Understanding the Doping Effect on NiO: Toward High‐Performance Inverted Perovskite Solar Cells
High‐quality hole transport layers are prepared by spin‐coating copper doped nickel oxide (Cu:NiO) nanoparticle inks at room temperature without further processing. In agreement with theoretical calculations predicting that Cu doping results in acceptor energy levels closer to the valence band maxim...
Saved in:
Published in | Advanced energy materials Vol. 8; no. 19 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
05.07.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | High‐quality hole transport layers are prepared by spin‐coating copper doped nickel oxide (Cu:NiO) nanoparticle inks at room temperature without further processing. In agreement with theoretical calculations predicting that Cu doping results in acceptor energy levels closer to the valence band maximum compared to gap states of nickel vacancies in undoped NiO, an increase in the conductivity in Cu:NiO films compared to NiO is observed. Cu in Cu:NiO can be found in both Cu+ and Cu2+ states, and the substitution of Ni2+ with Cu+ contributes to both increased carrier concentration and carrier mobility. In addition, the films exhibit increased work function, which together with the conductivity increase, enables improved charge transfer and extraction. Furthermore, recombination losses due to lower monomolecular Shockley‐Read‐Hall recombination are reduced. These factors result in an improvement of all photovoltaic performance parameters and consequently an increased efficiency of the inverted planar perovskite solar cells. A power conversion efficiency (PCE) exceeding 20% could be achieved for small‐area devices, while PCE values of 17.41 and 18.07% are obtained for flexible devices and large area (1 cm2) devices on rigid substrates, respectively.
Copper‐doped Nickel Oxide (Cu:NiO) nanoparticles are synthesized and applied as hole transport layers in perovskite solar cells. Cu doping results in an increase in carrier concentration, hole mobility and work function of Cu:NiO. Consequently, charge extraction is improved and the losses are decreased. The devices with Cu:NiO have better efficiency than NiO, with a highest PCE exceeding 20%. |
---|---|
AbstractList | High‐quality hole transport layers are prepared by spin‐coating copper doped nickel oxide (Cu:NiO) nanoparticle inks at room temperature without further processing. In agreement with theoretical calculations predicting that Cu doping results in acceptor energy levels closer to the valence band maximum compared to gap states of nickel vacancies in undoped NiO, an increase in the conductivity in Cu:NiO films compared to NiO is observed. Cu in Cu:NiO can be found in both Cu+ and Cu2+ states, and the substitution of Ni2+ with Cu+ contributes to both increased carrier concentration and carrier mobility. In addition, the films exhibit increased work function, which together with the conductivity increase, enables improved charge transfer and extraction. Furthermore, recombination losses due to lower monomolecular Shockley‐Read‐Hall recombination are reduced. These factors result in an improvement of all photovoltaic performance parameters and consequently an increased efficiency of the inverted planar perovskite solar cells. A power conversion efficiency (PCE) exceeding 20% could be achieved for small‐area devices, while PCE values of 17.41 and 18.07% are obtained for flexible devices and large area (1 cm2) devices on rigid substrates, respectively.
Copper‐doped Nickel Oxide (Cu:NiO) nanoparticles are synthesized and applied as hole transport layers in perovskite solar cells. Cu doping results in an increase in carrier concentration, hole mobility and work function of Cu:NiO. Consequently, charge extraction is improved and the losses are decreased. The devices with Cu:NiO have better efficiency than NiO, with a highest PCE exceeding 20%. High‐quality hole transport layers are prepared by spin‐coating copper doped nickel oxide (Cu:NiO) nanoparticle inks at room temperature without further processing. In agreement with theoretical calculations predicting that Cu doping results in acceptor energy levels closer to the valence band maximum compared to gap states of nickel vacancies in undoped NiO, an increase in the conductivity in Cu:NiO films compared to NiO is observed. Cu in Cu:NiO can be found in both Cu + and Cu 2+ states, and the substitution of Ni 2+ with Cu + contributes to both increased carrier concentration and carrier mobility. In addition, the films exhibit increased work function, which together with the conductivity increase, enables improved charge transfer and