-page: 970 year: 2004 publication-title: Adv. Funct. Mater. – volume: 21 start-page: 2854 year: 2011 publication-title: Adv. Funct. Mater. – volume: 43 start-page: 1396 year: 2010 publication-title: Acc. Chem. Res. – volume: 27 start-page: 2 year: 2006 publication-title: Displays – volume: 109 start-page: 5868 year: 2009 publication-title: Chem. Rev. – volume: 29 year: 2019 publication-title: Adv. Funct. Mater. – volume: 75 start-page: 187 year: 1999 publication-title: Appl. Phys. Lett. – volume: 97 year: 2010 publication-title: Appl. Phys. Lett. – volume: 9 start-page: 2545 year: 2012 publication-title: Phys. Status Solidi C – volume: 77 year: 2008 publication-title: Phys. Rev. B – volume: 66 start-page: 223 year: 2017 publication-title: Polym. Int. – volume: 65 start-page: 477 year: 2014 publication-title: Annu. Rev. Phys. Chem. – volume: 210 start-page: 1353 year: 2013 publication-title: Phys. Status Solidi A – volume: 120 start-page: 1289 year: 1998 publication-title: J. Am. Chem. Soc. – volume: 23 start-page: 5091 year: 2011 publication-title: Adv. Mater. – volume: 90 year: 2007 publication-title: Appl. Phys. Lett. – volume: 16 start-page: 4497 year: 2004 publication-title: Chem. Mater. – volume: 26 start-page: 1319 year: 2014 publication-title: Adv. Mater. – volume: 47 start-page: 4719 year: 2008 publication-title: Jpn. J. Appl. Phys. – volume: 7 start-page: 2145 year: 2014 publication-title: Energy Environ. Sci. – volume: 21 start-page: 4034 year: 2009 publication-title: Adv. Mater. – volume: 475 start-page: 364 year: 2011 publication-title: Nature – volume: 15 start-page: 36 year: 2012 publication-title: Mater. Today – volume: 8 start-page: 687 year: 2014 publication-title: Laser Photonics Rev. – volume: 19 start-page: 678 year: 2007 publication-title: Adv. Mater. – volume: 32 start-page: 1172 year: 1985 publication-title: Phys. Rev. B – volume: 14 start-page: 119 year: 2002 publication-title: Adv. Mater. – volume: 303 start-page: 1644 year: 2004 publication-title: Science – volume: 19 start-page: 3653 year: 2007 publication-title: Adv. Mater. – volume: 3 start-page: 317 year: 1964 publication-title: Photochem. Photobiol. – volume: 1 start-page: 422 year: 2013 publication-title: Adv. Opt. Mater. – volume: 17 start-page: 2073 year: 2005 publication-title: Adv. Mater. – volume: 22 start-page: 4905 year: 2010 publication-title: Adv. Mater. – volume: 20 start-page: 1610 year: 2010 publication-title: Adv. Funct. Mater. – volume: 133 year: 2011 publication-title: J. Am. Chem. Soc. – volume: 25 start-page: 2860 year: 2013 publication-title: Adv. Mater. – volume: 127 start-page: 1348 year: 2005 publication-title: J. Am. Chem. Soc. – volume: 21 start-page: 1295 year: 2011 publication-title: J. Mater. Chem. – volume: 39 start-page: 2354 year: 2010 publication-title: Chem. Soc. Rev. – volume: 43 start-page: 429 year: 2010 publication-title: Acc. Chem. Res. – volume: 112 start-page: 9066 year: 2008 publication-title: J. Phys. Chem. C – volume: 11 start-page: 2273 year: 2011 publication-title: Cryst. Growth Des. – year: 2013 – volume: 13 start-page: 1602 year: 2012 publication-title: Org. Electron. – volume: 28 start-page: 721 year: 1958 publication-title: J. Chem. Phys. – volume: 38 start-page: 923 year: 2001 publication-title: J. Heterocycl. Chem. – volume: 10 start-page: 1017 year: 2010 publication-title: J. Nanosci. Nanotechnol. – volume: 20 start-page: 1661 year: 2008 publication-title: Adv. Mater. – volume: 18 start-page: 4049 year: 2006 publication-title: Chem. Mater. – volume: 96 year: 2010 publication-title: Appl. Phys. Lett. – volume: 