Pore Chemistry of Metal–Organic Frameworks
The pores in metal–organic frameworks (MOFs) can be functionalized by placing chemical entities along the backbone and within the backbone. This chemistry is enabled by the architectural, thermal, and chemical robustness of the frameworks and the ability to characterize them by many diffraction and...
Saved in:
Published in | Advanced functional materials Vol. 30; no. 41 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc
01.10.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The pores in metal–organic frameworks (MOFs) can be functionalized by placing chemical entities along the backbone and within the backbone. This chemistry is enabled by the architectural, thermal, and chemical robustness of the frameworks and the ability to characterize them by many diffraction and spectroscopic techniques. The pore chemistry of MOFs is articulated in terms of site isolation, coupling, and cooperation and relate that to their functions in guest recognition, catalysis, ion and electron transport, energy transfer, pore‐dynamic modulation, and interface construction. It is envisioned that the ultimate control of pore chemistry requires arranging functionalities into defined sequences and developing techniques for reading and writing such sequences within the pores.
Pore chemistry addresses the positioning of functional groups on framework backbones into the configuration of site isolation, coupling, and cooperation to achieve desired properties for specific applications. The precision acquired by reticular chemistry promises to craft functionality sequences extending to the entire pore space, reminiscent of the sophistication of protein pockets. |
---|---|
AbstractList | The pores in metal–organic frameworks (MOFs) can be functionalized by placing chemical entities along the backbone and within the backbone. This chemistry is enabled by the architectural, thermal, and chemical robustness of the frameworks and the ability to characterize them by many diffraction and spectroscopic techniques. The pore chemistry of MOFs is articulated in terms of site isolation, coupling, and cooperation and relate that to their functions in guest recognition, catalysis, ion and electron transport, energy transfer, pore‐dynamic modulation, and interface construction. It is envisioned that the ultimate control of pore chemistry requires arranging functionalities into defined sequences and developing techniques for reading and writing such sequences within the pores. The pores in metal–organic frameworks (MOFs) can be functionalized by placing chemical entities along the backbone and within the backbone. This chemistry is enabled by the architectural, thermal, and chemical robustness of the frameworks and the ability to characterize them by many diffraction and spectroscopic techniques. The pore chemistry of MOFs is articulated in terms of site isolation, coupling, and cooperation and relate that to their functions in guest recognition, catalysis, ion and electron transport, energy transfer, pore‐dynamic modulation, and interface construction. It is envisioned that the ultimate control of pore chemistry requires arranging functionalities into defined sequences and developing techniques for reading and writing such sequences within the pores. Pore chemistry addresses the positioning of functional groups on framework backbones into the configuration of site isolation, coupling, and cooperation to achieve desired properties for specific applications. The precision acquired by reticular chemistry promises to craft functionality sequences extending to the entire pore space, reminiscent of the sophistication of protein pockets. |
Author | Ji, Zhe Wuttke, Stefan Canossa, Stefano Yaghi, Omar M. Wang, Haoze |
Author_xml | – sequence: 1 givenname: Zhe orcidid: 0000-0002-8532-333X surname: Ji fullname: Ji, Zhe email: zheji@berkeley.edu organization: Berkeley Global Science Institute – sequence: 2 givenname: Haoze surname: Wang fullname: Wang, Haoze organization: Berkeley Global Science Institute – sequence: 3 givenname: Stefano surname: Canossa fullname: Canossa, Stefano organization: University of Antwerp – sequence: 4 givenname: Stefan orcidid: 0000-0002-6344-5782 surname: Wuttke fullname: Wuttke, Stefan email: stefan.wuttke@bcmaterials.net organization: Basque Foundation for Science – sequence: 5 givenname: Omar M. orcidid: 0000-0002-5611-3325 surname: Yaghi fullname: Yaghi, Omar M. email: yaghi@berkeley.edu organization: King Abdulaziz City for Science and Technology |
BookMark | eNqFkM9KAzEQh4NUsK1ePS94devkT7fJsVRXhZZ6UPAWYppo6u6mJltKb76Db-iTuGWlgiCeZob5fTPw9VCn8pVB6BTDAAOQC7Ww5YAAgWag_AB1cYazlALhnX2PH49QL8YlAB6NKOui8zsfTDJ5MaWLddgm3iYzU6vi8_1jHp5V5XSSB1WajQ-v8RgdWlVEc_Jd--ghv7qf3KTT-fXtZDxNNeWUpzoTC2KxFooLrbEFYSlYO7LANAypYFY3G6uYHpIhxSCeuAAMVC04CGM07aOz9u4q-Le1ibVc-nWompeSMCZAQMZFk2JtSgcfYzBWaler2vmqDsoVEoPceZE7L3LvpcEGv7BVcKUK278B0QIbV5jtP2k5vsxnP-wXNbd3SQ |