extraction. Furthermore, recombination losses due to lower monomolecular Shockley‐Read‐Hall recombination are reduced. These factors result in an improvement of all photovoltaic performance parameters and consequently an increased efficiency of the inverted planar perovskite solar cells. A power conversion efficiency (PCE) exceeding 20% could be achieved for small‐area devices, while PCE values of 17.41 and 18.07% are obtained for flexible devices and large area (1 cm 2 ) devices on rigid substrates, respectively. High‐quality hole transport layers are prepared by spin‐coating copper doped nickel oxide (Cu:NiO) nanoparticle inks at room temperature without further processing. In agreement with theoretical calculations predicting that Cu doping results in acceptor energy levels closer to the valence band maximum compared to gap states of nickel vacancies in undoped NiO, an increase in the conductivity in Cu:NiO films compared to NiO is observed. Cu in Cu:NiO can be found in both Cu+ and Cu2+ states, and the substitution of Ni2+ with Cu+ contributes to both increased carrier concentration and carrier mobility. In addition, the films exhibit increased work function, which together with the conductivity increase, enables improved charge transfer and extraction. Furthermore, recombination losses due to lower monomolecular Shockley‐Read‐Hall recombination are reduced. These factors result in an improvement of all photovoltaic performance parameters and consequently an increased efficiency of the inverted planar perovskite solar cells. A power conversion efficiency (PCE) exceeding 20% could be achieved for small‐area devices, while PCE values of 17.41 and 18.07% are obtained for flexible devices and large area (1 cm2) devices on rigid substrates, respectively. |
Author | Chen, Wei He, Zhu‐Bing Djurišić, Aleksandra B. Tam, Ho Won Wang, Dong Ng, Annie Surya, Charles Wu, Yinghui Chan, Wai Kin Liu, Fangzhou Fan, Jing |
Author_xml | – sequence: 1 givenname: Wei surname: Chen fullname: Chen, Wei organization: Southern University of Science and Technology – sequence: 2 givenname: Yinghui surname: Wu fullname: Wu, Yinghui organization: Southern University of Science and Technology – sequence: 3 givenname: Jing surname: Fan fullname: Fan, Jing organization: Southern University of Science and Technology of China – sequence: 4 givenname: Aleksandra B. orcidid: 0000-0002-5183-1467 surname: Djurišić fullname: Djurišić, Aleksandra B. email: dalek@hku.hk organization: The University of Hong Kong – sequence: 5 givenname: Fangzhou surname: Liu fullname: Liu, Fangzhou organization: The University of Hong Kong – sequence: 6 givenname: Ho Won surname: Tam fullname: Tam, Ho Won organization: The University of Hong Kong – sequence: 7 givenname: Annie surname: Ng fullname: Ng, Annie organization: The Hong Kong Polytechnic University – sequence: 8 givenname: Charles surname: Surya fullname: Surya, Charles organization: The Hong Kong Polytechnic University – sequence: 9 givenname: Wai Kin surname: Chan fullname: Chan, Wai Kin organization: The University of Hong Kong – sequence: 10 givenname: Dong surname: Wang fullname: Wang, Dong organization: Southern University of Science and Technology – sequence: 11 givenname: Zhu‐Bing surname: He fullname: He, Zhu‐Bing email: hezb@sustc.edu.cn organization: Southern University of Science and Technology |
BookMark | eNqFkElLBDEQhYMouF49BzzPmKW3eJNxXGBcQD031emKRnuSMYmKN3-Cv9FfYg8jIwhiXepRvK8evE2y6rxDQnY5G3LGxD6gmw4F4yWTOVcrZIMXPBsUVcZWl1qKdbIT4wPrJ1OcSblB4Na1GGIC11p3R9M90iM_m8uxMagT9Y5e2MsDeuNfIbT01N7df75_XGEwPkzBaaRn7gVDwpb2R_8SH21Ceu07CHSEXRe3yZqBLuLO994it8fjm9HpYHJ5cjY6nAy0rKQaNFhBKVowWhdam1JAk4HJKyYyo4Sq8qJROTCBWmagyqJFaDjwMm9UVQit5RbZW_ydBf_0jDHVD_45uD6yFqzIhJQiV70rW7h08DEGNLW2CZL1LgWwXc1ZPe-znvdZL_vsseEvbBbsFMLb34BaAK-2w7d_3PXh-OL8h_0CWHiMEQ |
CitedBy_id | crossref_primary_10_1002_adma_202006689 crossref_primary_10_3389_fmats_2021_655207 crossref_primary_10_1039_D2NR05677A crossref_primary_10_1039_C9TA12368G crossref_primary_10_1002_solr_201900164 crossref_primary_10_1002_solr_202000270 crossref_primary_10_1002_adfm_202106495 crossref_primary_10_1002_aenm_201900903 crossref_primary_10_1039_C9TC05759E crossref_primary_10_1002_solr_202400844 crossref_primary_10_1039_D0NR04365F crossref_primary_10_1002_adfm_202102452 crossref_primary_10_1039_C8TA11782A crossref_primary_10_1002_adfm_201902974 crossref_primary_10_1021_acsami_9b19691 crossref_primary_10_1002_sia_7134 crossref_primary_10_1039_D4TC02303J crossref_primary_10_1002_smll_202100030 crossref_primary_10_1021_acsami_0c11731 crossref_primary_10_1007_s41939_024_00699_7 crossref_primary_10_1002_adma_202201451 crossref_primary_10_1002_solr_202000810 