Pore Chemistry of Metal–Organic Frameworks

The pores in metal–organic frameworks (MOFs) can be functionalized by placing chemical entities along the backbone and within the backbone. This chemistry is enabled by the architectural, thermal, and chemical robustness of the frameworks and the ability to characterize them by many diffraction and...

Full description

Saved in:
Bibliographic Details
Published inAdvanced functional materials Vol. 30; no. 41
Main Authors Ji, Zhe, Wang, Haoze, Canossa, Stefano, Wuttke, Stefan, Yaghi, Omar M.
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 01.10.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The pores in metal–organic frameworks (MOFs) can be functionalized by placing chemical entities along the backbone and within the backbone. This chemistry is enabled by the architectural, thermal, and chemical robustness of the frameworks and the ability to characterize them by many diffraction and spectroscopic techniques. The pore chemistry of MOFs is articulated in terms of site isolation, coupling, and cooperation and relate that to their functions in guest recognition, catalysis, ion and electron transport, energy transfer, pore‐dynamic modulation, and interface construction. It is envisioned that the ultimate control of pore chemistry requires arranging functionalities into defined sequences and developing techniques for reading and writing such sequences within the pores. Pore chemistry addresses the positioning of functional groups on framework backbones into the configuration of site isolation, coupling, and cooperation to achieve desired properties for specific applications. The precision acquired by reticular chemistry promises to craft functionality sequences extending to the entire pore space, reminiscent of the sophistication of protein pockets.
AbstractList The pores in metal–organic frameworks (MOFs) can be functionalized by placing chemical entities along the backbone and within the backbone. This chemistry is enabled by the architectural, thermal, and chemical robustness of the frameworks and the ability to characterize them by many diffraction and spectroscopic techniques. The pore chemistry of MOFs is articulated in terms of site isolation, coupling, and cooperation and relate that to their functions in guest recognition, catalysis, ion and electron transport, energy transfer, pore‐dynamic modulation, and interface construction. It is envisioned that the ultimate control of pore chemistry requires arranging functionalities into defined sequences and developing techniques for reading and writing such sequences within the pores.
The pores in metal–organic frameworks (MOFs) can be functionalized by placing chemical entities along the backbone and within the backbone. This chemistry is enabled by the architectural, thermal, and chemical robustness of the frameworks and the ability to characterize them by many diffraction and spectroscopic techniques. The pore chemistry of MOFs is articulated in terms of site isolation, coupling, and cooperation and relate that to their functions in guest recognition, catalysis, ion and electron transport, energy transfer, pore‐dynamic modulation, and interface construction. It is envisioned that the ultimate control of pore chemistry requires arranging functionalities into defined sequences and developing techniques for reading and writing such sequences within the pores. Pore chemistry addresses the positioning of functional groups on framework backbones into the configuration of site isolation, coupling, and cooperation to achieve desired properties for specific applications. The precision acquired by reticular chemistry promises to craft functionality sequences extending to the entire pore space, reminiscent of the sophistication of protein pockets.
Author Ji, Zhe
Wuttke, Stefan
Canossa, Stefano
Yaghi, Omar M.
Wang, Haoze
Author_xml – sequence: 1
  givenname: Zhe
  orcidid: 0000-0002-8532-333X
  surname: Ji
  fullname: Ji, Zhe
  email: zheji@berkeley.edu
  organization: Berkeley Global Science Institute
– sequence: 2
  givenname: Haoze
  surname: Wang
  fullname: Wang, Haoze
  organization: Berkeley Global Science Institute
– sequence: 3
  givenname: Stefano
  surname: Canossa
  fullname: Canossa, Stefano
  organization: University of Antwerp
– sequence: 4
  givenname: Stefan
  orcidid: 0000-0002-6344-5782
  surname: Wuttke
  fullname: Wuttke, Stefan
  email: stefan.wuttke@bcmaterials.net
  organization: Basque Foundation for Science
– sequence: 5
  givenname: Omar M.
  orcidid: 0000-0002-5611-3325
  surname: Yaghi
  fullname: Yaghi, Omar M.
  email: yaghi@berkeley.edu
  organization: King Abdulaziz City for Science and Technology
BookMark eNqFkM9KAzEQh4NUsK1ePS94devkT7fJsVRXhZZ6UPAWYppo6u6mJltKb76Db-iTuGWlgiCeZob5fTPw9VCn8pVB6BTDAAOQC7Ww5YAAgWag_AB1cYazlALhnX2PH49QL8YlAB6NKOui8zsfTDJ5MaWLddgm3iYzU6vi8_1jHp5V5XSSB1WajQ-v8RgdWlVEc_Jd--ghv7qf3KTT-fXtZDxNNeWUpzoTC2KxFooLrbEFYSlYO7LANAypYFY3G6uYHpIhxSCeuAAMVC04CGM07aOz9u4q-Le1ibVc-nWompeSMCZAQMZFk2JtSgcfYzBWaler2vmqDsoVEoPceZE7L3LvpcEGv7BVcKUK278B0QIbV5jtP2k5vsxnP-wXNbd3SQ
CitedBy_id crossref_primary_10_1016_j_ccr_2023_215301
crossref_primary_10_1021_acs_langmuir_0c01832
crossref_primary_10_1002_ange_202202597
crossref_primary_10_3390_surfaces3030032
crossref_primary_10_1021_acs_jpclett_1c03630
crossref_primary_10_1016_j_mencom_2022_05_009
crossref_primary_10_1039_D3TA04110G