71 year: 2005 publication-title: Phys. Rev. B – volume: 95 year: 2009 publication-title: Appl. Phys. Lett. – volume: 112 start-page: 325 year: 2005 publication-title: J. Lumin. – volume: 118 start-page: 981 year: 2003 publication-title: J. Chem. Phys. – volume: 25 start-page: 5669 year: 2015 publication-title: Adv. Funct. Mater. – volume: 308 start-page: 99 year: 1999 publication-title: Chem. Phys. Lett. – volume: 21 start-page: 6165 year: 2009 publication-title: Adv. Mater. – volume: 50 start-page: 433 year: 2007 publication-title: Sci. China, Ser. B: Chem. – volume: 48 start-page: 04C174 year: 2009 publication-title: Jpn. J. Appl. Phys. – volume: 93 start-page: 394 year: 2009 publication-title: Sol. Energy Mater. Sol. Cells – volume: 26 start-page: 647 year: 2014 publication-title: Chem. Mater. – volume: 9 start-page: 1178 year: 1997 publication-title: Adv. Mater. – volume: 22 year: 2012 publication-title: J. Mater. Chem. – volume: 35 start-page: 441 year: 2010 publication-title: Opt. Lett. – volume: 22 start-page: 1631 year: 2010 publication-title: Adv. Mater. – volume: 25 start-page: 6158 year: 2013 publication-title: Adv. Mater. – volume: 8 start-page: 500 year: 1996 publication-title: Adv. Mater. – volume: 101 year: 2007 publication-title: J. Appl. Phys. – volume: 87 year: 2005 publication-title: Appl. Phys. Lett. – volume: 15 start-page: 1535 year: 2003 publication-title: Chem. Mater. – volume: 3 start-page: 231 year: 2007 publication-title: Chem. Commun. – volume: 100 year: 2008 publication-title: Phys. Rev. Lett. – volume: 139 start-page: 735 year: 2003 publication-title: Synth. Met. – volume: 9 start-page: 4945 year: 2009 publication-title: Cryst. Growth Des. – volume: 33 start-page: 626 year: 1960 publication-title: J. Chem. Phys. – volume: 81 start-page: 1512 year: 2002 publication-title: Appl. Phys. Lett. – volume: 38 start-page: 2042 year: 1963 publication-title: J. Chem. Phys. – volume: 201 start-page: 2288 year: 2004 publication-title: Phys. Status Solidi A – volume: 80 start-page: 544 year: 2002 publication-title: Appl. Phys. Lett. – volume: 16 start-page: 2097 year: 2004 publication-title: Adv. Mater. – volume: 44 start-page: L1367 year: 2005 publication-title: Jpn. J. Appl. Phys. – volume: 19 start-page: 1728 year: 2009 publication-title: Adv. Funct. Mater. – volume: 26 start-page: 1103 year: 2009 publication-title: J. Opt. Soc. Am. B – volume: 44 start-page: 853 year: 2007 publication-title: J. Heterocycl. Chem. – volume: 13 start-page: 1452 year: 2001 publication-title: Adv. Mater. – volume: 14 start-page: 389 year: 2013 publication-title: Org. Electron. – volume: 22 start-page: 1005 year: 2012 publication-title: Adv. Funct. Mater. – volume: 16 start-page: 1985 year: 2006 publication-title: Adv. Funct. Mater. – volume: 47 start-page: 422 year: 2018 publication-title: Chem. Soc. Rev. – volume: 7 start-page: 1881 year: 2006 publication-title: ChemPhysChem – volume: 99 start-page: 1009 year: 1990 publication-title: J. Cryst. Growth – volume: 107 start-page: 926 year: 2007 publication-title: Chem. Rev. – volume: 23 start-page: 733 year: 2011 publication-title: Chem. Mater. – volume: 2 start-page: 965 year: 2014 publication-title: J. Mater. Chem. C – volume: 24 start-page: 5744 year: 2012 publication-title: Adv. Mater. – volume: 15 start-page: 3527 year: 2013 publication-title: Phys. Chem. Chem. Phys. – volume: 27 year: 2017 publication-title: Adv. Funct. Mater. – volume: 91 year: 2003 publication-title: Phys. Rev. Lett. – volume: 115 start-page: 9171 year: 2011 publication-title: J. Phys. Chem. C – volume: 10 start-page: 