Liquid–liquid phase separation drives the β‐catenin destruction complex formation
The intracellular multiprotein complex β‐catenin destruction complex plays a key role in Wnt/β‐catenin signaling. Wnt stimulation induces the assembly of the receptor‐associated signalosome and the inactivation of the destruction complex, leading to β‐catenin accumulation and transcriptional activat...
Saved in:
Published in | BioEssays Vol. 43; no. 10; pp. e2100138 - n/a |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Cambridge
Wiley Subscription Services, Inc
01.10.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The intracellular multiprotein complex β‐catenin destruction complex plays a key role in Wnt/β‐catenin signaling. Wnt stimulation induces the assembly of the receptor‐associated signalosome and the inactivation of the destruction complex, leading to β‐catenin accumulation and transcriptional activation of the target genes. The core components of the destruction complex include Axin, APC, GSK3β, CK1α and other proteins. Recent studies demonstrated that Axin and APC undergo liquid–liquid phase separation (LLPS), which is critical for their function to regulate Wnt/β‐catenin signaling. Here, we discuss the possible roles of LLPS in Wnt/β‐catenin signaling and regulation of Axin LLPS by post‐translational modifications.
The formation of the destruction complex is driven by IDR1‐mediated Axin1 LLPS, which is promoted by APC LLPS. In addition, β‐catenin has been reported to undergo LLPS in the nucleus. It remains unclear whether Dvl go through LLPS and its effect on the destruction complex. |
---|---|
AbstractList | The intracellular multiprotein complex β‐catenin destruction complex plays a key role in Wnt/β‐catenin signaling. Wnt stimulation induces the assembly of the receptor‐associated signalosome and the inactivation of the destruction complex, leading to β‐catenin accumulation and transcriptional activation of the target genes. The core components of the destruction complex include Axin, APC, GSK3β, CK1α and other proteins. Recent studies demonstrated that Axin and APC undergo liquid–liquid phase separation (LLPS), which is critical for their function to regulate Wnt/β‐catenin signaling. Here, we discuss the possible roles of LLPS in Wnt/β‐catenin signaling and regulation of Axin LLPS by post‐translational modifications.
The formation of the destruction complex is driven by IDR1‐mediated Axin1 LLPS, which is promoted by APC LLPS. In addition, β‐catenin has been reported to undergo LLPS in the nucleus. It remains unclear whether Dvl go through LLPS and its effect on the destruction complex. The intracellular multiprotein complex β-catenin destruction complex plays a key role in Wnt/β-catenin signaling. Wnt stimulation induces the assembly of the receptor-associated signalosome and the inactivation of the destruction complex, leading to β-catenin accumulation and transcriptional activation of the target genes. The core components of the destruction complex include Axin, APC, GSK3β, CK1α and other proteins. Recent studies demonstrated that Axin and APC undergo liquid-liquid phase separation (LLPS), which is critical for their function to regulate Wnt/β-catenin signaling. Here, we discuss the possible roles of LLPS in Wnt/β-catenin signaling and regulation of Axin LLPS by post-translational modifications.The intracellular multiprotein complex β-catenin destruction complex plays a key role in Wnt/β-catenin signaling. Wnt stimulation induces the assembly of the receptor-associated signalosome and the inactivation of the destruction complex, leading to β-catenin accumulation and transcriptional activation of the target genes. The core components of the destruction complex include Axin, APC, GSK3β, CK1α and other proteins. Recent studies demonstrated that Axin and APC undergo liquid-liquid phase separation (LLPS), which is critical for their function to regulate Wnt/β-catenin signaling. Here, we discuss the possible roles of LLPS in Wnt/β-catenin signaling and regulation of Axin LLPS by post-translational modifications. The intracellular multiprotein complex β‐catenin destruction complex plays a key role in Wnt/β‐catenin signaling. Wnt stimulation induces the assembly of the receptor‐associated signalosome and the inactivation of the destruction complex, leading to β‐catenin accumulation and transcriptional activation of the target genes. The core components of the destruction complex include Axin, APC, GSK3β, CK1α and other proteins. Recent studies demonstrated that Axin and APC undergo liquid–liquid phase separation (LLPS), which is critical for their function to regulate Wnt/β‐catenin signaling. Here, we discuss the possible roles of LLPS in Wnt/β‐catenin signaling and regulation of Axin LLPS by post‐translational modifications. |