crossref_primary_10_1142_S1793604724510044 crossref_primary_10_1021_acsaem_3c00549 crossref_primary_10_1038_s41560_023_01442_1 crossref_primary_10_1002_adfm_202310865 crossref_primary_10_1021_acs_chemrev_4c00073 crossref_primary_10_1002_er_5563 crossref_primary_10_1016_j_solener_2022_03_063 crossref_primary_10_1021_acsami_8b21692 crossref_primary_10_1002_admi_202001604 crossref_primary_10_1364_PRJ_392996 crossref_primary_10_1016_j_joule_2020_06_007 crossref_primary_10_1007_s10854_022_09325_z crossref_primary_10_1016_j_mtener_2018_07_004 crossref_primary_10_1016_j_cej_2022_139321 crossref_primary_10_1002_smll_202205926 crossref_primary_10_1016_j_apsusc_2021_150470 crossref_primary_10_1002_advs_202201543 crossref_primary_10_3390_ma12050805 crossref_primary_10_1021_acs_jpcc_3c05067 crossref_primary_10_1007_s10854_019_01294_0 crossref_primary_10_1039_D3NR01211E crossref_primary_10_1007_s12613_023_2742_2 crossref_primary_10_1002_anie_202216668 crossref_primary_10_1007_s10853_022_07614_w crossref_primary_10_1007_s00339_023_06680_4 crossref_primary_10_1002_aenm_202300054 crossref_primary_10_1002_advs_202302549 crossref_primary_10_1039_C9TA01978B crossref_primary_10_3390_polym13081281 crossref_primary_10_1039_D0QM01064B crossref_primary_10_1021_acsaem_0c01330 crossref_primary_10_3390_nano12223969 crossref_primary_10_1039_D0DT03029E crossref_primary_10_1002_adfm_202200437 crossref_primary_10_1021_acsami_8b16649 crossref_primary_10_1142_S1793292019501261 crossref_primary_10_1016_j_cej_2020_127599 crossref_primary_10_1002_smll_202501121 crossref_primary_10_1051_bioconf_202412924035 crossref_primary_10_1039_D2TC02316D crossref_primary_10_1002_adem_201900288 crossref_primary_10_1002_anie_202411659 crossref_primary_10_1002_smll_202405953 crossref_primary_10_1021_acs_energyfuels_4c00763 crossref_primary_10_1016_j_jpowsour_2019_226819 crossref_primary_10_1002_solr_202300890 crossref_primary_10_1016_j_dyepig_2021_109255 crossref_primary_10_1109_JQE_2023_3283521 crossref_primary_10_1016_j_cej_2024_156886 crossref_primary_10_1088_1674_1056_ab99ae crossref_primary_10_1002_adfm_201905487 crossref_primary_10_1021_acsaem_1c00032 crossref_primary_10_1021_acsami_0c04618 crossref_primary_10_3390_nano8060356 crossref_primary_10_1088_2515_7655_abc73f crossref_primary_10_1002_admi_201901259 crossref_primary_10_1002_ente_202201005 crossref_primary_10_1021_acsomega_2c00509 crossref_primary_10_1002_smll_202301630 crossref_primary_10_1016_j_nanoen_2019_103964 crossref_primary_10_1002_solr_202100243 crossref_primary_10_1002_solr_202400765 crossref_primary_10_1002_solr_202200091 crossref_primary_10_1021_acsami_9b13394 crossref_primary_10_1016_j_ceramint_2020_04_047 crossref_primary_10_3390_polym15224443 crossref_primary_10_1038_s41467_020_14462_2 crossref_primary_10_1002_aesr_202200055 crossref_primary_10_1063_5_0084596 crossref_primary_10_1002_adfm_201905923 crossref_primary_10_1039_C9SE00153K crossref_primary_10_3390_nano11113074 crossref_primary_10_1002_solr_201900192 crossref_primary_10_1007_s10853_024_10098_5 crossref_primary_10_1039_D0TA05873D crossref_primary_10_1039_D4MA00873A crossref_primary_10_1002_adma_201806474 crossref_primary_10_1002_admi_202201274 crossref_primary_10_1002_smll_202102090 crossref_primary_10_1021_acsaem_1c00049 crossref_primary_10_1021_acsami_0c10717 crossref_primary_10_1002_cphc_201900856 crossref_primary_10_1002_smll_202208243 crossref_primary_10_1002_solr_201800222 crossref_primary_10_1002_adfm_202203049 crossref_primary_10_1039_D1TA01061A crossref_primary_10_1016_j_nanoen_2019_103860 crossref_primary_10_1002_eem2_12042 crossref_primary_10_1002_ente_202300694 crossref_primary_10_1002_admi_202300751 crossref_primary_10_1016_j_solmat_2019_110071 crossref_primary_10_1021_acsanm_4c01742 crossref_primary_10_1002_smll_202302383 crossref_primary_10_1016_j_cej_2021_131357 crossref_primary_10_1103_PhysRevApplied_13_024049 crossref_primary_10_1002_smll_202310568 crossref_primary_10_1063_1674_0068_cjcp2303026 crossref_primary_10_1002_cssc_202300800 crossref_primary_10_1002_ange_202411659 crossref_primary_10_1016_j_mtcomm_2022_104552 crossref_primary_10_1021_acsaem_1c00496 crossref_primary_10_1016_j_mssp_2020_105458 crossref_primary_10_1021_acs_jpclett_1c00335 crossref_primary_10_1002_aenm_201802474 crossref_primary_10_1007_s40843_024_3209_x crossref_primary_10_1039_D3TA00276D crossref_primary_10_1039_D4CP00509K crossref_primary_10_1134_S0020168522080039 crossref_primary_10_1002_adma_201804402 crossref_primary_10_1016_j_apsusc_2022_154940 crossref_primary_10_3390_nano14020172 crossref_primary_10_1007_s40843_020_1470_5 crossref_primary_10_1002_cssc_202402400 crossref_primary_10_1016_j_nanoen_2023_109111 crossref_primary_10_1002_adfm_202419393 