440 year: 2010 publication-title: J. Nanosci. Nanotechnol. – volume: 110 year: 2011 publication-title: J. Appl. Phys. – volume: 95 year: 2005 publication-title: Phys. Rev. Lett. – volume: 37 start-page: 281 year: 2000 publication-title: J. Heterocycl. Chem. – volume: 110 start-page: 268 year: 2010 publication-title: Chem. Rev. – volume: 5 start-page: 2422 year: 2005 publication-title: Nano Lett. – volume: 444 start-page: 913 year: 2006 publication-title: Nature – volume: 112 start-page: 321 year: 2005 publication-title: J. Lumin. – volume: 17 start-page: 1623 year: 2007 publication-title: Adv. Funct. Mater. – volume: 2 start-page: 2827 year: 2014 publication-title: J. Mater. Chem. C – volume: 7 start-page: 281 year: 2013 publication-title: Laser Photonics Rev. – volume: 19 start-page: 704 year: 2009 publication-title: Adv. Funct. Mater. – volume: 24 start-page: 7085 year: 2014 publication-title: Adv. Funct. Mater. – volume: 5 start-page: 1959 year: 2005 publication-title: Cryst. Growth Des. – volume: 24 start-page: 2404 year: 2012 publication-title: Adv. Mater. – volume: 19 start-page: 3748 year: 2007 publication-title: Chem. Mater. – volume: 9 start-page: 990 year: 2013 publication-title: Small – volume: 28 start-page: 2475 year: 2016 publication-title: Adv. Mater. – volume: 135 start-page: 6724 year: 2013 publication-title: J. Am. Chem. Soc. – volume: 9 start-page: 2582 year: 2009 publication-title: J. Nanosci. Nanotechnol. – volume: 11 start-page: 1192 year: 2010 publication-title: Org. Electron. – volume: 12 start-page: 629 year: 2000 publication-title: Adv. Mater. – volume: 40 start-page: 845 year: 2003 publication-title: J. Heterocycl. Chem. – volume: 5 start-page: 2923 year: 2011 publication-title: ACS Nano – volume: 21 start-page: 3770 year: 2011 publication-title: Adv. Funct. Mater. – volume: 21 start-page: 3649 year: 2009 publication-title: Adv. Mater. – volume: 18 start-page: 962 year: 2005 publication-title: J. Phys. Org. Chem. – volume: 16 year: 2008 publication-title: Opt. Express – volume: 5 year: 2015 publication-title: Sci. Rep. – volume: 3 start-page: 1506 year: 2009 publication-title: ACS Nano – volume: 7 start-page: 2512 year: 2007 publication-title: Cryst. Growth Des. – volume: 105 start-page: 171 year: 1999 publication-title: Synth. Met. – volume: 412 start-page: 517 year: 2001 publication-title: Nature – volume: 46 start-page: 7478 year: 2007 publication-title: Jpn. J. Appl. Phys. – volume: 11 start-page: 234 year: 1999 publication-title: Adv. Mater. – volume: 124 year: 2002 publication-title: J. Am. Chem. Soc. – volume: 22 start-page: 33 year: 2012 publication-title: Adv. Funct. Mater. – volume: 103 year: 2008 publication-title: J. Appl. Phys. – volume: 20 start-page: 55 year: 1963 publication-title: Radiat. Res. – volume: 15 start-page: 213 year: 2003 publication-title: Adv. Mater. – volume: 126 start-page: 8138 year: 2004 publication-title: J. Am. Chem. Soc. – volume: 26 start-page: 1176 year: 2014 publication-title: Adv. Mater. – volume: 127 year: 2005 publication-title: J. Am. Chem. Soc. – volume: 9 start-page: 75 year: 1997 publication-title: Adv. Mater. – volume: 10 start-page: 1241 year: 2009 publication-title: Org. Electron. – volume: 107 start-page: 1324 year: 2007 publication-title: Chem. Rev. – volume: 104 start-page: 4971 year: 2004 publication-title: Chem. Rev. – volume: 37 start-page: 25 year: 2000 publication-title: J. Heterocycl. Chem. – volume: 22 start-page: 3708 year: 2010 publication-title: Adv. Mater. – volume: 12 start-page: 8 year: 2011 publication-title: Org. Electron. – volume: 7 start-page: 