CitedBy_id | crossref_primary_10_1016_j_ccr_2023_215301 crossref_primary_10_1021_acs_langmuir_0c01832 crossref_primary_10_1002_ange_202202597 crossref_primary_10_3390_surfaces3030032 crossref_primary_10_1021_acs_jpclett_1c03630 crossref_primary_10_1016_j_mencom_2022_05_009 crossref_primary_10_1039_D3TA04110G crossref_primary_10_1021_acs_accounts_4c00633 crossref_primary_10_1039_D1CE00087J crossref_primary_10_1016_j_ccr_2021_214332 crossref_primary_10_1016_j_chempr_2022_08_014 crossref_primary_10_1016_j_biomaterials_2021_121237 crossref_primary_10_1038_s41467_024_47293_6 crossref_primary_10_1002_anie_202402973 crossref_primary_10_1016_j_isci_2021_103398 crossref_primary_10_1002_ange_202412844 crossref_primary_10_1007_s00604_023_05915_8 crossref_primary_10_1021_acs_jpcc_4c05806 crossref_primary_10_3390_nano14090757 crossref_primary_10_1016_j_ica_2024_121989 crossref_primary_10_1016_j_chempr_2023_02_002 crossref_primary_10_1039_D0CC05715K crossref_primary_10_1080_00958972_2024_2390185 crossref_primary_10_1039_D1TC01043C crossref_primary_10_1039_D2QI01068B crossref_primary_10_1016_j_est_2024_114629 crossref_primary_10_1039_D1DT01652K crossref_primary_10_1627_jpi_64_147 crossref_primary_10_1021_acs_chemmater_2c02597 crossref_primary_10_1016_j_jssc_2021_122554 crossref_primary_10_1039_D1TC04106A crossref_primary_10_1515_revic_2023_0037 crossref_primary_10_3390_molecules27238547 crossref_primary_10_1039_D1CS01061A crossref_primary_10_1021_acs_chemmater_1c01723 crossref_primary_10_1021_jacsau_4c00808 crossref_primary_10_1021_acsami_4c06412 crossref_primary_10_1016_j_cinorg_2025_100087 crossref_primary_10_1021_acs_langmuir_3c03961 crossref_primary_10_1002_adfm_202207723 crossref_primary_10_1039_D0DT04338A crossref_primary_10_1039_D0NA00537A crossref_primary_10_1016_j_jssc_2022_123140 crossref_primary_10_1021_jacs_0c12963 crossref_primary_10_1002_ange_202101644 crossref_primary_10_1039_D3DT00422H crossref_primary_10_1007_s42823_021_00292_9 crossref_primary_10_1016_j_ijhydene_2021_03_003 crossref_primary_10_1002_advs_202401437 crossref_primary_10_1016_j_cis_2024_103092 crossref_primary_10_1039_D4TA05268D crossref_primary_10_1002_anie_202406564 crossref_primary_10_1016_j_ccr_2021_214237 crossref_primary_10_1039_D4CC05439C crossref_primary_10_1002_ange_202407484 crossref_primary_10_1021_acs_chemmater_2c00601 crossref_primary_10_1039_D4QM00523F crossref_primary_10_1002_ange_202400162 crossref_primary_10_1039_D4CE00408F crossref_primary_10_1002_adma_202103808 crossref_primary_10_1039_D3SC04171A crossref_primary_10_1021_acsnano_4c08708 crossref_primary_10_1039_D2CE01475K crossref_primary_10_1002_anie_202424747 crossref_primary_10_1021_acs_chemrev_3c00450 crossref_primary_10_1002_ange_202300233 crossref_primary_10_1002_anie_202211776 crossref_primary_10_1002_adma_202405494 crossref_primary_10_1007_s11307_023_01801_0 crossref_primary_10_1002_adfm_202207197 crossref_primary_10_1002_anie_202411440 crossref_primary_10_1002_bkcs_12801 crossref_primary_10_1021_jacs_3c12679 crossref_primary_10_1039_D2QI00890D crossref_primary_10_1039_D3TA06198A crossref_primary_10_1021_acs_inorgchem_3c03654 crossref_primary_10_1088_2053_1591_acbae7 crossref_primary_10_1039_D3TA07109J crossref_primary_10_1016_j_ijhydene_2025_03_120 crossref_primary_10_1038_s41467_023_39319_2 crossref_primary_10_1002_ejic_202100635 crossref_primary_10_1016_j_memsci_2025_123805 crossref_primary_10_1002_anie_202300233 crossref_primary_10_1016_j_chempr_2020_08_008 crossref_primary_10_1039_D2TA02708A crossref_primary_10_1016_j_mtchem_2023_101403 crossref_primary_10_1021_acs_cgd_3c00869 crossref_primary_10_1002_smo_20240002 crossref_primary_10_1002_aenm_202100154 crossref_primary_10_1016_j_seppur_2024_130308 crossref_primary_10_1021_jacs_4c12200 crossref_primary_10_1039_D5QM00166H crossref_primary_10_1021_acs_cgd_0c00879 crossref_primary_10_1002_ange_202100240 crossref_primary_10_1002_aenm_202100387 crossref_primary_10_1002_adom_202001817 crossref_primary_10_1039_D0TA08009H crossref_primary_10_1016_j_ijbiomac_2024_136928 crossref_primary_10_1246_cl_220320 crossref_primary_10_1039_D3EE04513G crossref_primary_10_1002_anie_202211808 crossref_primary_10_1002_ntls_10020 crossref_primary_10_1021_jacs_0c07450 crossref_primary_10_1039_D1TA06205K crossref_primary_10_1002_ange_202424747 crossref_primary_10_1002_ange_202402973 crossref_primary_10_1016_j_jssc_2021_122515 crossref_primary_10_1021_acs_chemmater_2c02431 crossref_primary_10_1021_acsenergylett_2c02275 crossref_primary_10_3390_inorganics9010004 crossref_primary_10_1002_rem_21770 crossref_primary_10_18410_jebmh_2019_32 crossref_primary_10_1016_j_molstruc_2023_136929 crossref_primary_10_1021_jacs_1c11507 crossref_primary_10_1007_s44211_025_00740_w crossref_primary_10_1021_jacs_4c07772 crossref_primary_10_1016_j_ccr_2021_213968 crossref_primary_10_1021_acs_analchem_4c02237 crossref_primary_10_1039_D3CS00267E crossref_primary_10_1039_D4SC03700F crossref_primary_10_1016_j_seppur_2023_124311 crossref_primary_10_1021_acs_cgd_1c00614 crossref_primary_10_1002_advs_202300752 crossref_primary_10_1016_j_apmt_2025_102676 crossref_primary_10_1039_D2QM01070D crossref_primary_10_1016_j_cej_2023_147992 crossref_primary_10_1021_acs_cgd_2c00406 crossref_primary_10_1002_ange_202411440 crossref_primary_10_1039_D2TA01678H crossref_primary_10_1021_acs_inorgchem_1c03340 crossref_primary_10_1039_D3CS00939D crossref_primary_10_1016_j_ccr_2021_214273 crossref_primary_10_1002_ange_202211808 crossref_primary_10_1021_acsami_1c11018 crossref_primary_10_1021_acs_organomet_3c00358 crossref_primary_10_1002_anie_202412844 crossref_primary_10_1021_acs_inorgchem_2c00648 crossref_primary_10_1039_D2CC05851K crossref_primary_10_1038_s42004_023_00945_y crossref_primary_10_31857_S0132344X23600133 crossref_primary_10_1021_acsmaterialslett_4c00773 crossref_primary_10_1002_ange_202301764 crossref_primary_10_1021_acs_inorgchem_2c01608 crossref_primary_10_1021_acs_chemmater_1c03895 crossref_primary_10_1021_jacs_1c03432 crossref_primary_10_1039_D1CE01542G crossref_primary_10_1039_C9CS00829B crossref_primary_10_1038_s41467_022_28679_w crossref_primary_10_1021_acs_accounts_1c00615 crossref_primary_10_1021_acs_chemmater_2c00476 crossref_primary_10_1039_D1NA00173F crossref_primary_10_1039_D2YA00140C crossref_primary_10_1016_j_ccr_2023_215175 crossref_primary_10_1016_j_seppur_2022_122095 crossref_primary_10_1021_acs_jpcc_2c01979 crossref_primary_10_1002_adfm_202210265 crossref_primary_10_1002_anbr_202100014 crossref_primary_10_1039_D0CS01538E crossref_primary_10_1002_anie_202100240 crossref_primary_10_1016_j_jinorgbio_2023_112394 crossref_primary_10_1039_D4QI02101K crossref_primary_10_1002_adfm_202310121 crossref_primary_10_1002_adfm_202406088 crossref_primary_10_1002_anie_202301764 crossref_primary_10_1021_jacs_3c06590 crossref_primary_10_1016_j_susmat_2023_e00701 crossref_primary_10_1021_acsami_1c07178 crossref_primary_10_1002_anie_202113852 crossref_primary_10_1039_D1CE01221E crossref_primary_10_1021_acscentsci_3c00078 crossref_primary_10_1038_s42004_022_00799_w crossref_primary_10_1002_anie_202400162 crossref_primary_10_1002_ange_202406564 crossref_primary_10_1007_s11172_024_4467_4 crossref_primary_10_3390_inorganics9040027 crossref_primary_10_1016_j_ccr_2021_213998 crossref_primary_10_1016_j_ijhydene_2022_10_108 crossref_primary_10_1021_acssuschemeng_4c03427 crossref_primary_10_1002_aic_17981 crossref_primary_10_1021_acs_inorgchem_1c00012 crossref_primary_10_1016_j_mtener_2023_101426 crossref_primary_10_1039_D2TA07437K crossref_primary_10_1021_acscentsci_3c00637 crossref_primary_10_1016_j_micromeso_2021_111487 crossref_primary_10_1039_D1DT03175A crossref_primary_10_1134_S1070328423600316 crossref_primary_10_1039_D2TA03216C crossref_primary_10_1002_slct_202202382 crossref_primary_10_1021_acs_jpclett_1c01981 crossref_primary_10_1002_smtd_202402218 crossref_primary_10_3390_ijms23137121 crossref_primary_10_1002_adfm_202304473 crossref_primary_10_3390_molecules27123845 crossref_primary_10_1002_smll_202104387 crossref_primary_10_1002_adfm_202410751 crossref_primary_10_1016_j_micromeso_2023_112688 crossref_primary_10_1016_j_ijhydene_2021_02_194 crossref_primary_10_1002_anie_202106769 crossref_primary_10_1016_j_seppur_2023_125329 crossref_primary_10_1039_D4CC04223A crossref_primary_10_1039_D3DT01087B crossref_primary_10_1016_j_eng_2022_03_022 crossref_primary_10_1039_D1TA10385G crossref_primary_10_1126_sciadv_adf5087 crossref_primary_10_1002_tcr_202000173 crossref_primary_10_1016_j_fuel_2025_134416 crossref_primary_10_1039_D2EN00155A crossref_primary_10_1016_j_enchem_2021_100057 crossref_primary_10_1021_acsami_2c22568 crossref_primary_10_1016_j_inoche_2023_110733 crossref_primary_10_1039_D2SC04012C crossref_primary_10_1021_acsnano_2c11339 crossref_primary_10_1016_j_cej_2021_133587 crossref_primary_10_3390_magnetochemistry10120099 crossref_primary_10_1002_anie_202101644 crossref_primary_10_1002_smll_202301894 crossref_primary_10_1016_j_ijhydene_2021_12_259 crossref_primary_10_59717_j_xinn_mater_2024_100117 crossref_primary_10_1002_ange_202302376 crossref_primary_10_1016_j_chroma_2024_465258 crossref_primary_10_1016_j_heliyon_2024_e39168 crossref_primary_10_1016_j_mtsust_2023_100597 crossref_primary_10_1002_anie_202411960 crossref_primary_10_3389_fchem_2020_00719 crossref_primary_10_1007_s00216_021_03625_9 crossref_primary_10_1021_acs_chemmater_4c01063 crossref_primary_10_1039_D2CS00167E crossref_primary_10_1039_D3DT02314A crossref_primary_10_1021_acssuschemeng_2c04543 crossref_primary_10_1021_jacs_3c01705 crossref_primary_10_1002_slct_202302760 crossref_primary_10_1021_acsnano_4c07119 crossref_primary_10_1002_anie_202407484 crossref_primary_10_1016_j_cej_2022_138880 crossref_primary_10_1016_j_apsusc_2025_163022 crossref_primary_10_1039_D3TA07004B crossref_primary_10_1016_j_cjche_2021_08_010 crossref_primary_10_1038_s41578_024_00665_2 crossref_primary_10_1021_jacs_4c10636 crossref_primary_10_1039_D3TA05413F crossref_primary_10_1039_D4CS00796D crossref_primary_10_1002_anie_202302376 crossref_primary_10_1002_cjoc_202100207 crossref_primary_10_1016_j_chphi_2023_100333 crossref_primary_10_1002_chem_202403574 crossref_primary_10_1016_j_ccr_2022_214891 crossref_primary_10_3390_catal13010133 crossref_primary_10_1016_j_bios_2022_114700 crossref_primary_10_1016_j_jssc_2022_123617 crossref_primary_10_1039_D3NR02250A crossref_primary_10_1360_SSC_2024_0009 crossref_primary_10_1016_j_ccr_2024_215862 crossref_primary_10_1021_acsnano_4c04213 crossref_primary_10_1002_qua_27084 crossref_primary_10_1002_smll_202103590 crossref_primary_10_1021_acs_chemmater_0c04675 crossref_primary_10_1016_j_microc_2023_108388 crossref_primary_10_1002_cjoc_202300368 crossref_primary_10_1016_j_jece_2022_108795 crossref_primary_10_1007_s10904_025_03616_8 crossref_primary_10_1039_D2EE02742A crossref_primary_10_1016_j_micromeso_2022_112410 crossref_primary_10_1021_jacs_3c06981 crossref_primary_10_1021_acs_langmuir_2c02873 crossref_primary_10_1039_D1DT01477C crossref_primary_10_1002_smtd_202400596 crossref_primary_10_1021_acsami_1c14359 crossref_primary_10_1002_smsc_202100015 crossref_primary_10_1016_j_est_2025_115363 crossref_primary_10_1021_jacs_3c02019 crossref_primary_10_3390_nano12234263 crossref_primary_10_1002_adma_202204800 crossref_primary_10_1002_adfm_202304790 crossref_primary_10_1021_acs_langmuir_4c03234 crossref_primary_10_1002_adfm_202010703 crossref_primary_10_1002_adma_202207741 crossref_primary_10_1016_j_cej_2022_135953 crossref_primary_10_1038_s41563_024_02029_1 crossref_primary_10_1002_ange_202211776 crossref_primary_10_1007_s10904_024_03462_0 crossref_primary_10_1021_acsnano_0c10144 crossref_primary_10_1002_ange_202411960 crossref_primary_10_1016_j_biomaterials_2024_122755 crossref_primary_10_1039_D1QM00251A crossref_primary_10_1038_s41467_025_55891_1 crossref_primary_10_1002_ente_202402354 crossref_primary_10_1039_D0FD00103A crossref_primary_10_1002_asia_202200243 crossref_primary_10_1016_j_jssc_2022_123038 crossref_primary_10_1021_jacs_1c12421 crossref_primary_10_1039_D3TA05715A crossref_primary_10_1021_acs_iecr_2c02786 crossref_primary_10_1021_acs_chemmater_4c01153 crossref_primary_10_1039_D0CE01883J crossref_primary_10_1039_D2ME00238H crossref_primary_10_3390_catal11010051 crossref_primary_10_1016_j_ccr_2022_214995 crossref_primary_10_1039_D2GC04313K crossref_primary_10_1016_j_trac_2024_117558 crossref_primary_10_1021_acs_chemmater_2c02704 crossref_primary_10_1021_acs_chemmater_2c02946 crossref_primary_10_1002_ange_202113852 crossref_primary_10_1002_ange_202106769 crossref_primary_10_1016_j_apmt_2023_101971 crossref_primary_10_1016_j_cej_2024_153879 crossref_primary_10_1016_j_compositesb_2022_110174 crossref_primary_10_1016_j_chempr_2024_11_020 crossref_primary_10_1016_j_seppur_2022_122945 crossref_primary_10_1021_acsami_0c20369 crossref_primary_10_1021_jacs_1c04804 crossref_primary_10_1021_jacs_3c02155 crossref_primary_10_1016_j_commatsci_2024_113555 crossref_primary_10_1016_j_xcrp_2021_100421 crossref_primary_10_1016_j_ijhydene_2023_05_247 crossref_primary_10_1016_j_jallcom_2022_165326 crossref_primary_10_1002_anie_202202597 crossref_primary_10_1007_s00894_020_04437_x crossref_primary_10_1016_j_ccr_2025_216464 crossref_primary_10_1002_jccs_202100377 crossref_primary_10_1039_D2RA03161B crossref_primary_10_1246_bcsj_20220180 crossref_primary_10_1016_j_ceja_2024_100700 crossref_primary_10_1002_adma_202209907 |
Cites_doi | 10.1021/ja203564w 10.1021/ja503296c 10.1073/pnas.0909718106 10.1038/ncomms9348 10.1021/cm304055k 10.1021/ja5131269 10.1039/c3cc42531b 10.1021/ja800669j 10.1038/nchem.1956 10.1002/anie.201502045 10.1039/b718371b 10.1002/anie.201204475 10.1021/ja074366o 10.1126/science.aat0586 10.1021/ja109317e 10.1021/ja072871f 10.1002/anie.201703675 10.1038/378703a0 10.1021/jacs.6b06239 10.1039/c0cc04526h 10.1002/chem.201300326 10.1126/science.1192160 10.1021/jacs.7b06197 10.1039/C4CS00002A 10.1021/jacs.7b07921 10.1002/anie.200705998 10.1021/jacs.6b04204 10.1021/jacs.5b07687 10.1039/C4CS00103F 10.1038/nature19763 10.1038/nature14327 10.1038/nchem.654 10.1038/s41467-018-04050-w 10.1021/ja102804s 10.1021/ja202223d 10.1073/pnas.1416417112 10.1021/ja512478y 10.1021/jacs.6b04501 10.1126/science.1246738 10.1021/jacs.6b11259 10.1039/C4TA04907A 10.1021/ja101208s 10.1039/b718443c 10.1021/ja067374y 10.1039/b802258p 10.1021/jacs.5b03540 10.1021/ic201219g 10.1021/jacs.5b04674 10.1021/ja204214t 10.1021/jacs.9b10418 10.1021/ja310596a 10.1021/ja804703w 10.1021/ja205827z 10.1021/ja209197f 10.1021/jacs.6b08724 10.1126/science.1181761 10.1021/acsami.8b20355 10.1002/anie.200462787 10.1002/anie.200300636 10.1021/jacs.5b02897 10.1021/jacs.7b06382 10.1016/j.micromeso.2003.12.027 10.1021/ic1011549 10.1039/c3cy00864a 10.1021/jacs.6b08417 10.1126/science.1067208 10.1126/science.1217544 10.1038/46248 10.1126/science.1175441 10.1126/science.1238339 10.1039/C5CC08973E 10.1126/science.1220131 10.1038/nmat4238 10.1038/ncomms12610 10.1021/ja302991b 10.1016/j.micromeso.2012.01.015 10.1021/jacs.6b00849 10.1126/science.1230444 10.1039/C4CS00067F 10.1021/jacs.5b10666 10.1021/ja7114053 10.1021/ja901440g 10.1073/pnas.1808829115 10.1021/ja507119n 10.1021/jacs.7b07392 10.1002/9783527821099 10.1002/anie.200802908 10.1002/anie.201003221 10.1021/ja502238a 10.1021/ja003159k 10.1021/jacs.7b03113 10.1021/jacs.6b07267 10.1002/anie.201406415 10.1021/jp401515r 10.1021/jacs.7b02745 10.1038/nchem.2258 10.1021/ja052431t 10.1021/ja960746q 10.1073/pnas.0804900105 10.1021/jacs.8b11221 10.1039/B714083E 10.1021/ja4037516 10.1021/jacs.8b11525 10.1021/ja903918s 10.1021/acs.chemmater.6b02749 10.1002/anie.201805244 10.1021/ja512762r 10.1021/acscentsci.6b00012 |
ContentType | Journal Article |
Copyright | 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2020 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2020 Wiley‐VCH GmbH |
DBID | AAYXX CITATION 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1002/adfm.202000238 |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | Materials Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1616-3028 |
EndPage | n/a |
ExternalDocumentID | 10_1002_adfm_202000238 ADFM202000238 |
Genre | reviewArticle |
GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OC 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WFSAM WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ~IA ~WT .Y3 31~ AANHP AAYXX ACBWZ ACRPL ACYXJ ADMLS ADNMO AEYWJ AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION EJD FEDTE HF~ HVGLF LW6 7SP 7SR 7U5 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 L7M |
ID | FETCH-LOGICAL-c3838-c69d2f1c9a89cc1f09f30ff7f04c05394fca89fa4c5253109b890103ad809eec3 |
IEDL.DBID | DR2 |
ISSN | 1616-301X |
IngestDate | Fri Jul 25 07:51:33 EDT 2025 Tue Jul 01 04:12:13 EDT 2025 Thu Apr 24 22:54:55 EDT 2025 Wed Jan 22 16:31:52 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 41 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3838-c69d2f1c9a89cc1f09f30ff7f04c05394fca89fa4c5253109b890103ad809eec3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-6344-5782 0000-0002-5611-3325 0000-0002-8532-333X |
PQID | 2449090689 |
PQPubID | 2045204 |
PageCount | 24 |
ParticipantIDs | proquest_journals_2449090689 crossref_citationtrail_10_1002_adfm_202000238 crossref_primary_10_1002_adfm_202000238 wiley_primary_10_1002_adfm_202000238_ADFM202000238 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-10-01 |
PublicationDateYYYYMMDD | 2020-10-01 |
PublicationDate_xml | – month: 10 year: 2020 text: 2020-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | Advanced functional materials |
PublicationYear | 2020 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2018; 362 2019; 11 2010 2008; 49 2014; 136 2012; 51 2013; 19 2009 2011; 131 133 2018; 9 2004; 73 2014; 4 2012; 134 2015; 137 2002; 223 2000; 122 2010; 2 2012; 335 2012; 336 2014; 6 2009; 325 2010 2013; 132 117 2014; 53 2015 2014; 137 136 2009 2008; 106 105 2015; 14 2015; 6 2007; 129 2010; 329 2018; 140 2013; 49 2010; 327 1995 2003 2019; 378 423 2002; 295 2015; 54 2016 2016; 7 2 2008 2016; 52 2013; 341 2009; 131 2019; 141 2015; 7 2005; 44 2011; 133 2017; 139 2014; 43 2010; 49 2012 2015 2013; 157 3 25 2016; 539 1999 2013; 402 341 2015; 112 2005; 127 2018; 115 2017; 56 2011; 50 2008; 47 2010; 132 2015; 519 2013; 135 2016; 138 2011; 47 2016; 28 2009; 38 2008; 130 1996; 118 2014; 343 2018; 57 e_1_2_9_75_1 e_1_2_9_98_1 e_1_2_9_52_1 e_1_2_9_79_1 e_1_2_9_33_2 e_1_2_9_94_1 e_1_2_9_10_1 e_1_2_9_56_1 e_1_2_9_33_1 e_1_2_9_90_1 e_1_2_9_71_1 e_1_2_9_37_2 e_1_2_9_14_1 e_1_2_9_37_3 e_1_2_9_37_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_64_1 e_1_2_9_87_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_68_1 e_1_2_9_83_1 e_1_2_9_6_1 e_1_2_9_60_1 e_1_2_9_2_2 e_1_2_9_2_1 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_99_1 e_1_2_9_72_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_57_1 e_1_2_9_95_1 e_1_2_9_76_1 e_1_2_9_91_1 e_1_2_9_38_1 e_1_2_9_19_1 e_1_2_9_42_1 e_1_2_9_88_1 e_1_2_9_61_1 e_1_2_9_46_1 e_1_2_9_84_1 e_1_2_9_23_1 e_1_2_9_65_1 e_1_2_9_80_1 e_1_2_9_5_1 e_1_2_9_1_3 e_1_2_9_1_2 e_1_2_9_1_1 e_1_2_9_9_1 e_1_2_9_27_1 e_1_2_9_69_1 e_1_2_9_31_1 e_1_2_9_50_1 e_1_2_9_73_1 e_1_2_9_35_1 e_1_2_9_77_1 e_1_2_9_96_1 e_1_2_9_12_1 e_1_2_9_54_1 e_1_2_9_92_1 e_1_2_9_39_1 Yaghi O. M. (e_1_2_9_15_1) 2002; 223 e_1_2_9_16_1 e_1_2_9_58_1 e_1_2_9_62_2 e_1_2_9_20_1 e_1_2_9_62_1 e_1_2_9_89_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_66_1 e_1_2_9_85_1 e_1_2_9_8_1 e_1_2_9_81_1 e_1_2_9_4_1 e_1_2_9_28_1 e_1_2_9_47_1 e_1_2_9_74_1 e_1_2_9_51_1 e_1_2_9_78_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_55_1 e_1_2_9_97_1 e_1_2_9_93_1 e_1_2_9_70_1 e_1_2_9_59_2 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_59_1 e_1_2_9_40_2 e_1_2_9_63_2 e_1_2_9_86_2 e_1_2_9_63_1 e_1_2_9_40_1 e_1_2_9_21_1 e_1_2_9_67_1 e_1_2_9_44_1 e_1_2_9_86_1 e_1_2_9_7_1 e_1_2_9_82_1 e_1_2_9_3_1 e_1_2_9_25_1 e_1_2_9_48_1 e_1_2_9_29_1 |
References_xml | – volume: 43 start-page: 5896 year: 2014 publication-title: Chem. Soc. Rev. – volume: 53 year: 2014 publication-title: Angew. Chem., Int. Ed. – volume: 6 start-page: 8348 year: 2015 publication-title: Nat. Commun. – volume: 135 start-page: 862 year: 2013 publication-title: J. Am. Chem. Soc. – volume: 137 start-page: 2223 year: 2015 publication-title: J. Am. Chem. Soc. – volume: 141 year: 2019 publication-title: J. Am. Chem. Soc. – volume: 130 start-page: 5854 year: 2008 publication-title: J. Am. Chem. Soc. – volume: 135 start-page: 8185 year: 2013 publication-title: J. Am. Chem. Soc. – volume: 136 year: 2014 publication-title: J. Am. Chem. Soc. – volume: 11 start-page: 6097 year: 2019 publication-title: ACS Appl. Mater. Interfaces – volume: 43 start-page: 5456 year: 2014 publication-title: Chem. Soc. Rev. – volume: 2 start-page: 439 year: 2010 publication-title: Nat. Chem. – volume: 138 start-page: 8912 year: 2016 publication-title: J. Am. Chem. Soc. – volume: 132 year: 2010 publication-title: J. Am. Chem. Soc. – volume: 138 start-page: 9783 year: 2016 publication-title: J. Am. Chem. Soc. – volume: 73 start-page: 81 year: 2004 publication-title: Microporous Mesoporous Mater. – volume: 336 start-page: 1018 year: 2012 publication-title: Science – volume: 539 start-page: 76 year: 2016 publication-title: Nature – volume: 52 start-page: 1579 year: 2016 publication-title: Chem. Commun. – volume: 325 start-page: 855 year: 2009 publication-title: Science – volume: 157 3 25 start-page: 89 2057 790 year: 2012 2015 2013 publication-title: Microporous Mesoporous Mater. J. Mater. Chem. A Chem. Mater. – volume: 223 start-page: A35 year: 2002 publication-title: Abstr. Pap. Am. Chem. Soc. – volume: 139 year: 2017 publication-title: J. Am. Chem. Soc. – volume: 134 start-page: 9464 year: 2012 publication-title: J. Am. Chem. Soc. – volume: 47 start-page: 2838 year: 2011 publication-title: Chem. Commun. – volume: 4 start-page: 925 year: 2014 publication-title: Catal. Sci. Technol. – volume: 106 105 year: 2009 2008 publication-title: Proc. Natl. Acad. Sci. USA Proc. Natl. Acad. Sci. USA – volume: 51 year: 2012 publication-title: Angew. Chem., Int. Ed. – volume: 138 start-page: 3241 year: 2016 publication-title: J. Am. Chem. Soc. – volume: 138 start-page: 8352 year: 2016 publication-title: J. Am. Chem. Soc. – volume: 402 341 start-page: 276 year: 1999 2013 publication-title: Nature Science – start-page: 820 year: 2008 publication-title: Chem. Commun. – volume: 141 start-page: 1577 year: 2019 publication-title: J. Am. Chem. Soc. – volume: 14 start-page: 512 year: 2015 publication-title: Nat. Mater. – volume: 112 start-page: 5591 year: 2015 publication-title: Proc. Natl. Acad. Sci. USA – volume: 49 start-page: 7681 year: 2013 publication-title: Chem. Commun. – volume: 137 start-page: 6164 year: 2015 publication-title: J. Am. Chem. Soc. – volume: 137 136 start-page: 9643 7403 year: 2015 2014 publication-title: J. Am. Chem. Soc. J. Am. Chem. Soc. – volume: 9 start-page: 1647 year: 2018 publication-title: Nat. Commun. – volume: 341 start-page: 882 year: 2013 publication-title: Science – volume: 118 start-page: 9096 year: 1996 publication-title: J. Am. Chem. Soc. – start-page: 4192 year: 2008 publication-title: Chem. Commun. – volume: 49 start-page: 8086 1287 year: 2010 2008 publication-title: Inorg. Chem. Chem. Commun. – volume: 139 start-page: 6090 year: 2017 publication-title: J. Am. Chem. Soc. – volume: 122 year: 2000 publication-title: J. Am. Chem. Soc. – volume: 335 start-page: 1606 year: 2012 publication-title: Science – volume: 7 start-page: 514 year: 2015 publication-title: Nat. Chem. – volume: 56 start-page: 9704 year: 2017 publication-title: Angew. Chem., Int. Ed. – volume: 327 start-page: 846 year: 2010 publication-title: Science – volume: 50 start-page: 9518 year: 2011 publication-title: Inorg. Chem. – volume: 49 start-page: 6751 year: 2010 publication-title: Angew. Chem., Int. Ed. – volume: 54 year: 2015 publication-title: Angew. Chem., Int. Ed. – volume: 137 year: 2015 publication-title: J. Am. Chem. Soc. – volume: 6 start-page: 590 year: 2014 publication-title: Nat. Chem. – volume: 132 117 year: 2010 2013 publication-title: J. Am. Chem. Soc. J. Phys. Chem. C – volume: 134 start-page: 99 year: 2012 publication-title: J. Am. Chem. Soc. – volume: 129 start-page: 2607 year: 2007 publication-title: J. Am. Chem. Soc. – volume: 137 start-page: 7810 year: 2015 publication-title: J. Am. Chem. Soc. – volume: 44 start-page: 4745 year: 2005 publication-title: Angew. Chem., Int. Ed. – volume: 138 start-page: 3255 year: 2016 publication-title: J. Am. Chem. Soc. – volume: 139 start-page: 2855 year: 2017 publication-title: J. Am. Chem. Soc. – volume: 137 start-page: 2665 year: 2015 publication-title: J. Am. Chem. Soc. – volume: 19 start-page: 5533 year: 2013 publication-title: Chem. ‐ Eur. J. – volume: 47 start-page: 8482 year: 2008 publication-title: Angew. Chem., Int. Ed. – volume: 115 year: 2018 publication-title: Proc. Natl. Acad. Sci. USA – volume: 127 start-page: 8940 year: 2005 publication-title: J. Am. Chem. Soc. – volume: 38 start-page: 1315 year: 2009 publication-title: Chem. Soc. Rev. – volume: 136 start-page: 8863 year: 2014 publication-title: J. Am. Chem. Soc. – volume: 47 start-page: 4144 year: 2008 publication-title: Angew. Chem., Int. Ed. – volume: 343 start-page: 66 year: 2014 publication-title: Science – volume: 133 start-page: 2064 year: 2011 publication-title: J. Am. Chem. Soc. – volume: 7 2 start-page: 148 year: 2016 2016 publication-title: Nat. Commun. ACS Cent. Sci. – volume: 139 start-page: 8259 year: 2017 publication-title: J. Am. Chem. Soc. – volume: 140 year: 2018 publication-title: J. Am. Chem. Soc. – volume: 131 start-page: 9644 year: 2009 publication-title: J. Am. Chem. Soc. – volume: 378 423 start-page: 703 705 year: 1995 2003 2019 publication-title: Nature Nature – volume: 138 year: 2016 publication-title: J. Am. Chem. Soc. – volume: 137 start-page: 3177 year: 2015 publication-title: J. Am. Chem. Soc. – volume: 133 year: 2011 publication-title: J. Am. Chem. Soc. – volume: 129 year: 2007 publication-title: J. Am. Chem. Soc. – volume: 130 year: 2008 publication-title: J. Am. Chem. Soc. – volume: 28 start-page: 7190 year: 2016 publication-title: Chem. Mater. – volume: 295 start-page: 469 year: 2002 publication-title: Science – volume: 329 start-page: 424 year: 2010 publication-title: Science – volume: 519 start-page: 303 year: 2015 publication-title: Nature – volume: 57 year: 2018 publication-title: Angew. Chem., Int. Ed. – volume: 43 start-page: 5982 year: 2014 publication-title: Chem. Soc. Rev. – volume: 362 start-page: 443 year: 2018 publication-title: Science – volume: 131 133 start-page: 7524 5806 year: 2009 2011 publication-title: J. Am. Chem. Soc. J. Am. Chem. Soc. – ident: e_1_2_9_54_1 doi: 10.1021/ja203564w – ident: e_1_2_9_35_1 doi: 10.1021/ja503296c – ident: e_1_2_9_40_1 doi: 10.1073/pnas.0909718106 – ident: e_1_2_9_67_1 doi: 10.1038/ncomms9348 – ident: e_1_2_9_37_3 doi: 10.1021/cm304055k – ident: e_1_2_9_11_1 doi: 10.1021/ja5131269 – ident: e_1_2_9_65_1 doi: 10.1039/c3cc42531b – ident: e_1_2_9_50_1 doi: 10.1021/ja800669j – ident: e_1_2_9_52_1 doi: 10.1038/nchem.1956 – ident: e_1_2_9_30_1 doi: 10.1002/anie.201502045 – ident: e_1_2_9_51_1 doi: 10.1039/b718371b – ident: e_1_2_9_58_1 doi: 10.1002/anie.201204475 – ident: e_1_2_9_18_1 doi: 10.1021/ja074366o – ident: e_1_2_9_42_1 doi: 10.1126/science.aat0586 – ident: e_1_2_9_45_1 doi: 10.1021/ja109317e – ident: e_1_2_9_39_1 doi: 10.1021/ja072871f – ident: e_1_2_9_72_1 doi: 10.1002/anie.201703675 – ident: e_1_2_9_1_1 doi: 10.1038/378703a0 – ident: e_1_2_9_4_1 doi: 10.1021/jacs.6b06239 – ident: e_1_2_9_23_1 doi: 10.1039/c0cc04526h – ident: e_1_2_9_79_1 doi: 10.1002/chem.201300326 – ident: e_1_2_9_10_1 doi: 10.1126/science.1192160 – ident: e_1_2_9_80_1 doi: 10.1021/jacs.7b06197 – ident: e_1_2_9_25_1 doi: 10.1039/C4CS00002A – ident: e_1_2_9_76_1 doi: 10.1021/jacs.7b07921 – ident: e_1_2_9_21_1 doi: 10.1002/anie.200705998 – ident: e_1_2_9_75_1 doi: 10.1021/jacs.6b04204 – ident: e_1_2_9_98_1 doi: 10.1021/jacs.5b07687 – ident: e_1_2_9_85_1 doi: 10.1039/C4CS00103F – ident: e_1_2_9_93_1 doi: 10.1038/nature19763 – ident: e_1_2_9_44_1 doi: 10.1038/nature14327 – ident: e_1_2_9_34_1 doi: 10.1038/nchem.654 – ident: e_1_2_9_84_1 doi: 10.1038/s41467-018-04050-w – ident: e_1_2_9_86_1 doi: 10.1021/ja102804s – ident: e_1_2_9_63_2 doi: 10.1021/ja202223d – ident: e_1_2_9_95_1 doi: 10.1073/pnas.1416417112 – ident: e_1_2_9_57_1 doi: 10.1021/ja512478y – ident: e_1_2_9_73_1 doi: 10.1021/jacs.6b04501 – ident: e_1_2_9_83_1 doi: 10.1126/science.1246738 – ident: e_1_2_9_17_1 doi: 10.1021/jacs.6b11259 – ident: e_1_2_9_37_2 doi: 10.1039/C4TA04907A – ident: e_1_2_9_71_1 doi: 10.1021/ja101208s – ident: e_1_2_9_62_2 doi: 10.1039/b718443c – ident: e_1_2_9_61_1 doi: 10.1021/ja067374y – ident: e_1_2_9_16_1 doi: 10.1039/b802258p – ident: e_1_2_9_92_1 doi: 10.1021/jacs.5b03540 – ident: e_1_2_9_90_1 doi: 10.1021/ic201219g – ident: e_1_2_9_33_1 doi: 10.1021/jacs.5b04674 – ident: e_1_2_9_87_1 doi: 10.1021/ja204214t – ident: e_1_2_9_29_1 doi: 10.1021/jacs.9b10418 – ident: e_1_2_9_88_1 doi: 10.1021/ja310596a – ident: e_1_2_9_60_1 doi: 10.1021/ja804703w – ident: e_1_2_9_78_1 doi: 10.1021/ja205827z – ident: e_1_2_9_91_1 doi: 10.1021/ja209197f – ident: e_1_2_9_99_1 doi: 10.1021/jacs.6b08724 – ident: e_1_2_9_9_1 doi: 10.1126/science.1181761 – ident: e_1_2_9_28_1 doi: 10.1021/acsami.8b20355 – ident: e_1_2_9_38_1 doi: 10.1002/anie.200462787 – ident: e_1_2_9_1_2 doi: 10.1002/anie.200300636 – ident: e_1_2_9_82_1 doi: 10.1021/jacs.5b02897 – ident: e_1_2_9_36_1 doi: 10.1021/jacs.7b06382 – ident: e_1_2_9_49_1 doi: 10.1016/j.micromeso.2003.12.027 – ident: e_1_2_9_62_1 doi: 10.1021/ic1011549 – ident: e_1_2_9_66_1 doi: 10.1039/c3cy00864a – ident: e_1_2_9_74_1 doi: 10.1021/jacs.6b08417 – ident: e_1_2_9_12_1 doi: 10.1126/science.1067208 – ident: e_1_2_9_41_1 doi: 10.1126/science.1217544 – ident: e_1_2_9_2_1 doi: 10.1038/46248 – ident: e_1_2_9_43_1 doi: 10.1126/science.1175441 – ident: e_1_2_9_96_1 doi: 10.1126/science.1238339 – ident: e_1_2_9_97_1 doi: 10.1039/C5CC08973E – ident: e_1_2_9_3_1 doi: 10.1126/science.1220131 – ident: e_1_2_9_53_1 doi: 10.1038/nmat4238 – ident: e_1_2_9_59_1 doi: 10.1038/ncomms12610 – ident: e_1_2_9_89_1 doi: 10.1021/ja302991b – ident: e_1_2_9_37_1 doi: 10.1016/j.micromeso.2012.01.015 – ident: e_1_2_9_55_1 doi: 10.1021/jacs.6b00849 – ident: e_1_2_9_2_2 doi: 10.1126/science.1230444 – ident: e_1_2_9_24_1 doi: 10.1039/C4CS00067F – ident: e_1_2_9_13_1 doi: 10.1021/jacs.5b10666 – ident: e_1_2_9_20_1 doi: 10.1021/ja7114053 – ident: e_1_2_9_63_1 doi: 10.1021/ja901440g – ident: e_1_2_9_94_1 doi: 10.1073/pnas.1808829115 – ident: e_1_2_9_7_1 doi: 10.1021/ja507119n – ident: e_1_2_9_46_1 doi: 10.1021/jacs.7b07392 – ident: e_1_2_9_1_3 doi: 10.1002/9783527821099 – ident: e_1_2_9_19_1 doi: 10.1002/anie.200802908 – ident: e_1_2_9_32_1 doi: 10.1002/anie.201003221 – ident: e_1_2_9_33_2 doi: 10.1021/ja502238a – volume: 223 start-page: A35 year: 2002 ident: e_1_2_9_15_1 publication-title: Abstr. Pap. Am. Chem. Soc. – ident: e_1_2_9_48_1 doi: 10.1021/ja003159k – ident: e_1_2_9_70_1 doi: 10.1021/jacs.7b03113 – ident: e_1_2_9_14_1 doi: 10.1021/jacs.6b07267 – ident: e_1_2_9_5_1 doi: 10.1002/anie.201406415 – ident: e_1_2_9_86_2 doi: 10.1021/jp401515r – ident: e_1_2_9_6_1 doi: 10.1021/jacs.7b02745 – ident: e_1_2_9_31_1 doi: 10.1038/nchem.2258 – ident: e_1_2_9_56_1 doi: 10.1021/ja052431t – ident: e_1_2_9_47_1 doi: 10.1021/ja960746q – ident: e_1_2_9_40_2 doi: 10.1073/pnas.0804900105 – ident: e_1_2_9_77_1 doi: 10.1021/jacs.8b11221 – ident: e_1_2_9_64_1 doi: 10.1039/B714083E – ident: e_1_2_9_8_1 doi: 10.1038/ncomms9348 – ident: e_1_2_9_81_1 doi: 10.1021/ja4037516 – ident: e_1_2_9_69_1 doi: 10.1021/jacs.8b11525 – ident: e_1_2_9_22_1 doi: 10.1021/ja903918s – ident: e_1_2_9_26_1 doi: 10.1021/acs.chemmater.6b02749 – ident: e_1_2_9_68_1 doi: 10.1002/anie.201805244 – ident: e_1_2_9_27_1 doi: 10.1021/ja512762r – ident: e_1_2_9_59_2 doi: 10.1021/acscentsci.6b00012 |
SSID | ssj0017734 |
Score | 2.6916313 |
SecondaryResourceType | review_article |
Snippet | The pores in metal–organic frameworks (MOFs) can be functionalized by placing chemical entities along the backbone and within the backbone. This chemistry is... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Backbone Chemistry Electron transport Energy transfer functionality sequencing Materials science Metal-organic frameworks pore chemistry site cooperation site coupling |
Title | Pore Chemistry of Metal–Organic Frameworks |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202000238 https://www.proquest.com/docview/2449090689 |
Volume | 30 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV09T8MwED2hssDAN6JQqgxILKS1Ezexx6olqhBBCKjULXIcewG1qB8LE_-Bf8gvwY6TtEVCSLAlih0l57v4OX73DuCC-0QvE0TmUiyUSxjFLsepdBlJwwzzQGMSkzsc3wWDIbkZdUYrWfxWH6L64WYiI_9emwDn6ay9FA3lmTKZ5F4u2WKyfQ1hy6Cih0o_Coeh3VYOsCF44VGp2oi89nr39VlpCTVXAWs-40S7wMtntUST59ZinrbE2zcZx_-8zB7sFHDU6Vr_2YcNOT6A7RWRwkO4up9MpdMrC8M5E-XEUkP2z_cPm8gpnKhkeM2OYBhdP_UGblFjwRV6bUpdEbDMU1gwTpkQWCGmfKRUqBAROj4ZUUJfUZyIjtcxKqIpNYQOn2cUMSmFfwy18WQsT8DhGmkE2iNwinxiNnf0yEtPICkRp8iXdXBLGyeiECA3dTBeEiud7CXGCkllhTpcVu1frfTGjy0b5ZAlRQjOEo1bGGIooKwOXm77X-6SdPtRXJ2d_qXTGWyZY0v2a0BtPl3Icw1a5mkTNrv9-PaxmTvoFwqY43M |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED5BGYCBN6JQIAMSCyl2kib2WBWiAk2FUCt1sxzHXkAt6mNh4j_wD_kl2Hm1RUJIMCaxo_h8F39n330HcMFdT7sJIrEJFsr2KME2x7G0qRcHCea-xiQmdzjq-u2-dz9oFNGEJhcm44coN9yMZaT_a2PgZkP6es4ayhNlUsmdlLOFrMKaKeudelVPJYMUDoLsYNnHJsQLDwreRuRcL_dfXpfmYHMRsqZrTrgNcfG1WajJc302jevi7RuR47-GswNbOSK1mpkK7cKKHO7B5gJP4T5cPY7G0moVteGskbIiqVH75_tHlssprLAI8pocQD-87bXadl5mwRbaPSW28GniKCwoJ1QIrBBVLlIqUMgT2kSpp4R-orgnGk7DEInGxMR0uDwhiEop3EOoDEdDeQQW12DD10qBY-R65nxHT750BJIScYJcWQW7EDITOQe5KYXxwjL2ZIcZKbBSClW4LNu_ZuwbP7asFXPGciucMA1dKKLIJ7QKTir8X97CmjdhVF4d_6XTOay3e1GHde66DyewYe5nsX81qEzHM3mqMcw0Pku19AspB-X6 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB1BkRAc2BGFAjkgcSGtnbiJfaxaorK0qhCVeoscx76A2qrLhRP_wB_yJdjZ2iIhJDgmsaNkPBM_x2_eAFxxl-hlgohtioWyCaPY5jiSNiORH2PuaUxicoc7Xa_dJ_eD-mApiz_Vhyh-uJnISL7XJsDHsaotREN5rEwmuZNIttB12CAeosavW0-FgBT2_XRf2cOG4YUHuWwjcmqr_VenpQXWXEasyZQT7ALPHzZlmrxU57OoKt6-6Tj-5232YCfDo1YjdaB9WJPDA9heUik8hJveaCKtZl4ZzhopqyM1Zv98_0gzOYUV5BSv6RH0g9vnZtvOiizYQi9OqS08FjsKC8YpEwIrxJSLlPIVIkIHKCNK6CuKE1F36kZGNKKG0eHymCImpXCPoTQcDeUJWFxDDU-7BI6QS8zujh566QgkJeIUubIMdm7jUGQK5KYQxmuYaic7obFCWFihDNdF-3GqvfFjy0o-ZGEWg9NQAxeGGPIoK4OT2P6Xu4SNVtApjk7_0ukSNnutIHy86z6cwZY5nRL_KlCaTebyXAOYWXSR-OgXmwHksg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pore+Chemistry+of+Metal%E2%80%93Organic+Frameworks&rft.jtitle=Advanced+functional+materials&rft.au=Ji%2C+Zhe&rft.au=Wang%2C+Haoze&rft.au=Canossa%2C+Stefano&rft.au=Wuttke%2C+Stefan&rft.date=2020-10-01&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=30&rft.issue=41&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadfm.202000238&rft.externalDBID=10.1002%252Fadfm.202000238&rft.externalDocID=ADFM202000238 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon |