Understanding the Doping Effect on NiO: Toward High‐Performance Inverted Perovskite Solar Cells

High‐quality hole transport layers are prepared by spin‐coating copper doped nickel oxide (Cu:NiO) nanoparticle inks at room temperature without further processing. In agreement with theoretical calculations predicting that Cu doping results in acceptor energy levels closer to the valence band maxim...

Full description

Saved in:
Bibliographic Details
Published inAdvanced energy materials Vol. 8; no. 19
Main Authors Chen, Wei, Wu, Yinghui, Fan, Jing, Djurišić, Aleksandra B., Liu, Fangzhou, Tam, Ho Won, Ng, Annie, Surya, Charles, Chan, Wai Kin, Wang, Dong, He, Zhu‐Bing
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 05.07.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract High‐quality hole transport layers are prepared by spin‐coating copper doped nickel oxide (Cu:NiO) nanoparticle inks at room temperature without further processing. In agreement with theoretical calculations predicting that Cu doping results in acceptor energy levels closer to the valence band maximum compared to gap states of nickel vacancies in undoped NiO, an increase in the conductivity in Cu:NiO films compared to NiO is observed. Cu in Cu:NiO can be found in both Cu+ and Cu2+ states, and the substitution of Ni2+ with Cu+ contributes to both increased carrier concentration and carrier mobility. In addition, the films exhibit increased work function, which together with the conductivity increase, enables improved charge transfer and extraction. Furthermore, recombination losses due to lower monomolecular Shockley‐Read‐Hall recombination are reduced. These factors result in an improvement of all photovoltaic performance parameters and consequently an increased efficiency of the inverted planar perovskite solar cells. A power conversion efficiency (PCE) exceeding 20% could be achieved for small‐area devices, while PCE values of 17.41 and 18.07% are obtained for flexible devices and large area (1 cm2) devices on rigid substrates, respectively. Copper‐doped Nickel Oxide (Cu:NiO) nanoparticles are synthesized and applied as hole transport layers in perovskite solar cells. Cu doping results in an increase in carrier concentration, hole mobility and work function of Cu:NiO. Consequently, charge extraction is improved and the losses are decreased. The devices with Cu:NiO have better efficiency than NiO, with a highest PCE exceeding 20%.
AbstractList High‐quality hole transport layers are prepared by spin‐coating copper doped nickel oxide (Cu:NiO) nanoparticle inks at room temperature without further processing. In agreement with theoretical calculations predicting that Cu doping results in acceptor energy levels closer to the valence band maximum compared to gap states of nickel vacancies in undoped NiO, an increase in the conductivity in Cu:NiO films compared to NiO is observed. Cu in Cu:NiO can be found in both Cu+ and Cu2+ states, and the substitution of Ni2+ with Cu+ contributes to both increased carrier concentration and carrier mobility. In addition, the films exhibit increased work function, which together with the conductivity increase, enables improved charge transfer and extraction. Furthermore, recombination losses due to lower monomolecular Shockley‐Read‐Hall recombination are reduced. These factors result in an improvement of all photovoltaic performance parameters and consequently an increased efficiency of the inverted planar perovskite solar cells. A power conversion efficiency (PCE) exceeding 20% could be achieved for small‐area devices, while PCE values of 17.41 and 18.07% are obtained for flexible devices and large area (1 cm2) devices on rigid substrates, respectively. Copper‐doped Nickel Oxide (Cu:NiO) nanoparticles are synthesized and applied as hole transport layers in perovskite solar cells. Cu doping results in an increase in carrier concentration, hole mobility and work function of Cu:NiO. Consequently, charge extraction is improved and the losses are decreased. The devices with Cu:NiO have better efficiency than NiO, with a highest PCE exceeding 20%.
High‐quality hole transport layers are prepared by spin‐coating copper doped nickel oxide (Cu:NiO) nanoparticle inks at room temperature without further processing. In agreement with theoretical calculations predicting that Cu doping results in acceptor energy levels closer to the valence band maximum compared to gap states of nickel vacancies in undoped NiO, an increase in the conductivity in Cu:NiO films compared to NiO is observed. Cu in Cu:NiO can be found in both Cu + and Cu 2+ states, and the substitution of Ni 2+ with Cu + contributes to both increased carrier concentration and carrier mobility. In addition, the films exhibit increased work function, which together with the conductivity increase, enables improved charge transfer and extraction. Furthermore, recombination losses due to lower monomolecular Shockley‐Read‐Hall recombination are reduced. These factors result in an improvement of all photovoltaic performance parameters and consequently an increased efficiency of the inverted planar perovskite solar cells. A power conversion efficiency (PCE) exceeding 20% could be achieved for small‐area devices, while PCE values of 17.41 and 18.07% are obtained for flexible devices and large area (1 cm 2 ) devices on rigid substrates, respectively.
High‐quality hole transport layers are prepared by spin‐coating copper doped nickel oxide (Cu:NiO) nanoparticle inks at room temperature without further processing. In agreement with theoretical calculations predicting that Cu doping results in acceptor energy levels closer to the valence band maximum compared to gap states of nickel vacancies in undoped NiO, an increase in the conductivity in Cu:NiO films compared to NiO is observed. Cu in Cu:NiO can be found in both Cu+ and Cu2+ states, and the substitution of Ni2+ with Cu+ contributes to both increased carrier concentration and carrier mobility. In addition, the films exhibit increased work function, which together with the conductivity increase, enables improved charge transfer and extraction. Furthermore, recombination losses due to lower monomolecular Shockley‐Read‐Hall recombination are reduced. These factors result in an improvement of all photovoltaic performance parameters and consequently an increased efficiency of the inverted planar perovskite solar cells. A power conversion efficiency (PCE) exceeding 20% could be achieved for small‐area devices, while PCE values of 17.41 and 18.07% are obtained for flexible devices and large area (1 cm2) devices on rigid substrates, respectively.
Author Chen, Wei
He, Zhu‐Bing
Djurišić, Aleksandra B.
Tam, Ho Won
Wang, Dong
Ng, Annie
Surya, Charles
Wu, Yinghui
Chan, Wai Kin
Liu, Fangzhou
Fan, Jing
Author_xml – sequence: 1
  givenname: Wei
  surname: Chen
  fullname: Chen, Wei
  organization: Southern University of Science and Technology
– sequence: 2
  givenname: Yinghui
  surname: Wu
  fullname: Wu, Yinghui
  organization: Southern University of Science and Technology
– sequence: 3
  givenname: Jing
  surname: Fan
  fullname: Fan, Jing
  organization: Southern University of Science and Technology of China
– sequence: 4
  givenname: Aleksandra B.
  orcidid: 0000-0002-5183-1467
  surname: Djurišić
  fullname: Djurišić, Aleksandra B.
  email: dalek@hku.hk
  organization: The University of Hong Kong
– sequence: 5
  givenname: Fangzhou
  surname: Liu
  fullname: Liu, Fangzhou
  organization: The University of Hong Kong
– sequence: 6
  givenname: Ho Won
  surname: Tam
  fullname: Tam, Ho Won
  organization: The University of Hong Kong
– sequence: 7
  givenname: Annie
  surname: Ng
  fullname: Ng, Annie
  organization: The Hong Kong Polytechnic University
– sequence: 8
  givenname: Charles
  surname: Surya
  fullname: Surya, Charles
  organization: The Hong Kong Polytechnic University
– sequence: 9
  givenname: Wai Kin
  surname: Chan
  fullname: Chan, Wai Kin
  organization: The University of Hong Kong
– sequence: 10
  givenname: Dong
  surname: Wang
  fullname: Wang, Dong
  organization: Southern University of Science and Technology
– sequence: 11
  givenname: Zhu‐Bing
  surname: He
  fullname: He, Zhu‐Bing
  email: hezb@sustc.edu.cn
  organization: Southern University of Science and Technology
BookMark eNqFkElLBDEQhYMouF49BzzPmKW3eJNxXGBcQD031emKRnuSMYmKN3-Cv9FfYg8jIwhiXepRvK8evE2y6rxDQnY5G3LGxD6gmw4F4yWTOVcrZIMXPBsUVcZWl1qKdbIT4wPrJ1OcSblB4Na1GGIC11p3R9M90iM_m8uxMagT9Y5e2MsDeuNfIbT01N7df75_XGEwPkzBaaRn7gVDwpb2R_8SH21Ceu07CHSEXRe3yZqBLuLO994it8fjm9HpYHJ5cjY6nAy0rKQaNFhBKVowWhdam1JAk4HJKyYyo4Sq8qJROTCBWmagyqJFaDjwMm9UVQit5RbZW_ydBf_0jDHVD_45uD6yFqzIhJQiV70rW7h08DEGNLW2CZL1LgWwXc1ZPe-znvdZL_vsseEvbBbsFMLb34BaAK-2w7d_3PXh-OL8h_0CWHiMEQ
CitedBy_id crossref_primary_10_1002_adma_202006689
crossref_primary_10_3389_fmats_2021_655207
crossref_primary_10_1039_D2NR05677A
crossref_primary_10_1039_C9TA12368G
crossref_primary_10_1002_solr_201900164
crossref_primary_10_1002_solr_202000270
crossref_primary_10_1002_adfm_202106495
crossref_primary_10_1002_aenm_201900903
crossref_primary_10_1039_C9TC05759E
crossref_primary_10_1002_solr_202400844
crossref_primary_10_1039_D0NR04365F
crossref_primary_10_1002_adfm_202102452
crossref_primary_10_1039_C8TA11782A
crossref_primary_10_1002_adfm_201902974
crossref_primary_10_1021_acsami_9b19691
crossref_primary_10_1002_sia_7134
crossref_primary_10_1039_D4TC02303J
crossref_primary_10_1002_smll_202100030
crossref_primary_10_1021_acsami_0c11731
crossref_primary_10_1007_s41939_024_00699_7
crossref_primary_10_1002_adma_202201451
crossref_primary_10_1002_solr_202000810
crossref_primary_10_1142_S1793604724510044
crossref_primary_10_1021_acsaem_3c00549
crossref_primary_10_1038_s41560_023_01442_1
crossref_primary_10_1002_adfm_202310865
crossref_primary_10_1021_acs_chemrev_4c00073
crossref_primary_10_1002_er_5563
crossref_primary_10_1016_j_solener_2022_03_063
crossref_primary_10_1021_acsami_8b21692
crossref_primary_10_1002_admi_202001604
crossref_primary_10_1364_PRJ_392996
crossref_primary_10_1016_j_joule_2020_06_007
crossref_primary_10_1007_s10854_022_09325_z
crossref_primary_10_1016_j_mtener_2018_07_004
crossref_primary_10_1016_j_cej_2022_139321
crossref_primary_10_1002_smll_202205926
crossref_primary_10_1016_j_apsusc_2021_150470
crossref_primary_10_1002_advs_202201543
crossref_primary_10_3390_ma12050805
crossref_primary_10_1021_acs_jpcc_3c05067
crossref_primary_10_1007_s10854_019_01294_0
crossref_primary_10_1039_D3NR01211E
crossref_primary_10_1007_s12613_023_2742_2
crossref_primary_10_1002_anie_202216668
crossref_primary_10_1007_s10853_022_07614_w
crossref_primary_10_1007_s00339_023_06680_4
crossref_primary_10_1002_aenm_202300054
crossref_primary_10_1002_advs_202302549
crossref_primary_10_1039_C9TA01978B
crossref_primary_10_3390_polym13081281
crossref_primary_10_1039_D0QM01064B
crossref_primary_10_1021_acsaem_0c01330
crossref_primary_10_3390_nano12223969
crossref_primary_10_1039_D0DT03029E
crossref_primary_10_1002_adfm_202200437
crossref_primary_10_1021_acsami_8b16649
crossref_primary_10_1142_S1793292019501261
crossref_primary_10_1016_j_cej_2020_127599
crossref_primary_10_1002_smll_202501121
crossref_primary_10_1051_bioconf_202412924035
crossref_primary_10_1039_D2TC02316D
crossref_primary_10_1002_adem_201900288
crossref_primary_10_1002_anie_202411659
crossref_primary_10_1002_smll_202405953
crossref_primary_10_1021_acs_energyfuels_4c00763
crossref_primary_10_1016_j_jpowsour_2019_226819
crossref_primary_10_1002_solr_202300890
crossref_primary_10_1016_j_dyepig_2021_109255
crossref_primary_10_1109_JQE_2023_3283521
crossref_primary_10_1016_j_cej_2024_156886
crossref_primary_10_1088_1674_1056_ab99ae
crossref_primary_10_1002_adfm_201905487
crossref_primary_10_1021_acsaem_1c00032
crossref_primary_10_1021_acsami_0c04618
crossref_primary_10_3390_nano8060356
crossref_primary_10_1088_2515_7655_abc73f
crossref_primary_10_1002_admi_201901259
crossref_primary_10_1002_ente_202201005
crossref_primary_10_1021_acsomega_2c00509
crossref_primary_10_1002_smll_202301630
crossref_primary_10_1016_j_nanoen_2019_103964
crossref_primary_10_1002_solr_202100243
crossref_primary_10_1002_solr_202400765
crossref_primary_10_1002_solr_202200091
crossref_primary_10_1021_acsami_9b13394
crossref_primary_10_1016_j_ceramint_2020_04_047
crossref_primary_10_3390_polym15224443
crossref_primary_10_1038_s41467_020_14462_2
crossref_primary_10_1002_aesr_202200055
crossref_primary_10_1063_5_0084596
crossref_primary_10_1002_adfm_201905923
crossref_primary_10_1039_C9SE00153K
crossref_primary_10_3390_nano11113074
crossref_primary_10_1002_solr_201900192
crossref_primary_10_1007_s10853_024_10098_5
crossref_primary_10_1039_D0TA05873D
crossref_primary_10_1039_D4MA00873A
crossref_primary_10_1002_adma_201806474
crossref_primary_10_1002_admi_202201274
crossref_primary_10_1002_smll_202102090
crossref_primary_10_1021_acsaem_1c00049
crossref_primary_10_1021_acsami_0c10717
crossref_primary_10_1002_cphc_201900856
crossref_primary_10_1002_smll_202208243
crossref_primary_10_1002_solr_201800222
crossref_primary_10_1002_adfm_202203049
crossref_primary_10_1039_D1TA01061A
crossref_primary_10_1016_j_nanoen_2019_103860
crossref_primary_10_1002_eem2_12042
crossref_primary_10_1002_ente_202300694
crossref_primary_10_1002_admi_202300751
crossref_primary_10_1016_j_solmat_2019_110071
crossref_primary_10_1021_acsanm_4c01742
crossref_primary_10_1002_smll_202302383
crossref_primary_10_1016_j_cej_2021_131357
crossref_primary_10_1103_PhysRevApplied_13_024049
crossref_primary_10_1002_smll_202310568
crossref_primary_10_1063_1674_0068_cjcp2303026
crossref_primary_10_1002_cssc_202300800
crossref_primary_10_1002_ange_202411659
crossref_primary_10_1016_j_mtcomm_2022_104552
crossref_primary_10_1021_acsaem_1c00496
crossref_primary_10_1016_j_mssp_2020_105458
crossref_primary_10_1021_acs_jpclett_1c00335
crossref_primary_10_1002_aenm_201802474
crossref_primary_10_1007_s40843_024_3209_x
crossref_primary_10_1039_D3TA00276D
crossref_primary_10_1039_D4CP00509K
crossref_primary_10_1134_S0020168522080039
crossref_primary_10_1002_adma_201804402
crossref_primary_10_1016_j_apsusc_2022_154940
crossref_primary_10_3390_nano14020172
crossref_primary_10_1007_s40843_020_1470_5
crossref_primary_10_1002_cssc_202402400
crossref_primary_10_1016_j_nanoen_2023_109111
crossref_primary_10_1002_adfm_202419393
crossref_primary_10_1016_j_nanoen_2023_109112
crossref_primary_10_1016_j_jechem_2020_06_061
crossref_primary_10_1002_adma_202307547
crossref_primary_10_1002_adfm_201900455
crossref_primary_10_1002_cnma_202200091
crossref_primary_10_1021_acssensors_4c02946
crossref_primary_10_1002_cplu_202200097
crossref_primary_10_1039_D4TC00867G
crossref_primary_10_1016_j_chemphys_2024_112211
crossref_primary_10_1016_j_synthmet_2023_117535
crossref_primary_10_1063_5_0233536
crossref_primary_10_1002_adma_201902781
crossref_primary_10_1021_acsami_1c15860
crossref_primary_10_1002_solr_202000481
crossref_primary_10_1002_solr_202200422
crossref_primary_10_1126_sciadv_abk2722
crossref_primary_10_1002_ente_202100952
crossref_primary_10_1039_D0EE02337J
crossref_primary_10_1002_solr_201800200
crossref_primary_10_1002_aenm_201903090
crossref_primary_10_1039_C8NR08976K
crossref_primary_10_1016_j_orgel_2019_03_004
crossref_primary_10_1039_D0SE00621A
crossref_primary_10_1364_OL_44_001908
crossref_primary_10_1002_cssc_201802231
crossref_primary_10_1016_j_jpowsour_2020_227845
crossref_primary_10_1039_D0SE00200C
crossref_primary_10_7498_aps_69_20191269
crossref_primary_10_1016_j_inoche_2020_108229
crossref_primary_10_1002_advs_202408684
crossref_primary_10_1021_acsami_9b18197
crossref_primary_10_1039_D4TA08465A
crossref_primary_10_1007_s10854_020_04087_y
crossref_primary_10_1016_j_jechem_2020_05_050
crossref_primary_10_1002_adma_202311025
crossref_primary_10_1021_acsaem_0c01081
crossref_primary_10_1039_C8TA12100A
crossref_primary_10_1021_acsami_4c14300
crossref_primary_10_1039_D0RA08776A
crossref_primary_10_1021_acsami_5c00355
crossref_primary_10_1021_acsomega_0c00138
crossref_primary_10_1021_acssuschemeng_0c09056
crossref_primary_10_1039_D4TA00734D
crossref_primary_10_1109_JPHOTOV_2019_2910236
crossref_primary_10_1021_acsami_3c06717
crossref_primary_10_1002_solr_202100700
crossref_primary_10_1002_admt_202101124
crossref_primary_10_1021_acsami_9b23532
crossref_primary_10_1039_D0CP05328G
crossref_primary_10_1016_j_solener_2021_11_075
crossref_primary_10_1002_sstr_202400153
crossref_primary_10_1002_adom_202100390
crossref_primary_10_1002_tcr_201900028
crossref_primary_10_1002_solr_202300862
crossref_primary_10_1039_D2CE00825D
crossref_primary_10_1016_j_inoche_2023_111475
crossref_primary_10_1039_D3DT03012A
crossref_primary_10_1088_1361_6633_abefba
crossref_primary_10_1002_adfm_202308021
crossref_primary_10_1016_j_ijleo_2021_168105
crossref_primary_10_1016_j_scib_2021_02_029
crossref_primary_10_1007_s11664_023_10500_z
crossref_primary_10_1021_acsenergylett_1c00497
crossref_primary_10_1002_admi_202100862
crossref_primary_10_1021_acs_chemrev_9b00780
crossref_primary_10_1021_acsaem_0c01184
crossref_primary_10_1038_s41427_023_00474_z
crossref_primary_10_1002_cssc_202100083
crossref_primary_10_1002_adma_202310630
crossref_primary_10_1002_adfm_202411750
crossref_primary_10_1016_j_jechem_2021_06_029
crossref_primary_10_1002_solr_201900346
crossref_primary_10_1103_PhysRevMaterials_4_085403
crossref_primary_10_1039_D3TA03249C
crossref_primary_10_1007_s11664_020_08264_x
crossref_primary_10_1016_j_cej_2022_140160
crossref_primary_10_1088_1674_4926_44_10_100201
crossref_primary_10_1109_LED_2024_3425671
crossref_primary_10_1016_j_nanoen_2019_104362
crossref_primary_10_1016_j_nanoen_2019_104363
crossref_primary_10_1002_solr_202000555
crossref_primary_10_1002_solr_202300712
crossref_primary_10_1016_j_jechem_2022_01_049
crossref_primary_10_1021_acsami_2c01813
crossref_primary_10_3788_LOP220620
crossref_primary_10_1002_admi_202200042
crossref_primary_10_1002_aenm_201803872
crossref_primary_10_1021_acsami_4c03761
crossref_primary_10_1039_C9EE02983D
crossref_primary_10_1016_j_jcis_2021_05_034
crossref_primary_10_1021_acsami_9b22471
crossref_primary_10_1002_aesr_202100050
crossref_primary_10_1002_aenm_202002341
crossref_primary_10_1039_D2TC04215K
crossref_primary_10_1021_acs_jpcc_1c03553
crossref_primary_10_1021_acsami_2c03025
crossref_primary_10_1016_j_apsusc_2018_04_230
crossref_primary_10_1142_S0217984923501208
crossref_primary_10_1002_solr_202100514
crossref_primary_10_1002_adma_202006004
crossref_primary_10_1002_adfm_201804660
crossref_primary_10_1002_solr_202000740
crossref_primary_10_1039_D4EE02803A
crossref_primary_10_1002_smtd_202400227
crossref_primary_10_1016_j_ceramint_2022_02_051
crossref_primary_10_1002_ange_202104201
crossref_primary_10_1002_solr_201900001
crossref_primary_10_1002_adfm_202415058
crossref_primary_10_1016_j_solener_2022_11_014
crossref_primary_10_1016_j_jechem_2021_11_006
crossref_primary_10_1016_j_cej_2022_135703
crossref_primary_10_1016_j_nanoen_2019_01_059
crossref_primary_10_1021_acsaem_9b00169
crossref_primary_10_1007_s10854_024_13896_4
crossref_primary_10_1007_s10854_022_09698_1
crossref_primary_10_1016_j_jechem_2021_05_019
crossref_primary_10_1021_acs_jpcc_3c00452
crossref_primary_10_1002_adom_202000216
crossref_primary_10_1063_1_5079954
crossref_primary_10_1021_acsami_3c02156
crossref_primary_10_1039_C9TA11344D
crossref_primary_10_1002_solr_202300933
crossref_primary_10_1002_advs_201903044
crossref_primary_10_1007_s00604_024_06536_5
crossref_primary_10_1039_D0EE01655A
crossref_primary_10_1002_cssc_201903025
crossref_primary_10_1016_j_mssp_2020_105647
crossref_primary_10_1039_D3TA06427A
crossref_primary_10_1016_j_orgel_2020_105627
crossref_primary_10_1002_adma_201900428
crossref_primary_10_1016_j_jallcom_2020_154172
crossref_primary_10_1002_adfm_202302924
crossref_primary_10_1002_ange_202216668
crossref_primary_10_1016_j_solmat_2019_110352
crossref_primary_10_1002_cjoc_202300252
crossref_primary_10_1088_2515_7655_acc277
crossref_primary_10_15541_jim20230105
crossref_primary_10_1021_acs_jpcc_1c04888
crossref_primary_10_1002_pip_3205
crossref_primary_10_1021_acsaem_2c03260
crossref_primary_10_1039_C9EE04030G
crossref_primary_10_1021_acs_nanolett_9b00760
crossref_primary_10_1021_acsami_4c15892
crossref_primary_10_1002_ange_202116534
crossref_primary_10_1002_cssc_202002095
crossref_primary_10_1103_PhysRevApplied_16_014041
crossref_primary_10_1021_acsaem_8b01263
crossref_primary_10_1021_acsami_0c15923
crossref_primary_10_1021_acsami_2c01625
crossref_primary_10_3390_en15030919
crossref_primary_10_1007_s42247_021_00305_3
crossref_primary_10_1016_j_solmat_2020_110648
crossref_primary_10_1002_nano_202000200
crossref_primary_10_1021_acs_chemmater_9b04630
crossref_primary_10_1007_s40820_023_01138_x
crossref_primary_10_3390_nano12152592
crossref_primary_10_1039_D2RA05903G
crossref_primary_10_1002_adfm_201901026
crossref_primary_10_1039_D4DT03340J
crossref_primary_10_3390_ma14216569
crossref_primary_10_1021_acsami_4c06709
crossref_primary_10_1002_anie_202116534
crossref_primary_10_1002_idm2_12089
crossref_primary_10_1021_acsami_4c16075
crossref_primary_10_1021_acsami_4c21423
crossref_primary_10_1007_s12274_021_3306_2
crossref_primary_10_1002_smll_202311362
crossref_primary_10_1016_j_cej_2023_141358
crossref_primary_10_1021_acsmaterialslett_1c00291
crossref_primary_10_1039_D1TA06594G
crossref_primary_10_1002_advs_202201573
crossref_primary_10_1002_solr_202300479
crossref_primary_10_1021_acsaem_3c01967
crossref_primary_10_1002_adfm_201807047
crossref_primary_10_1002_aesr_202300201
crossref_primary_10_1002_anie_202104201
crossref_primary_10_1002_inf2_12322
crossref_primary_10_1016_j_physb_2023_414895
crossref_primary_10_1016_j_poly_2019_06_001
crossref_primary_10_1002_adma_201806095
crossref_primary_10_1039_D3CC02830E
crossref_primary_10_1002_eem2_12666
crossref_primary_10_1039_C8TA12476K
crossref_primary_10_1002_adpr_202000178
crossref_primary_10_1002_adfm_201908462
crossref_primary_10_1007_s10854_022_09708_2
crossref_primary_10_1021_acsaem_2c03127
Cites_doi 10.1038/srep30759
10.1002/anie.201405176
10.1021/acs.jpclett.5b02273
10.1021/ph5000067
10.1021/am5025963
10.1016/j.mssp.2017.09.002
10.1016/j.pquantelec.2017.05.002
10.1002/adma.201600446
10.1002/adma.201504168
10.1002/aenm.201700722
10.1021/acsnano.5b07043
10.1039/C6NR01601D
10.1038/nenergy.2016.148
10.1002/aenm.201602333
10.1039/C6EE01411A
10.1021/acsnano.5b08135
10.1021/acsami.7b13621
10.1016/j.apsusc.2015.12.003
10.1002/adma.201500523
10.1063/1.4965838
10.1116/1.4774209
10.1021/acs.jpclett.6b02843
10.1016/j.apsusc.2017.08.184
10.1002/adma.201603923
10.1038/nenergy.2016.177
10.1021/am503610u
10.1039/C7TC01224A
10.1021/acs.chemmater.6b00964
10.1126/science.aan2301
10.1021/am507108u
10.1002/adma.201405391
10.1021/acs.jpclett.6b00238
10.1016/j.tsf.2011.01.058
10.1002/adma.201701073
10.1021/acs.jpcc.6b09412
10.1039/C6NR06670D
10.1038/nnano.2015.230
10.1002/adma.201604695
10.1126/science.aad1015
10.1038/ncomms8747
10.1038/nmat4014
10.1126/science.aai9081
10.1002/adfm.201505215
10.1002/adma.201505480
10.1039/C1JM14478B
10.1039/C6EE02693A
10.1038/srep04756
10.1021/am301565j
10.1002/adma.201606363
10.1002/adma.201404189
10.1016/j.ijleo.2013.11.074
10.1142/9789813148598_0001
10.1021/jp3119633
10.1039/C7TA01593C
10.1364/OE.25.00A253
10.1039/C6TC03624D
10.1039/b701197k
10.1002/chem.201602949
10.1039/C6EE03397K
10.1002/adma.201605900
10.1038/nature23877
10.1039/C5EE02155C
10.1002/aenm.201501066
10.1002/adma.201503298
ContentType Journal Article
Copyright 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
DBID AAYXX
CITATION
7SP
7TB
8FD
F28
FR3
H8D
L7M
DOI 10.1002/aenm.201703519
DatabaseName CrossRef
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList
CrossRef
Aerospace Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1614-6840
EndPage n/a
ExternalDocumentID 10_1002_aenm_201703519
AENM201703519
Genre article
GrantInformation_xml – fundername: Shenzhen Key Laboratory Project
  funderid: ZDSYS201602261933302
– fundername: Natural Science Foundation of China
  funderid: 61775091; 11704177
– fundername: Natural Science Foundation of Shenzhen Innovation Committee
  funderid: JCYJ20150529152146471
– fundername: University of Hong Kong and RGC GRF
  funderid: 15204515; 15246816
GroupedDBID 05W
0R~
1OC
33P
4.4
50Y
5VS
8-0
8-1
A00
AAESR
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ABJNI
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADKYN
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFWVQ
AFZJQ
AHBTC
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
AZVAB
BDRZF
BFHJK
BMXJE
BRXPI
D-A
DCZOG
EBS
EJD
G-S
HGLYW
HZ~
KBYEO
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MY.
MY~
O9-
P2W
P4E
RNS
ROL
RX1
SUPJJ
WBKPD
WOHZO
WXSBR
WYJ
ZZTAW
~S-
31~
AANHP
AAYXX
ACBWZ
ACRPL
ACYXJ
ADMLS
ADNMO
AEYWJ
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
FEDTE
GODZA
HVGLF
7SP
7TB
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
F28
FR3
H8D
L7M
ID FETCH-LOGICAL-c3839-be8a72dafcc6ccf72ab4af58024f929856b95a02ec34a976deab1a175b9862cc3
ISSN 1614-6832
IngestDate Fri Jul 25 12:20:51 EDT 2025
Thu Apr 24 23:09:04 EDT 2025
Tue Jul 01 01:43:24 EDT 2025
Wed Jan 22 16:38:11 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 19
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c3839-be8a72dafcc6ccf72ab4af58024f929856b95a02ec34a976deab1a175b9862cc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5183-1467
PQID 2064233259
PQPubID 886389
PageCount 10
ParticipantIDs proquest_journals_2064233259
crossref_citationtrail_10_1002_aenm_201703519
crossref_primary_10_1002_aenm_201703519
wiley_primary_10_1002_aenm_201703519_AENM201703519
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 5, 2018
PublicationDateYYYYMMDD 2018-07-05
PublicationDate_xml – month: 07
  year: 2018
  text: July 5, 2018
  day: 05
PublicationDecade 2010
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Advanced energy materials
PublicationYear 2018
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 5
2017; 7
2017; 8
2015; 6
2015; 5
2016; 109
2017; 25
2011; 519
2018; 427
2016; 10
2016; 363
2017; 29
2017; 550
2007; 31
2015; 8
2017; 355
2017; 356
2016; 120
2017; 9
2016; 11
2015; 350
2014; 1
2016; 4
2017; 53
2016; 6
2016; 7
2015; 27
2014; 4
2016; 1
2017; 71
2017; 10
2013; 31
2013; 117
2014; 13
2016; 28
2012; 4
2014; 6
2016; 26
2012; 22
2016; 8
2014; 125
2016; 9
2014; 53
2016; 22
e_1_2_6_51_1
e_1_2_6_53_1
e_1_2_6_32_1
e_1_2_6_30_1
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_59_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_17_1
e_1_2_6_55_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_57_1
e_1_2_6_62_1
e_1_2_6_64_1
e_1_2_6_43_1
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_60_1
e_1_2_6_9_1
e_1_2_6_5_1
e_1_2_6_7_1
e_1_2_6_1_1
e_1_2_6_24_1
e_1_2_6_49_1
e_1_2_6_3_1
e_1_2_6_22_1
e_1_2_6_28_1
e_1_2_6_45_1
e_1_2_6_26_1
e_1_2_6_47_1
e_1_2_6_52_1
e_1_2_6_54_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_50_1
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_56_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_58_1
e_1_2_6_63_1
e_1_2_6_42_1
e_1_2_6_21_1
e_1_2_6_40_1
e_1_2_6_61_1
e_1_2_6_8_1
e_1_2_6_4_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_48_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_27_1
e_1_2_6_46_1
References_xml – volume: 109
  start-page: 171103
  year: 2016
  publication-title: Appl. Phys. Lett.
– volume: 27
  start-page: 695
  year: 2015
  publication-title: Adv. Mater.
– volume: 356
  start-page: 1376
  year: 2017
  publication-title: Science
– volume: 550
  start-page: 92
  year: 2017
  publication-title: Nature
– volume: 355
  start-page: 722
  year: 2017
  publication-title: Science
– volume: 9
  start-page: 3687
  year: 2016
  publication-title: Energy Environ. Sci.
– volume: 13
  start-page: 897
  year: 2014
  publication-title: Nat. Mater.
– volume: 363
  start-page: 209
  year: 2016
  publication-title: Appl. Surf. Sci.
– volume: 31
  start-page: 021501
  year: 2013
  publication-title: J. Vac. Sci. Technol., A
– volume: 6
  start-page: 7747
  year: 2015
  publication-title: Nat. Commun.
– volume: 29
  start-page: 1605900
  year: 2017
  publication-title: Adv. Mater.
– volume: 53
  start-page: 1
  year: 2017
  publication-title: Prog. Quantum Electron.
– volume: 10
  start-page: 710
  year: 2017
  publication-title: Energy Environ. Sci.
– volume: 8
  start-page: 591
  year: 2017
  publication-title: J. Phys. Chem. Lett.
– volume: 125
  start-page: 2899
  year: 2014
  publication-title: Optik
– volume: 6
  start-page: 11851
  year: 2014
  publication-title: ACS Appl. Mater. Interfaces
– volume: 31
  start-page: 832
  year: 2007
  publication-title: New J. Chem.
– volume: 5
  start-page: 6597
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 9
  start-page: 2295
  year: 2016
  publication-title: Energy Environ. Sci.
– volume: 1
  start-page: 547
  year: 2014
  publication-title: ACS Photonics
– volume: 8
  start-page: 19189
  year: 2016
  publication-title: Nanoscale
– volume: 10
  start-page: 3630
  year: 2016
  publication-title: ACS Nano
– volume: 7
  start-page: 1602333
  year: 2017
  publication-title: Adv. Energy Mater.
– volume: 5
  start-page: 1501066
  year: 2015
  publication-title: Adv. Energy Mater.
– volume: 29
  start-page: 1603923
  year: 2017
  publication-title: Adv. Mater.
– volume: 4
  start-page: 5922
  year: 2012
  publication-title: ACS Appl. Mater. Interfaces
– volume: 27
  start-page: 2930
  year: 2015
  publication-title: Adv. Mater.
– volume: 8
  start-page: 11403
  year: 2016
  publication-title: Nanoscale
– volume: 28
  start-page: 5112
  year: 2016
  publication-title: Adv. Mater.
– volume: 1
  start-page: 16148
  year: 2016
  publication-title: Nat. Energy
– volume: 71
  start-page: 396
  year: 2017
  publication-title: Mater. Sci. Semicond. Process.
– volume: 29
  start-page: 1701073
  year: 2017
  publication-title: Adv. Mater.
– volume: 27
  start-page: 7874
  year: 2015
  publication-title: Adv. Mater.
– volume: 28
  start-page: 4879
  year: 2016
  publication-title: Chem. Mater.
– volume: 5
  start-page: 7084
  year: 2017
  publication-title: J. Mater. Chem. C
– volume: 8
  start-page: 3208
  year: 2015
  publication-title: Energy Environ. Sci.
– volume: 27
  start-page: 4013
  year: 2015
  publication-title: Adv. Mater.
– volume: 6
  start-page: 30759
  year: 2016
  publication-title: Sci. Rep.
– volume: 4
  start-page: 10839
  year: 2016
  publication-title: J. Mater. Chem. C
– volume: 22
  start-page: 14625
  year: 2016
  publication-title: Chem. Eur. J.
– volume: 9
  start-page: 41887
  year: 2017
  publication-title: ACS Appl. Mater. Interfaces
– volume: 29
  start-page: 1604695
  year: 2017
  publication-title: Adv. Mater.
– volume: 427
  start-page: 782
  year: 2018
  publication-title: Appl. Surf. Sci.
– volume: 28
  start-page: 5206
  year: 2016
  publication-title: Adv. Mater.
– volume: 350
  start-page: 944
  year: 2015
  publication-title: Science
– volume: 53
  start-page: 12571
  year: 2014
  publication-title: Angew. Chem., Int. Ed. Engl.
– volume: 6
  start-page: 12609
  year: 2014
  publication-title: ACS Appl. Mater. Interfaces
– volume: 25
  start-page: A253
  year: 2017
  publication-title: Opt. Express
– volume: 1
  start-page: 1
  year: 2016
  publication-title: Mater. Today Energy
– volume: 7
  start-page: 1096
  year: 2016
  publication-title: J. Phys. Chem. Lett.
– volume: 1
  start-page: 16177
  year: 2016
  publication-title: Nat. Energy
– volume: 6
  start-page: 22862
  year: 2014
  publication-title: ACS Appl. Mater. Interfaces
– volume: 4
  start-page: 4756
  year: 2014
  publication-title: Sci. Rep.
– volume: 7
  start-page: 1700722
  year: 2017
  publication-title: Adv. Energy Mater.
– volume: 10
  start-page: 1503
  year: 2016
  publication-title: ACS Nano
– volume: 29
  start-page: 1606363
  year: 2017
  publication-title: Adv. Mater.
– volume: 519
  start-page: 4944
  year: 2011
  publication-title: Thin Solid Films
– volume: 11
  start-page: 75
  year: 2016
  publication-title: Nat. Nanotechnol.
– volume: 22
  start-page: 2456
  year: 2012
  publication-title: J. Mater. Chem.
– volume: 120
  start-page: 27840
  year: 2016
  publication-title: J. Phys. Chem. C
– volume: 6
  start-page: 4633
  year: 2015
  publication-title: J. Phys. Chem. Lett.
– volume: 117
  start-page: 4421
  year: 2013
  publication-title: J. Phys. Chem. C
– volume: 26
  start-page: 2950
  year: 2016
  publication-title: Adv. Funct. Mater.
– volume: 28
  start-page: 2439
  year: 2016
  publication-title: Adv. Mater.
– ident: e_1_2_6_20_1
  doi: 10.1038/srep30759
– ident: e_1_2_6_12_1
  doi: 10.1002/anie.201405176
– ident: e_1_2_6_53_1
  doi: 10.1021/acs.jpclett.5b02273
– ident: e_1_2_6_10_1
  doi: 10.1021/ph5000067
– ident: e_1_2_6_13_1
  doi: 10.1021/am5025963
– ident: e_1_2_6_60_1
  doi: 10.1016/j.mssp.2017.09.002
– ident: e_1_2_6_2_1
  doi: 10.1016/j.pquantelec.2017.05.002
– ident: e_1_2_6_37_1
  doi: 10.1002/adma.201600446
– ident: e_1_2_6_21_1
  doi: 10.1002/adma.201504168
– ident: e_1_2_6_23_1
  doi: 10.1002/aenm.201700722
– ident: e_1_2_6_5_1
  doi: 10.1021/acsnano.5b07043
– ident: e_1_2_6_8_1
  doi: 10.1039/C6NR01601D
– ident: e_1_2_6_35_1
  doi: 10.1038/nenergy.2016.148
– ident: e_1_2_6_26_1
  doi: 10.1002/aenm.201602333
– ident: e_1_2_6_36_1
  doi: 10.1039/C6EE01411A
– ident: e_1_2_6_6_1
  doi: 10.1021/acsnano.5b08135
– ident: e_1_2_6_31_1
  doi: 10.1021/acsami.7b13621
– ident: e_1_2_6_50_1
  doi: 10.1016/j.apsusc.2015.12.003
– ident: e_1_2_6_16_1
  doi: 10.1002/adma.201500523
– ident: e_1_2_6_19_1
  doi: 10.1063/1.4965838
– ident: e_1_2_6_58_1
  doi: 10.1116/1.4774209
– ident: e_1_2_6_61_1
  doi: 10.1021/acs.jpclett.6b02843
– ident: e_1_2_6_42_1
  doi: 10.1016/j.apsusc.2017.08.184
– ident: e_1_2_6_28_1
  doi: 10.1002/adma.201603923
– ident: e_1_2_6_63_1
  doi: 10.1038/nenergy.2016.177
– ident: e_1_2_6_14_1
  doi: 10.1021/am503610u
– ident: e_1_2_6_17_1
  doi: 10.1039/C7TC01224A
– ident: e_1_2_6_54_1
  doi: 10.1021/acs.chemmater.6b00964
– ident: e_1_2_6_1_1
  doi: 10.1126/science.aan2301
– ident: e_1_2_6_11_1
  doi: 10.1021/am507108u
– ident: e_1_2_6_41_1
  doi: 10.1002/adma.201405391
– ident: e_1_2_6_27_1
  doi: 10.1021/acs.jpclett.6b00238
– ident: e_1_2_6_59_1
  doi: 10.1016/j.tsf.2011.01.058
– ident: e_1_2_6_34_1
  doi: 10.1002/adma.201701073
– ident: e_1_2_6_15_1
  doi: 10.1021/acs.jpcc.6b09412
– ident: e_1_2_6_22_1
  doi: 10.1039/C6NR06670D
– ident: e_1_2_6_4_1
  doi: 10.1038/nnano.2015.230
– ident: e_1_2_6_29_1
  doi: 10.1002/adma.201604695
– ident: e_1_2_6_3_1
  doi: 10.1126/science.aad1015
– ident: e_1_2_6_51_1
  doi: 10.1038/ncomms8747
– ident: e_1_2_6_52_1
  doi: 10.1038/nmat4014
– ident: e_1_2_6_62_1
  doi: 10.1126/science.aai9081
– ident: e_1_2_6_25_1
  doi: 10.1002/adfm.201505215
– ident: e_1_2_6_64_1
  doi: 10.1002/adma.201505480
– ident: e_1_2_6_47_1
  doi: 10.1039/C1JM14478B
– ident: e_1_2_6_56_1
  doi: 10.1039/C6EE02693A
– ident: e_1_2_6_9_1
  doi: 10.1038/srep04756
– ident: e_1_2_6_48_1
  doi: 10.1021/am301565j
– ident: e_1_2_6_33_1
  doi: 10.1002/adma.201606363
– ident: e_1_2_6_24_1
  doi: 10.1002/adma.201404189
– ident: e_1_2_6_44_1
  doi: 10.1016/j.ijleo.2013.11.074
– ident: e_1_2_6_30_1
  doi: 10.1142/9789813148598_0001
– ident: e_1_2_6_49_1
  doi: 10.1021/jp3119633
– ident: e_1_2_6_18_1
  doi: 10.1039/C7TA01593C
– ident: e_1_2_6_40_1
  doi: 10.1364/OE.25.00A253
– ident: e_1_2_6_43_1
  doi: 10.1039/C6TC03624D
– ident: e_1_2_6_45_1
  doi: 10.1039/b701197k
– ident: e_1_2_6_46_1
  doi: 10.1002/chem.201602949
– ident: e_1_2_6_57_1
  doi: 10.1039/C6EE03397K
– ident: e_1_2_6_39_1
  doi: 10.1002/adma.201605900
– ident: e_1_2_6_32_1
  doi: 10.1038/nature23877
– ident: e_1_2_6_38_1
  doi: 10.1039/C5EE02155C
– ident: e_1_2_6_55_1
  doi: 10.1002/aenm.201501066
– ident: e_1_2_6_7_1
  doi: 10.1002/adma.201503298
SSID ssj0000491033
Score 2.6549523
Snippet High‐quality hole transport layers are prepared by spin‐coating copper doped nickel oxide (Cu:NiO) nanoparticle inks at room temperature without further...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Carrier density
Carrier mobility
Charge transfer
Copper
copper doping
DFT calculations
Doping
Energy conversion efficiency
Energy levels
flexible solar cells
Mathematical analysis
nickel oxide
Nickel oxides
organometallic halide perovskites
Perovskites
Photovoltaic cells
Solar cells
Substrates
Valence band
Title Understanding the Doping Effect on NiO: Toward High‐Performance Inverted Perovskite Solar Cells
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faenm.201703519
https://www.proquest.com/docview/2064233259
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELbK7gUOK56isCAfWHFYBRonzoNb1G21WrVdpG1Fb5HtOqJQpau24cCJKzd-I7-E8SOJKy2P5WK1buokns_jb-yZMUKvmM-kYGThMcqUgRJSD1BCPF_A7BCzlKZc7eiOJ9H5LLyY03mn893xWqp2_I34emNcyf9IFepAripK9haSbRqFCvgM8oUSJAzlP8l4theZoijkmYl_sjmJQbKT5aVeQdfesdqro3FveO_EDKh0GxtFPqFy_WWrlnRPr5TVe9qXq9XWpbBZ7TUgTdggUF7zrq2ngFFlH-SyUfmVVvXwaB-rpnJo1l4v6slT0elP1WZ50qcnmb_UNDe2QTift_CSG2bPiLarFH6iPVrpLXSho4OBMXhRYpc9pVtnMjvVijtx8ZneOB-Y_LJMlirpgB-rbdO0nfnq3f7JZT6cjUb5dDCf3kGHBCwOUJmH2dl4dNUs2IEp5fcCHbBRP2CdBLRH3u7fYp_ktJaLa_9oAjO9j46s5YEzA6MHqCPLh-iek4_yEWJ7gMIAKGwAhQ2g8LrEAKh32MAJKzj9_PbDARKugYRbIGENJKyB9BjNhoNp_9yzZ3B4IgDu7HGZsJgsWCFEJEQRE8ZDVlAYzmEBzDqhEU8p6xEpgpABtV1Ixn0GnJSnYCsLETxBB-W6lE8RloKKRcRSnsbw50LyIiGsJxNecCijsIu8utNyYRPUq3NSVrlJrU1y1cl508ld9Lq5_tqkZvntlce1DHI7fLfwK5jeQQDmfxcRLZe_tJJng8m4-fbsz20-R3fbYXCMDnabSr4A-rrjLy2wfgEfipm4
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Understanding+the+Doping+Effect+on+NiO%3A+Toward+High%E2%80%90Performance+Inverted+Perovskite+Solar+Cells&rft.jtitle=Advanced+energy+materials&rft.au=Chen%2C+Wei&rft.au=Wu%2C+Yinghui&rft.au=Fan%2C+Jing&rft.au=Djuri%C5%A1i%C4%87%2C+Aleksandra+B&rft.date=2018-07-05&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1614-6832&rft.eissn=1614-6840&rft.volume=8&rft.issue=19&rft_id=info:doi/10.1002%2Faenm.201703519&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1614-6832&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1614-6832&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1614-6832&client=summon