3190 year: 2019 publication-title: J. Mater. Chem. C – volume: 130 year: 2009 publication-title: J. Chem. Phys. – volume: 86 year: 2005 publication-title: Appl. Phys. Lett. – volume: 5 start-page: 8352 year: 2011 publication-title: ACS Nano – volume: 40 start-page: 2591 year: 2001 publication-title: Angew. Chem., Int. Ed. – volume: 92 year: 2004 publication-title: Phys. Rev. Lett. – volume: 268 start-page: 270 year: 1995 publication-title: Science – volume: 13 start-page: 762 year: 2012 publication-title: Org. Electron. – volume: 57 start-page: 217 year: 2006 publication-title: Annu. Rev. Phys. Chem. – volume: 22 start-page: 4427 year: 2010 publication-title: Adv. Mater. – volume: 83 start-page: 4494 year: 2003 publication-title: Appl. Phys. Lett. – volume: 1 year: 2008 publication-title: Appl. Phys. Express – volume: 24 start-page: 966 year: 1956 publication-title: J. Chem. Phys. – volume: 10 start-page: 2342 year: 2010 publication-title: Cryst. Growth Des. – volume: 18 start-page: 2369 year: 2006 publication-title: Adv. Mater. – volume: 38 start-page: 28 year: 2013 publication-title: MRS Bull. – volume: 119 start-page: 1226 year: 1960 publication-title: Phys. Rev. – volume: 109 year: 2005 publication-title: J. Phys. Chem. B – volume: 5 start-page: 3005 year: 2014 publication-title: Nat. Commun. – volume: 19 start-page: 688 year: 2007 publication-title: Adv. Mater. – volume: 101 year: 2012 publication-title: Appl. Phys. Lett. – volume: 20 start-page: 4109 year: 2008 publication-title: Adv. Mater. – volume: 2 start-page: 529 year: 2014 publication-title: Adv. Opt. Mater. – volume: 24 start-page: 6141 year: 2012 publication-title: Adv. Mater. – volume: 161 start-page: 1869 year: 2011 publication-title: Synth. Met. – volume: 16 start-page: 3312 year: 2016 publication-title: J. Nanosci. Nanotechnol. – volume: 85 start-page: 1309 year: 1997 publication-title: Synth. Met. – volume: 10 start-page: 1252 year: 2008 publication-title: CrystEngComm – volume: 13 start-page: 1053 year: 2001 publication-title: Adv. Mater. – volume: 24 start-page: 2171 year: 2012 publication-title: Adv. Mater. – volume: 109 start-page: 897 year: 2009 publication-title: Chem. Rev. – volume: 256 start-page: 424 year: 1996 publication-title: Chem. Phys. Lett. – volume: 5 start-page: 5757 year: 2013 publication-title: ACS Appl. Mater. Interfaces – volume: 14 start-page: 2102 year: 2014 publication-title: J. Nanosci. Nanotechnol. – volume: 126 start-page: 8546 year: 2004 publication-title: J. Am. Chem. Soc. – volume: 99 year: 2006 publication-title: J. Appl. Phys. – volume: 116 year: 2016 publication-title: Chem. Rev. – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 90 start-page: 187 year: 1997 publication-title: Synth. Met. – volume: 88 year: 2006 publication-title: Appl. Phys. Lett. – volume: 187 start-page: 449 year: 1998 publication-title: J. Cryst. Growth – volume: 39 start-page: 423 year: 2010 publication-title: Chem. Soc. Rev. – year: 2017 – volume: 4 start-page: 348 year: 2016 publication-title: Adv. Opt. Mater. – volume: 10 start-page: 571 year: 2000 publication-title: J. Mater. Chem. – volume: 20 start-page: 7312 year: 2008 publication-title: Chem. Mater. – volume: 96 start-page: 4240 year: 2004 publication-title: J. Appl. Phys. – volume: 20 start-page: 28 year: 2010 publication-title: Adv. Funct. Mater. – volume: 13 start-page: 2975 year: 2012 publication-title: Org. Electron. – ident: e_1_2_8_108_1 doi: 10.1016/j.jlumin.2004.09.101 – ident: e_1_2_8_199_1 doi: 10.1166/jnn.2010.1798 – ident: e_1_2_8_141_1 doi: 10.1364/OL.35.000441 – ident: e_1_2_8_49_1 