crossref_primary_10_1021_acs_accounts_4c00633
crossref_primary_10_1039_D1CE00087J
crossref_primary_10_1016_j_ccr_2021_214332
crossref_primary_10_1016_j_chempr_2022_08_014
crossref_primary_10_1016_j_biomaterials_2021_121237
crossref_primary_10_1038_s41467_024_47293_6
crossref_primary_10_1002_anie_202402973
crossref_primary_10_1016_j_isci_2021_103398
crossref_primary_10_1002_ange_202412844
crossref_primary_10_1007_s00604_023_05915_8
crossref_primary_10_1021_acs_jpcc_4c05806
crossref_primary_10_3390_nano14090757
crossref_primary_10_1016_j_ica_2024_121989
crossref_primary_10_1016_j_chempr_2023_02_002
crossref_primary_10_1039_D0CC05715K
crossref_primary_10_1080_00958972_2024_2390185
crossref_primary_10_1039_D1TC01043C
crossref_primary_10_1039_D2QI01068B
crossref_primary_10_1016_j_est_2024_114629
crossref_primary_10_1039_D1DT01652K
crossref_primary_10_1627_jpi_64_147
crossref_primary_10_1021_acs_chemmater_2c02597
crossref_primary_10_1016_j_jssc_2021_122554
crossref_primary_10_1039_D1TC04106A
crossref_primary_10_1515_revic_2023_0037
crossref_primary_10_3390_molecules27238547
crossref_primary_10_1039_D1CS01061A
crossref_primary_10_1021_acs_chemmater_1c01723
crossref_primary_10_1021_jacsau_4c00808
crossref_primary_10_1021_acsami_4c06412
crossref_primary_10_1016_j_cinorg_2025_100087
crossref_primary_10_1021_acs_langmuir_3c03961
crossref_primary_10_1002_adfm_202207723
crossref_primary_10_1039_D0DT04338A
crossref_primary_10_1039_D0NA00537A
crossref_primary_10_1016_j_jssc_2022_123140
crossref_primary_10_1021_jacs_0c12963
crossref_primary_10_1002_ange_202101644
crossref_primary_10_1039_D3DT00422H
crossref_primary_10_1007_s42823_021_00292_9
crossref_primary_10_1016_j_ijhydene_2021_03_003
crossref_primary_10_1002_advs_202401437
crossref_primary_10_1016_j_cis_2024_103092
crossref_primary_10_1039_D4TA05268D
crossref_primary_10_1002_anie_202406564
crossref_primary_10_1016_j_ccr_2021_214237
crossref_primary_10_1039_D4CC05439C
crossref_primary_10_1002_ange_202407484
crossref_primary_10_1021_acs_chemmater_2c00601
crossref_primary_10_1039_D4QM00523F
crossref_primary_10_1002_ange_202400162
crossref_primary_10_1039_D4CE00408F
crossref_primary_10_1002_adma_202103808
crossref_primary_10_1039_D3SC04171A
crossref_primary_10_1021_acsnano_4c08708
crossref_primary_10_1039_D2CE01475K
crossref_primary_10_1002_anie_202424747
crossref_primary_10_1021_acs_chemrev_3c00450
crossref_primary_10_1002_ange_202300233
crossref_primary_10_1002_anie_202211776
crossref_primary_10_1002_adma_202405494
crossref_primary_10_1007_s11307_023_01801_0
crossref_primary_10_1002_adfm_202207197
crossref_primary_10_1002_anie_202411440
crossref_primary_10_1002_bkcs_12801
crossref_primary_10_1021_jacs_3c12679
crossref_primary_10_1039_D2QI00890D
crossref_primary_10_1039_D3TA06198A
crossref_primary_10_1021_acs_inorgchem_3c03654
crossref_primary_10_1088_2053_1591_acbae7
crossref_primary_10_1039_D3TA07109J
crossref_primary_10_1016_j_ijhydene_2025_03_120
crossref_primary_10_1038_s41467_023_39319_2
crossref_primary_10_1002_ejic_202100635
crossref_primary_10_1016_j_memsci_2025_123805
crossref_primary_10_1002_anie_202300233
crossref_primary_10_1016_j_chempr_2020_08_008
crossref_primary_10_1039_D2TA02708A
crossref_primary_10_1016_j_mtchem_2023_101403
crossref_primary_10_1021_acs_cgd_3c00869
crossref_primary_10_1002_smo_20240002
crossref_primary_10_1002_aenm_202100154
crossref_primary_10_1016_j_seppur_2024_130308
crossref_primary_10_1021_jacs_4c12200
crossref_primary_10_1039_D5QM00166H
crossref_primary_10_1021_acs_cgd_0c00879
crossref_primary_10_1002_ange_202100240
crossref_primary_10_1002_aenm_202100387
crossref_primary_10_1002_adom_202001817
crossref_primary_10_1039_D0TA08009H
crossref_primary_10_1016_j_ijbiomac_2024_136928
crossref_primary_10_1246_cl_220320
crossref_primary_10_1039_D3EE04513G
crossref_primary_10_1002_anie_202211808
crossref_primary_10_1002_ntls_10020
crossref_primary_10_1021_jacs_0c07450
crossref_primary_10_1039_D1TA06205K
crossref_primary_10_1002_ange_202424747
crossref_primary_10_1002_ange_202402973
crossref_primary_10_1016_j_jssc_2021_122515
crossref_primary_10_1021_acs_chemmater_2c02431
crossref_primary_10_1021_acsenergylett_2c02275
crossref_primary_10_3390_inorganics9010004
crossref_primary_10_1002_rem_21770
crossref_primary_10_18410_jebmh_2019_32
crossref_primary_10_1016_j_molstruc_2023_136929
crossref_primary_10_1021_jacs_1c11507
crossref_primary_10_1007_s44211_025_00740_w
crossref_primary_10_1021_jacs_4c07772
crossref_primary_10_1016_j_ccr_2021_213968
crossref_primary_10_1021_acs_analchem_4c02237
crossref_primary_10_1039_D3CS00267E
crossref_primary_10_1039_D4SC03700F
crossref_primary_10_1016_j_seppur_2023_124311
crossref_primary_10_1021_acs_cgd_1c00614
crossref_primary_10_1002_advs_202300752
crossref_primary_10_1016_j_apmt_2025_102676
crossref_primary_10_1039_D2QM01070D
crossref_primary_10_1016_j_cej_2023_147992
crossref_primary_10_1021_acs_cgd_2c00406
crossref_primary_10_1002_ange_202411440
crossref_primary_10_1039_D2TA01678H
crossref_primary_10_1021_acs_inorgchem_1c03340
crossref_primary_10_1039_D3CS00939D
crossref_primary_10_1016_j_ccr_2021_214273
crossref_primary_10_1002_ange_202211808
crossref_primary_10_1021_acsami_1c11018
crossref_primary_10_1021_acs_organomet_3c00358
crossref_primary_10_1002_anie_202412844
crossref_primary_10_1021_acs_inorgchem_2c00648
crossref_primary_10_1039_D2CC05851K
crossref_primary_10_1038_s42004_023_00945_y