crossref_primary_10_1016_j_nanoen_2023_109112 crossref_primary_10_1016_j_jechem_2020_06_061 crossref_primary_10_1002_adma_202307547 crossref_primary_10_1002_adfm_201900455 crossref_primary_10_1002_cnma_202200091 crossref_primary_10_1021_acssensors_4c02946 crossref_primary_10_1002_cplu_202200097 crossref_primary_10_1039_D4TC00867G crossref_primary_10_1016_j_chemphys_2024_112211 crossref_primary_10_1016_j_synthmet_2023_117535 crossref_primary_10_1063_5_0233536 crossref_primary_10_1002_adma_201902781 crossref_primary_10_1021_acsami_1c15860 crossref_primary_10_1002_solr_202000481 crossref_primary_10_1002_solr_202200422 crossref_primary_10_1126_sciadv_abk2722 crossref_primary_10_1002_ente_202100952 crossref_primary_10_1039_D0EE02337J crossref_primary_10_1002_solr_201800200 crossref_primary_10_1002_aenm_201903090 crossref_primary_10_1039_C8NR08976K crossref_primary_10_1016_j_orgel_2019_03_004 crossref_primary_10_1039_D0SE00621A crossref_primary_10_1364_OL_44_001908 crossref_primary_10_1002_cssc_201802231 crossref_primary_10_1016_j_jpowsour_2020_227845 crossref_primary_10_1039_D0SE00200C crossref_primary_10_7498_aps_69_20191269 crossref_primary_10_1016_j_inoche_2020_108229 crossref_primary_10_1002_advs_202408684 crossref_primary_10_1021_acsami_9b18197 crossref_primary_10_1039_D4TA08465A crossref_primary_10_1007_s10854_020_04087_y crossref_primary_10_1016_j_jechem_2020_05_050 crossref_primary_10_1002_adma_202311025 crossref_primary_10_1021_acsaem_0c01081 crossref_primary_10_1039_C8TA12100A crossref_primary_10_1021_acsami_4c14300 crossref_primary_10_1039_D0RA08776A crossref_primary_10_1021_acsami_5c00355 crossref_primary_10_1021_acsomega_0c00138 crossref_primary_10_1021_acssuschemeng_0c09056 crossref_primary_10_1039_D4TA00734D crossref_primary_10_1109_JPHOTOV_2019_2910236 crossref_primary_10_1021_acsami_3c06717 crossref_primary_10_1002_solr_202100700 crossref_primary_10_1002_admt_202101124 crossref_primary_10_1021_acsami_9b23532 crossref_primary_10_1039_D0CP05328G crossref_primary_10_1016_j_solener_2021_11_075 crossref_primary_10_1002_sstr_202400153 crossref_primary_10_1002_adom_202100390 crossref_primary_10_1002_tcr_201900028 crossref_primary_10_1002_solr_202300862 crossref_primary_10_1039_D2CE00825D crossref_primary_10_1016_j_inoche_2023_111475 crossref_primary_10_1039_D3DT03012A crossref_primary_10_1088_1361_6633_abefba crossref_primary_10_1002_adfm_202308021 crossref_primary_10_1016_j_ijleo_2021_168105 crossref_primary_10_1016_j_scib_2021_02_029 crossref_primary_10_1007_s11664_023_10500_z crossref_primary_10_1021_acsenergylett_1c00497 crossref_primary_10_1002_admi_202100862 crossref_primary_10_1021_acs_chemrev_9b00780 crossref_primary_10_1021_acsaem_0c01184 crossref_primary_10_1038_s41427_023_00474_z crossref_primary_10_1002_cssc_202100083 crossref_primary_10_1002_adma_202310630 crossref_primary_10_1002_adfm_202411750 crossref_primary_10_1016_j_jechem_2021_06_029 crossref_primary_10_1002_solr_201900346 crossref_primary_10_1103_PhysRevMaterials_4_085403 crossref_primary_10_1039_D3TA03249C crossref_primary_10_1007_s11664_020_08264_x crossref_primary_10_1016_j_cej_2022_140160 crossref_primary_10_1088_1674_4926_44_10_100201 crossref_primary_10_1109_LED_2024_3425671 crossref_primary_10_1016_j_nanoen_2019_104362 crossref_primary_10_1016_j_nanoen_2019_104363 crossref_primary_10_1002_solr_202000555 crossref_primary_10_1002_solr_202300712 crossref_primary_10_1016_j_jechem_2022_01_049 crossref_primary_10_1021_acsami_2c01813 crossref_primary_10_3788_LOP220620 crossref_primary_10_1002_admi_202200042 crossref_primary_10_1002_aenm_201803872 crossref_primary_10_1021_acsami_4c03761 crossref_primary_10_1039_C9EE02983D crossref_primary_10_1016_j_jcis_2021_05_034 crossref_primary_10_1021_acsami_9b22471 crossref_primary_10_1002_aesr_202100050 crossref_primary_10_1002_aenm_202002341 crossref_primary_10_1039_D2TC04215K crossref_primary_10_1021_acs_jpcc_1c03553 crossref_primary_10_1021_acsami_2c03025 crossref_primary_10_1016_j_apsusc_2018_04_230 crossref_primary_10_1142_S0217984923501208 crossref_primary_10_1002_solr_202100514 crossref_primary_10_1002_adma_202006004 crossref_primary_10_1002_adfm_201804660 crossref_primary_10_1002_solr_202000740 crossref_primary_10_1039_D4EE02803A crossref_primary_10_1002_smtd_202400227 crossref_primary_10_1016_j_ceramint_2022_02_051 crossref_primary_10_1002_ange_202104201 crossref_primary_10_1002_solr_201900001 crossref_primary_10_1002_adfm_202415058 crossref_primary_10_1016_j_solener_2022_11_014 crossref_primary_10_1016_j_jechem_2021_11_006 crossref_primary_10_1016_j_cej_2022_135703 crossref_primary_10_1016_j_nanoen_2019_01_059 crossref_primary_10_1021_acsaem_9b00169 crossref_primary_10_1007_s10854_024_13896_4 