doi: 10.1063/1.1742723 – ident: e_1_2_8_46_1 doi: 10.1021/acs.chemrev.6b00127 – ident: e_1_2_8_139_1 doi: 10.1002/adma.200900503 – ident: e_1_2_8_165_1 doi: 10.1016/j.orgel.2010.04.026 – ident: e_1_2_8_13_1 doi: 10.1002/adma.201304346 – volume-title: Advances in Heterocyclic Chemistry year: 2017 ident: e_1_2_8_15_1 – ident: e_1_2_8_90_1 doi: 10.1002/adfm.201100783 – ident: e_1_2_8_80_1 doi: 10.1016/j.jlumin.2004.09.100 – ident: e_1_2_8_94_1 doi: 10.1002/jhet.5570380417 – ident: e_1_2_8_190_1 doi: 10.1038/srep12445 – ident: e_1_2_8_196_1 doi: 10.1143/JJAP.44.L1367 – ident: e_1_2_8_148_1 doi: 10.1002/adma.200601259 – ident: e_1_2_8_166_1 doi: 10.1002/adma.200701008 – ident: e_1_2_8_53_1 doi: 10.1103/PhysRev.119.1226 – ident: e_1_2_8_171_1 doi: 10.1002/pssa.201228776 – ident: e_1_2_8_30_1 doi: 10.1002/adom.201500531 – ident: e_1_2_8_113_1 doi: 10.1166/jnn.2014.8619 – ident: e_1_2_8_176_1 doi: 10.1021/jp110646n – ident: e_1_2_8_129_1 doi: 10.1021/jp054324r – ident: e_1_2_8_44_1 doi: 10.1016/S0009-2614(99)00577-1 – ident: e_1_2_8_59_1 doi: 10.1103/PhysRevB.71.035332 – ident: e_1_2_8_45_1 doi: 10.1021/ar900233v – ident: e_1_2_8_102_1 doi: 10.1002/adfm.200900028 – ident: e_1_2_8_207_1 doi: 10.1002/adma.201202252 – ident: e_1_2_8_187_1 doi: 10.1016/j.orgel.2012.01.028 – ident: e_1_2_8_23_1 doi: 10.1021/ja400881n – ident: e_1_2_8_172_1 doi: 10.1021/nn203068q – ident: e_1_2_8_31_1 doi: 10.1021/acs.chemrev.6b00172 – ident: e_1_2_8_5_1 doi: 10.1021/cr050152i – ident: e_1_2_8_43_1 doi: 10.1063/1.1521933 – ident: e_1_2_8_69_1 doi: 10.1002/adma.19970091512 – ident: e_1_2_8_174_1 doi: 10.1016/S0022-0248(98)00034-7 – ident: e_1_2_8_206_1 doi: 10.1016/j.ssc.2010.10.004 – ident: e_1_2_8_66_1 doi: 10.1021/ja0476258 – ident: e_1_2_8_162_1 doi: 10.1364/JOSAB.26.001103 – ident: e_1_2_8_209_1 doi: 10.1002/pssc.201200286 – ident: e_1_2_8_19_1 doi: 10.1039/C4EE00688G – ident: e_1_2_8_133_1 doi: 10.1016/j.orgel.2012.04.022 – ident: e_1_2_8_160_1 doi: 10.1016/j.synthmet.2011.06.026 – ident: e_1_2_8_110_1 doi: 10.1002/adma.201202470 – ident: e_1_2_8_175_1 doi: 10.1016/j.orgel.2009.06.017 – ident: e_1_2_8_212_1 doi: 10.1038/srep00985 – ident: e_1_2_8_186_1 doi: 10.1063/1.2179619 – ident: e_1_2_8_184_1 doi: 10.1002/adfm.201502151 – ident: e_1_2_8_1_1 doi: 10.1002/1521-3773(20010716)40:14<2591::AID-ANIE2591>3.0.CO;2-0 – ident: e_1_2_8_9_1 doi: 10.1021/cr900150b – ident: e_1_2_8_159_1 doi: 10.1021/cm071051z – ident: e_1_2_8_12_1 doi: 10.1021/cr100380z – ident: e_1_2_8_85_1 doi: 10.1039/B612732K – ident: e_1_2_8_116_1 doi: 10.1021/cm021715z – ident: e_1_2_8_76_1 doi: 10.1063/1.124314 – ident: e_1_2_8_93_1 doi: 10.1002/jhet.5570370105 – ident: e_1_2_8_68_1 doi: 10.1063/1.3216047 – ident: e_1_2_8_161_1 doi: 10.1364/OE.16.011310 – ident: e_1_2_8_88_1 doi: 10.1021/cg070270u – ident: e_1_2_8_132_1 doi: 10.1002/adfm.201101467 – ident: e_1_2_8_57_1 doi: 10.1126/science.268.5208.270 – ident: e_1_2_8_151_1 doi: 10.1063/1.1848179 – ident: e_1_2_8_87_1 doi: 10.1021/cg0502441 – ident: e_1_2_8_177_1 doi: 10.1038/nature05427 – ident: e_1_2_8_73_1 doi: 10.1002/adma.19970090118 – volume: 21 start-page: 6165 year: 2009 ident: e_1_2_8_170_1 publication-title: Adv. Mater. – ident: e_1_2_8_74_1 doi: 10.1016/S0379-6779(98)80005-2 – ident: e_1_2_8_58_1 doi: 10.1103/PhysRevLett.92.116802 – ident: e_1_2_8_204_1 doi: 10.1002/adma.201004572 – ident: e_1_2_8_127_1 doi: 10.1166/jnn.2009.465 – ident: e_1_2_8_105_1 doi: 10.1002/adma.200390048 – ident: e_1_2_8_137_1 doi: 10.1126/science.1094196 – ident: e_1_2_8_81_1 doi: 10.1002/adfm.200305065 – ident: e_1_2_8_67_1 doi: 10.1063/1.3055519 – ident: e_1_2_8_50_1 doi: 10.1021/cr050140x – ident: e_1_2_8_27_1 doi: 10.1039/C0JM02290J – ident: e_1_2_8_173_1 doi: 10.1016/S0022-0248(08)80072-3 – ident: e_1_2_8_210_1 doi: 10.1002/adma.201000171 – ident: e_1_2_8_63_1 doi: 10.1063/1.2736208 – ident: e_1_2_8_150_1 doi: 10.1021/ja048342i – ident: e_1_2_8_112_1 doi: 10.1063/1.3224902 – ident: e_1_2_8_98_1 doi: 10.1002/1521-4095(20020116)14:2<119::AID-ADMA119>3.0.CO;2-7 – ident: e_1_2_8_183_1 doi: 10.1002/adfm.200600070 – ident: e_1_2_8_144_1 doi: 10.1143/JJAP.47.4719 – ident: e_1_2_8_52_1 doi: 10.1021/cr040084k – ident: e_1_2_8_62_1 doi: 10.1002/adma.200401017 – ident: e_1_2_8_18_1 doi: 10.1016/S1369-7021(12)70019-6 – ident: e_1_2_8_117_1 doi: 10.1021/cg9007125 – ident: e_1_2_8_179_1 doi: 10.1021/cm049563q – ident: e_1_2_8_35_1 doi: 10.1007/s11426-007-0101-1 – ident: e_1_2_8_37_1 doi: 10.1063/1.1733929 – ident: e_1_2_8_71_1 doi: 10.1016/S0379-6779(97)80253-6 – ident: e_1_2_8_26_1 doi: 10.1039/C3TC31998A – ident: e_1_2_8_125_1 doi: 10.1063/1.2919710 – ident: e_1_2_8_182_1 doi: 10.1063/1.4747148 – ident: e_1_2_8_192_1 doi: 10.1002/adfm.201604659 – ident: e_1_2_8_54_1 doi: 10.1063/1.1731216 – ident: e_1_2_8_131_1 doi: 10.1021/nn200027x – ident: e_1_2_8_47_1 doi: 10.1021/ja973761j – ident: e_1_2_8_25_1 doi: 10.1039/C7CS00490G – ident: e_1_2_8_22_1 doi: 10.1021/ja2073643 – ident: e_1_2_8_130_1 doi: 10.1002/adma.200800123 – ident: e_1_2_8_126_1 doi: 10.1143/JJAP.48.04C174 – ident: e_1_2_8_91_1 doi: 10.1021/jp801033j – ident: e_1_2_8_65_1 doi: 10.1021/ja045124g – ident: e_1_2_8_28_1 doi: 10.1002/pi.5112 – ident: e_1_2_8_167_1 doi: 10.1039/C8TC04834G – ident: e_1_2_8_213_1 doi: 10.1002/adma.201801048 – ident: e_1_2_8_75_1 doi: 10.1039/a908312j – ident: e_1_2_8_208_1 doi: 10.1002/adma.201300456 – ident: e_1_2_8_111_1 doi: 10.1063/1.1787136 – ident: e_1_2_8_169_1 doi: 10.1002/adma.200600704 – ident: e_1_2_8_100_1 doi: 10.1063/1.3504690 – ident: e_1_2_8_191_1 doi: 10.1016/j.optcom.2017.02.010 – ident: e_1_2_8_2_1 doi: 10.1039/b914956m – ident: e_1_2_8_146_1 doi: 10.1143/JJAP.46.7478 – ident: e_1_2_8_56_1 doi: 10.1002/adma.201000740 – ident: e_1_2_8_120_1 doi: 10.1016/j.orgel.2012.10.028 – ident: e_1_2_8_97_1 doi: 10.1016/S0379-6779(99)00073-9 – ident: e_1_2_8_61_1 doi: 10.1103/PhysRevLett.95.226601 – ident: e_1_2_8_77_1 doi: 10.1002/1521-4095(200110)13:19<1452::AID-ADMA1452>3.0.CO;2-P – ident: e_1_2_8_128_1 doi: 10.1002/adom.201400083 – ident: e_1_2_8_142_1 doi: 10.1063/1.2719011 – ident: e_1_2_8_21_1 doi: 10.1021/ar100043u – ident: e_1_2_8_103_1 doi: 10.1002/cphc.200500669 – ident: e_1_2_8_153_1 doi: 10.1016/j.orgel.2012.08.024 – ident: e_1_2_8_154_1 doi: 10.1002/adfm.201102284 – ident: e_1_2_8_48_1 doi: 10.1002/1521-4095(200107)13:14<1053::AID-ADMA1053>3.0.CO;2-7 – ident: e_1_2_8_109_1 doi: 10.1103/PhysRevB.77.045205 – ident: e_1_2_8_194_1 doi: 10.1002/adfm.201807606 – ident: e_1_2_8_134_1 doi: 10.1039/c2jm35394f – ident: e_1_2_8_24_1 doi: 10.1021/cm402421p – ident: e_1_2_8_29_1 doi: 10.1039/c3tc32206h – ident: e_1_2_8_72_1 doi: 10.1002/(SICI)1521-4095(199903)11:3<234::AID-ADMA234>3.0.CO;2-B – ident: e_1_2_8_136_1 doi: 10.1002/lpor.201200072 – ident: e_1_2_8_79_1 doi: 10.1002/pssa.200404810 – ident: e_1_2_8_211_1 doi: 10.1038/srep10221 – ident: e_1_2_8_124_1 doi: 10.1063/1.2181278 – ident: e_1_2_8_122_1 doi: 10.1002/adma.200500734 – ident: e_1_2_8_55_1 doi: 10.1103/PhysRevB.32.1172 – ident: e_1_2_8_86_1 doi: 10.1021/cm801427s – ident: e_1_2_8_145_1 doi: 10.1063/1.3634117 – ident: e_1_2_8_143_1 doi: 10.1021/nn900063m – ident: e_1_2_8_95_1 doi: 10.1002/jhet.5570400515 – ident: e_1_2_8_195_1 doi: 10.1103/PhysRevLett.91.157406 – ident: e_1_2_8_104_1 doi: 10.1063/1.1435797 – ident: e_1_2_8_198_1 doi: 10.1016/j.orgel.2010.10.003 – ident: e_1_2_8_41_1 doi: 10.1063/1.1744225 – ident: e_1_2_8_189_1 doi: 10.1002/adfm.201400832 – ident: e_1_2_8_11_1 doi: 10.1021/cm102419z – ident: e_1_2_8_39_1 doi: 10.1111/j.1751-1097.1964.tb08155.x – ident: e_1_2_8_197_1 doi: 10.1002/adma.200800942 – ident: e_1_2_8_40_1 doi: 10.2307/3571331 – ident: e_1_2_8_147_1 doi: 10.1557/mrs.2012.308 – ident: e_1_2_8_156_1 doi: 10.1002/adma.201103439 – ident: e_1_2_8_180_1 doi: 10.1002/adfm.200801180 – ident: e_1_2_8_34_1 doi: 10.1002/adma.201302514 – ident: e_1_2_8_96_1 doi: 10.1002/jhet.5570440417 – ident: e_1_2_8_42_1 doi: 10.1146/annurev-physchem-040513-103639 – ident: e_1_2_8_33_1 doi: 10.1002/adma.201304280 – ident: e_1_2_8_181_1 doi: 10.1021/cg101686q – ident: e_1_2_8_168_1 doi: 10.1002/adma.200903094 – ident: e_1_2_8_8_1 doi: 10.1021/cr900182s – ident: e_1_2_8_140_1 doi: 10.1002/adma.201200525 – ident: e_1_2_8_203_1 doi: 10.1143/APEX.1.091801 – ident: e_1_2_8_193_1 doi: 10.1002/adma.201801078 – ident: e_1_2_8_115_1 doi: 10.1021/ja0269082 – ident: e_1_2_8_78_1 doi: 10.1002/(SICI)1521-4095(200005)12:9<629::AID-ADMA629>3.0.CO;2-S – ident: e_1_2_8_202_1 doi: 10.1103/PhysRevLett.100.066601 – ident: e_1_2_8_10_1 doi: 10.1021/cr900129a – ident: e_1_2_8_178_1 doi: 10.1038/35087532 – ident: e_1_2_8_200_1 doi: 10.1002/adfm.200700046 – ident: e_1_2_8_83_1 doi: 10.1016/S0379-6779(03)00263-7 – ident: e_1_2_8_157_1 doi: 10.1021/nl051685 – ident: e_1_2_8_3_1 doi: 10.1533/9780857098948 – ident: e_1_2_8_149_1 doi: 10.1021/ja052940v – ident: e_1_2_8_32_1 doi: 10.1002/lpor.201300222 – ident: e_1_2_8_82_1 doi: 10.1016/0009-2614(96)00450-2 – ident: e_1_2_8_119_1 doi: 10.1002/adom.201200066 – ident: e_1_2_8_17_1 doi: 10.1038/nature10313 – ident: e_1_2_8_201_1 doi: 10.1063/1.3466915 – ident: e_1_2_8_60_1 doi: 10.1103/PhysRevLett.93.086602 – ident: e_1_2_8_92_1 doi: 10.1002/poc.935 – ident: e_1_2_8_138_1 doi: 10.1002/smll.201202390 – ident: e_1_2_8_16_1 doi: 10.1016/j.solmat.2008.10.004 – ident: e_1_2_8_20_1 doi: 10.1002/adma.201302514 – ident: e_1_2_8_152_1 doi: 10.1002/adma.201002259 – ident: e_1_2_8_158_1 doi: 10.1021/am4012885 – ident: e_1_2_8_163_1 doi: 10.1021/cm0610130 – ident: e_1_2_8_99_1 doi: 10.1063/1.2138361 – ident: e_1_2_8_118_1 doi: 10.1002/adfm.200902339 – ident: e_1_2_8_107_1 doi: 10.1063/1.1631385 – ident: e_1_2_8_164_1 doi: 10.1021/cg100113h – ident: e_1_2_8_188_1 doi: 10.1063/1.3298558 – ident: e_1_2_8_6_1 doi: 10.1021/cr050149z – ident: e_1_2_8_7_1 doi: 10.1021/cr000013v – ident: e_1_2_8_135_1 doi: 10.1166/jnn.2016.12281 – ident: e_1_2_8_51_1 doi: 10.1039/B816406C – ident: e_1_2_8_4_1 doi: 10.1016/j.displa.2005.03.003 – ident: e_1_2_8_106_1 doi: 10.1002/jhet.5570370210 – ident: e_1_2_8_155_1 doi: 10.1002/adma.201504206 – ident: e_1_2_8_205_1 doi: 10.1002/adfm.201100474 – ident: e_1_2_8_101_1 doi: 10.1002/adma.201104182 – ident: e_1_2_8_121_1 doi: 10.1039/c3cp43800g – ident: e_1_2_8_36_1 doi: 10.1038/ncomms4005 – ident: e_1_2_8_70_1 doi: 10.1002/adma.19960080610 – ident: e_1_2_8_89_1 doi: 10.1039/b805512b – ident: e_1_2_8_64_1 doi: 10.1002/adma.200600929 – ident: e_1_2_8_123_1 doi: 10.1166/jnn.2010.1743 – ident: e_1_2_8_114_1 doi: 10.1039/b105159h – ident: e_1_2_8_14_1 doi: 10.1002/adfm.200901363 – ident: e_1_2_8_84_1 doi: 10.1002/adma.200803588 – ident: e_1_2_8_38_1 doi: 10.1146/annurev.physchem.57.032905.104557 – ident: e_1_2_8_185_1 doi: 10.1063/1.1502023 |
SSID | ssj0055556 |
Score | 2.4808047 |
SecondaryResourceType | review_article |