crossref_primary_10_31857_S0132344X23600133
crossref_primary_10_1021_acsmaterialslett_4c00773
crossref_primary_10_1002_ange_202301764
crossref_primary_10_1021_acs_inorgchem_2c01608
crossref_primary_10_1021_acs_chemmater_1c03895
crossref_primary_10_1021_jacs_1c03432
crossref_primary_10_1039_D1CE01542G
crossref_primary_10_1039_C9CS00829B
crossref_primary_10_1038_s41467_022_28679_w
crossref_primary_10_1021_acs_accounts_1c00615
crossref_primary_10_1021_acs_chemmater_2c00476
crossref_primary_10_1039_D1NA00173F
crossref_primary_10_1039_D2YA00140C
crossref_primary_10_1016_j_ccr_2023_215175
crossref_primary_10_1016_j_seppur_2022_122095
crossref_primary_10_1021_acs_jpcc_2c01979
crossref_primary_10_1002_adfm_202210265
crossref_primary_10_1002_anbr_202100014
crossref_primary_10_1039_D0CS01538E
crossref_primary_10_1002_anie_202100240
crossref_primary_10_1016_j_jinorgbio_2023_112394
crossref_primary_10_1039_D4QI02101K
crossref_primary_10_1002_adfm_202310121
crossref_primary_10_1002_adfm_202406088
crossref_primary_10_1002_anie_202301764
crossref_primary_10_1021_jacs_3c06590
crossref_primary_10_1016_j_susmat_2023_e00701
crossref_primary_10_1021_acsami_1c07178
crossref_primary_10_1002_anie_202113852
crossref_primary_10_1039_D1CE01221E
crossref_primary_10_1021_acscentsci_3c00078
crossref_primary_10_1038_s42004_022_00799_w
crossref_primary_10_1002_anie_202400162
crossref_primary_10_1002_ange_202406564
crossref_primary_10_1007_s11172_024_4467_4
crossref_primary_10_3390_inorganics9040027
crossref_primary_10_1016_j_ccr_2021_213998
crossref_primary_10_1016_j_ijhydene_2022_10_108
crossref_primary_10_1021_acssuschemeng_4c03427
crossref_primary_10_1002_aic_17981
crossref_primary_10_1021_acs_inorgchem_1c00012
crossref_primary_10_1016_j_mtener_2023_101426
crossref_primary_10_1039_D2TA07437K
crossref_primary_10_1021_acscentsci_3c00637
crossref_primary_10_1016_j_micromeso_2021_111487
crossref_primary_10_1039_D1DT03175A
crossref_primary_10_1134_S1070328423600316
crossref_primary_10_1039_D2TA03216C
crossref_primary_10_1002_slct_202202382
crossref_primary_10_1021_acs_jpclett_1c01981
crossref_primary_10_1002_smtd_202402218
crossref_primary_10_3390_ijms23137121
crossref_primary_10_1002_adfm_202304473
crossref_primary_10_3390_molecules27123845
crossref_primary_10_1002_smll_202104387
crossref_primary_10_1002_adfm_202410751
crossref_primary_10_1016_j_micromeso_2023_112688
crossref_primary_10_1016_j_ijhydene_2021_02_194
crossref_primary_10_1002_anie_202106769
crossref_primary_10_1016_j_seppur_2023_125329
crossref_primary_10_1039_D4CC04223A
crossref_primary_10_1039_D3DT01087B
crossref_primary_10_1016_j_eng_2022_03_022
crossref_primary_10_1039_D1TA10385G
crossref_primary_10_1126_sciadv_adf5087
crossref_primary_10_1002_tcr_202000173
crossref_primary_10_1016_j_fuel_2025_134416
crossref_primary_10_1039_D2EN00155A
crossref_primary_10_1016_j_enchem_2021_100057
crossref_primary_10_1021_acsami_2c22568
crossref_primary_10_1016_j_inoche_2023_110733
crossref_primary_10_1039_D2SC04012C
crossref_primary_10_1021_acsnano_2c11339
crossref_primary_10_1016_j_cej_2021_133587
crossref_primary_10_3390_magnetochemistry10120099
crossref_primary_10_1002_anie_202101644
crossref_primary_10_1002_smll_202301894
crossref_primary_10_1016_j_ijhydene_2021_12_259
crossref_primary_10_59717_j_xinn_mater_2024_100117
crossref_primary_10_1002_ange_202302376
crossref_primary_10_1016_j_chroma_2024_465258
crossref_primary_10_1016_j_heliyon_2024_e39168
crossref_primary_10_1016_j_mtsust_2023_100597
crossref_primary_10_1002_anie_202411960
crossref_primary_10_3389_fchem_2020_00719
crossref_primary_10_1007_s00216_021_03625_9
crossref_primary_10_1021_acs_chemmater_4c01063
crossref_primary_10_1039_D2CS00167E
crossref_primary_10_1039_D3DT02314A
crossref_primary_10_1021_acssuschemeng_2c04543
crossref_primary_10_1021_jacs_3c01705
crossref_primary_10_1002_slct_202302760
crossref_primary_10_1021_acsnano_4c07119
crossref_primary_10_1002_anie_202407484
crossref_primary_10_1016_j_cej_2022_138880
crossref_primary_10_1016_j_apsusc_2025_163022
crossref_primary_10_1039_D3TA07004B
crossref_primary_10_1016_j_cjche_2021_08_010
crossref_primary_10_1038_s41578_024_00665_2
crossref_primary_10_1021_jacs_4c10636
crossref_primary_10_1039_D3TA05413F
crossref_primary_10_1039_D4CS00796D
crossref_primary_10_1002_anie_202302376
crossref_primary_10_1002_cjoc_202100207
crossref_primary_10_1016_j_chphi_2023_100333
crossref_primary_10_1002_chem_202403574
crossref_primary_10_1016_j_ccr_2022_214891
crossref_primary_10_3390_catal13010133
crossref_primary_10_1016_j_bios_2022_114700
crossref_primary_10_1016_j_jssc_2022_123617
crossref_primary_10_1039_D3NR02250A
crossref_primary_10_1360_SSC_2024_0009
crossref_primary_10_1016_j_ccr_2024_215862
crossref_primary_10_1021_acsnano_4c04213
crossref_primary_10_1002_qua_27084
crossref_primary_10_1002_smll_202103590
crossref_primary_10_1021_acs_chemmater_0c04675
crossref_primary_10_1016_j_microc_2023_108388
crossref_primary_10_1002_cjoc_202300368
crossref_primary_10_1016_j_jece_2022_108795
crossref_primary_10_1007_s10904_025_03616_8
crossref_primary_10_1039_D2EE02742A
crossref_primary_10_1016_j_micromeso_2022_112410
crossref_primary_10_1021_jacs_3c06981
crossref_primary_10_1021_acs_langmuir_2c02873
crossref_primary_10_1039_D1DT01477C
crossref_primary_10_1002_smtd_202400596
crossref_primary_10_1021_acsami_1c14359
crossref_primary_10_1002_smsc_202100015
crossref_primary_10_1016_j_est_2025_115363
crossref_primary_10_1021_jacs_3c02019
crossref_primary_10_3390_nano12234263
crossref_primary_10_1002_adma_202204800
crossref_primary_10_1002_adfm_202304790
crossref_primary_10_1021_acs_langmuir_4c03234
crossref_primary_10_1002_adfm_202010703
crossref_primary_10_1002_adma_202207741
crossref_primary_10_1016_j_cej_2022_135953
crossref_primary_10_1038_s41563_024_02029_1
crossref_primary_10_1002_ange_202211776
crossref_primary_10_1007_s10904_024_03462_0
crossref_primary_10_1021_acsnano_0c10144
crossref_primary_10_1002_ange_202411960
crossref_primary_10_1016_j_biomaterials_2024_122755
crossref_primary_10_1039_D1QM00251A
crossref_primary_10_1038_s41467_025_55891_1
crossref_primary_10_1002_ente_202402354
crossref_primary_10_1039_D0FD00103A
crossref_primary_10_1002_asia_202200243
crossref_primary_10_1016_j_jssc_2022_123038
crossref_primary_10_1021_jacs_1c12421
crossref_primary_10_1039_D3TA05715A
crossref_primary_10_1021_acs_iecr_2c02786
crossref_primary_10_1021_acs_chemmater_4c01153
crossref_primary_10_1039_D0CE01883J
crossref_primary_10_1039_D2ME00238H
crossref_primary_10_3390_catal11010051
crossref_primary_10_1016_j_ccr_2022_214995
crossref_primary_10_1039_D2GC04313K
crossref_primary_10_1016_j_trac_2024_117558
crossref_primary_10_1021_acs_chemmater_2c02704
crossref_primary_10_1021_acs_chemmater_2c02946
crossref_primary_10_1002_ange_202113852
crossref_primary_10_1002_ange_202106769
crossref_primary_10_1016_j_apmt_2023_101971
crossref_primary_10_1016_j_cej_2024_153879
crossref_primary_10_1016_j_compositesb_2022_110174
crossref_primary_10_1016_j_chempr_2024_11_020
crossref_primary_10_1016_j_seppur_2022_122945
crossref_primary_10_1021_acsami_0c20369
crossref_primary_10_1021_jacs_1c04804
crossref_primary_10_1021_jacs_3c02155
crossref_primary_10_1016_j_commatsci_2024_113555
crossref_primary_10_1016_j_xcrp_2021_100421
crossref_primary_10_1016_j_ijhydene_2023_05_247
crossref_primary_10_1016_j_jallcom_2022_165326
crossref_primary_10_1002_anie_202202597
crossref_primary_10_1007_s00894_020_04437_x
crossref_primary_10_1016_j_ccr_2025_216464
crossref_primary_10_1002_jccs_202100377
crossref_primary_10_1039_D2RA03161B
crossref_primary_10_1246_bcsj_20220180
crossref_primary_10_1016_j_ceja_2024_100700
crossref_primary_10_1002_adma_202209907
Cites_doi 10.1021/ja203564w
10.1021/ja503296c
10.1073/pnas.0909718106
10.1038/ncomms9348
10.1021/cm304055k
10.1021/ja5131269
10.1039/c3cc42531b
10.1021/ja800669j
10.1038/nchem.1956
10.1002/anie.201502045
10.1039/b718371b
10.1002/anie.201204475
10.1021/ja074366o
10.1126/science.aat0586
10.1021/ja109317e
10.1021/ja072871f
10.1002/anie.201703675
10.1038/378703a0
10.1021/jacs.6b06239
10.1039/c0cc04526h
10.1002/chem.201300326
10.1126/science.1192160
10.1021/jacs.7b06197
10.1039/C4CS00002A
10.1021/jacs.7b07921
10.1002/anie.200705998
10.1021/jacs.6b04204
10.1021/jacs.5b07687
10.1039/C4CS00103F
10.1038/nature19763
10.1038/nature14327
10.1038/nchem.654
10.1038/s41467-018-04050-w
10.1021/ja102804s
10.1021/ja202223d
10.1073/pnas.1416417112
10.1021/ja512478y
10.1021/jacs.6b04501
10.1126/science.1246738
10.1021/jacs.6b11259
10.1039/C4TA04907A
10.1021/ja101208s
10.1039/b718443c
10.1021/ja067374y
10.1039/b802258p
10.1021/jacs.5b03540
10.1021/ic201219g
10.1021/jacs.5b04674
10.1021/ja204214t
10.1021/jacs.9b10418
10.1021/ja310596a
10.1021/ja804703w
10.1021/ja205827z
10.1021/ja209197f
10.1021/jacs.6b08724
10.1126/science.1181761
10.1021/acsami.8b20355
10.1002/anie.200462787
10.1002/anie.200300636
10.1021/jacs.5b02897
10.1021/jacs.7b06382
10.1016/j.micromeso.2003.12.027
10.1021/ic1011549
10.1039/c3cy00864a
10.1021/jacs.6b08417
10.1126/science.1067208
10.1126/science.1217544
10.1038/46248
10.1126/science.1175441
10.1126/science.1238339
10.1039/C5CC08973E
10.1126/science.1220131
10.1038/nmat4238
10.1038/ncomms12610
10.1021/ja302991b
10.1016/j.micromeso.2012.01.015
10.1021/jacs.6b00849
10.1126/science.1230444
10.1039/C4CS00067F
10.1021/jacs.5b10666
10.1021/ja7114053
10.1021/ja901440g
10.1073/pnas.1808829115
10.1021/ja507119n
10.1021/jacs.7b07392
10.1002/9783527821099
10.1002/anie.200802908
10.1002/anie.201003221
10.1021/ja502238a
10.1021/ja003159k
10.1021/jacs.7b03113
10.1021/jacs.6b07267
10.1002/anie.201406415
10.1021/jp401515r
10.1021/jacs.7b02745
10.1038/nchem.2258
10.1021/ja052431t
10.1021/ja960746q
10.1073/pnas.0804900105
10.1021/jacs.8b11221
10.1039/B714083E
10.1021/ja4037516
10.1021/jacs.8b11525
10.1021/ja903918s
10.1021/acs.chemmater.6b02749
10.1002/anie.201805244
10.1021/ja512762r
10.1021/acscentsci.6b00012
ContentType Journal Article
Copyright 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2020 Wiley‐VCH GmbH
Copyright_xml – notice: 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2020 Wiley‐VCH GmbH
DBID AAYXX
CITATION
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/adfm.202000238
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList Materials Research Database
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1616-3028
EndPage n/a
ExternalDocumentID 10_1002_adfm_202000238
ADFM202000238
Genre reviewArticle
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OC
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
.Y3
31~
AANHP
AAYXX
ACBWZ
ACRPL
ACYXJ
ADMLS
ADNMO
AEYWJ
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
HF~
HVGLF
LW6
7SP
7SR
7U5
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
L7M
ID FETCH-LOGICAL-c3838-c69d2f1c9a89cc1f09f30ff7f04c05394fca89fa4c5253109b890103ad809eec3
IEDL.DBID DR2
ISSN 1616-301X
IngestDate Fri Jul 25 07:51:33 EDT 2025
Tue Jul 01 04:12:13 EDT 2025
Thu Apr 24 22:54:55 EDT 2025
Wed Jan 22 16:31:52 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 41
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3838-c69d2f1c9a89cc1f09f30ff7f04c05394fca89fa4c5253109b890103ad809eec3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6344-5782
0000-0002-5611-3325
0000-0002-8532-333X
PQID 2449090689
PQPubID 2045204
PageCount 24
ParticipantIDs proquest_journals_2449090689
crossref_citationtrail_10_1002_adfm_202000238
crossref_primary_10_1002_adfm_202000238
wiley_primary_10_1002_adfm_202000238_ADFM202000238
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-10-01
PublicationDateYYYYMMDD 2020-10-01
PublicationDate_xml – month: 10
  year: 2020
  text: 2020-10-01
  day: 01
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Advanced functional materials
PublicationYear 2020
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2018; 362
2019; 11
2010 2008; 49
2014; 136
2012; 51
2013; 19
2009 2011; 131 133
2018; 9
2004; 73
2014; 4
2012; 134
2015; 137
2002; 223
2000; 122
2010; 2
2012; 335
2012; 336
2014; 6
2009; 325
2010 2013; 132 117
2014; 53
2015 2014; 137 136
2009 2008; 106 105
2015; 14
2015; 6
2007; 129
2010; 329
2018; 140
2013; 49
2010; 327
1995 2003 2019; 378 423
2002; 295
2015; 54
2016 2016; 7 2
2008
2016; 52
2013; 341
2009; 131
2019; 141
2015; 7
2005; 44
2011; 133
2017; 139
2014; 43
2010; 49
2012 2015 2013; 157 3 25
2016; 539
1999 2013; 402 341
2015; 112
2005; 127
2018; 115
2017; 56
2011; 50
2008; 47
2010; 132
2015; 519
2013; 135
2016; 138
2011; 47
2016; 28
2009; 38
2008; 130
1996; 118
2014; 343
2018; 57
e_1_2_9_75_1
e_1_2_9_98_1
e_1_2_9_52_1
e_1_2_9_79_1
e_1_2_9_33_2
e_1_2_9_94_1
e_1_2_9_10_1
e_1_2_9_56_1
e_1_2_9_33_1
e_1_2_9_90_1
e_1_2_9_71_1
e_1_2_9_37_2
e_1_2_9_14_1
e_1_2_9_37_3
e_1_2_9_37_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_64_1
e_1_2_9_87_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_68_1
e_1_2_9_83_1
e_1_2_9_6_1
e_1_2_9_60_1
e_1_2_9_2_2
e_1_2_9_2_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_99_1
e_1_2_9_72_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_95_1
e_1_2_9_76_1
e_1_2_9_91_1
e_1_2_9_38_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_88_1
e_1_2_9_61_1
e_1_2_9_46_1
e_1_2_9_84_1
e_1_2_9_23_1
e_1_2_9_65_1
e_1_2_9_80_1
e_1_2_9_5_1
e_1_2_9_1_3
e_1_2_9_1_2
e_1_2_9_1_1
e_1_2_9_9_1
e_1_2_9_27_1
e_1_2_9_69_1
e_1_2_9_31_1
e_1_2_9_50_1
e_1_2_9_73_1
e_1_2_9_35_1
e_1_2_9_77_1
e_1_2_9_96_1
e_1_2_9_12_1
e_1_2_9_54_1
e_1_2_9_92_1
e_1_2_9_39_1
Yaghi O. M. (e_1_2_9_15_1) 2002; 223
e_1_2_9_16_1
e_1_2_9_58_1
e_1_2_9_62_2
e_1_2_9_20_1
e_1_2_9_62_1
e_1_2_9_89_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_66_1
e_1_2_9_85_1
e_1_2_9_8_1
e_1_2_9_81_1
e_1_2_9_4_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_74_1
e_1_2_9_51_1
e_1_2_9_78_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_55_1
e_1_2_9_97_1
e_1_2_9_93_1
e_1_2_9_70_1
e_1_2_9_59_2
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_59_1
e_1_2_9_40_2
e_1_2_9_63_2
e_1_2_9_86_2
e_1_2_9_63_1
e_1_2_9_40_1
e_1_2_9_21_1
e_1_2_9_67_1
e_1_2_9_44_1
e_1_2_9_86_1
e_1_2_9_7_1
e_1_2_9_82_1
e_1_2_9_3_1
e_1_2_9_25_1
e_1_2_9_48_1
e_1_2_9_29_1
References_xml – volume: 43
  start-page: 5896
  year: 2014
  publication-title: Chem. Soc. Rev.
– volume: 53
  year: 2014
  publication-title: Angew. Chem., Int. Ed.
– volume: 6
  start-page: 8348
  year: 2015
  publication-title: Nat. Commun.
– volume: 135
  start-page: 862
  year: 2013
  publication-title: J. Am. Chem. Soc.
– volume: 137
  start-page: 2223
  year: 2015
  publication-title: J. Am. Chem. Soc.
– volume: 141
  year: 2019
  publication-title: J. Am. Chem. Soc.
– volume: 130
  start-page: 5854
  year: 2008
  publication-title: J. Am. Chem. Soc.
– volume: 135
  start-page: 8185
  year: 2013
  publication-title: J. Am. Chem. Soc.
– volume: 136
  year: 2014
  publication-title: J. Am. Chem. Soc.
– volume: 11
  start-page: 6097
  year: 2019
  publication-title: ACS Appl. Mater. Interfaces
– volume: 43
  start-page: 5456
  year: 2014
  publication-title: Chem. Soc. Rev.
– volume: 2
  start-page: 439
  year: 2010
  publication-title: Nat. Chem.
– volume: 138
  start-page: 8912
  year: 2016
  publication-title: J. Am. Chem. Soc.
– volume: 132
  year: 2010
  publication-title: J. Am. Chem. Soc.
– volume: 138
  start-page: 9783
  year: 2016
  publication-title: J. Am. Chem. Soc.
– volume: 73
  start-page: 81
  year: 2004
  publication-title: Microporous Mesoporous Mater.
– volume: 336
  start-page: 1018
  year: 2012
  publication-title: Science
– volume: 539
  start-page: 76
  year: 2016
  publication-title: Nature
– volume: 52
  start-page: 1579
  year: 2016
  publication-title: Chem. Commun.
– volume: 325
  start-page: 855
  year: 2009
  publication-title: Science
– volume: 157 3 25
  start-page: 89 2057 790
  year: 2012 2015 2013
  publication-title: Microporous Mesoporous Mater. J. Mater. Chem. A Chem. Mater.
– volume: 223
  start-page: A35
  year: 2002
  publication-title: Abstr. Pap. Am. Chem. Soc.
– volume: 139
  year: 2017
  publication-title: J. Am. Chem. Soc.
– volume: 134
  start-page: 9464
  year: 2012
  publication-title: J. Am. Chem. Soc.
– volume: 47
  start-page: 2838
  year: 2011
  publication-title: Chem. Commun.
– volume: 4
  start-page: 925
  year: 2014
  publication-title: Catal. Sci. Technol.