crossref_primary_10_1007_s10854_022_09698_1 crossref_primary_10_1016_j_jechem_2021_05_019 crossref_primary_10_1021_acs_jpcc_3c00452 crossref_primary_10_1002_adom_202000216 crossref_primary_10_1063_1_5079954 crossref_primary_10_1021_acsami_3c02156 crossref_primary_10_1039_C9TA11344D crossref_primary_10_1002_solr_202300933 crossref_primary_10_1002_advs_201903044 crossref_primary_10_1007_s00604_024_06536_5 crossref_primary_10_1039_D0EE01655A crossref_primary_10_1002_cssc_201903025 crossref_primary_10_1016_j_mssp_2020_105647 crossref_primary_10_1039_D3TA06427A crossref_primary_10_1016_j_orgel_2020_105627 crossref_primary_10_1002_adma_201900428 crossref_primary_10_1016_j_jallcom_2020_154172 crossref_primary_10_1002_adfm_202302924 crossref_primary_10_1002_ange_202216668 crossref_primary_10_1016_j_solmat_2019_110352 crossref_primary_10_1002_cjoc_202300252 crossref_primary_10_1088_2515_7655_acc277 crossref_primary_10_15541_jim20230105 crossref_primary_10_1021_acs_jpcc_1c04888 crossref_primary_10_1002_pip_3205 crossref_primary_10_1021_acsaem_2c03260 crossref_primary_10_1039_C9EE04030G crossref_primary_10_1021_acs_nanolett_9b00760 crossref_primary_10_1021_acsami_4c15892 crossref_primary_10_1002_ange_202116534 crossref_primary_10_1002_cssc_202002095 crossref_primary_10_1103_PhysRevApplied_16_014041 crossref_primary_10_1021_acsaem_8b01263 crossref_primary_10_1021_acsami_0c15923 crossref_primary_10_1021_acsami_2c01625 crossref_primary_10_3390_en15030919 crossref_primary_10_1007_s42247_021_00305_3 crossref_primary_10_1016_j_solmat_2020_110648 crossref_primary_10_1002_nano_202000200 crossref_primary_10_1021_acs_chemmater_9b04630 crossref_primary_10_1007_s40820_023_01138_x crossref_primary_10_3390_nano12152592 crossref_primary_10_1039_D2RA05903G crossref_primary_10_1002_adfm_201901026 crossref_primary_10_1039_D4DT03340J crossref_primary_10_3390_ma14216569 crossref_primary_10_1021_acsami_4c06709 crossref_primary_10_1002_anie_202116534 crossref_primary_10_1002_idm2_12089 crossref_primary_10_1021_acsami_4c16075 crossref_primary_10_1021_acsami_4c21423 crossref_primary_10_1007_s12274_021_3306_2 crossref_primary_10_1002_smll_202311362 crossref_primary_10_1016_j_cej_2023_141358 crossref_primary_10_1021_acsmaterialslett_1c00291 crossref_primary_10_1039_D1TA06594G crossref_primary_10_1002_advs_202201573 crossref_primary_10_1002_solr_202300479 crossref_primary_10_1021_acsaem_3c01967 crossref_primary_10_1002_adfm_201807047 crossref_primary_10_1002_aesr_202300201 crossref_primary_10_1002_anie_202104201 crossref_primary_10_1002_inf2_12322 crossref_primary_10_1016_j_physb_2023_414895 crossref_primary_10_1016_j_poly_2019_06_001 crossref_primary_10_1002_adma_201806095 crossref_primary_10_1039_D3CC02830E crossref_primary_10_1002_eem2_12666 crossref_primary_10_1039_C8TA12476K crossref_primary_10_1002_adpr_202000178 crossref_primary_10_1002_adfm_201908462 crossref_primary_10_1007_s10854_022_09708_2 crossref_primary_10_1021_acsaem_2c03127 |
Cites_doi | 10.1038/srep30759 10.1002/anie.201405176 10.1021/acs.jpclett.5b02273 10.1021/ph5000067 10.1021/am5025963 10.1016/j.mssp.2017.09.002 10.1016/j.pquantelec.2017.05.002 10.1002/adma.201600446 10.1002/adma.201504168 10.1002/aenm.201700722 10.1021/acsnano.5b07043 10.1039/C6NR01601D 10.1038/nenergy.2016.148 10.1002/aenm.201602333 10.1039/C6EE01411A 10.1021/acsnano.5b08135 10.1021/acsami.7b13621 10.1016/j.apsusc.2015.12.003 10.1002/adma.201500523 10.1063/1.4965838 10.1116/1.4774209 10.1021/acs.jpclett.6b02843 10.1016/j.apsusc.2017.08.184 10.1002/adma.201603923 10.1038/nenergy.2016.177 10.1021/am503610u 10.1039/C7TC01224A 10.1021/acs.chemmater.6b00964 10.1126/science.aan2301 10.1021/am507108u 10.1002/adma.201405391 10.1021/acs.jpclett.6b00238 10.1016/j.tsf.2011.01.058 10.1002/adma.201701073 10.1021/acs.jpcc.6b09412 10.1039/C6NR06670D 10.1038/nnano.2015.230 10.1002/adma.201604695 10.1126/science.aad1015 10.1038/ncomms8747 10.1038/nmat4014 10.1126/science.aai9081 10.1002/adfm.201505215 10.1002/adma.201505480 10.1039/C1JM14478B 10.1039/C6EE02693A 10.1038/srep04756 10.1021/am301565j 10.1002/adma.201606363 10.1002/adma.201404189 10.1016/j.ijleo.2013.11.074 10.1142/9789813148598_0001 10.1021/jp3119633 10.1039/C7TA01593C 10.1364/OE.25.00A253 10.1039/C6TC03624D 10.1039/b701197k 10.1002/chem.201602949 10.1039/C6EE03397K 10.1002/adma.201605900 10.1038/nature23877 10.1039/C5EE02155C 10.1002/aenm.201501066 10.1002/adma.201503298 |
ContentType | Journal Article |
Copyright | 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | AAYXX CITATION 7SP 7TB 8FD F28 FR3 H8D L7M |
DOI | 10.1002/aenm.201703519 |
DatabaseName | CrossRef Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering |
DatabaseTitleList | CrossRef Aerospace Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1614-6840 |
EndPage | n/a |
ExternalDocumentID | 10_1002_aenm_201703519 AENM201703519 |
Genre | article |
GrantInformation_xml | – fundername: Shenzhen Key Laboratory Project funderid: ZDSYS201602261933302 – fundername: Natural Science Foundation of China funderid: 61775091; 11704177 – fundername: Natural Science Foundation of Shenzhen Innovation Committee funderid: JCYJ20150529152146471 – fundername: University of Hong Kong and RGC GRF funderid: 15204515; 15246816 |
GroupedDBID | 05W 0R~ 1OC 33P 4.4 50Y 5VS 8-0 8-1 A00 AAESR AAHHS AAHQN AAIHA AAMNL AANLZ AASGY AAXRX AAYCA AAZKR ABCUV ABJNI ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADKYN ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AENEX AEQDE AEUYR AFBPY AFFPM AFWVQ AFZJQ AHBTC AIACR AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB AZVAB BDRZF BFHJK BMXJE BRXPI D-A DCZOG EBS EJD G-S HGLYW HZ~ KBYEO LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MY. MY~ O9- P2W P4E RNS ROL RX1 SUPJJ WBKPD WOHZO WXSBR WYJ ZZTAW ~S- 31~ AANHP AAYXX ACBWZ ACRPL ACYXJ ADMLS ADNMO AEYWJ AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION FEDTE GODZA HVGLF 7SP 7TB 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY F28 FR3 H8D L7M |
ID | FETCH-LOGICAL-c3839-be8a72dafcc6ccf72ab4af58024f929856b95a02ec34a976deab1a175b9862cc3 |
ISSN | 1614-6832 |
IngestDate | Fri Jul 25 12:20:51 EDT 2025 Thu Apr 24 23:09:04 EDT 2025 Tue Jul 01 01:43:24 EDT 2025 Wed Jan 22 16:38:11 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 19 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c3839-be8a72dafcc6ccf72ab4af58024f929856b95a02ec34a976deab1a175b9862cc3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-5183-1467 |
PQID | 2064233259 |
PQPubID | 886389 |
PageCount | 10 |
ParticipantIDs | proquest_journals_2064233259 crossref_citationtrail_10_1002_aenm_201703519 crossref_primary_10_1002_aenm_201703519 wiley_primary_10_1002_aenm_201703519_AENM201703519 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | July 5, 2018 |
PublicationDateYYYYMMDD | 2018-07-05 |
PublicationDate_xml | – month: 07 year: 2018 text: July 5, 2018 day: 05 |
PublicationDecade | 2010 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Advanced energy materials |
PublicationYear | 2018 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017; 5 2017; 7 2017; 8 2015; 6 2015; 5 2016; 109 2017; 25 2011; 519 2018; 427 2016; 10 2016; 363 2017; 29 2017; 550 2007; 31 2015; 8 2017; 355 2017; 356 2016; 120 2017; 9 2016; 11 2015; 350 2014; 1 2016; 4 2017; 53 2016; 6 2016; 7 2015; 27 2014; 4 2016; 1 2017; 71 2017; 10 2013; 31 2013; 117 2014; 13 2016; 28 2012; 4 2014; 6 2016; 26 2012; 22 2016; 8 2014; 125 2016; 9 2014; 53 2016; 22 e_1_2_6_51_1 e_1_2_6_53_1 e_1_2_6_32_1 e_1_2_6_30_1 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_59_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_17_1 e_1_2_6_55_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_57_1 e_1_2_6_62_1 e_1_2_6_64_1 e_1_2_6_43_1 e_1_2_6_20_1 e_1_2_6_41_1 e_1_2_6_60_1 e_1_2_6_9_1 e_1_2_6_5_1 e_1_2_6_7_1 e_1_2_6_1_1 e_1_2_6_24_1 e_1_2_6_49_1 e_1_2_6_3_1 e_1_2_6_22_1 e_1_2_6_28_1 e_1_2_6_45_1 e_1_2_6_26_1 e_1_2_6_47_1 e_1_2_6_52_1 e_1_2_6_54_1 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_50_1 e_1_2_6_14_1 e_1_2_6_35_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_18_1 e_1_2_6_39_1 e_1_2_6_56_1 e_1_2_6_16_1 e_1_2_6_37_1 e_1_2_6_58_1 e_1_2_6_63_1 e_1_2_6_42_1 e_1_2_6_21_1 e_1_2_6_40_1 e_1_2_6_61_1 e_1_2_6_8_1 e_1_2_6_4_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_48_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_29_1 e_1_2_6_44_1 e_1_2_6_27_1 e_1_2_6_46_1 |
References_xml | – volume: 109 start-page: 171103 year: 2016 publication-title: Appl. Phys. Lett. – volume: 27 start-page: 695 year: 2015 publication-title: Adv. Mater. – volume: 356 start-page: 1376 year: 2017 publication-title: Science – volume: 550 start-page: 92 year: 2017 publication-title: Nature – volume: 355 start-page: 722 year: 2017 publication-title: Science – volume: 9 start-page: 3687 year: 2016 publication-title: Energy Environ. Sci. – volume: 13 start-page: 897 year: 2014 publication-title: Nat. Mater. – volume: 363 start-page: 209 year: 2016 publication-title: Appl. Surf. Sci. – volume: 31 start-page: 021501 year: 2013 publication-title: J. Vac. Sci. Technol., A – volume: 6 start-page: 7747 year: 2015 publication-title: Nat. Commun. – volume: 29 start-page: 1605900 year: 2017 publication-title: Adv. Mater. – volume: 53 start-page: 1 year: 2017 publication-title: Prog. Quantum Electron. – volume: 10 start-page: 710 year: 2017 publication-title: Energy Environ. Sci. – volume: 8 start-page: 591 year: 2017 publication-title: J. Phys. Chem. Lett. – volume: 125 start-page: 2899 year: 2014 publication-title: Optik – volume: 6 start-page: 11851 year: 2014 publication-title: ACS Appl. Mater. Interfaces – volume: 31 start-page: 832 year: 2007 publication-title: New J. Chem. – volume: 5 start-page: 6597 year: 2017 publication-title: J. Mater. Chem. A – volume: 9 start-page: 2295 year: 2016 publication-title: Energy Environ. Sci. – volume: 1 start-page: 547 year: 2014 publication-title: ACS Photonics – volume: 8 start-page: 19189 year: 2016 publication-title: Nanoscale – volume: 10 start-page: 3630 year: 2016 publication-title: ACS Nano – volume: 7 start-page: 1602333 year: 2017 publication-title: Adv. Energy Mater. – volume: 5 start-page: 1501066 year: 2015 publication-title: Adv. Energy Mater. – volume: 29 start-page: 1603923 year: 2017 publication-title: Adv. Mater. – volume: 4 start-page: 5922 year: 2012 publication-title: ACS Appl. Mater. Interfaces – volume: 27 start-page: 2930 year: 2015 publication-title: Adv. Mater. – volume: 8 start-page: 11403 year: 2016 publication-title: Nanoscale – volume: 28 start-page: 5112 year: 2016 publication-title: Adv. Mater. – volume: 1 start-page: 16148 year: 2016 publication-title: Nat. Energy – volume: 71 start-page: 396 year: 2017 publication-title: Mater. Sci. Semicond. Process. – volume: 29 start-page: 1701073 year: 2017 publication-title: Adv. Mater. – volume: 27 start-page: 7874 year: 2015 publication-title: Adv. Mater. – volume: 28 start-page: 4879 year: 2016 publication-title: Chem. Mater. – volume: 5 start-page: 7084 year: 2017 publication-title: J. Mater. Chem. C – volume: 8 start-page: 3208 year: 2015 publication-title: Energy Environ. Sci. – volume: 27 start-page: 4013 year: 2015 publication-title: Adv. Mater. – volume: 6 start-page: 30759 year: 2016 publication-title: Sci. Rep. – volume: 4 start-page: 10839 year: 2016 publication-title: J. Mater. Chem. C – volume: 22 start-page: 14625 year: 2016 publication-title: Chem. Eur. J. – volume: 9 start-page: 41887 year: 2017 publication-title: ACS Appl. Mater. Interfaces – volume: 29 start-page: 1604695 year: 2017 publication-title: Adv. Mater. – volume: 427 start-page: 782 year: 2018 publication-title: Appl. Surf. Sci. – volume: 28 start-page: 5206 year: 2016 publication-title: Adv. Mater. – volume: 350 start-page: 944 year: 2015 publication-title: Science – volume: 53 start-page: 12571 year: 2014 publication-title: Angew. Chem., Int. Ed. Engl. – volume: 6 start-page: 12609 year: 2014 publication-title: ACS Appl. Mater. Interfaces – volume: 25 start-page: A253 year: 2017 publication-title: Opt. Express – volume: 1 start-page: 1 year: 2016 publication-title: Mater. Today Energy – volume: 7 start-page: 1096 year: 2016 publication-title: J. Phys. Chem. Lett. – volume: 1 start-page: 16177 year: 2016 publication-title: Nat. Energy – volume: 6 start-page: 22862 year: 2014 publication-title: ACS Appl. Mater. Interfaces – volume: 4 start-page: 4756 year: 2014 publication-title: Sci. Rep. – volume: 7 start-page: 1700722 year: 2017 publication-title: Adv. Energy Mater. – volume: 10 start-page: 1503 year: 2016 publication-title: ACS Nano – volume: 29 start-page: 1606363 year: 2017 publication-title: Adv. Mater. – volume: 519 start-page: 4944 year: 2011 publication-title: Thin Solid Films – volume: 11 start-page: 75 year: 2016 publication-title: Nat. Nanotechnol. – volume: 22 start-page: 2456 year: 2012 publication-title: J. Mater. Chem. – volume: 120 start-page: 27840 year: 2016 publication-title: J. Phys. Chem. C – volume: 6 start-page: 4633 year: 2015 publication-title: J. Phys. Chem. Lett. – volume: 117 start-page: 4421 year: 2013 publication-title: J. Phys. Chem. C – volume: 26 start-page: 2950 year: 2016 publication-title: Adv. Funct. Mater. – volume: 28 start-page: 2439 year: 2016 publication-title: Adv. Mater. – ident: e_1_2_6_20_1 doi: 10.1038/srep30759 – ident: e_1_2_6_12_1 doi: 10.1002/anie.201405176 – ident: e_1_2_6_53_1 doi: 10.1021/acs.jpclett.5b02273 – ident: e_1_2_6_10_1 doi: 10.1021/ph5000067 – ident: e_1_2_6_13_1 doi: 10.1021/am5025963 – ident: e_1_2_6_60_1 doi: 10.1016/j.mssp.2017.09.002 – ident: e_1_2_6_2_1 doi: 10.1016/j.pquantelec.2017.05.002 – ident: e_1_2_6_37_1 doi: 10.1002/adma.201600446 – ident: e_1_2_6_21_1 doi: 10.1002/adma.201504168 – ident: e_1_2_6_23_1 doi: 10.1002/aenm.201700722 – ident: e_1_2_6_5_1 doi: 10.1021/acsnano.5b07043 – ident: e_1_2_6_8_1 doi: 10.1039/C6NR01601D – ident: e_1_2_6_35_1 doi: 10.1038/nenergy.2016.148 – ident: e_1_2_6_26_1 doi: 10.1002/aenm.201602333 – ident: e_1_2_6_36_1 doi: 10.1039/C6EE01411A – ident: e_1_2_6_6_1 doi: 10.1021/acsnano.5b08135 – ident: e_1_2_6_31_1 doi: 10.1021/acsami.7b13621 – ident: e_1_2_6_50_1 doi: 10.1016/j.apsusc.2015.12.003 – ident: e_1_2_6_16_1 doi: 10.1002/adma.201500523 – ident: e_1_2_6_19_1 doi: 10.1063/1.4965838 – ident: e_1_2_6_58_1 doi: 10.1116/1.4774209 – ident: e_1_2_6_61_1 doi: 10.1021/acs.jpclett.6b02843 – ident: e_1_2_6_42_1 doi: 10.1016/j.apsusc.2017.08.184 – ident: e_1_2_6_28_1 doi: 10.1002/adma.201603923 – ident: e_1_2_6_63_1 doi: 10.1038/nenergy.2016.177 – ident: e_1_2_6_14_1 doi: 10.1021/am503610u – ident: e_1_2_6_17_1 doi: 10.1039/C7TC01224A – ident: e_1_2_6_54_1 doi: 10.1021/acs.chemmater.6b00964 – ident: e_1_2_6_1_1 doi: 10.1126/science.aan2301 – ident: e_1_2_6_11_1 doi: 10.1021/am507108u – ident: e_1_2_6_41_1 doi: 10.1002/adma.201405391 – ident: e_1_2_6_27_1 doi: 10.1021/acs.jpclett.6b00238 – ident: e_1_2_6_59_1 doi: 10.1016/j.tsf.2011.01.058 – ident: e_1_2_6_34_1 doi: 10.1002/adma.201701073 – ident: e_1_2_6_15_1 doi: 10.1021/acs.jpcc.6b09412 – ident: e_1_2_6_22_1 doi: 10.1039/C6NR06670D – ident: e_1_2_6_4_1 doi: 10.1038/nnano.2015.230 – ident: e_1_2_6_29_1 doi: 10.1002/adma.201604695 – ident: e_1_2_6_3_1 doi: 10.1126/science.aad1015 – ident: e_1_2_6_51_1 doi: 10.1038/ncomms8747 – ident: e_1_2_6_52_1 doi: 10.1038/nmat4014 – ident: e_1_2_6_62_1 doi: 10.1126/science.aai9081 – ident: e_1_2_6_25_1 doi: 10.1002/adfm.201505215 – ident: e_1_2_6_64_1 doi: 10.1002/adma.201505480 – ident: e_1_2_6_47_1 doi: 10.1039/C1JM14478B – ident: e_1_2_6_56_1 doi: 10.1039/C6EE02693A – ident: e_1_2_6_9_1 doi: 10.1038/srep04756 – ident: e_1_2_6_48_1 doi: 10.1021/am301565j – ident: e_1_2_6_33_1 doi: 10.1002/adma.201606363 – ident: e_1_2_6_24_1 doi: 10.1002/adma.201404189 – ident: e_1_2_6_44_1 doi: 10.1016/j.ijleo.2013.11.074 – ident: e_1_2_6_30_1 doi: 10.1142/9789813148598_0001 – ident: e_1_2_6_49_1 doi: 10.1021/jp3119633 – ident: e_1_2_6_18_1 doi: 10.1039/C7TA01593C – ident: e_1_2_6_40_1 doi: 10.1364/OE.25.00A253 – ident: e_1_2_6_43_1 doi: 10.1039/C6TC03624D – ident: e_1_2_6_45_1 doi: 10.1039/b701197k – ident: e_1_2_6_46_1 doi: 10.1002/chem.201602949 – ident: e_1_2_6_57_1 doi: 10.1039/C6EE03397K – ident: e_1_2_6_39_1 doi: 10.1002/adma.201605900 – ident: e_1_2_6_32_1 doi: 10.1038/nature23877 – ident: e_1_2_6_38_1 doi: 10.1039/C5EE02155C – ident: e_1_2_6_55_1 doi: 10.1002/aenm.201501066 – ident: e_1_2_6_7_1 doi: 10.1002/adma.201503298 |
SSID | ssj0000491033 |
Score | 2.6549523 |
Snippet | High‐quality hole transport layers are prepared by spin‐coating copper doped nickel oxide (Cu:NiO) nanoparticle inks at room temperature without further... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Carrier density Carrier mobility Charge transfer Copper copper doping DFT calculations Doping Energy conversion efficiency Energy levels flexible solar cells Mathematical analysis nickel oxide Nickel oxides organometallic halide perovskites Perovskites Photovoltaic cells Solar cells Substrates Valence band |
Title | Understanding the Doping Effect on NiO: Toward High‐Performance Inverted Perovskite Solar Cells |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faenm.201703519 https://www.proquest.com/docview/2064233259 |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELbK7gUOK56isCAfWHFYBRonzoNb1G21WrVdpG1Fb5HtOqJQpau24cCJKzd-I7-E8SOJKy2P5WK1buokns_jb-yZMUKvmM-kYGThMcqUgRJSD1BCPF_A7BCzlKZc7eiOJ9H5LLyY03mn893xWqp2_I34emNcyf9IFepAripK9haSbRqFCvgM8oUSJAzlP8l4theZoijkmYl_sjmJQbKT5aVeQdfesdqro3FveO_EDKh0GxtFPqFy_WWrlnRPr5TVe9qXq9XWpbBZ7TUgTdggUF7zrq2ngFFlH-SyUfmVVvXwaB-rpnJo1l4v6slT0elP1WZ50qcnmb_UNDe2QTift_CSG2bPiLarFH6iPVrpLXSho4OBMXhRYpc9pVtnMjvVijtx8ZneOB-Y_LJMlirpgB-rbdO0nfnq3f7JZT6cjUb5dDCf3kGHBCwOUJmH2dl4dNUs2IEp5fcCHbBRP2CdBLRH3u7fYp_ktJaLa_9oAjO9j46s5YEzA6MHqCPLh-iek4_yEWJ7gMIAKGwAhQ2g8LrEAKh32MAJKzj9_PbDARKugYRbIGENJKyB9BjNhoNp_9yzZ3B4IgDu7HGZsJgsWCFEJEQRE8ZDVlAYzmEBzDqhEU8p6xEpgpABtV1Ixn0GnJSnYCsLETxBB-W6lE8RloKKRcRSnsbw50LyIiGsJxNecCijsIu8utNyYRPUq3NSVrlJrU1y1cl508ld9Lq5_tqkZvntlce1DHI7fLfwK5jeQQDmfxcRLZe_tJJng8m4-fbsz20-R3fbYXCMDnabSr4A-rrjLy2wfgEfipm4 |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Understanding+the+Doping+Effect+on+NiO%3A+Toward+High%E2%80%90Performance+Inverted+Perovskite+Solar+Cells&rft.jtitle=Advanced+energy+materials&rft.au=Chen%2C+Wei&rft.au=Wu%2C+Yinghui&rft.au=Fan%2C+Jing&rft.au=Djuri%C5%A1i%C4%87%2C+Aleksandra+B&rft.date=2018-07-05&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1614-6832&rft.eissn=1614-6840&rft.volume=8&rft.issue=19&rft_id=info:doi/10.1002%2Faenm.201703519&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1614-6832&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1614-6832&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1614-6832&client=summon |