Snippet | Organic single‐crystalline semiconductors (OSCSs), as a vital branch of organic semiconductors, have recently attracted intense interest due to their numerous... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Carrier mobility Charge transport charge‐carrier mobility Crystal growth Crystal structure Crystallinity Diodes Light Luminescence Optical properties Optoelectronics Organic light emitting diodes organic light‐emitting transistors Organic semiconductors organic single‐crystalline semiconductors Semiconductors spectrally narrowed emission Thermal stability Transistors Transport properties Vapor phases |
Title | Organic Single‐Crystalline Semiconductors for Light‐Emitting Applications: Recent Advances and Developments |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Flpor.201900009 https://www.proquest.com/docview/2305689366 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NS8MwGA6ykxfnJ06n5CB4ytambdp6G0MRmR9sDnYr-QRxdrJuBz35E_yN_hLftF3dBBG0pwaS0Hy8eZ83ffIEoROmQxm4ISMuixjxI-6RWFOPKDAl5TAOCN1uDVzfsMuhfzUKRkun-At9iGrDzVpGvl5bA-cia3-Jho4Bn1pqVpzDHFiELWHLoqJ-pR8VwJMfL4qYRyDUcxaqjQ5trxZf9UpfUHMZsOYe56KO-OJbC6LJY2s-Ey35-k3G8T-N2UQbJRzFnWL-bKE1nW6jeglNcWn42Q6aFGc2JR6Aqxvrj7f37vQFgKVV9NZ4YBn2k9RKx06mGQYcjHs26Ids508PObMad5b-lJ9hQKvg7XCnYCBkmKcKL_GXsl00vDi_716S8q4GIiHGjYkUEHppT1AG6UiGro0kWSy5pyWnRgYiEHHk0NgVSgDsioxLDZUQjYVKaqhiD9XSSar3ETZGe8r4vuKG-0yFkaTKmNjTjAWGOl4DkcVYJbIUMrf3aYyTQoKZJrY3k6o3G-i0yv9cSHj8mLO5GPqkNOUsoTbIAlTHWAPRfAx_qSXp3d32q9TBXwodonX7XpAGm6g2m871EYCfmTjOJ_gnMeUABA |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4VeoAL9IW6QFsfKvVkSJzESbittou27UIrHhK3KH5JqEsWbZYDnPgJ_Mb-ks7kxYKEKtHcHNlWYnsy30w-fwb4LG2sIz-W3JeJ5GGSBzy1IuAGTcl4MkeETqmBg0M5Og2_n0Utm5D2wtT6EF3CjSyj-l6TgVNCevdeNXSCAJW4WWmFc5bgJR3rTbb59ahTkIrwqjYYJTLgGOx5rW6jJ3Yftn_ol-7B5iJkrXzO_jqo9mlrqsnvnau52tE3j4Qc_-t1XsFag0hZv15Cr-GFLd7AeoNOWWP75VuY1ts2NTtGbzexf27vBrNrxJYk6m3ZMZHspwWpx05nJUMozMYU92O14cV5Ra5m_YWf5XsMASs6PNavSQglywvDFihM5Ts43R-eDEa8Oa6BawxzU64VRl82UEJiOdGxT8GkTHUeWJ0LpyMVqTTxROoroxB5Jc4XTmgMyGKjLXaxAcvFtLDvgTlnA-PC0OQuD6WJEy2Mc2lgpYyc8IIe8HayMt1omdORGpOsVmEWGY1m1o1mD7509S9rFY8na263c5811lxmguIsBHZS9kBUk_iPXrLxr59HXWnzOY0-wcro5GCcjb8d_tiCVbpfcwi3YXk-u7IfEAvN1cdqtf8FHxAEHQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB2xSIgLO6KsPiBxMiRO4iTcKqAqUApikbhFiRcJUVLUlAOc-AS-kS9hnKRpi4SQIDdHYyuxPZn3nPEzwC5XvvBsn1ObB5y6QezQUDGHSnQlafEYEbpZGrho8-ade3bv3Y_s4i_0IaoFN-MZ-ffaOPiz1AdD0dAO4lOTmhXmMGcSpl1uBYZ-HV9XAlIeXvn-ooA7FLmeNZBttNjBeP3xsDTEmqOINQ85jXmIBw9bZJo87r_0k33x9k3H8T9vswBzJR4l9WICLcKESpdgvsSmpPT8bBm6xaZNQW4w1nXU5_vHUe8VkaWR9FbkxqTYd1OjHdvtZQSBMGkZ1o9mJ08PeWo1qY_8Kj8kCFcx3JF6kYKQkTiVZCSBKVuBu8bJ7VGTloc1UIEkN6QiQe6lnIRxLAfCtw2V5KGIHSVipoWXeEkYWCy0E5kg7gq0zTQTSMd8KRQ2sQpTaTdVa0C0Vo7UritjHbtc-oFgUuvQUZx7mllODehgrCJRKpmbAzU6UaHBzCLTm1HVmzXYq-yfCw2PHy03B0Mflb6cRcywLIR1nNeA5WP4SytR6-ryuiqt_6XSDsxcHTei1mn7fANmze0igXATpvq9F7WFQKifbOdz_QsxGALV |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Organic+Single%E2%80%90Crystalline+Semiconductors+for+Light%E2%80%90Emitting+Applications%3A+Recent+Advances+and+Developments&rft.jtitle=Laser+%26+photonics+reviews&rft.au=Ding%2C+Ran&rft.au=An%2C+Ming%E2%80%90Hui&rft.au=Feng%2C+Jing&rft.au=Sun%2C+Hong%E2%80%90Bo&rft.date=2019-10-01&rft.issn=1863-8880&rft.eissn=1863-8899&rft.volume=13&rft.issue=10&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Flpor.201900009&rft.externalDBID=10.1002%252Flpor.201900009&rft.externalDocID=LPOR201900009 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1863-8880&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1863-8880&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1863-8880&client=summon |