– volume: 106 105
  year: 2009 2008
  publication-title: Proc. Natl. Acad. Sci. USA Proc. Natl. Acad. Sci. USA
– volume: 51
  year: 2012
  publication-title: Angew. Chem., Int. Ed.
– volume: 138
  start-page: 3241
  year: 2016
  publication-title: J. Am. Chem. Soc.
– volume: 138
  start-page: 8352
  year: 2016
  publication-title: J. Am. Chem. Soc.
– volume: 402 341
  start-page: 276
  year: 1999 2013
  publication-title: Nature Science
– start-page: 820
  year: 2008
  publication-title: Chem. Commun.
– volume: 141
  start-page: 1577
  year: 2019
  publication-title: J. Am. Chem. Soc.
– volume: 14
  start-page: 512
  year: 2015
  publication-title: Nat. Mater.
– volume: 112
  start-page: 5591
  year: 2015
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 49
  start-page: 7681
  year: 2013
  publication-title: Chem. Commun.
– volume: 137
  start-page: 6164
  year: 2015
  publication-title: J. Am. Chem. Soc.
– volume: 137 136
  start-page: 9643 7403
  year: 2015 2014
  publication-title: J. Am. Chem. Soc. J. Am. Chem. Soc.
– volume: 9
  start-page: 1647
  year: 2018
  publication-title: Nat. Commun.
– volume: 341
  start-page: 882
  year: 2013
  publication-title: Science
– volume: 118
  start-page: 9096
  year: 1996
  publication-title: J. Am. Chem. Soc.
– start-page: 4192
  year: 2008
  publication-title: Chem. Commun.
– volume: 49
  start-page: 8086 1287
  year: 2010 2008
  publication-title: Inorg. Chem. Chem. Commun.
– volume: 139
  start-page: 6090
  year: 2017
  publication-title: J. Am. Chem. Soc.
– volume: 122
  year: 2000
  publication-title: J. Am. Chem. Soc.
– volume: 335
  start-page: 1606
  year: 2012
  publication-title: Science
– volume: 7
  start-page: 514
  year: 2015
  publication-title: Nat. Chem.
– volume: 56
  start-page: 9704
  year: 2017
  publication-title: Angew. Chem., Int. Ed.
– volume: 327
  start-page: 846
  year: 2010
  publication-title: Science
– volume: 50
  start-page: 9518
  year: 2011
  publication-title: Inorg. Chem.
– volume: 49
  start-page: 6751
  year: 2010
  publication-title: Angew. Chem., Int. Ed.
– volume: 54
  year: 2015
  publication-title: Angew. Chem., Int. Ed.
– volume: 137
  year: 2015
  publication-title: J. Am. Chem. Soc.
– volume: 6
  start-page: 590
  year: 2014
  publication-title: Nat. Chem.
– volume: 132 117
  year: 2010 2013
  publication-title: J. Am. Chem. Soc. J. Phys. Chem. C
– volume: 134
  start-page: 99
  year: 2012
  publication-title: J. Am. Chem. Soc.
– volume: 129
  start-page: 2607
  year: 2007
  publication-title: J. Am. Chem. Soc.
– volume: 137
  start-page: 7810
  year: 2015
  publication-title: J. Am. Chem. Soc.
– volume: 44
  start-page: 4745
  year: 2005
  publication-title: Angew. Chem., Int. Ed.
– volume: 138
  start-page: 3255
  year: 2016
  publication-title: J. Am. Chem. Soc.
– volume: 139
  start-page: 2855
  year: 2017
  publication-title: J. Am. Chem. Soc.
– volume: 137
  start-page: 2665
  year: 2015
  publication-title: J. Am. Chem. Soc.
– volume: 19
  start-page: 5533
  year: 2013
  publication-title: Chem. ‐ Eur. J.
– volume: 47
  start-page: 8482
  year: 2008
  publication-title: Angew. Chem., Int. Ed.
– volume: 115
  year: 2018
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 127
  start-page: 8940
  year: 2005
  publication-title: J. Am. Chem. Soc.
– volume: 38
  start-page: 1315
  year: 2009
  publication-title: Chem. Soc. Rev.
– volume: 136
  start-page: 8863
  year: 2014
  publication-title: J. Am. Chem. Soc.
– volume: 47
  start-page: 4144
  year: 2008
  publication-title: Angew. Chem., Int. Ed.
– volume: 343
  start-page: 66
  year: 2014
  publication-title: Science
– volume: 133
  start-page: 2064
  year: 2011
  publication-title: J. Am. Chem. Soc.
– volume: 7 2
  start-page: 148
  year: 2016 2016
  publication-title: Nat. Commun. ACS Cent. Sci.
– volume: 139
  start-page: 8259
  year: 2017
  publication-title: J. Am. Chem. Soc.
– volume: 140
  year: 2018
  publication-title: J. Am. Chem. Soc.
– volume: 131
  start-page: 9644
  year: 2009
  publication-title: J. Am. Chem. Soc.
– volume: 378 423
  start-page: 703 705
  year: 1995 2003 2019
  publication-title: Nature Nature
– volume: 138
  year: 2016
  publication-title: J. Am. Chem. Soc.
– volume: 137
  start-page: 3177
  year: 2015
  publication-title: J. Am. Chem. Soc.
– volume: 133
  year: 2011
  publication-title: J. Am. Chem. Soc.
– volume: 129
  year: 2007
  publication-title: J. Am. Chem. Soc.
– volume: 130
  year: 2008
  publication-title: J. Am. Chem. Soc.
– volume: 28
  start-page: 7190
  year: 2016
  publication-title: Chem. Mater.
– volume: 295
  start-page: 469
  year: 2002
  publication-title: Science
– volume: 329
  start-page: 424
  year: 2010
  publication-title: Science
– volume: 519
  start-page: 303
  year: 2015
  publication-title: Nature
– volume: 57
  year: 2018
  publication-title: Angew. Chem., Int. Ed.
– volume: 43
  start-page: 5982
  year: 2014
  publication-title: Chem. Soc. Rev.
– volume: 362
  start-page: 443
  year: 2018
  publication-title: Science
– volume: 131 133
  start-page: 7524 5806
  year: 2009 2011
  publication-title: J. Am. Chem. Soc. J. Am. Chem. Soc.