Author | Kang, Kexin Chen, Ye‐Guang Shi, Qiaoni |
Author_xml | – sequence: 1 givenname: Qiaoni surname: Shi fullname: Shi, Qiaoni organization: Tsinghua University – sequence: 2 givenname: Kexin surname: Kang fullname: Kang, Kexin organization: Tsinghua University – sequence: 3 givenname: Ye‐Guang orcidid: 0000-0002-6701-0065 surname: Chen fullname: Chen, Ye‐Guang email: ygchen@tsinghua.edu.cn organization: Tsinghua University |
BookMark | eNqFkctKxDAUhoMoOF62rgtu3HTMrWmy1MHLwIALL9uSpqcY6bSdpPWy8xEE38QH8SF8EjMzojAgszo54fsO5_DvoM26qQGhA4KHBGN6nFvwQ4ppaAiTG2hAEkpiIlO5iQaYiiRWlKfbaMf7B4yxEpQP0N3EznpbfL2-V4tH1N5rD5GHVjvd2aaOCmcfwUfdPUSfH1-vb0Z3UNvwD75zvVkwppm2FTxHZeOmC2sPbZW68rD_U3fR7fnZzegynlxdjEcnk9gwyWSsuaKS6xK4hlymnBcqD0unTOeJEjLPhRCJwURIKqgqmMlJbgrgrOS8LFTCdtHRcm7rmlkfNsqm1huoKl1D0_uMCiaY5GHyejQRjFPKaBrQwxX0oeldHQ4JVCoElioVgeJLyrjGewdlZmy3uL5z2lYZwdk8l2yeS_abS9CGK1rr7FS7l_8FtRSebAUva-jsdHx2_ed-A2CVpUQ |
CitedBy_id | crossref_primary_10_1038_s41392_022_01076_x crossref_primary_10_1124_pharmrev_124_001113 crossref_primary_10_1016_j_jbc_2022_102628 crossref_primary_10_1038_s41392_024_02070_1 crossref_primary_10_1016_j_ijbiomac_2023_128570 crossref_primary_10_1083_jcb_202205069 crossref_primary_10_1073_pnas_2122476119 crossref_primary_10_1177_00368504221148340 |
Cites_doi | 10.1091/mbc.e10-11-0871 10.1126/science.1137065 10.1039/b618126k 10.1242/jcs.02646 10.1111/bph.14048 10.1016/j.cell.2017.05.016 10.1016/S0960-9822(03)00370-1 10.1101/cshperspect.a007898 10.1038/s41598-020-74080-2 10.1016/j.str.2016.07.007 10.1074/jbc.274.16.10681 10.1016/j.cell.2015.09.015 10.1016/j.tibs.2014.08.006 10.1038/ncb2082 10.1038/nsmb1247 10.1146/annurev-biophys-052118-115534 10.1126/science.aaf4382 10.1016/j.cell.2016.04.047 10.1038/nature08356 10.1091/mbc.E16-07-0557 10.1016/j.sbi.2016.08.001 10.1126/science.1232389 10.1021/pr200740a 10.1007/s00018-010-0329-3 10.1242/dev.146589 10.1126/science.1228734 10.1038/s41568-020-00307-z 10.1016/j.cellsig.2018.03.004 10.1016/j.tibs.2017.08.002 10.15252/embj.201797452 10.1093/emboj/17.5.1371 10.1016/j.cell.2012.05.012 10.1016/j.molcel.2019.08.016 10.1016/j.cell.2018.12.035 10.1016/j.molcel.2015.01.013 10.1016/j.cell.2010.11.034 10.1038/nature04170 10.1038/nrm.2017.7 10.1371/journal.pgen.1007178 10.1371/journal.pone.0031882 10.1016/j.cub.2005.10.050 10.7554/eLife.04591 10.1016/j.tcb.2019.01.008 10.1073/pnas.1017063108 10.1371/journal.pone.0004046 10.1016/S0092-8674(02)00685-2 10.1016/j.cell.2012.05.002 10.1038/s41580-020-00303-z 10.1073/pnas.0803025105 10.1371/journal.pgen.1007339 10.1038/nature04185 10.1074/jbc.M110.137471 10.1016/j.ceb.2017.10.008 10.1098/rsob.110013 10.1073/pnas.032468199 10.1016/j.devcel.2019.01.025 10.1242/jcs.002956 10.1016/j.tig.2004.02.003 10.1101/gad.331520.119 10.1038/onc.2008.205 10.1091/mbc.E14-04-0885 10.1016/j.molcel.2008.10.023 10.1074/jbc.M111.323337 10.1038/ncomms11430 10.1016/j.cellsig.2009.11.021 10.7554/eLife.55015 10.1016/j.cell.2020.07.037 10.1101/cshperspect.a007880 10.7554/eLife.04123 10.1091/mbc.E19-11-0647 10.1073/pnas.1910547117 10.1016/j.cellsig.2013.12.020 10.1371/journal.pgen.1007697 10.1101/gad.13.14.1768 10.1016/j.tcb.2016.03.004 10.1038/nrm806 10.3390/genes9030121 |
ContentType | Journal Article |
Copyright | 2021 Wiley Periodicals LLC 2021 Wiley Periodicals LLC. |
Copyright_xml | – notice: 2021 Wiley Periodicals LLC – notice: 2021 Wiley Periodicals LLC. |
DBID | AAYXX CITATION 7QL 7QO 7QP 7QR 7SS 7T7 7TK 7TM 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 7S9 L.6 |
DOI | 10.1002/bies.202100138 |
DatabaseName | CrossRef Bacteriology Abstracts (Microbiology B) Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Entomology Abstracts (Full archive) Industrial and Applied Microbiology Abstracts (Microbiology A) Neurosciences Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Virology and AIDS Abstracts Technology Research Database Nucleic Acids Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Biotechnology Research Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Calcium & Calcified Tissue Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef AGRICOLA Virology and AIDS Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1521-1878 |
EndPage | n/a |
ExternalDocumentID | 10_1002_bies_202100138 BIES202100138 |
Genre | article |
GroupedDBID | --- -~X .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23N 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 85S 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEFU ABEML ABIJN ABJNI ABLJU ABPVW ABTAH ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFS ACIWK ACKIV ACKOT ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BQCPF BROTX BRXPI BY8 C45 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KD1 KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M56 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OVD P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RWI RWR RX1 RYL SAMSI SUPJJ SV3 TEORI UB1 UDS V2E W8V W99 WBKPD WH7 WIB WIH WIK WJL WNSPC WOHZO WQJ WRC WXSBR WYB WYISQ XG1 XV2 Y6R YYQ YZZ ZGI ZUP ZXP ZY4 ZZTAW ~IA ~KM ~WT AAYXX AETEA AEYWJ AGHNM AGQPQ AGYGG CITATION 7QL 7QO 7QP 7QR 7SS 7T7 7TK 7TM 7U9 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY C1K FR3 H94 M7N P64 RC3 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c3838-a49284afe4aeb8744d9b52173ab5968bb6665c01682629d3cb1bcde43f44fd953 |
IEDL.DBID | DR2 |
ISSN | 0265-9247 1521-1878 |
IngestDate | Fri Jul 11 18:31:57 EDT 2025 Thu Jul 10 18:35:19 EDT 2025 Fri Jul 25 10:54:05 EDT 2025 Thu Apr 24 23:07:11 EDT 2025 Tue Jul 01 03:22:39 EDT 2025 Wed Jan 22 16:27:33 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3838-a49284afe4aeb8744d9b52173ab5968bb6665c01682629d3cb1bcde43f44fd953 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-6701-0065 |
PQID | 2576608976 |
PQPubID | 37030 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_2636384744 proquest_miscellaneous_2563422327 proquest_journals_2576608976 crossref_citationtrail_10_1002_bies_202100138 crossref_primary_10_1002_bies_202100138 wiley_primary_10_1002_bies_202100138_BIES202100138 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | October 2021 2021-10-00 20211001 |
PublicationDateYYYYMMDD | 2021-10-01 |
PublicationDate_xml | – month: 10 year: 2021 text: October 2021 |
PublicationDecade | 2020 |
PublicationPlace | Cambridge |
PublicationPlace_xml | – name: Cambridge |
PublicationTitle | BioEssays |
PublicationYear | 2021 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2010; 12 2017; 42 2004; 20 2021; 21 2012; 287 2021; 22 2002; 99 2003; 13 2010; 143 2014; 26 2014; 25 2008; 32 2008; 105 2008; 3 2020; 10 2013; 5 2012; 11 2017; 357 2018; 47 2010; 67 2010; 22 2018; 9 1998; 17 2014; 3 2008; 27 2020; 9 1999; 13 2016; 41 2011; 22 2019; 29 2002; 108 2007; 3 2017; 169 2012; 338 2018; 37 2015; 57 2015; 163 2011; 1 2017; 28 2019; 33 2019; 76 2018; 145 2020; 182 2007; 120 2005; 118 2005; 438 2002; 3 2010; 285 2016; 165 2017; 174 2021; 220 2013; 340 2012; 149 2007; 14 2016; 7 2007; 316 2011; 108 2020; 31 2019; 48 1999; 274 2020; 117 2018; 51 2017; 18 2014; 39 2009; 461 2005; 15 2012; 7 2012; 4 2016; 26 2016; 24 2018; 14 2019; 176 Nong J. (e_1_2_11_27_1) 2021; 220 e_1_2_11_70_1 e_1_2_11_72_1 e_1_2_11_32_1 e_1_2_11_55_1 e_1_2_11_78_1 e_1_2_11_30_1 e_1_2_11_57_1 e_1_2_11_36_1 e_1_2_11_51_1 e_1_2_11_74_1 e_1_2_11_13_1 e_1_2_11_34_1 e_1_2_11_53_1 e_1_2_11_76_1 e_1_2_11_11_1 e_1_2_11_29_1 e_1_2_11_6_1 e_1_2_11_4_1 e_1_2_11_48_1 e_1_2_11_2_1 e_1_2_11_60_1 e_1_2_11_20_1 e_1_2_11_45_1 e_1_2_11_66_1 e_1_2_11_47_1 e_1_2_11_68_1 e_1_2_11_24_1 e_1_2_11_41_1 e_1_2_11_62_1 e_1_2_11_8_1 e_1_2_11_22_1 e_1_2_11_43_1 e_1_2_11_64_1 e_1_2_11_17_1 e_1_2_11_15_1 e_1_2_11_59_1 e_1_2_11_38_1 e_1_2_11_19_1 e_1_2_11_50_1 e_1_2_11_71_1 e_1_2_11_10_1 e_1_2_11_31_1 e_1_2_11_56_1 e_1_2_11_77_1 e_1_2_11_58_1 e_1_2_11_79_1 e_1_2_11_14_1 e_1_2_11_35_1 e_1_2_11_52_1 e_1_2_11_73_1 e_1_2_11_12_1 e_1_2_11_33_1 e_1_2_11_54_1 e_1_2_11_75_1 e_1_2_11_7_1 e_1_2_11_28_1 e_1_2_11_5_1 e_1_2_11_26_1 e_1_2_11_3_1 e_1_2_11_49_1 e_1_2_11_61_1 e_1_2_11_21_1 e_1_2_11_44_1 e_1_2_11_67_1 e_1_2_11_46_1 e_1_2_11_69_1 e_1_2_11_25_1 e_1_2_11_40_1 e_1_2_11_63_1 e_1_2_11_9_1 e_1_2_11_23_1 e_1_2_11_42_1 e_1_2_11_65_1 e_1_2_11_18_1 e_1_2_11_16_1 e_1_2_11_37_1 e_1_2_11_39_1 |
References_xml | – volume: 9 year: 2020 article-title: Limited dishevelled/Axin oligomerization determines efficiency of Wnt/beta‐catenin signal transduction publication-title: Elife – volume: 108 start-page: 1937 issue: 5 year: 2011 end-page: 1942 article-title: Dishevelled interacts with the DIX domain polymerization interface of Axin to interfere with its function in down‐regulating beta‐catenin publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 13 start-page: 1768 year: 1999 end-page: 1773 article-title: Wnt‐induced dephosphorylation of axin releases beta‐catenin from the axin complex publication-title: Genes & Development – volume: 26 start-page: 1068 year: 2014 end-page: 1074 article-title: LRP6 dimerization through its LDLR domain is required for robust canonical Wnt pathway activation publication-title: Cellular Signalling – volume: 117 start-page: 16690 year: 2020 end-page: 16701 article-title: Single‐molecule dynamics of Dishevelled at the plasma membrane and Wnt pathway activation publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 42 start-page: 765 year: 2017 end-page: 776 article-title: There is an inclusion for that: Material properties of protein granules provide a platform for building diverse cellular functions publication-title: Trends in Biochemical Sciences – volume: 32 start-page: 652 year: 2008 end-page: 661 article-title: APC is essential for targeting phosphorylated beta‐catenin to the SCFbeta‐TrCP ubiquitin ligase publication-title: Molecular Cell – volume: 120 start-page: 2402 year: 2007 end-page: 2412 article-title: Dynamic recruitment of axin by Dishevelled protein assemblies publication-title: Journal of Cell Science – volume: 22 start-page: 717 year: 2010 end-page: 727 article-title: Dishevelled: The hub of Wnt signaling publication-title: Cellular Signalling – volume: 274 start-page: 10681 year: 1999 end-page: 10684 article-title: Phosphorylation of axin, a Wnt signal negative regulator, by glycogen synthase kinase‐3beta regulates its stability publication-title: Journal of Biological Chemistry – volume: 176 start-page: 419 year: 2019 end-page: 434 article-title: Considerations and Challenges in Studying Liquid‐Liquid Phase Separation and Biomolecular Condensates publication-title: Cell – volume: 10 year: 2020 article-title: Multivalent tumor suppressor adenomatous polyposis coli promotes Axin biomolecular condensate formation and efficient beta‐catenin degradation publication-title: Scientific Reports – volume: 18 start-page: 285 year: 2017 end-page: 298 article-title: Biomolecular condensates: Organizers of cellular biochemistry publication-title: Nature Reviews Molecular Cell Biology – volume: 105 start-page: 8032 year: 2008 end-page: 8037 article-title: LRP6 transduces a canonical Wnt signal independently of Axin degradation by inhibiting GSK3's phosphorylation of beta‐catenin publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 51 start-page: 42 year: 2018 end-page: 49 article-title: Multiprotein complexes governing Wnt signal transduction publication-title: Current Opinion in Cell Biology – volume: 9 start-page: 121 year: 2018 article-title: Protein phosphatase 2A in the regulation of Wnt signaling, stem cells, and cancer publication-title: Genes – volume: 169 start-page: 985 year: 2017 end-page: 999 article-title: Wnt/beta‐catenin signaling, disease, and emerging therapeutic modalities publication-title: Cell – volume: 39 start-page: 487 year: 2014 end-page: 495 article-title: Signalosome assembly by domains undergoing dynamic head‐to‐tail polymerization publication-title: Trends in Biochemical Sciences – volume: 15 start-page: 1989 year: 2005 end-page: 1997 article-title: Rapid, Wnt‐induced changes in GSK3beta associations that regulate beta‐catenin stabilization are mediated by Galpha proteins publication-title: Current Biology – volume: 143 start-page: 1136 year: 2010 end-page: 1148 article-title: Wnt signaling requires sequestration of glycogen synthase kinase 3 inside multivesicular endosomes publication-title: Cell – volume: 48 start-page: 429 year: 2019 end-page: 444 article-title: Wnt/Beta‐catenin signaling regulation and a role for biomolecular condensates publication-title: Developmental Cell – volume: 17 start-page: 1371 year: 1998 end-page: 1384 article-title: Axin, a negative regulator of the Wnt signaling pathway, forms a complex with GSK‐3beta and beta‐catenin and promotes GSK‐3beta‐dependent phosphorylation of beta‐catenin publication-title: EMBO Journal – volume: 57 start-page: 936 year: 2015 end-page: 947 article-title: Phase transition of a disordered nuage protein generates environmentally responsive membraneless organelles publication-title: Molecular Cell – volume: 3 year: 2014 article-title: Regulation of RNA granule dynamics by phosphorylation of serine‐rich, intrinsically disordered proteins in publication-title: Elife – volume: 48 start-page: 465 year: 2019 end-page: 494 article-title: Regulation of transmembrane signaling by phase separation publication-title: Annual Review of Biophysics – volume: 3 start-page: 328 year: 2002 end-page: 338 article-title: The subcellular destinations of APC proteins publication-title: Nature Reviews Molecular Cell Biology – volume: 24 start-page: 1537 issue: 9 year: 2016 end-page: 1549 article-title: ALS mutations disrupt phase separation mediated by alpha‐helical structure in the TDP‐43 low‐complexity C‐terminal domain publication-title: Structure – volume: 461 start-page: 614 year: 2009 end-page: 620 article-title: Tankyrase inhibition stabilizes axin and antagonizes Wnt signalling publication-title: Nature – volume: 29 start-page: 417 year: 2019 end-page: 427 article-title: Phase separation, transition, and autophagic degradation of proteins in development and pathogenesis publication-title: Trends in Cell Biology – volume: 14 start-page: 484 year: 2007 end-page: 492 article-title: The DIX domain of Dishevelled confers Wnt signaling by dynamic polymerization publication-title: Nature Structural & Molecular Biology – volume: 3 year: 2014 article-title: Phase transitions of multivalent proteins can promote clustering of membrane receptors publication-title: Elife – volume: 11 start-page: 982 year: 2012 end-page: 994 article-title: Triple SILAC to determine stimulus specific interactions in the Wnt pathway publication-title: Journal of Proteome Research – volume: 165 start-page: 1686 year: 2016 end-page: 1697 article-title: Coexisting liquid phases underlie nucleolar subcompartments publication-title: Cell – volume: 108 start-page: 837 year: 2002 end-page: 847 article-title: Control of beta‐catenin phosphorylation/degradation by a dual‐kinase mechanism publication-title: Cell – volume: 1 year: 2011 article-title: The Adenomatous polyposis coli tumour suppressor is essential for Axin complex assembly and function and opposes Axin's interaction with Dishevelled publication-title: Open biology – volume: 7 year: 2016 article-title: Wnt pathway activation by ADP‐ribosylation publication-title: Nature communications – volume: 163 start-page: 123 year: 2015 end-page: 133 article-title: Phase separation by low complexity domains promotes stress granule assembly and drives pathological fibrillization publication-title: Cell – volume: 3 year: 2008 article-title: Direct inhibition of GSK3beta by the phosphorylated cytoplasmic domain of LRP6 in Wnt/beta‐catenin signaling publication-title: PLoS One – volume: 25 start-page: 3424 year: 2014 end-page: 3436 article-title: Self‐association of the APC tumor suppressor is required for the assembly, stability, and activity of the Wnt signaling destruction complex publication-title: Molecular Biology of the Cell – volume: 182 start-page: 799 year: 2020 end-page: 811 article-title: Head‐to‐tail polymerization in the assembly of biomolecular condensates publication-title: Cell – volume: 174 start-page: 4564 year: 2017 end-page: 4574 article-title: Assembly and architecture of the Wnt/beta‐catenin signalosome at the membrane publication-title: British Journal of Pharmacology – volume: 285 start-page: 36420 year: 2010 end-page: 36426 article-title: The protein stability of Axin, a negative regulator of Wnt signaling, is regulated by Smad ubiquitination regulatory factor 2 (Smurf2) publication-title: Journal of Biological Chemistry – volume: 7 year: 2012 article-title: Wnt signalling pathway parameters for mammalian cells publication-title: PLoS One – volume: 316 start-page: 1619 year: 2007 end-page: 1622 article-title: Wnt induces LRP6 signalosomes and promotes dishevelled‐dependent LRP6 phosphorylation publication-title: Science – volume: 76 start-page: 753 year: 2019 end-page: 766.e6 article-title: Mediator condensates localize signaling factors to key cell identity genes publication-title: Molecular Cell – volume: 287 start-page: 3823 year: 2012 end-page: 3832 article-title: Adenomatous polyposis coli (APC) regulates multiple signaling pathways by enhancing glycogen synthase kinase‐3 (GSK‐3) activity publication-title: Journal of Biological Chemistry – volume: 99 start-page: 1182 year: 2002 end-page: 1187 article-title: Casein kinase I phosphorylates and destabilizes the beta‐catenin degradation complex publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 3 start-page: 680 year: 2007 end-page: 4 article-title: Dishevelled: A protein that functions in living cells by phase separating publication-title: Soft Matter – volume: 145 issue: 11 year: 2018 article-title: Wnt signaling in development and tissue homeostasis publication-title: Development – volume: 4 start-page: a007880 year: 2012 end-page: a007880 article-title: Frizzled and LRP5/6 receptors for Wnt/beta‐catenin signaling publication-title: Cold Spring Harbor perspectives in biology – volume: 14 year: 2018 article-title: Supramolecular assembly of the beta‐catenin destruction complex and the effect of Wnt signaling on its localization, molecular size, and activity in vivo publication-title: PLoS Genetics – volume: 118 start-page: 5269 year: 2005 end-page: 5277 article-title: The Wnt signalling effector Dishevelled forms dynamic protein assemblies rather than stable associations with cytoplasmic vesicles publication-title: Journal of Cell Science – volume: 21 start-page: 5 issue: 1 year: 2021 end-page: 21 article-title: Mutations and mechanisms of WNT pathway tumour suppressors in cancer publication-title: Nature Reviews Cancer – volume: 31 start-page: 992 year: 2020 end-page: 1014 article-title: Wnt regulation: Exploring Axin‐Disheveled interactions and defining mechanisms by which the SCF E3 ubiquitin ligase is recruited to the destruction complex publication-title: Molecular Biology of the Cell – volume: 13 start-page: 960 year: 2003 end-page: 966 article-title: A role of Dishevelled in relocating Axin to the plasma membrane during wingless signaling publication-title: Current Biology – volume: 47 start-page: 52 year: 2018 end-page: 64 article-title: Dishevelled: A masterful conductor of complex Wnt signals publication-title: Cellular Signalling – volume: 41 start-page: 180 year: 2016 end-page: 186 article-title: Liquid‐liquid phase separation in cellular signaling systems publication-title: Current Opinion in Structural Biology – volume: 22 start-page: 1845 issue: 11 year: 2011 end-page: 1863 article-title: Deconstructing the β‐catenin destruction complex: Mechanistic roles for the tumor suppressor APC in regulating Wnt signaling publication-title: Molecular Biology of the Cell – volume: 14 year: 2018 article-title: Tankyrases maintain homeostasis of intestinal epithelium by preventing cell death publication-title: PLoS Genetics – volume: 220 year: 2021 article-title: Phase separation of Axin organizes the beta‐catenin destruction complex publication-title: Journal of Cell Biology – volume: 20 start-page: 177 year: 2004 end-page: 181 article-title: Rethinking WNT signaling publication-title: Trends in Genetics – volume: 22 start-page: 215 year: 2021 end-page: 235 article-title: A framework for understanding the functions of biomolecular condensates across scales publication-title: Nature Reviews Molecular Cell Biology – volume: 438 start-page: 873 year: 2005 end-page: 877 article-title: A dual‐kinase mechanism for Wnt co‐receptor phosphorylation and activation publication-title: Nature – volume: 5 issue: 1 year: 2013 article-title: The beta‐catenin destruction complex publication-title: Cold Spring Harbor Perspectives in Biology – volume: 438 start-page: 867 year: 2005 end-page: 872 article-title: Casein kinase 1 gamma couples Wnt receptor activation to cytoplasmic signal transduction publication-title: Nature – volume: 357 year: 2017 article-title: Liquid phase condensation in cell physiology and disease publication-title: Science – volume: 149 start-page: 1192 issue: 6 year: 2012 end-page: 1205 article-title: Wnt/beta‐catenin signaling and disease publication-title: Cell – volume: 340 start-page: 867 issue: 6134 year: 2013 end-page: 870 article-title: Wnt stabilization of beta‐catenin reveals principles for morphogen receptor‐scaffold assemblies publication-title: Science – volume: 149 start-page: 1245 issue: 6 year: 2012 end-page: 1256 article-title: Wnt signaling through inhibition of beta‐catenin degradation in an intact Axin1 complex publication-title: Cell – volume: 27 start-page: 5808 year: 2008 end-page: 5820 article-title: Recruitment of adenomatous polyposis coli and beta‐catenin to axin‐puncta publication-title: Oncogene – volume: 28 start-page: 41 year: 2017 end-page: 53 article-title: Reconstituting regulation of the canonical Wnt pathway by engineering a minimal beta‐catenin destruction machine publication-title: Molecular Biology of the Cell – volume: 14 year: 2018 article-title: Axin phosphorylation in both Wnt‐off and Wnt‐on states requires the tumor suppressor APC publication-title: PLoS Genetics – volume: 12 start-page: 781 year: 2010 end-page: 790 article-title: Autophagy negatively regulates Wnt signalling by promoting Dishevelled degradation publication-title: Nature Cell Biology – volume: 67 start-page: 2551 year: 2010 end-page: 2562 article-title: Regulation of Lrp6 phosphorylation publication-title: Cellular and Molecular Life Sciences – volume: 338 start-page: 1337 issue: 6112 year: 2012 end-page: 1340 article-title: Kinetic responses of beta‐catenin specify the sites of Wnt control publication-title: Science – volume: 33 start-page: 1619 year: 2019 end-page: 1634 article-title: Evaluating phase separation in live cells: Diagnosis, caveats, and functional consequences publication-title: Genes & Development – volume: 37 year: 2018 article-title: A single N‐terminal phosphomimic disrupts TDP‐43 polymerization, phase separation, and RNA splicing publication-title: EMBO Journal – volume: 26 start-page: 547 year: 2016 end-page: 558 article-title: Phase Separation: Linking cellular compartmentalization to disease publication-title: Trends in Cell Biology – ident: e_1_2_11_33_1 doi: 10.1091/mbc.e10-11-0871 – ident: e_1_2_11_44_1 doi: 10.1126/science.1137065 – ident: e_1_2_11_48_1 doi: 10.1039/b618126k – ident: e_1_2_11_42_1 doi: 10.1242/jcs.02646 – ident: e_1_2_11_8_1 doi: 10.1111/bph.14048 – ident: e_1_2_11_3_1 doi: 10.1016/j.cell.2017.05.016 – ident: e_1_2_11_43_1 doi: 10.1016/S0960-9822(03)00370-1 – ident: e_1_2_11_5_1 doi: 10.1101/cshperspect.a007898 – ident: e_1_2_11_32_1 doi: 10.1038/s41598-020-74080-2 – ident: e_1_2_11_28_1 doi: 10.1016/j.str.2016.07.007 – ident: e_1_2_11_65_1 doi: 10.1074/jbc.274.16.10681 – ident: e_1_2_11_17_1 doi: 10.1016/j.cell.2015.09.015 – ident: e_1_2_11_24_1 doi: 10.1016/j.tibs.2014.08.006 – ident: e_1_2_11_41_1 doi: 10.1038/ncb2082 – ident: e_1_2_11_35_1 doi: 10.1038/nsmb1247 – ident: e_1_2_11_64_1 doi: 10.1146/annurev-biophys-052118-115534 – ident: e_1_2_11_74_1 doi: 10.1126/science.aaf4382 – ident: e_1_2_11_79_1 doi: 10.1016/j.cell.2016.04.047 – ident: e_1_2_11_69_1 doi: 10.1038/nature08356 – ident: e_1_2_11_26_1 doi: 10.1091/mbc.E16-07-0557 – ident: e_1_2_11_20_1 doi: 10.1016/j.sbi.2016.08.001 – ident: e_1_2_11_51_1 doi: 10.1126/science.1232389 – ident: e_1_2_11_59_1 doi: 10.1021/pr200740a – ident: e_1_2_11_60_1 doi: 10.1007/s00018-010-0329-3 – ident: e_1_2_11_4_1 doi: 10.1242/dev.146589 – ident: e_1_2_11_52_1 doi: 10.1126/science.1228734 – ident: e_1_2_11_34_1 doi: 10.1038/s41568-020-00307-z – ident: e_1_2_11_47_1 doi: 10.1016/j.cellsig.2018.03.004 – ident: e_1_2_11_16_1 doi: 10.1016/j.tibs.2017.08.002 – ident: e_1_2_11_29_1 doi: 10.15252/embj.201797452 – ident: e_1_2_11_72_1 doi: 10.1093/emboj/17.5.1371 – ident: e_1_2_11_2_1 doi: 10.1016/j.cell.2012.05.012 – ident: e_1_2_11_30_1 doi: 10.1016/j.molcel.2019.08.016 – ident: e_1_2_11_14_1 doi: 10.1016/j.cell.2018.12.035 – ident: e_1_2_11_76_1 doi: 10.1016/j.molcel.2015.01.013 – ident: e_1_2_11_50_1 doi: 10.1016/j.cell.2010.11.034 – ident: e_1_2_11_62_1 doi: 10.1038/nature04170 – ident: e_1_2_11_15_1 doi: 10.1038/nrm.2017.7 – ident: e_1_2_11_38_1 doi: 10.1371/journal.pgen.1007178 – ident: e_1_2_11_11_1 doi: 10.1371/journal.pone.0031882 – ident: e_1_2_11_53_1 doi: 10.1016/j.cub.2005.10.050 – ident: e_1_2_11_75_1 doi: 10.7554/eLife.04591 – ident: e_1_2_11_18_1 doi: 10.1016/j.tcb.2019.01.008 – ident: e_1_2_11_58_1 doi: 10.1073/pnas.1017063108 – ident: e_1_2_11_57_1 doi: 10.1371/journal.pone.0004046 – ident: e_1_2_11_7_1 doi: 10.1016/S0092-8674(02)00685-2 – ident: e_1_2_11_9_1 doi: 10.1016/j.cell.2012.05.002 – ident: e_1_2_11_13_1 doi: 10.1038/s41580-020-00303-z – ident: e_1_2_11_63_1 doi: 10.1073/pnas.0803025105 – ident: e_1_2_11_21_1 doi: 10.1371/journal.pgen.1007339 – ident: e_1_2_11_61_1 doi: 10.1038/nature04185 – ident: e_1_2_11_68_1 doi: 10.1074/jbc.M110.137471 – ident: e_1_2_11_6_1 doi: 10.1016/j.ceb.2017.10.008 – ident: e_1_2_11_36_1 doi: 10.1098/rsob.110013 – ident: e_1_2_11_70_1 doi: 10.1073/pnas.032468199 – ident: e_1_2_11_23_1 doi: 10.1016/j.devcel.2019.01.025 – ident: e_1_2_11_40_1 doi: 10.1242/jcs.002956 – ident: e_1_2_11_56_1 doi: 10.1016/j.tig.2004.02.003 – ident: e_1_2_11_78_1 doi: 10.1101/gad.331520.119 – ident: e_1_2_11_22_1 doi: 10.1038/onc.2008.205 – ident: e_1_2_11_31_1 doi: 10.1091/mbc.E14-04-0885 – ident: e_1_2_11_39_1 doi: 10.1016/j.molcel.2008.10.023 – ident: e_1_2_11_54_1 doi: 10.1074/jbc.M111.323337 – ident: e_1_2_11_67_1 doi: 10.1038/ncomms11430 – ident: e_1_2_11_46_1 doi: 10.1016/j.cellsig.2009.11.021 – ident: e_1_2_11_45_1 doi: 10.7554/eLife.55015 – ident: e_1_2_11_25_1 doi: 10.1016/j.cell.2020.07.037 – ident: e_1_2_11_49_1 doi: 10.1101/cshperspect.a007880 – ident: e_1_2_11_77_1 doi: 10.7554/eLife.04123 – ident: e_1_2_11_55_1 doi: 10.1091/mbc.E19-11-0647 – ident: e_1_2_11_10_1 doi: 10.1073/pnas.1910547117 – volume: 220 year: 2021 ident: e_1_2_11_27_1 article-title: Phase separation of Axin organizes the beta‐catenin destruction complex publication-title: Journal of Cell Biology – ident: e_1_2_11_12_1 doi: 10.1016/j.cellsig.2013.12.020 – ident: e_1_2_11_73_1 doi: 10.1371/journal.pgen.1007697 – ident: e_1_2_11_66_1 doi: 10.1101/gad.13.14.1768 – ident: e_1_2_11_19_1 doi: 10.1016/j.tcb.2016.03.004 – ident: e_1_2_11_37_1 doi: 10.1038/nrm806 – ident: e_1_2_11_71_1 doi: 10.3390/genes9030121 |
SSID | ssj0009624 |
Score | 2.412298 |
Snippet | The intracellular multiprotein complex β‐catenin destruction complex plays a key role in Wnt/β‐catenin signaling. Wnt stimulation induces the assembly of the... The intracellular multiprotein complex β-catenin destruction complex plays a key role in Wnt/β-catenin signaling. Wnt stimulation induces the assembly of the... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | e2100138 |
SubjectTerms | APC Axin biomolecular condensate Catenin Complex formation Destruction destruction complex Inactivation Liquid phases LLPS Phase separation separation Signaling signalosome Transcription activation transcriptional activation Wnt protein Wnt signaling |
Title | Liquid–liquid phase separation drives the β‐catenin destruction complex formation |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fbies.202100138 https://www.proquest.com/docview/2576608976 https://www.proquest.com/docview/2563422327 https://www.proquest.com/docview/2636384744 |
Volume | 43 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dSsMwFA4yELzxX5xOiSB4lf20adNcqjiGqBfiZHclaTIcjm66DdSrPYLgm_ggPsSexHPardsEFfSuP0lJk5yc72tPvkPIYVMhag40c6XnMi64x5QVgvGgrIxvtXST1AmXV36tzs8bXmNmF3-qD5F9cEPLSNZrNHCle6WpaKhGJukgZcGfbbAIY8AWoqLrqX6U9JOstsAzPAZEQ0xUG8tOab76vFeaQs1ZwJp4nOoKUZO2poEm98VBXxejly8yjv95mVWyPIaj9DidP2tkwcbrZDFNUPm8QW4vWg-DlhkN39rJAe3egdejPZsqhndiah5Rt5YCjKQf76PhKwZYxS24bjNlWpqErdsnmm2U3CT16tnNaY2NMzGwCBhswBSX4MZU03JlNQrmG6nB7wtXaU_6gdZAgrwI0COQFUcaN9IVHRnL3SbnTQOzYIvk4k5stwkVMuCeMkJIA0wUdwYLeKRS0sXHe5U8YZORCKOxTDlmy2iHqcCyE2JfhVlf5clRVr6bCnR8W7IwGdhwbKhwF_iWXw4AlOXJQXYbTAz_m6jYdgZYxocZC9BT_FDGd2Elg7nO88RJRvqX1oQnAPezs52_VNolS3ichhYWSA6G1e4BROrr_cQMPgH-SgpN |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NTtwwEB6tqFC5tOVPXaDgSlQ9GZbEieMDh8J2tZSFQwUVt2DHXnVVlOVv1cKJR6jUJykP0kMfYZ-kM_lbQCqVkDj0lh8ncjKe8fcl428AlruaUHNkuK8CnwspAq6dlFxEDW1DZ5SflU7Y2Q3b--LDQXBQg5_lWphcH6L64EaekcVrcnD6IL06Ug01RCU94iz0t63Iq9x2F1-RtZ2tbzXRxG88r_V-b7PNi8ICPEFCFnEtFEZl3XVCO0P671YZnMakr02gwsgYxPRBgmAIsbenrJ-YNZNYJ_yuEF2rqFAERv0nVEac5PqbH0eKVSrM6ugiswk4UhtZ6kQ2vNXb_b09D47A7U2InM1xrefwu3w7eWrLl5XBuVlJLu8IR_5Xr-8FPCsQN3uXu8gk1Fw6BeN5Dc6LafjU6Z0MenZ49eMo22DHn3FiZ2cuF0Xvp8yekjQvQ6TMfl0Pr75TDlnaw-OuEt9lWWa--8aqtaAzsP8oDzULY2k_dS-BSRWJQFsplUWyTYufJd5Sa-XT7YO1OvDS9HFSKLFTQZCjONeQ9mKyTVzZpg5vq_bHuQbJX1sulCMpLmIRnkVKGTYixJ11eF2dxihCv4Z06voDahOiUyK6lve0CX0M1ujOog5eNrT-0Zt4AxlNtTf3kIuW4Gl7b6cTd7Z2t-dhgo7nmZQLMIYmdq8QEZ6bxcwHGRw-9qj9AyeYZ8Y |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3JTtxAEC0hEFEuELKICVsjJcqpYbDbbveBAzCM2IKiKETcnG53W4yCPJPAiOXEJyDlRxAfgsQv8CVUeZsQKYkUiUNuXtpW29VV_Z5d_QrgTaoJNUeG-yrwuZAi4NpJyUXU1DZ0Rvl56YT3u-HGntjaD_aH4KpaC1PoQ9Qf3Mgz8nhNDt6z6eJANNQQk_SIstDPtjKtctudnSBpO1rebKGF33pee_3T2gYv6wrwBPlYxLVQGJR16oR2huTfrTI4i0lfm0CFkTEI6YMEsRBCb09ZPzFLJrFO-KkQqVVUJwKD_ogIm4qKRbQ-DgSrVJiX0UViE3BkNrKSiWx6iw_7-3AaHGDbnxFyPsW1x-G2ejlFZsvXhf6xWUjOf9GN_J_e3jMYK_E2WykcZAKGXPYcRosKnGcv4PNO51u_Y-8ufhzmG6x3gNM6O3KFJHo3Y_Y7CfMyxMns5vru4pIyyLIOHne19C7L8_LdKatXgr6EvUd5qFcwnHUzNwlMqkgE2kqpLFJtWvos8ZZaK59uHyw1gFeWj5NSh53KgRzGhYK0F5Nt4to2DXhXt-8VCiS_bTldDaS4jER4Fgll2IwQdTZgvj6NMYR-DOnMdfvUJkSXRGwt_9Am9DFUozOLBnj5yPpLb-JV5DP13ut_uWgOnnxoteOdzd3tKXhKh4s0ymkYRgu7GYSDx2Y290AGXx570N4DbZRmdQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Liquid%E2%80%93liquid+phase+separation+drives+the+%CE%B2%E2%80%90catenin+destruction+complex+formation&rft.jtitle=BioEssays&rft.au=Shi%2C+Qiaoni&rft.au=Kang%2C+Kexin&rft.au=Chen%2C+Ye%E2%80%90Guang&rft.date=2021-10-01&rft.issn=0265-9247&rft.eissn=1521-1878&rft.volume=43&rft.issue=10&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fbies.202100138&rft.externalDBID=10.1002%252Fbies.202100138&rft.externalDocID=BIES202100138 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0265-9247&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0265-9247&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0265-9247&client=summon |