Liquid–liquid phase separation drives the β‐catenin destruction complex formation

The intracellular multiprotein complex β‐catenin destruction complex plays a key role in Wnt/β‐catenin signaling. Wnt stimulation induces the assembly of the receptor‐associated signalosome and the inactivation of the destruction complex, leading to β‐catenin accumulation and transcriptional activat...

Full description

Saved in:
Bibliographic Details
Published inBioEssays Vol. 43; no. 10; pp. e2100138 - n/a
Main Authors Shi, Qiaoni, Kang, Kexin, Chen, Ye‐Guang
Format Journal Article
LanguageEnglish
Published Cambridge Wiley Subscription Services, Inc 01.10.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The intracellular multiprotein complex β‐catenin destruction complex plays a key role in Wnt/β‐catenin signaling. Wnt stimulation induces the assembly of the receptor‐associated signalosome and the inactivation of the destruction complex, leading to β‐catenin accumulation and transcriptional activation of the target genes. The core components of the destruction complex include Axin, APC, GSK3β, CK1α and other proteins. Recent studies demonstrated that Axin and APC undergo liquid–liquid phase separation (LLPS), which is critical for their function to regulate Wnt/β‐catenin signaling. Here, we discuss the possible roles of LLPS in Wnt/β‐catenin signaling and regulation of Axin LLPS by post‐translational modifications. The formation of the destruction complex is driven by IDR1‐mediated Axin1 LLPS, which is promoted by APC LLPS. In addition, β‐catenin has been reported to undergo LLPS in the nucleus. It remains unclear whether Dvl go through LLPS and its effect on the destruction complex.
AbstractList The intracellular multiprotein complex β‐catenin destruction complex plays a key role in Wnt/β‐catenin signaling. Wnt stimulation induces the assembly of the receptor‐associated signalosome and the inactivation of the destruction complex, leading to β‐catenin accumulation and transcriptional activation of the target genes. The core components of the destruction complex include Axin, APC, GSK3β, CK1α and other proteins. Recent studies demonstrated that Axin and APC undergo liquid–liquid phase separation (LLPS), which is critical for their function to regulate Wnt/β‐catenin signaling. Here, we discuss the possible roles of LLPS in Wnt/β‐catenin signaling and regulation of Axin LLPS by post‐translational modifications. The formation of the destruction complex is driven by IDR1‐mediated Axin1 LLPS, which is promoted by APC LLPS. In addition, β‐catenin has been reported to undergo LLPS in the nucleus. It remains unclear whether Dvl go through LLPS and its effect on the destruction complex.
The intracellular multiprotein complex β-catenin destruction complex plays a key role in Wnt/β-catenin signaling. Wnt stimulation induces the assembly of the receptor-associated signalosome and the inactivation of the destruction complex, leading to β-catenin accumulation and transcriptional activation of the target genes. The core components of the destruction complex include Axin, APC, GSK3β, CK1α and other proteins. Recent studies demonstrated that Axin and APC undergo liquid-liquid phase separation (LLPS), which is critical for their function to regulate Wnt/β-catenin signaling. Here, we discuss the possible roles of LLPS in Wnt/β-catenin signaling and regulation of Axin LLPS by post-translational modifications.The intracellular multiprotein complex β-catenin destruction complex plays a key role in Wnt/β-catenin signaling. Wnt stimulation induces the assembly of the receptor-associated signalosome and the inactivation of the destruction complex, leading to β-catenin accumulation and transcriptional activation of the target genes. The core components of the destruction complex include Axin, APC, GSK3β, CK1α and other proteins. Recent studies demonstrated that Axin and APC undergo liquid-liquid phase separation (LLPS), which is critical for their function to regulate Wnt/β-catenin signaling. Here, we discuss the possible roles of LLPS in Wnt/β-catenin signaling and regulation of Axin LLPS by post-translational modifications.
The intracellular multiprotein complex β‐catenin destruction complex plays a key role in Wnt/β‐catenin signaling. Wnt stimulation induces the assembly of the receptor‐associated signalosome and the inactivation of the destruction complex, leading to β‐catenin accumulation and transcriptional activation of the target genes. The core components of the destruction complex include Axin, APC, GSK3β, CK1α and other proteins. Recent studies demonstrated that Axin and APC undergo liquid–liquid phase separation (LLPS), which is critical for their function to regulate Wnt/β‐catenin signaling. Here, we discuss the possible roles of LLPS in Wnt/β‐catenin signaling and regulation of Axin LLPS by post‐translational modifications.
Author Kang, Kexin
Chen, Ye‐Guang
Shi, Qiaoni
Author_xml – sequence: 1
  givenname: Qiaoni
  surname: Shi
  fullname: Shi, Qiaoni
  organization: Tsinghua University
– sequence: 2
  givenname: Kexin
  surname: Kang
  fullname: Kang, Kexin
  organization: Tsinghua University
– sequence: 3
  givenname: Ye‐Guang
  orcidid: 0000-0002-6701-0065
  surname: Chen
  fullname: Chen, Ye‐Guang
  email: ygchen@tsinghua.edu.cn
  organization: Tsinghua University
BookMark eNqFkctKxDAUhoMoOF62rgtu3HTMrWmy1MHLwIALL9uSpqcY6bSdpPWy8xEE38QH8SF8EjMzojAgszo54fsO5_DvoM26qQGhA4KHBGN6nFvwQ4ppaAiTG2hAEkpiIlO5iQaYiiRWlKfbaMf7B4yxEpQP0N3EznpbfL2-V4tH1N5rD5GHVjvd2aaOCmcfwUfdPUSfH1-vb0Z3UNvwD75zvVkwppm2FTxHZeOmC2sPbZW68rD_U3fR7fnZzegynlxdjEcnk9gwyWSsuaKS6xK4hlymnBcqD0unTOeJEjLPhRCJwURIKqgqmMlJbgrgrOS8LFTCdtHRcm7rmlkfNsqm1huoKl1D0_uMCiaY5GHyejQRjFPKaBrQwxX0oeldHQ4JVCoElioVgeJLyrjGewdlZmy3uL5z2lYZwdk8l2yeS_abS9CGK1rr7FS7l_8FtRSebAUva-jsdHx2_ed-A2CVpUQ
CitedBy_id crossref_primary_10_1038_s41392_022_01076_x
crossref_primary_10_1124_pharmrev_124_001113
crossref_primary_10_1016_j_jbc_2022_102628
crossref_primary_10_1038_s41392_024_02070_1
crossref_primary_10_1016_j_ijbiomac_2023_128570
crossref_primary_10_1083_jcb_202205069
crossref_primary_10_1073_pnas_2122476119
crossref_primary_10_1177_00368504221148340
Cites_doi 10.1091/mbc.e10-11-0871
10.1126/science.1137065
10.1039/b618126k
10.1242/jcs.02646
10.1111/bph.14048
10.1016/j.cell.2017.05.016
10.1016/S0960-9822(03)00370-1
10.1101/cshperspect.a007898
10.1038/s41598-020-74080-2
10.1016/j.str.2016.07.007
10.1074/jbc.274.16.10681
10.1016/j.cell.2015.09.015
10.1016/j.tibs.2014.08.006
10.1038/ncb2082
10.1038/nsmb1247
10.1146/annurev-biophys-052118-115534
10.1126/science.aaf4382
10.1016/j.cell.2016.04.047
10.1038/nature08356
10.1091/mbc.E16-07-0557
10.1016/j.sbi.2016.08.001
10.1126/science.1232389
10.1021/pr200740a
10.1007/s00018-010-0329-3
10.1242/dev.146589
10.1126/science.1228734
10.1038/s41568-020-00307-z
10.1016/j.cellsig.2018.03.004
10.1016/j.tibs.2017.08.002
10.15252/embj.201797452
10.1093/emboj/17.5.1371
10.1016/j.cell.2012.05.012
10.1016/j.molcel.2019.08.016
10.1016/j.cell.2018.12.035
10.1016/j.molcel.2015.01.013
10.1016/j.cell.2010.11.034
10.1038/nature04170
10.1038/nrm.2017.7
10.1371/journal.pgen.1007178
10.1371/journal.pone.0031882
10.1016/j.cub.2005.10.050
10.7554/eLife.04591
10.1016/j.tcb.2019.01.008
10.1073/pnas.1017063108
10.1371/journal.pone.0004046
10.1016/S0092-8674(02)00685-2
10.1016/j.cell.2012.05.002
10.1038/s41580-020-00303-z
10.1073/pnas.0803025105
10.1371/journal.pgen.1007339
10.1038/nature04185
10.1074/jbc.M110.137471
10.1016/j.ceb.2017.10.008
10.1098/rsob.110013
10.1073/pnas.032468199
10.1016/j.devcel.2019.01.025
10.1242/jcs.002956
10.1016/j.tig.2004.02.003
10.1101/gad.331520.119
10.1038/onc.2008.205
10.1091/mbc.E14-04-0885
10.1016/j.molcel.2008.10.023
10.1074/jbc.M111.323337
10.1038/ncomms11430
10.1016/j.cellsig.2009.11.021
10.7554/eLife.55015
10.1016/j.cell.2020.07.037
10.1101/cshperspect.a007880
10.7554/eLife.04123
10.1091/mbc.E19-11-0647
10.1073/pnas.1910547117
10.1016/j.cellsig.2013.12.020
10.1371/journal.pgen.1007697
10.1101/gad.13.14.1768
10.1016/j.tcb.2016.03.004
10.1038/nrm806
10.3390/genes9030121
ContentType Journal Article
Copyright 2021 Wiley Periodicals LLC
2021 Wiley Periodicals LLC.
Copyright_xml – notice: 2021 Wiley Periodicals LLC
– notice: 2021 Wiley Periodicals LLC.
DBID AAYXX
CITATION
7QL
7QO
7QP
7QR
7SS
7T7
7TK
7TM
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
7S9
L.6
DOI 10.1002/bies.202100138
DatabaseName CrossRef
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Entomology Abstracts (Full archive)
Industrial and Applied Microbiology Abstracts (Microbiology A)
Neurosciences Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Virology and AIDS Abstracts
Technology Research Database
Nucleic Acids Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Biotechnology Research Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
MEDLINE - Academic
CrossRef
AGRICOLA
Virology and AIDS Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1521-1878
EndPage n/a
ExternalDocumentID 10_1002_bies_202100138
BIES202100138
Genre article
GroupedDBID ---
-~X
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
23N
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
85S
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEFU
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ABTAH
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACKIV
ACKOT
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BQCPF
BROTX
BRXPI
BY8
C45
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KD1
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M56
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RWI
RWR
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
UB1
UDS
V2E
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WJL
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYB
WYISQ
XG1
XV2
Y6R
YYQ
YZZ
ZGI
ZUP
ZXP
ZY4
ZZTAW
~IA
~KM
~WT
AAYXX
AETEA
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
7QL
7QO
7QP
7QR
7SS
7T7
7TK
7TM
7U9
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
C1K
FR3
H94
M7N
P64
RC3
7X8
7S9
L.6
ID FETCH-LOGICAL-c3838-a49284afe4aeb8744d9b52173ab5968bb6665c01682629d3cb1bcde43f44fd953
IEDL.DBID DR2
ISSN 0265-9247
1521-1878
IngestDate Fri Jul 11 18:31:57 EDT 2025
Thu Jul 10 18:35:19 EDT 2025
Fri Jul 25 10:54:05 EDT 2025
Thu Apr 24 23:07:11 EDT 2025
Tue Jul 01 03:22:39 EDT 2025
Wed Jan 22 16:27:33 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3838-a49284afe4aeb8744d9b52173ab5968bb6665c01682629d3cb1bcde43f44fd953
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-6701-0065
PQID 2576608976
PQPubID 37030
PageCount 7
ParticipantIDs proquest_miscellaneous_2636384744
proquest_miscellaneous_2563422327
proquest_journals_2576608976
crossref_citationtrail_10_1002_bies_202100138
crossref_primary_10_1002_bies_202100138
wiley_primary_10_1002_bies_202100138_BIES202100138
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate October 2021
2021-10-00
20211001
PublicationDateYYYYMMDD 2021-10-01
PublicationDate_xml – month: 10
  year: 2021
  text: October 2021
PublicationDecade 2020
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
PublicationTitle BioEssays
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2010; 12
2017; 42
2004; 20
2021; 21
2012; 287
2021; 22
2002; 99
2003; 13
2010; 143
2014; 26
2014; 25
2008; 32
2008; 105
2008; 3
2020; 10
2013; 5
2012; 11
2017; 357
2018; 47
2010; 67
2010; 22
2018; 9
1998; 17
2014; 3
2008; 27
2020; 9
1999; 13
2016; 41
2011; 22
2019; 29
2002; 108
2007; 3
2017; 169
2012; 338
2018; 37
2015; 57
2015; 163
2011; 1
2017; 28
2019; 33
2019; 76
2018; 145
2020; 182
2007; 120
2005; 118
2005; 438
2002; 3
2010; 285
2016; 165
2017; 174
2021; 220
2013; 340
2012; 149
2007; 14
2016; 7
2007; 316
2011; 108
2020; 31
2019; 48
1999; 274
2020; 117
2018; 51
2017; 18
2014; 39
2009; 461
2005; 15
2012; 7
2012; 4
2016; 26
2016; 24
2018; 14
2019; 176
Nong J. (e_1_2_11_27_1) 2021; 220
e_1_2_11_70_1
e_1_2_11_72_1
e_1_2_11_32_1
e_1_2_11_55_1
e_1_2_11_78_1
e_1_2_11_30_1
e_1_2_11_57_1
e_1_2_11_36_1
e_1_2_11_51_1
e_1_2_11_74_1
e_1_2_11_13_1
e_1_2_11_34_1
e_1_2_11_53_1
e_1_2_11_76_1
e_1_2_11_11_1
e_1_2_11_29_1
e_1_2_11_6_1
e_1_2_11_4_1
e_1_2_11_48_1
e_1_2_11_2_1
e_1_2_11_60_1
e_1_2_11_20_1
e_1_2_11_45_1
e_1_2_11_66_1
e_1_2_11_47_1
e_1_2_11_68_1
e_1_2_11_24_1
e_1_2_11_41_1
e_1_2_11_62_1
e_1_2_11_8_1
e_1_2_11_22_1
e_1_2_11_43_1
e_1_2_11_64_1
e_1_2_11_17_1
e_1_2_11_15_1
e_1_2_11_59_1
e_1_2_11_38_1
e_1_2_11_19_1
e_1_2_11_50_1
e_1_2_11_71_1
e_1_2_11_10_1
e_1_2_11_31_1
e_1_2_11_56_1
e_1_2_11_77_1
e_1_2_11_58_1
e_1_2_11_79_1
e_1_2_11_14_1
e_1_2_11_35_1
e_1_2_11_52_1
e_1_2_11_73_1
e_1_2_11_12_1
e_1_2_11_33_1
e_1_2_11_54_1
e_1_2_11_75_1
e_1_2_11_7_1
e_1_2_11_28_1
e_1_2_11_5_1
e_1_2_11_26_1
e_1_2_11_3_1
e_1_2_11_49_1
e_1_2_11_61_1
e_1_2_11_21_1
e_1_2_11_44_1
e_1_2_11_67_1
e_1_2_11_46_1
e_1_2_11_69_1
e_1_2_11_25_1
e_1_2_11_40_1
e_1_2_11_63_1
e_1_2_11_9_1
e_1_2_11_23_1
e_1_2_11_42_1
e_1_2_11_65_1
e_1_2_11_18_1
e_1_2_11_16_1
e_1_2_11_37_1
e_1_2_11_39_1
References_xml – volume: 9
  year: 2020
  article-title: Limited dishevelled/Axin oligomerization determines efficiency of Wnt/beta‐catenin signal transduction
  publication-title: Elife
– volume: 108
  start-page: 1937
  issue: 5
  year: 2011
  end-page: 1942
  article-title: Dishevelled interacts with the DIX domain polymerization interface of Axin to interfere with its function in down‐regulating beta‐catenin
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 13
  start-page: 1768
  year: 1999
  end-page: 1773
  article-title: Wnt‐induced dephosphorylation of axin releases beta‐catenin from the axin complex
  publication-title: Genes & Development
– volume: 26
  start-page: 1068
  year: 2014
  end-page: 1074
  article-title: LRP6 dimerization through its LDLR domain is required for robust canonical Wnt pathway activation
  publication-title: Cellular Signalling
– volume: 117
  start-page: 16690
  year: 2020
  end-page: 16701
  article-title: Single‐molecule dynamics of Dishevelled at the plasma membrane and Wnt pathway activation
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 42
  start-page: 765
  year: 2017
  end-page: 776
  article-title: There is an inclusion for that: Material properties of protein granules provide a platform for building diverse cellular functions
  publication-title: Trends in Biochemical Sciences
– volume: 32
  start-page: 652
  year: 2008
  end-page: 661
  article-title: APC is essential for targeting phosphorylated beta‐catenin to the SCFbeta‐TrCP ubiquitin ligase
  publication-title: Molecular Cell
– volume: 120
  start-page: 2402
  year: 2007
  end-page: 2412
  article-title: Dynamic recruitment of axin by Dishevelled protein assemblies
  publication-title: Journal of Cell Science
– volume: 22
  start-page: 717
  year: 2010
  end-page: 727
  article-title: Dishevelled: The hub of Wnt signaling
  publication-title: Cellular Signalling
– volume: 274
  start-page: 10681
  year: 1999
  end-page: 10684
  article-title: Phosphorylation of axin, a Wnt signal negative regulator, by glycogen synthase kinase‐3beta regulates its stability
  publication-title: Journal of Biological Chemistry
– volume: 176
  start-page: 419
  year: 2019
  end-page: 434
  article-title: Considerations and Challenges in Studying Liquid‐Liquid Phase Separation and Biomolecular Condensates
  publication-title: Cell
– volume: 10
  year: 2020
  article-title: Multivalent tumor suppressor adenomatous polyposis coli promotes Axin biomolecular condensate formation and efficient beta‐catenin degradation
  publication-title: Scientific Reports
– volume: 18
  start-page: 285
  year: 2017
  end-page: 298
  article-title: Biomolecular condensates: Organizers of cellular biochemistry
  publication-title: Nature Reviews Molecular Cell Biology
– volume: 105
  start-page: 8032
  year: 2008
  end-page: 8037
  article-title: LRP6 transduces a canonical Wnt signal independently of Axin degradation by inhibiting GSK3's phosphorylation of beta‐catenin
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 51
  start-page: 42
  year: 2018
  end-page: 49
  article-title: Multiprotein complexes governing Wnt signal transduction
  publication-title: Current Opinion in Cell Biology
– volume: 9
  start-page: 121
  year: 2018
  article-title: Protein phosphatase 2A in the regulation of Wnt signaling, stem cells, and cancer
  publication-title: Genes
– volume: 169
  start-page: 985
  year: 2017
  end-page: 999
  article-title: Wnt/beta‐catenin signaling, disease, and emerging therapeutic modalities
  publication-title: Cell
– volume: 39
  start-page: 487
  year: 2014
  end-page: 495
  article-title: Signalosome assembly by domains undergoing dynamic head‐to‐tail polymerization
  publication-title: Trends in Biochemical Sciences
– volume: 15
  start-page: 1989
  year: 2005
  end-page: 1997
  article-title: Rapid, Wnt‐induced changes in GSK3beta associations that regulate beta‐catenin stabilization are mediated by Galpha proteins
  publication-title: Current Biology
– volume: 143
  start-page: 1136
  year: 2010
  end-page: 1148
  article-title: Wnt signaling requires sequestration of glycogen synthase kinase 3 inside multivesicular endosomes
  publication-title: Cell
– volume: 48
  start-page: 429
  year: 2019
  end-page: 444
  article-title: Wnt/Beta‐catenin signaling regulation and a role for biomolecular condensates
  publication-title: Developmental Cell
– volume: 17
  start-page: 1371
  year: 1998
  end-page: 1384
  article-title: Axin, a negative regulator of the Wnt signaling pathway, forms a complex with GSK‐3beta and beta‐catenin and promotes GSK‐3beta‐dependent phosphorylation of beta‐catenin
  publication-title: EMBO Journal
– volume: 57
  start-page: 936
  year: 2015
  end-page: 947
  article-title: Phase transition of a disordered nuage protein generates environmentally responsive membraneless organelles
  publication-title: Molecular Cell
– volume: 3
  year: 2014
  article-title: Regulation of RNA granule dynamics by phosphorylation of serine‐rich, intrinsically disordered proteins in
  publication-title: Elife
– volume: 48
  start-page: 465
  year: 2019
  end-page: 494
  article-title: Regulation of transmembrane signaling by phase separation
  publication-title: Annual Review of Biophysics
– volume: 3
  start-page: 328
  year: 2002
  end-page: 338
  article-title: The subcellular destinations of APC proteins
  publication-title: Nature Reviews Molecular Cell Biology
– volume: 24
  start-page: 1537
  issue: 9
  year: 2016
  end-page: 1549
  article-title: ALS mutations disrupt phase separation mediated by alpha‐helical structure in the TDP‐43 low‐complexity C‐terminal domain
  publication-title: Structure
– volume: 461
  start-page: 614
  year: 2009
  end-page: 620
  article-title: Tankyrase inhibition stabilizes axin and antagonizes Wnt signalling
  publication-title: Nature
– volume: 29
  start-page: 417
  year: 2019
  end-page: 427
  article-title: Phase separation, transition, and autophagic degradation of proteins in development and pathogenesis
  publication-title: Trends in Cell Biology
– volume: 14
  start-page: 484
  year: 2007
  end-page: 492
  article-title: The DIX domain of Dishevelled confers Wnt signaling by dynamic polymerization
  publication-title: Nature Structural & Molecular Biology
– volume: 3
  year: 2014
  article-title: Phase transitions of multivalent proteins can promote clustering of membrane receptors
  publication-title: Elife
– volume: 11
  start-page: 982
  year: 2012
  end-page: 994
  article-title: Triple SILAC to determine stimulus specific interactions in the Wnt pathway
  publication-title: Journal of Proteome Research
– volume: 165
  start-page: 1686
  year: 2016
  end-page: 1697
  article-title: Coexisting liquid phases underlie nucleolar subcompartments
  publication-title: Cell
– volume: 108
  start-page: 837
  year: 2002
  end-page: 847
  article-title: Control of beta‐catenin phosphorylation/degradation by a dual‐kinase mechanism
  publication-title: Cell
– volume: 1
  year: 2011
  article-title: The Adenomatous polyposis coli tumour suppressor is essential for Axin complex assembly and function and opposes Axin's interaction with Dishevelled
  publication-title: Open biology
– volume: 7
  year: 2016
  article-title: Wnt pathway activation by ADP‐ribosylation
  publication-title: Nature communications
– volume: 163
  start-page: 123
  year: 2015
  end-page: 133
  article-title: Phase separation by low complexity domains promotes stress granule assembly and drives pathological fibrillization
  publication-title: Cell
– volume: 3
  year: 2008
  article-title: Direct inhibition of GSK3beta by the phosphorylated cytoplasmic domain of LRP6 in Wnt/beta‐catenin signaling
  publication-title: PLoS One
– volume: 25
  start-page: 3424
  year: 2014
  end-page: 3436
  article-title: Self‐association of the APC tumor suppressor is required for the assembly, stability, and activity of the Wnt signaling destruction complex
  publication-title: Molecular Biology of the Cell
– volume: 182
  start-page: 799
  year: 2020
  end-page: 811
  article-title: Head‐to‐tail polymerization in the assembly of biomolecular condensates
  publication-title: Cell
– volume: 174
  start-page: 4564
  year: 2017
  end-page: 4574
  article-title: Assembly and architecture of the Wnt/beta‐catenin signalosome at the membrane
  publication-title: British Journal of Pharmacology
– volume: 285
  start-page: 36420
  year: 2010
  end-page: 36426
  article-title: The protein stability of Axin, a negative regulator of Wnt signaling, is regulated by Smad ubiquitination regulatory factor 2 (Smurf2)
  publication-title: Journal of Biological Chemistry
– volume: 7
  year: 2012
  article-title: Wnt signalling pathway parameters for mammalian cells
  publication-title: PLoS One
– volume: 316
  start-page: 1619
  year: 2007
  end-page: 1622
  article-title: Wnt induces LRP6 signalosomes and promotes dishevelled‐dependent LRP6 phosphorylation
  publication-title: Science
– volume: 76
  start-page: 753
  year: 2019
  end-page: 766.e6
  article-title: Mediator condensates localize signaling factors to key cell identity genes
  publication-title: Molecular Cell
– volume: 287
  start-page: 3823
  year: 2012
  end-page: 3832
  article-title: Adenomatous polyposis coli (APC) regulates multiple signaling pathways by enhancing glycogen synthase kinase‐3 (GSK‐3) activity
  publication-title: Journal of Biological Chemistry
– volume: 99
  start-page: 1182
  year: 2002
  end-page: 1187
  article-title: Casein kinase I phosphorylates and destabilizes the beta‐catenin degradation complex
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 3
  start-page: 680
  year: 2007
  end-page: 4
  article-title: Dishevelled: A protein that functions in living cells by phase separating
  publication-title: Soft Matter
– volume: 145
  issue: 11
  year: 2018
  article-title: Wnt signaling in development and tissue homeostasis
  publication-title: Development
– volume: 4
  start-page: a007880
  year: 2012
  end-page: a007880
  article-title: Frizzled and LRP5/6 receptors for Wnt/beta‐catenin signaling
  publication-title: Cold Spring Harbor perspectives in biology
– volume: 14
  year: 2018
  article-title: Supramolecular assembly of the beta‐catenin destruction complex and the effect of Wnt signaling on its localization, molecular size, and activity in vivo
  publication-title: PLoS Genetics
– volume: 118
  start-page: 5269
  year: 2005
  end-page: 5277
  article-title: The Wnt signalling effector Dishevelled forms dynamic protein assemblies rather than stable associations with cytoplasmic vesicles
  publication-title: Journal of Cell Science
– volume: 21
  start-page: 5
  issue: 1
  year: 2021
  end-page: 21
  article-title: Mutations and mechanisms of WNT pathway tumour suppressors in cancer
  publication-title: Nature Reviews Cancer
– volume: 31
  start-page: 992
  year: 2020
  end-page: 1014
  article-title: Wnt regulation: Exploring Axin‐Disheveled interactions and defining mechanisms by which the SCF E3 ubiquitin ligase is recruited to the destruction complex
  publication-title: Molecular Biology of the Cell
– volume: 13
  start-page: 960
  year: 2003
  end-page: 966
  article-title: A role of Dishevelled in relocating Axin to the plasma membrane during wingless signaling
  publication-title: Current Biology
– volume: 47
  start-page: 52
  year: 2018
  end-page: 64
  article-title: Dishevelled: A masterful conductor of complex Wnt signals
  publication-title: Cellular Signalling
– volume: 41
  start-page: 180
  year: 2016
  end-page: 186
  article-title: Liquid‐liquid phase separation in cellular signaling systems
  publication-title: Current Opinion in Structural Biology
– volume: 22
  start-page: 1845
  issue: 11
  year: 2011
  end-page: 1863
  article-title: Deconstructing the β‐catenin destruction complex: Mechanistic roles for the tumor suppressor APC in regulating Wnt signaling
  publication-title: Molecular Biology of the Cell
– volume: 14
  year: 2018
  article-title: Tankyrases maintain homeostasis of intestinal epithelium by preventing cell death
  publication-title: PLoS Genetics
– volume: 220
  year: 2021
  article-title: Phase separation of Axin organizes the beta‐catenin destruction complex
  publication-title: Journal of Cell Biology
– volume: 20
  start-page: 177
  year: 2004
  end-page: 181
  article-title: Rethinking WNT signaling
  publication-title: Trends in Genetics
– volume: 22
  start-page: 215
  year: 2021
  end-page: 235
  article-title: A framework for understanding the functions of biomolecular condensates across scales
  publication-title: Nature Reviews Molecular Cell Biology
– volume: 438
  start-page: 873
  year: 2005
  end-page: 877
  article-title: A dual‐kinase mechanism for Wnt co‐receptor phosphorylation and activation
  publication-title: Nature
– volume: 5
  issue: 1
  year: 2013
  article-title: The beta‐catenin destruction complex
  publication-title: Cold Spring Harbor Perspectives in Biology
– volume: 438
  start-page: 867
  year: 2005
  end-page: 872
  article-title: Casein kinase 1 gamma couples Wnt receptor activation to cytoplasmic signal transduction
  publication-title: Nature
– volume: 357
  year: 2017
  article-title: Liquid phase condensation in cell physiology and disease
  publication-title: Science
– volume: 149
  start-page: 1192
  issue: 6
  year: 2012
  end-page: 1205
  article-title: Wnt/beta‐catenin signaling and disease
  publication-title: Cell
– volume: 340
  start-page: 867
  issue: 6134
  year: 2013
  end-page: 870
  article-title: Wnt stabilization of beta‐catenin reveals principles for morphogen receptor‐scaffold assemblies
  publication-title: Science
– volume: 149
  start-page: 1245
  issue: 6
  year: 2012
  end-page: 1256
  article-title: Wnt signaling through inhibition of beta‐catenin degradation in an intact Axin1 complex
  publication-title: Cell
– volume: 27
  start-page: 5808
  year: 2008
  end-page: 5820
  article-title: Recruitment of adenomatous polyposis coli and beta‐catenin to axin‐puncta
  publication-title: Oncogene
– volume: 28
  start-page: 41
  year: 2017
  end-page: 53
  article-title: Reconstituting regulation of the canonical Wnt pathway by engineering a minimal beta‐catenin destruction machine
  publication-title: Molecular Biology of the Cell
– volume: 14
  year: 2018
  article-title: Axin phosphorylation in both Wnt‐off and Wnt‐on states requires the tumor suppressor APC
  publication-title: PLoS Genetics
– volume: 12
  start-page: 781
  year: 2010
  end-page: 790
  article-title: Autophagy negatively regulates Wnt signalling by promoting Dishevelled degradation
  publication-title: Nature Cell Biology
– volume: 67
  start-page: 2551
  year: 2010
  end-page: 2562
  article-title: Regulation of Lrp6 phosphorylation
  publication-title: Cellular and Molecular Life Sciences
– volume: 338
  start-page: 1337
  issue: 6112
  year: 2012
  end-page: 1340
  article-title: Kinetic responses of beta‐catenin specify the sites of Wnt control
  publication-title: Science
– volume: 33
  start-page: 1619
  year: 2019
  end-page: 1634
  article-title: Evaluating phase separation in live cells: Diagnosis, caveats, and functional consequences
  publication-title: Genes & Development
– volume: 37
  year: 2018
  article-title: A single N‐terminal phosphomimic disrupts TDP‐43 polymerization, phase separation, and RNA splicing
  publication-title: EMBO Journal
– volume: 26
  start-page: 547
  year: 2016
  end-page: 558
  article-title: Phase Separation: Linking cellular compartmentalization to disease
  publication-title: Trends in Cell Biology
– ident: e_1_2_11_33_1
  doi: 10.1091/mbc.e10-11-0871
– ident: e_1_2_11_44_1
  doi: 10.1126/science.1137065
– ident: e_1_2_11_48_1
  doi: 10.1039/b618126k
– ident: e_1_2_11_42_1
  doi: 10.1242/jcs.02646
– ident: e_1_2_11_8_1
  doi: 10.1111/bph.14048
– ident: e_1_2_11_3_1
  doi: 10.1016/j.cell.2017.05.016
– ident: e_1_2_11_43_1
  doi: 10.1016/S0960-9822(03)00370-1
– ident: e_1_2_11_5_1
  doi: 10.1101/cshperspect.a007898
– ident: e_1_2_11_32_1
  doi: 10.1038/s41598-020-74080-2
– ident: e_1_2_11_28_1
  doi: 10.1016/j.str.2016.07.007
– ident: e_1_2_11_65_1
  doi: 10.1074/jbc.274.16.10681
– ident: e_1_2_11_17_1
  doi: 10.1016/j.cell.2015.09.015
– ident: e_1_2_11_24_1
  doi: 10.1016/j.tibs.2014.08.006
– ident: e_1_2_11_41_1
  doi: 10.1038/ncb2082
– ident: e_1_2_11_35_1
  doi: 10.1038/nsmb1247
– ident: e_1_2_11_64_1
  doi: 10.1146/annurev-biophys-052118-115534
– ident: e_1_2_11_74_1
  doi: 10.1126/science.aaf4382
– ident: e_1_2_11_79_1
  doi: 10.1016/j.cell.2016.04.047
– ident: e_1_2_11_69_1
  doi: 10.1038/nature08356
– ident: e_1_2_11_26_1
  doi: 10.1091/mbc.E16-07-0557
– ident: e_1_2_11_20_1
  doi: 10.1016/j.sbi.2016.08.001
– ident: e_1_2_11_51_1
  doi: 10.1126/science.1232389
– ident: e_1_2_11_59_1
  doi: 10.1021/pr200740a
– ident: e_1_2_11_60_1
  doi: 10.1007/s00018-010-0329-3
– ident: e_1_2_11_4_1
  doi: 10.1242/dev.146589
– ident: e_1_2_11_52_1
  doi: 10.1126/science.1228734
– ident: e_1_2_11_34_1
  doi: 10.1038/s41568-020-00307-z
– ident: e_1_2_11_47_1
  doi: 10.1016/j.cellsig.2018.03.004
– ident: e_1_2_11_16_1
  doi: 10.1016/j.tibs.2017.08.002
– ident: e_1_2_11_29_1
  doi: 10.15252/embj.201797452
– ident: e_1_2_11_72_1
  doi: 10.1093/emboj/17.5.1371
– ident: e_1_2_11_2_1
  doi: 10.1016/j.cell.2012.05.012
– ident: e_1_2_11_30_1
  doi: 10.1016/j.molcel.2019.08.016
– ident: e_1_2_11_14_1
  doi: 10.1016/j.cell.2018.12.035
– ident: e_1_2_11_76_1
  doi: 10.1016/j.molcel.2015.01.013
– ident: e_1_2_11_50_1
  doi: 10.1016/j.cell.2010.11.034
– ident: e_1_2_11_62_1
  doi: 10.1038/nature04170
– ident: e_1_2_11_15_1
  doi: 10.1038/nrm.2017.7
– ident: e_1_2_11_38_1
  doi: 10.1371/journal.pgen.1007178
– ident: e_1_2_11_11_1
  doi: 10.1371/journal.pone.0031882
– ident: e_1_2_11_53_1
  doi: 10.1016/j.cub.2005.10.050
– ident: e_1_2_11_75_1
  doi: 10.7554/eLife.04591
– ident: e_1_2_11_18_1
  doi: 10.1016/j.tcb.2019.01.008
– ident: e_1_2_11_58_1
  doi: 10.1073/pnas.1017063108
– ident: e_1_2_11_57_1
  doi: 10.1371/journal.pone.0004046
– ident: e_1_2_11_7_1
  doi: 10.1016/S0092-8674(02)00685-2
– ident: e_1_2_11_9_1
  doi: 10.1016/j.cell.2012.05.002
– ident: e_1_2_11_13_1
  doi: 10.1038/s41580-020-00303-z
– ident: e_1_2_11_63_1
  doi: 10.1073/pnas.0803025105
– ident: e_1_2_11_21_1
  doi: 10.1371/journal.pgen.1007339
– ident: e_1_2_11_61_1
  doi: 10.1038/nature04185
– ident: e_1_2_11_68_1
  doi: 10.1074/jbc.M110.137471
– ident: e_1_2_11_6_1
  doi: 10.1016/j.ceb.2017.10.008
– ident: e_1_2_11_36_1
  doi: 10.1098/rsob.110013
– ident: e_1_2_11_70_1
  doi: 10.1073/pnas.032468199
– ident: e_1_2_11_23_1
  doi: 10.1016/j.devcel.2019.01.025
– ident: e_1_2_11_40_1
  doi: 10.1242/jcs.002956
– ident: e_1_2_11_56_1
  doi: 10.1016/j.tig.2004.02.003
– ident: e_1_2_11_78_1
  doi: 10.1101/gad.331520.119
– ident: e_1_2_11_22_1
  doi: 10.1038/onc.2008.205
– ident: e_1_2_11_31_1
  doi: 10.1091/mbc.E14-04-0885
– ident: e_1_2_11_39_1
  doi: 10.1016/j.molcel.2008.10.023
– ident: e_1_2_11_54_1
  doi: 10.1074/jbc.M111.323337
– ident: e_1_2_11_67_1
  doi: 10.1038/ncomms11430
– ident: e_1_2_11_46_1
  doi: 10.1016/j.cellsig.2009.11.021
– ident: e_1_2_11_45_1
  doi: 10.7554/eLife.55015
– ident: e_1_2_11_25_1
  doi: 10.1016/j.cell.2020.07.037
– ident: e_1_2_11_49_1
  doi: 10.1101/cshperspect.a007880
– ident: e_1_2_11_77_1
  doi: 10.7554/eLife.04123
– ident: e_1_2_11_55_1
  doi: 10.1091/mbc.E19-11-0647
– ident: e_1_2_11_10_1
  doi: 10.1073/pnas.1910547117
– volume: 220
  year: 2021
  ident: e_1_2_11_27_1
  article-title: Phase separation of Axin organizes the beta‐catenin destruction complex
  publication-title: Journal of Cell Biology
– ident: e_1_2_11_12_1
  doi: 10.1016/j.cellsig.2013.12.020
– ident: e_1_2_11_73_1
  doi: 10.1371/journal.pgen.1007697
– ident: e_1_2_11_66_1
  doi: 10.1101/gad.13.14.1768
– ident: e_1_2_11_19_1
  doi: 10.1016/j.tcb.2016.03.004
– ident: e_1_2_11_37_1
  doi: 10.1038/nrm806
– ident: e_1_2_11_71_1
  doi: 10.3390/genes9030121
SSID ssj0009624
Score 2.412298
Snippet The intracellular multiprotein complex β‐catenin destruction complex plays a key role in Wnt/β‐catenin signaling. Wnt stimulation induces the assembly of the...
The intracellular multiprotein complex β-catenin destruction complex plays a key role in Wnt/β-catenin signaling. Wnt stimulation induces the assembly of the...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage e2100138
SubjectTerms APC
Axin
biomolecular condensate
Catenin
Complex formation
Destruction
destruction complex
Inactivation
Liquid phases
LLPS
Phase separation
separation
Signaling
signalosome
Transcription activation
transcriptional activation
Wnt protein
Wnt signaling
Title Liquid–liquid phase separation drives the β‐catenin destruction complex formation
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fbies.202100138
https://www.proquest.com/docview/2576608976
https://www.proquest.com/docview/2563422327
https://www.proquest.com/docview/2636384744
Volume 43
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dSsMwFA4yELzxX5xOiSB4lf20adNcqjiGqBfiZHclaTIcjm66DdSrPYLgm_ggPsSexHPardsEFfSuP0lJk5yc72tPvkPIYVMhag40c6XnMi64x5QVgvGgrIxvtXST1AmXV36tzs8bXmNmF3-qD5F9cEPLSNZrNHCle6WpaKhGJukgZcGfbbAIY8AWoqLrqX6U9JOstsAzPAZEQ0xUG8tOab76vFeaQs1ZwJp4nOoKUZO2poEm98VBXxejly8yjv95mVWyPIaj9DidP2tkwcbrZDFNUPm8QW4vWg-DlhkN39rJAe3egdejPZsqhndiah5Rt5YCjKQf76PhKwZYxS24bjNlWpqErdsnmm2U3CT16tnNaY2NMzGwCBhswBSX4MZU03JlNQrmG6nB7wtXaU_6gdZAgrwI0COQFUcaN9IVHRnL3SbnTQOzYIvk4k5stwkVMuCeMkJIA0wUdwYLeKRS0sXHe5U8YZORCKOxTDlmy2iHqcCyE2JfhVlf5clRVr6bCnR8W7IwGdhwbKhwF_iWXw4AlOXJQXYbTAz_m6jYdgZYxocZC9BT_FDGd2Elg7nO88RJRvqX1oQnAPezs52_VNolS3ichhYWSA6G1e4BROrr_cQMPgH-SgpN
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NTtwwEB6tqFC5tOVPXaDgSlQ9GZbEieMDh8J2tZSFQwUVt2DHXnVVlOVv1cKJR6jUJykP0kMfYZ-kM_lbQCqVkDj0lh8ncjKe8fcl428AlruaUHNkuK8CnwspAq6dlFxEDW1DZ5SflU7Y2Q3b--LDQXBQg5_lWphcH6L64EaekcVrcnD6IL06Ug01RCU94iz0t63Iq9x2F1-RtZ2tbzXRxG88r_V-b7PNi8ICPEFCFnEtFEZl3XVCO0P671YZnMakr02gwsgYxPRBgmAIsbenrJ-YNZNYJ_yuEF2rqFAERv0nVEac5PqbH0eKVSrM6ugiswk4UhtZ6kQ2vNXb_b09D47A7U2InM1xrefwu3w7eWrLl5XBuVlJLu8IR_5Xr-8FPCsQN3uXu8gk1Fw6BeN5Dc6LafjU6Z0MenZ49eMo22DHn3FiZ2cuF0Xvp8yekjQvQ6TMfl0Pr75TDlnaw-OuEt9lWWa--8aqtaAzsP8oDzULY2k_dS-BSRWJQFsplUWyTYufJd5Sa-XT7YO1OvDS9HFSKLFTQZCjONeQ9mKyTVzZpg5vq_bHuQbJX1sulCMpLmIRnkVKGTYixJ11eF2dxihCv4Z06voDahOiUyK6lve0CX0M1ujOog5eNrT-0Zt4AxlNtTf3kIuW4Gl7b6cTd7Z2t-dhgo7nmZQLMIYmdq8QEZ6bxcwHGRw-9qj9AyeYZ8Y
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3JTtxAEC0hEFEuELKICVsjJcqpYbDbbveBAzCM2IKiKETcnG53W4yCPJPAiOXEJyDlRxAfgsQv8CVUeZsQKYkUiUNuXtpW29VV_Z5d_QrgTaoJNUeG-yrwuZAi4NpJyUXU1DZ0Rvl56YT3u-HGntjaD_aH4KpaC1PoQ9Qf3Mgz8nhNDt6z6eJANNQQk_SIstDPtjKtctudnSBpO1rebKGF33pee_3T2gYv6wrwBPlYxLVQGJR16oR2huTfrTI4i0lfm0CFkTEI6YMEsRBCb09ZPzFLJrFO-KkQqVVUJwKD_ogIm4qKRbQ-DgSrVJiX0UViE3BkNrKSiWx6iw_7-3AaHGDbnxFyPsW1x-G2ejlFZsvXhf6xWUjOf9GN_J_e3jMYK_E2WykcZAKGXPYcRosKnGcv4PNO51u_Y-8ufhzmG6x3gNM6O3KFJHo3Y_Y7CfMyxMns5vru4pIyyLIOHne19C7L8_LdKatXgr6EvUd5qFcwnHUzNwlMqkgE2kqpLFJtWvos8ZZaK59uHyw1gFeWj5NSh53KgRzGhYK0F5Nt4to2DXhXt-8VCiS_bTldDaS4jER4Fgll2IwQdTZgvj6NMYR-DOnMdfvUJkSXRGwt_9Am9DFUozOLBnj5yPpLb-JV5DP13ut_uWgOnnxoteOdzd3tKXhKh4s0ymkYRgu7GYSDx2Y290AGXx570N4DbZRmdQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Liquid%E2%80%93liquid+phase+separation+drives+the+%CE%B2%E2%80%90catenin+destruction+complex+formation&rft.jtitle=BioEssays&rft.au=Shi%2C+Qiaoni&rft.au=Kang%2C+Kexin&rft.au=Chen%2C+Ye%E2%80%90Guang&rft.date=2021-10-01&rft.issn=0265-9247&rft.eissn=1521-1878&rft.volume=43&rft.issue=10&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fbies.202100138&rft.externalDBID=10.1002%252Fbies.202100138&rft.externalDocID=BIES202100138
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0265-9247&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0265-9247&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0265-9247&client=summon