– ident: e_1_2_9_54_1
  doi: 10.1021/ja203564w
– ident: e_1_2_9_35_1
  doi: 10.1021/ja503296c
– ident: e_1_2_9_40_1
  doi: 10.1073/pnas.0909718106
– ident: e_1_2_9_67_1
  doi: 10.1038/ncomms9348
– ident: e_1_2_9_37_3
  doi: 10.1021/cm304055k
– ident: e_1_2_9_11_1
  doi: 10.1021/ja5131269
– ident: e_1_2_9_65_1
  doi: 10.1039/c3cc42531b
– ident: e_1_2_9_50_1
  doi: 10.1021/ja800669j
– ident: e_1_2_9_52_1
  doi: 10.1038/nchem.1956
– ident: e_1_2_9_30_1
  doi: 10.1002/anie.201502045
– ident: e_1_2_9_51_1
  doi: 10.1039/b718371b
– ident: e_1_2_9_58_1
  doi: 10.1002/anie.201204475
– ident: e_1_2_9_18_1
  doi: 10.1021/ja074366o
– ident: e_1_2_9_42_1
  doi: 10.1126/science.aat0586
– ident: e_1_2_9_45_1
  doi: 10.1021/ja109317e
– ident: e_1_2_9_39_1
  doi: 10.1021/ja072871f
– ident: e_1_2_9_72_1
  doi: 10.1002/anie.201703675
– ident: e_1_2_9_1_1
  doi: 10.1038/378703a0
– ident: e_1_2_9_4_1
  doi: 10.1021/jacs.6b06239
– ident: e_1_2_9_23_1
  doi: 10.1039/c0cc04526h
– ident: e_1_2_9_79_1
  doi: 10.1002/chem.201300326
– ident: e_1_2_9_10_1
  doi: 10.1126/science.1192160
– ident: e_1_2_9_80_1
  doi: 10.1021/jacs.7b06197
– ident: e_1_2_9_25_1
  doi: 10.1039/C4CS00002A
– ident: e_1_2_9_76_1
  doi: 10.1021/jacs.7b07921
– ident: e_1_2_9_21_1
  doi: 10.1002/anie.200705998
– ident: e_1_2_9_75_1
  doi: 10.1021/jacs.6b04204
– ident: e_1_2_9_98_1
  doi: 10.1021/jacs.5b07687
– ident: e_1_2_9_85_1
  doi: 10.1039/C4CS00103F
– ident: e_1_2_9_93_1
  doi: 10.1038/nature19763
– ident: e_1_2_9_44_1
  doi: 10.1038/nature14327
– ident: e_1_2_9_34_1
  doi: 10.1038/nchem.654
– ident: e_1_2_9_84_1
  doi: 10.1038/s41467-018-04050-w
– ident: e_1_2_9_86_1
  doi: 10.1021/ja102804s
– ident: e_1_2_9_63_2
  doi: 10.1021/ja202223d
– ident: e_1_2_9_95_1
  doi: 10.1073/pnas.1416417112
– ident: e_1_2_9_57_1
  doi: 10.1021/ja512478y
– ident: e_1_2_9_73_1
  doi: 10.1021/jacs.6b04501
– ident: e_1_2_9_83_1
  doi: 10.1126/science.1246738
– ident: e_1_2_9_17_1
  doi: 10.1021/jacs.6b11259
– ident: e_1_2_9_37_2
  doi: 10.1039/C4TA04907A
– ident: e_1_2_9_71_1
  doi: 10.1021/ja101208s
– ident: e_1_2_9_62_2
  doi: 10.1039/b718443c
– ident: e_1_2_9_61_1
  doi: 10.1021/ja067374y
– ident: e_1_2_9_16_1
  doi: 10.1039/b802258p
– ident: e_1_2_9_92_1
  doi: 10.1021/jacs.5b03540
– ident: e_1_2_9_90_1
  doi: 10.1021/ic201219g
– ident: e_1_2_9_33_1
  doi: 10.1021/jacs.5b04674
– ident: e_1_2_9_87_1
  doi: 10.1021/ja204214t
– ident: e_1_2_9_29_1
  doi: 10.1021/jacs.9b10418
– ident: e_1_2_9_88_1
  doi: 10.1021/ja310596a
– ident: e_1_2_9_60_1
  doi: 10.1021/ja804703w
– ident: e_1_2_9_78_1
  doi: 10.1021/ja205827z
– ident: e_1_2_9_91_1
  doi: 10.1021/ja209197f
– ident: e_1_2_9_99_1
  doi: 10.1021/jacs.6b08724
– ident: e_1_2_9_9_1
  doi: 10.1126/science.1181761
– ident: e_1_2_9_28_1
  doi: 10.1021/acsami.8b20355
– ident: e_1_2_9_38_1
  doi: 10.1002/anie.200462787
– ident: e_1_2_9_1_2
  doi: 10.1002/anie.200300636
– ident: e_1_2_9_82_1
  doi: 10.1021/jacs.5b02897
– ident: e_1_2_9_36_1
  doi: 10.1021/jacs.7b06382
– ident: e_1_2_9_49_1
  doi: 10.1016/j.micromeso.2003.12.027
– ident: e_1_2_9_62_1
  doi: 10.1021/ic1011549
– ident: e_1_2_9_66_1
  doi: 10.1039/c3cy00864a
– ident: e_1_2_9_74_1
  doi: 10.1021/jacs.6b08417
– ident: e_1_2_9_12_1
  doi: 10.1126/science.1067208
– ident: e_1_2_9_41_1
  doi: 10.1126/science.1217544
– ident: e_1_2_9_2_1
  doi: 10.1038/46248
– ident: e_1_2_9_43_1
  doi: 10.1126/science.1175441
– ident: e_1_2_9_96_1
  doi: 10.1126/science.1238339
– ident: e_1_2_9_97_1
  doi: 10.1039/C5CC08973E
– ident: e_1_2_9_3_1
  doi: 10.1126/science.1220131
– ident: e_1_2_9_53_1
  doi: 10.1038/nmat4238
– ident: e_1_2_9_59_1
  doi: 10.1038/ncomms12610
– ident: e_1_2_9_89_1
  doi: 10.1021/ja302991b
– ident: e_1_2_9_37_1
  doi: 10.1016/j.micromeso.2012.01.015
– ident: e_1_2_9_55_1
  doi: 10.1021/jacs.6b00849
– ident: e_1_2_9_2_2
  doi: 10.1126/science.1230444
– ident: e_1_2_9_24_1
  doi: 10.1039/C4CS00067F
– ident: e_1_2_9_13_1
  doi: 10.1021/jacs.5b10666
– ident: e_1_2_9_20_1
  doi: 10.1021/ja7114053
– ident: e_1_2_9_63_1
  doi: 10.1021/ja901440g
– ident: e_1_2_9_94_1
  doi: 10.1073/pnas.1808829115
– ident: e_1_2_9_7_1
  doi: 10.1021/ja507119n
– ident: e_1_2_9_46_1
  doi: 10.1021/jacs.7b07392
– ident: e_1_2_9_1_3
  doi: 10.1002/9783527821099
– ident: e_1_2_9_19_1
  doi: 10.1002/anie.200802908
– ident: e_1_2_9_32_1
  doi: 10.1002/anie.201003221
– ident: e_1_2_9_33_2
  doi: 10.1021/ja502238a
– volume: 223
  start-page: A35
  year: 2002
  ident: e_1_2_9_15_1
  publication-title: Abstr. Pap. Am. Chem. Soc.
– ident: e_1_2_9_48_1
  doi: 10.1021/ja003159k
– ident: e_1_2_9_70_1
  doi: 10.1021/jacs.7b03113
– ident: e_1_2_9_14_1
  doi: 10.1021/jacs.6b07267
– ident: e_1_2_9_5_1
  doi: 10.1002/anie.201406415
– ident: e_1_2_9_86_2
  doi: 10.1021/jp401515r
– ident: e_1_2_9_6_1
  doi: 10.1021/jacs.7b02745
– ident: e_1_2_9_31_1
  doi: 10.1038/nchem.2258
– ident: e_1_2_9_56_1
  doi: 10.1021/ja052431t
– ident: e_1_2_9_47_1
  doi: 10.1021/ja960746q
– ident: e_1_2_9_40_2
  doi: 10.1073/pnas.0804900105
– ident: e_1_2_9_77_1
  doi: 10.1021/jacs.8b11221
– ident: e_1_2_9_64_1
  doi: 10.1039/B714083E
– ident: e_1_2_9_8_1
  doi: 10.1038/ncomms9348
– ident: e_1_2_9_81_1
  doi: 10.1021/ja4037516
– ident: e_1_2_9_69_1
  doi: 10.1021/jacs.8b11525
– ident: e_1_2_9_22_1
  doi: 10.1021/ja903918s
– ident: e_1_2_9_26_1
  doi: 10.1021/acs.chemmater.6b02749
– ident: e_1_2_9_68_1
  doi: 10.1002/anie.201805244
– ident: e_1_2_9_27_1
  doi: 10.1021/ja512762r
– ident: e_1_2_9_59_2
  doi: 10.1021/acscentsci.6b00012
SSID ssj0017734
Score 2.6916313
SecondaryResourceType review_article
Snippet The pores in metal–organic frameworks (MOFs) can be functionalized by placing chemical entities along the backbone and within the backbone. This chemistry is...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Backbone
Chemistry
Electron transport
Energy transfer
functionality sequencing
Materials science
Metal-organic frameworks
pore chemistry
site cooperation
site coupling
Title Pore Chemistry of Metal–Organic Frameworks
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202000238
https://www.proquest.com/docview/2449090689
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV09T8MwED2hssDAN6JQqgxILKS1Ezexx6olqhBBCKjULXIcewG1qB8LE_-Bf8gvwY6TtEVCSLAlih0l57v4OX73DuCC-0QvE0TmUiyUSxjFLsepdBlJwwzzQGMSkzsc3wWDIbkZdUYrWfxWH6L64WYiI_9emwDn6ay9FA3lmTKZ5F4u2WKyfQ1hy6Cih0o_Coeh3VYOsCF44VGp2oi89nr39VlpCTVXAWs-40S7wMtntUST59ZinrbE2zcZx_-8zB7sFHDU6Vr_2YcNOT6A7RWRwkO4up9MpdMrC8M5E-XEUkP2z_cPm8gpnKhkeM2OYBhdP_UGblFjwRV6bUpdEbDMU1gwTpkQWCGmfKRUqBAROj4ZUUJfUZyIjtcxKqIpNYQOn2cUMSmFfwy18WQsT8DhGmkE2iNwinxiNnf0yEtPICkRp8iXdXBLGyeiECA3dTBeEiud7CXGCkllhTpcVu1frfTGjy0b5ZAlRQjOEo1bGGIooKwOXm77X-6SdPtRXJ2d_qXTGWyZY0v2a0BtPl3Icw1a5mkTNrv9-PaxmTvoFwqY43M
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED5BGYCBN6JQIAMSCyl2kib2WBWiAk2FUCt1sxzHXkAt6mNh4j_wD_kl2Hm1RUJIMCaxo_h8F39n330HcMFdT7sJIrEJFsr2KME2x7G0qRcHCea-xiQmdzjq-u2-dz9oFNGEJhcm44coN9yMZaT_a2PgZkP6es4ayhNlUsmdlLOFrMKaKeudelVPJYMUDoLsYNnHJsQLDwreRuRcL_dfXpfmYHMRsqZrTrgNcfG1WajJc302jevi7RuR47-GswNbOSK1mpkK7cKKHO7B5gJP4T5cPY7G0moVteGskbIiqVH75_tHlssprLAI8pocQD-87bXadl5mwRbaPSW28GniKCwoJ1QIrBBVLlIqUMgT2kSpp4R-orgnGk7DEInGxMR0uDwhiEop3EOoDEdDeQQW12DD10qBY-R65nxHT750BJIScYJcWQW7EDITOQe5KYXxwjL2ZIcZKbBSClW4LNu_ZuwbP7asFXPGciucMA1dKKLIJ7QKTir8X97CmjdhVF4d_6XTOay3e1GHde66DyewYe5nsX81qEzHM3mqMcw0Pku19AspB-X6
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB1BkRAc2BGFAjkgcSGtnbiJfaxaorK0qhCVeoscx76A2qrLhRP_wB_yJdjZ2iIhJDgmsaNkPBM_x2_eAFxxl-hlgohtioWyCaPY5jiSNiORH2PuaUxicoc7Xa_dJ_eD-mApiz_Vhyh-uJnISL7XJsDHsaotREN5rEwmuZNIttB12CAeosavW0-FgBT2_XRf2cOG4YUHuWwjcmqr_VenpQXWXEasyZQT7ALPHzZlmrxU57OoKt6-6Tj-5232YCfDo1YjdaB9WJPDA9heUik8hJveaCKtZl4ZzhopqyM1Zv98_0gzOYUV5BSv6RH0g9vnZtvOiizYQi9OqS08FjsKC8YpEwIrxJSLlPIVIkIHKCNK6CuKE1F36kZGNKKG0eHymCImpXCPoTQcDeUJWFxDDU-7BI6QS8zujh566QgkJeIUubIMdm7jUGQK5KYQxmuYaic7obFCWFihDNdF-3GqvfFjy0o-ZGEWg9NQAxeGGPIoK4OT2P6Xu4SNVtApjk7_0ukSNnutIHy86z6cwZY5nRL_KlCaTebyXAOYWXSR-OgXmwHksg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pore+Chemistry+of+Metal%E2%80%93Organic+Frameworks&rft.jtitle=Advanced+functional+materials&rft.au=Ji%2C+Zhe&rft.au=Wang%2C+Haoze&rft.au=Canossa%2C+Stefano&rft.au=Wuttke%2C+Stefan&rft.date=2020-10-01&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=30&rft.issue=41&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadfm.202000238&rft.externalDBID=10.1002%252Fadfm.202000238&rft.externalDocID=ADFM202000238
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon