Response of cracked simply supported concrete beam with moving vehicle load

The dynamic response of a cracked beam subjected to moving loads has been studied extensively in the past decades. However, very little is known about the dynamic impact factors and crack propagation when vehicles move along the cracked beam. It can be reasonably postulated that a crack extension ma...

Full description

Saved in:
Bibliographic Details
Published inStructural concrete : journal of the FIB Vol. 17; no. 5; pp. 875 - 882
Main Authors Zhou, Linyun, Liu, Huangin
Format Journal Article
LanguageEnglish
Published Berlin Ernst & Sohn 01.12.2016
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text
ISSN1464-4177
1751-7648
DOI10.1002/suco.201500138

Cover

Loading…
Abstract The dynamic response of a cracked beam subjected to moving loads has been studied extensively in the past decades. However, very little is known about the dynamic impact factors and crack propagation when vehicles move along the cracked beam. It can be reasonably postulated that a crack extension may occur when the vehicle loads cross the cracked bridge at a high speed. As a result, the dynamic response will be enlarged significantly due to the flexural rigidity reduction induced by cracks, which may result in a dangerous effect on structures. To address this problem, a three‐dimensional vehicle‐bridge model was developed to investigate the dynamic response of cracked bridges with crack breathing. Crack breathing is simulated at the crack surface using contact elements. The modified crack closure method is adopted to calculate the stress intensity factors. The results showed that the impact factors for the damaged bridge under a moving load could be notably larger than those for the intact bridge, and could exceed the value specified in the AASHTO bridge design code. Meanwhile, crack propagation may occur when the vehicles move along the cracked bridge at a high speed. So, it is very necessary to limit the velocity and transverse position of the vehicles to avoid further damage to the cracked bridge.
AbstractList The dynamic response of a cracked beam subjected to moving loads has been studied extensively in the past decades. However, very little is known about the dynamic impact factors and crack propagation when vehicles move along the cracked beam. It can be reasonably postulated that a crack extension may occur when the vehicle loads cross the cracked bridge at a high speed. As a result, the dynamic response will be enlarged significantly due to the flexural rigidity reduction induced by cracks, which may result in a dangerous effect on structures. To address this problem, a three‐dimensional vehicle‐bridge model was developed to investigate the dynamic response of cracked bridges with crack breathing. Crack breathing is simulated at the crack surface using contact elements. The modified crack closure method is adopted to calculate the stress intensity factors. The results showed that the impact factors for the damaged bridge under a moving load could be notably larger than those for the intact bridge, and could exceed the value specified in the AASHTO bridge design code. Meanwhile, crack propagation may occur when the vehicles move along the cracked bridge at a high speed. So, it is very necessary to limit the velocity and transverse position of the vehicles to avoid further damage to the cracked bridge.
Author Liu, Huangin
Zhou, Linyun
Author_xml – sequence: 1
  givenname: Linyun
  surname: Zhou
  fullname: Zhou, Linyun
  email: 21105309@163.com, linyunseu@gmail.com
  organization: Key Laboratory of Concrete and Prestressed Concrete Structures of Ministry of Education, School of Civil Engineering, Southeast University, Nanjing, PR China
– sequence: 2
  givenname: Huangin
  surname: Liu
  fullname: Liu, Huangin
  email: huanginliu@gmail.com
  organization: Key Laboratory of Concrete and Prestressed Concrete Structures of Ministry of Education, School of Civil Engineering, Southeast University, Nanjing, PR China
BookMark eNqFkM1LAzEQxYMoqNWr54Dnrcnma_coRa1aWtAWvYU0O7Wp282abNX-926pFBHE0zyG95s3vGO0X_kKEDqjpEsJSS_iyvpuSqgghLJsDx1RJWiiJM_2W80lTzhV6hAdx7ho_a0WR-j-AWLtqwjYz7ANxr5CgaNb1uUax1Vd-9C0C-srG6ABPAWzxB-umeOlf3fVC36HubMl4NKb4gQdzEwZ4fR7dtDk-mrc6yeD0c1t73KQWJaxLMlzIwknXAiTU0rNlECRWQEgpSWZpSBSwdP2YVlIJhQAK6ZFkWc0Z9ZMDWEddL69Wwf_toLY6IVfhaqN1DQTnOaSpKp1dbcuG3yMAWa6Dm5pwlpTojeF6U1heldYC_BfgHWNaZyvmmBc-TeWb7EPV8L6nxD9OOmNfrLJlnWxgc8da8KrloopoZ-GN_pu3L9-5irXQ_YFfLKRrQ
CitedBy_id crossref_primary_10_3390_buildings13051109
crossref_primary_10_15862_04SATS322
crossref_primary_10_1002_suco_201770031
crossref_primary_10_1007_s00419_023_02467_4
Cites_doi 10.1016/j.engstruct.2009.06.005
10.1016/j.engstruct.2009.08.013
10.1061/(ASCE)BE.1943‐5592.0000764
10.1016/S0022-460X(73)80373-6
10.1023/A:1012288400397
10.1006/jsvi.1998.1640
10.1016/0013-7944(87)90220-7
10.1006/jsvi.2000.3156
10.1016/0045-7949(84)90134-2
10.4236/wjm.2011.12004
10.1016/0013-7944(77)90013-3
10.1006/jsvi.1997.1459
10.1002/eqe.4290080202
10.1680/vosasuml.35393
10.1016/j.engstruct.2004.04.007
10.1007/978-1-4684-8318-5
10.1061/(ASCE)0733-9445(2005)131:8(1277)
10.1007/BF01213564
10.1061/(ASCE)0733-9445(1992)118:12(3427)
10.1061/(ASCE)1084-0702(2006)11:2(241)
10.1061/(ASCE)EM.1943-7889.0000558
10.1016/0022-5096(68)90014-8
ContentType Journal Article
Copyright Copyright © 2016 Ernst & Sohn Verlag für Architektur und technische Wissenschaften GmbH & Co. KG, Berlin
Copyright Blackwell Publishing Ltd. Dec 2016
Copyright_xml – notice: Copyright © 2016 Ernst & Sohn Verlag für Architektur und technische Wissenschaften GmbH & Co. KG, Berlin
– notice: Copyright Blackwell Publishing Ltd. Dec 2016
DBID BSCLL
AAYXX
CITATION
7QQ
7SR
8BQ
8FD
F28
FR3
JG9
KR7
DOI 10.1002/suco.201500138
DatabaseName Istex
CrossRef
Ceramic Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Materials Research Database
Civil Engineering Abstracts
DatabaseTitle CrossRef
Materials Research Database
Civil Engineering Abstracts
Engineered Materials Abstracts
Technology Research Database
Ceramic Abstracts
Engineering Research Database
ANTE: Abstracts in New Technology & Engineering
METADEX
DatabaseTitleList
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1751-7648
EndPage 882
ExternalDocumentID 4289946711
10_1002_suco_201500138
SUCO201500138
ark_67375_WNG_JTHFX479_N
Genre article
General Information
GroupedDBID ..I
.GA
.Y3
05W
0R~
123
1OC
31~
33P
3SF
4.4
50Z
52M
52U
8-0
8-1
8-3
8-4
8-5
930
A03
AABWP
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCUV
ABDBF
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BRXPI
BSCLL
CS3
D-E
D-F
DCZOG
DRFUL
DRSTM
DU5
EBS
EJD
ESX
F00
F01
F04
FEDTE
G-S
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZ~
ITG
ITH
LATKE
LEEKS
LH4
LITHE
LOXES
LUTES
LW6
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
N04
N05
NF~
O66
O9-
P2W
P2X
Q.N
QB0
ROL
RTT
SUPJJ
UB1
W8V
W99
WBKPD
WIH
WIK
WLBEL
WOHZO
WXSBR
WYISQ
XG2
~WT
AAHQN
AAMNL
AANHP
AAUCF
AAYCA
ACRPL
ACUHS
ACYXJ
ADNMO
ADXNT
AFWVQ
ALVPJ
AAYXX
ADMLS
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
7QQ
7SR
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
F28
FR3
JG9
KR7
ID FETCH-LOGICAL-c3838-99a6040455a9111ab0ed8c5ee66c08c1e525421466d6357ee3dbdd98193caba03
ISSN 1464-4177
IngestDate Wed Aug 13 10:06:58 EDT 2025
Tue Jul 01 02:38:15 EDT 2025
Thu Apr 24 23:07:05 EDT 2025
Wed Jan 22 16:21:38 EST 2025
Wed Oct 30 09:49:58 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c3838-99a6040455a9111ab0ed8c5ee66c08c1e525421466d6357ee3dbdd98193caba03
Notes istex:8672F4E9DABE98FA6C47E0C8C0C7D7C62CC8DEDD
ArticleID:SUCO201500138
ark:/67375/WNG-JTHFX479-N
SourceType-Scholarly Journals-1
ObjectType-General Information-1
content type line 14
PQID 1854196027
PQPubID 136230
PageCount 8
ParticipantIDs proquest_journals_1854196027
crossref_primary_10_1002_suco_201500138
crossref_citationtrail_10_1002_suco_201500138
wiley_primary_10_1002_suco_201500138_SUCO201500138
istex_primary_ark_67375_WNG_JTHFX479_N
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2016
PublicationDateYYYYMMDD 2016-12-01
PublicationDate_xml – month: 12
  year: 2016
  text: December 2016
PublicationDecade 2010
PublicationPlace Berlin
PublicationPlace_xml – name: Berlin
– name: London
PublicationTitle Structural concrete : journal of the FIB
PublicationYear 2016
Publisher Ernst & Sohn
Wiley Subscription Services, Inc
Publisher_xml – name: Ernst & Sohn
– name: Wiley Subscription Services, Inc
References Xu, S. L.; Jun, L. ( 2011) Study on initial cracking criterion for I-II miced mode crack and influnce of crack-depth ratio in conrete by using four-point shearing beams. In: Journal of Hydraulic Engineering, 42 (9) . pp. 1110-1116.
Gupta, R. K.; Trail-Nash, R. W. ( 1980) Bridge dynamic loading due to road surface irregularities and braking of vehicle. In: Earthquake Engineering and Structural Dynamics 8 (2) . pp. 83-96.
Law, S. S.; Zhu, X. Q. ( 2004) Dynamic behavior of damaged concrete bridge structures under moving vehicular loads. In: Engineering Structures 26 (9) . pp. 1279-1293.
Deng, L.; Cai, C. S. ( 2009) Identification of parameters of vehicles moving on bridges. In: Engineering Structures 31 (10) . pp. 2474-2485.
Deng, L.; Wang, F. ( 2015) Impact factors of simply supported prestressed concrete girder bridges due to vehicle braking. In: Journal of Bridge Engineering 20 (11) . doi 10.1061/(ASCE)BE.1943-5592.0000764, 06015002
Chondros, T. G.; Dimarogonas, A. D.; Yao, J. ( 1998) A continuous cracked beam vibration theory. In: Journal of Sound and Vibration 215 (1) . pp. 17-34.
Law, S.; Zhu, X. Q. ( 2005) Nonlinear characteristics of damaged concrete structures under vehicular load. In: Journal of Structural Engineering 131 (8) . pp. 1277-1285.
Lee, H. P.; Ng. T. Y. ( 1994) Dynamic response of a cracked beam subject to a moving load. In: Acta Mechanica 106 (3) . pp. 221-230.
Mahmoud, M. A. ( 2001) Stress intensity factors for single and double edge cracks in a simple beam subject to a moving load. In: International Journal of Fracture 111 (2) . pp. 151-161.
Dodds, C. J.; Robson, J. D. ( 1973) The description of road surface roughness. In: Journal of Sound and Vibration 31 (2) . pp. 175-183.
Yu Y. Z.; Zhang, Y. Q.; Cao, J. G.; Guo, G. L. ( 1982) Analysis and test on the criterion of combined mode fracture (Mode I and II) in concrete. In: Journal of Hydraulic Engineering 6 (7) . pp. 27-37.
Huang, D.; Wang, T. L.; Shahawy, M. ( 1992) Impact analysis of continuous multigirder bridges due to moving vehicles. In: Journal of Structural Engineering 118 (12) . pp. 3427-3443.
Henchi, K.; Fafard, M.; Talbot, M.; Dhatt, G. ( 1998) An efficient algorithm for dynamic analysis of bridges under moving vehicles using a coupled modal and physical components approach. In: Journal of Sound and Vibration 212 (4) . pp. 663-683.
Liu, M. H.; Wang, X. D. ( 2013) Research on fracture energy of mixed mode crack in concrete and its criteria. In: Journal of Disaster Prevention and Mitigation Engineering 33 (2) . pp. 174-178.
Brady, S. P., Brien E. J., Znidaric, A. ( 2006) Effect of vehicle velocity on the dynamic amplification of a vehicle crossing a simply supported bridge. In: Journal of Bridge Engineering 11 (2) . pp. 241-249.
Hutchinson, J. W. ( 1968) Singular behaviour at the end of a tensile crack in a hardening material. In: Journal of the Mechanics and Physics of Solids 16 (1) . pp. 13-31.
Raju, I. S. ( 1987) Calculation of strain-energy release rates with higher order and singular finite elements. In: Engineering Fracture Mechanics 28 (3) . pp. 251-274.
Anifantis, N.; Dimarogonas, A. D. ( 1984) Post buckling behavior of transverse cracked columns. In: Computers and Structures 18 (2) . pp. 351-356.
Chondros, T. G.; Dimarogonas, A. D.; Yao, J. ( 2001) Vibration of a beam with breathing crack. In: Journal of Sound and Vibration 239 (1) . pp. 57-67.
Rybicki, E. F.; Kanninen, M. F. ( 1977) A finite element calculation of stress intensity factors by a modified crack closure integral. In: Engineering Fracture Mechanics 9 (4) . pp. 931-938.
Deng, L.; Cai, C. S. ( 2010) Development of dynamic impact factors for performance evaluation of existing multi-girder concrete bridges. In: Engineering Structure 32 (1) . pp. 21-31.
Salwan, O. W.; Nawras, H. M.; Dhyai, H. J. ( 2011) Nonlinear dynamic characteristics of a simple blade with breathing crack using Ansys software. In: World Journal of Mechanics 1 (2) . pp. 21-30.
Pala, Y.; Reis, M. ( 2013) Dynamic response of a cracked beam under a moving mass load. In: Journal of Engineering Mechanics 139 (9) . pp. 1229-1238.
2010; 32
1973; 31
2005; 131
2011; 1
2006; 11
2004; 26
2006
1995
1998; 215
1998; 212
1977
1999
2001; 111
1989; 12
1994; 106
1968; 16
2009; 31
2013; 33
2015; 20
1982; 6
2013; 139
2011; 42
1980; 8
1992; 118
1984; 18
2001; 239
1977; 9
1987; 28
e_1_2_1_20_1
e_1_2_1_23_1
e_1_2_1_21_1
e_1_2_1_22_1
Xu S. L. (e_1_2_1_25_1) 2011; 42
e_1_2_1_27_1
e_1_2_1_28_1
e_1_2_1_29_1
Yu Y. Z. (e_1_2_1_26_1) 1982; 6
e_1_2_1_7_1
e_1_2_1_31_1
e_1_2_1_8_1
e_1_2_1_30_1
e_1_2_1_5_1
e_1_2_1_6_1
e_1_2_1_3_1
e_1_2_1_12_1
e_1_2_1_4_1
e_1_2_1_13_1
e_1_2_1_10_1
e_1_2_1_2_1
e_1_2_1_11_1
e_1_2_1_16_1
Liu M. H. (e_1_2_1_24_1) 2013; 33
e_1_2_1_17_1
e_1_2_1_14_1
e_1_2_1_15_1
e_1_2_1_9_1
e_1_2_1_18_1
e_1_2_1_19_1
References_xml – reference: Chondros, T. G.; Dimarogonas, A. D.; Yao, J. ( 1998) A continuous cracked beam vibration theory. In: Journal of Sound and Vibration 215 (1) . pp. 17-34.
– reference: Deng, L.; Wang, F. ( 2015) Impact factors of simply supported prestressed concrete girder bridges due to vehicle braking. In: Journal of Bridge Engineering 20 (11) . doi 10.1061/(ASCE)BE.1943-5592.0000764, 06015002
– reference: Brady, S. P., Brien E. J., Znidaric, A. ( 2006) Effect of vehicle velocity on the dynamic amplification of a vehicle crossing a simply supported bridge. In: Journal of Bridge Engineering 11 (2) . pp. 241-249.
– reference: Deng, L.; Cai, C. S. ( 2009) Identification of parameters of vehicles moving on bridges. In: Engineering Structures 31 (10) . pp. 2474-2485.
– reference: Law, S.; Zhu, X. Q. ( 2005) Nonlinear characteristics of damaged concrete structures under vehicular load. In: Journal of Structural Engineering 131 (8) . pp. 1277-1285.
– reference: Salwan, O. W.; Nawras, H. M.; Dhyai, H. J. ( 2011) Nonlinear dynamic characteristics of a simple blade with breathing crack using Ansys software. In: World Journal of Mechanics 1 (2) . pp. 21-30.
– reference: Huang, D.; Wang, T. L.; Shahawy, M. ( 1992) Impact analysis of continuous multigirder bridges due to moving vehicles. In: Journal of Structural Engineering 118 (12) . pp. 3427-3443.
– reference: Deng, L.; Cai, C. S. ( 2010) Development of dynamic impact factors for performance evaluation of existing multi-girder concrete bridges. In: Engineering Structure 32 (1) . pp. 21-31.
– reference: Chondros, T. G.; Dimarogonas, A. D.; Yao, J. ( 2001) Vibration of a beam with breathing crack. In: Journal of Sound and Vibration 239 (1) . pp. 57-67.
– reference: Law, S. S.; Zhu, X. Q. ( 2004) Dynamic behavior of damaged concrete bridge structures under moving vehicular loads. In: Engineering Structures 26 (9) . pp. 1279-1293.
– reference: Pala, Y.; Reis, M. ( 2013) Dynamic response of a cracked beam under a moving mass load. In: Journal of Engineering Mechanics 139 (9) . pp. 1229-1238.
– reference: Mahmoud, M. A. ( 2001) Stress intensity factors for single and double edge cracks in a simple beam subject to a moving load. In: International Journal of Fracture 111 (2) . pp. 151-161.
– reference: Lee, H. P.; Ng. T. Y. ( 1994) Dynamic response of a cracked beam subject to a moving load. In: Acta Mechanica 106 (3) . pp. 221-230.
– reference: Liu, M. H.; Wang, X. D. ( 2013) Research on fracture energy of mixed mode crack in concrete and its criteria. In: Journal of Disaster Prevention and Mitigation Engineering 33 (2) . pp. 174-178.
– reference: Raju, I. S. ( 1987) Calculation of strain-energy release rates with higher order and singular finite elements. In: Engineering Fracture Mechanics 28 (3) . pp. 251-274.
– reference: Gupta, R. K.; Trail-Nash, R. W. ( 1980) Bridge dynamic loading due to road surface irregularities and braking of vehicle. In: Earthquake Engineering and Structural Dynamics 8 (2) . pp. 83-96.
– reference: Henchi, K.; Fafard, M.; Talbot, M.; Dhatt, G. ( 1998) An efficient algorithm for dynamic analysis of bridges under moving vehicles using a coupled modal and physical components approach. In: Journal of Sound and Vibration 212 (4) . pp. 663-683.
– reference: Xu, S. L.; Jun, L. ( 2011) Study on initial cracking criterion for I-II miced mode crack and influnce of crack-depth ratio in conrete by using four-point shearing beams. In: Journal of Hydraulic Engineering, 42 (9) . pp. 1110-1116.
– reference: Anifantis, N.; Dimarogonas, A. D. ( 1984) Post buckling behavior of transverse cracked columns. In: Computers and Structures 18 (2) . pp. 351-356.
– reference: Dodds, C. J.; Robson, J. D. ( 1973) The description of road surface roughness. In: Journal of Sound and Vibration 31 (2) . pp. 175-183.
– reference: Hutchinson, J. W. ( 1968) Singular behaviour at the end of a tensile crack in a hardening material. In: Journal of the Mechanics and Physics of Solids 16 (1) . pp. 13-31.
– reference: Yu Y. Z.; Zhang, Y. Q.; Cao, J. G.; Guo, G. L. ( 1982) Analysis and test on the criterion of combined mode fracture (Mode I and II) in concrete. In: Journal of Hydraulic Engineering 6 (7) . pp. 27-37.
– reference: Rybicki, E. F.; Kanninen, M. F. ( 1977) A finite element calculation of stress intensity factors by a modified crack closure integral. In: Engineering Fracture Mechanics 9 (4) . pp. 931-938.
– volume: 9
  start-page: 931
  issue: 4
  year: 1977
  end-page: 938
  article-title: A finite element calculation of stress intensity factors by a modified crack closure integral
  publication-title: Engineering Fracture Mechanics
– volume: 139
  start-page: 1229
  issue: 9
  year: 2013
  end-page: 1238
  article-title: Dynamic response of a cracked beam under a moving mass load
  publication-title: Journal of Engineering Mechanics
– volume: 31
  start-page: 2474
  issue: 10
  year: 2009
  end-page: 2485
  article-title: Identification of parameters of vehicles moving on bridges
  publication-title: Engineering Structures
– volume: 20
  issue: 11
  year: 2015
  article-title: Impact factors of simply supported prestressed concrete girder bridges due to vehicle braking
  publication-title: Journal of Bridge Engineering
– volume: 18
  start-page: 351
  issue: 2
  year: 1984
  end-page: 356
  article-title: Post buckling behavior of transverse cracked columns
  publication-title: Computers and Structures
– volume: 8
  start-page: 83
  issue: 2
  year: 1980
  end-page: 96
  article-title: Bridge dynamic loading due to road surface irregularities and braking of vehicle
  publication-title: Earthquake Engineering and Structural Dynamics
– volume: 118
  start-page: 3427
  issue: 12
  year: 1992
  end-page: 3443
  article-title: Impact analysis of continuous multigirder bridges due to moving vehicles
  publication-title: Journal of Structural Engineering
– volume: 16
  start-page: 13
  issue: 1
  year: 1968
  end-page: 31
  article-title: Singular behaviour at the end of a tensile crack in a hardening material
  publication-title: Journal of the Mechanics and Physics of Solids
– volume: 212
  start-page: 663
  issue: 4
  year: 1998
  end-page: 683
  article-title: An efficient algorithm for dynamic analysis of bridges under moving vehicles using a coupled modal and physical components approach
  publication-title: Journal of Sound and Vibration
– volume: 42
  start-page: 1110
  issue: 9
  year: 2011
  end-page: 1116
  article-title: Study on initial cracking criterion for I‐II miced mode crack and influnce of crack‐depth ratio in conrete by using four‐point shearing beams
  publication-title: Journal of Hydraulic Engineering
– volume: 32
  start-page: 21
  issue: 1
  year: 2010
  end-page: 31
  article-title: Development of dynamic impact factors for performance evaluation of existing multi‐girder concrete bridges
  publication-title: Engineering Structure
– year: 1977
– volume: 31
  start-page: 175
  issue: 2
  year: 1973
  end-page: 183
  article-title: The description of road surface roughness
  publication-title: Journal of Sound and Vibration
– volume: 239
  start-page: 57
  issue: 1
  year: 2001
  end-page: 67
  article-title: Vibration of a beam with breathing crack
  publication-title: Journal of Sound and Vibration
– volume: 6
  start-page: 27
  issue: 7
  year: 1982
  end-page: 37
  article-title: Analysis and test on the criterion of combined mode fracture (Mode I and II) in concrete
  publication-title: Journal of Hydraulic Engineering
– volume: 1
  start-page: 21
  issue: 2
  year: 2011
  end-page: 30
  article-title: Nonlinear dynamic characteristics of a simple blade with breathing crack using Ansys software
  publication-title: World Journal of Mechanics
– start-page: 44
  year: 1977
  end-page: 50
– volume: 12
  start-page: 17
  year: 1989
  end-page: 20
– volume: 131
  start-page: 1277
  issue: 8
  year: 2005
  end-page: 1285
  article-title: Nonlinear characteristics of damaged concrete structures under vehicular load
  publication-title: Journal of Structural Engineering
– volume: 26
  start-page: 1279
  issue: 9
  year: 2004
  end-page: 1293
  article-title: Dynamic behavior of damaged concrete bridge structures under moving vehicular loads
  publication-title: Engineering Structures
– year: 2006
– volume: 106
  start-page: 221
  issue: 3
  year: 1994
  end-page: 230
  article-title: Dynamic response of a cracked beam subject to a moving load
  publication-title: Acta Mechanica
– year: 1995
– volume: 33
  start-page: 174
  issue: 2
  year: 2013
  end-page: 178
  article-title: Research on fracture energy of mixed mode crack in concrete and its criteria
  publication-title: Journal of Disaster Prevention and Mitigation Engineering
– volume: 11
  start-page: 241
  issue: 2
  year: 2006
  end-page: 249
  article-title: Effect of vehicle velocity on the dynamic amplification of a vehicle crossing a simply supported bridge
  publication-title: Journal of Bridge Engineering
– volume: 215
  start-page: 17
  issue: 1
  year: 1998
  end-page: 34
  article-title: A continuous cracked beam vibration theory
  publication-title: Journal of Sound and Vibration
– volume: 111
  start-page: 151
  issue: 2
  year: 2001
  end-page: 161
  article-title: Stress intensity factors for single and double edge cracks in a simple beam subject to a moving load
  publication-title: International Journal of Fracture
– volume: 28
  start-page: 251
  issue: 3
  year: 1987
  end-page: 274
  article-title: Calculation of strain‐energy release rates with higher order and singular finite elements
  publication-title: Engineering Fracture Mechanics
– year: 1999
– ident: e_1_2_1_27_1
  doi: 10.1016/j.engstruct.2009.06.005
– ident: e_1_2_1_5_1
  doi: 10.1016/j.engstruct.2009.08.013
– ident: e_1_2_1_9_1
  doi: 10.1061/(ASCE)BE.1943‐5592.0000764
– ident: e_1_2_1_21_1
  doi: 10.1016/S0022-460X(73)80373-6
– ident: e_1_2_1_16_1
  doi: 10.1023/A:1012288400397
– ident: e_1_2_1_14_1
  doi: 10.1006/jsvi.1998.1640
– ident: e_1_2_1_30_1
  doi: 10.1016/0013-7944(87)90220-7
– ident: e_1_2_1_15_1
  doi: 10.1006/jsvi.2000.3156
– ident: e_1_2_1_11_1
  doi: 10.1016/0045-7949(84)90134-2
– volume: 6
  start-page: 27
  issue: 7
  year: 1982
  ident: e_1_2_1_26_1
  article-title: Analysis and test on the criterion of combined mode fracture (Mode I and II) in concrete
  publication-title: Journal of Hydraulic Engineering
– ident: e_1_2_1_28_1
  doi: 10.4236/wjm.2011.12004
– ident: e_1_2_1_29_1
  doi: 10.1016/0013-7944(77)90013-3
– ident: e_1_2_1_6_1
  doi: 10.1006/jsvi.1997.1459
– ident: e_1_2_1_3_1
  doi: 10.1002/eqe.4290080202
– ident: e_1_2_1_7_1
  doi: 10.1680/vosasuml.35393
– volume: 42
  start-page: 1110
  issue: 9
  year: 2011
  ident: e_1_2_1_25_1
  article-title: Study on initial cracking criterion for I‐II miced mode crack and influnce of crack‐depth ratio in conrete by using four‐point shearing beams
  publication-title: Journal of Hydraulic Engineering
– ident: e_1_2_1_12_1
– ident: e_1_2_1_17_1
  doi: 10.1016/j.engstruct.2004.04.007
– volume: 33
  start-page: 174
  issue: 2
  year: 2013
  ident: e_1_2_1_24_1
  article-title: Research on fracture energy of mixed mode crack in concrete and its criteria
  publication-title: Journal of Disaster Prevention and Mitigation Engineering
– ident: e_1_2_1_20_1
  doi: 10.1007/978-1-4684-8318-5
– ident: e_1_2_1_18_1
  doi: 10.1061/(ASCE)0733-9445(2005)131:8(1277)
– ident: e_1_2_1_22_1
– ident: e_1_2_1_13_1
  doi: 10.1007/BF01213564
– ident: e_1_2_1_8_1
– ident: e_1_2_1_2_1
– ident: e_1_2_1_4_1
  doi: 10.1061/(ASCE)0733-9445(1992)118:12(3427)
– ident: e_1_2_1_31_1
  doi: 10.1061/(ASCE)1084-0702(2006)11:2(241)
– ident: e_1_2_1_10_1
– ident: e_1_2_1_19_1
  doi: 10.1061/(ASCE)EM.1943-7889.0000558
– ident: e_1_2_1_23_1
  doi: 10.1016/0022-5096(68)90014-8
SSID ssj0021775
ssib035781430
Score 2.0744967
Snippet The dynamic response of a cracked beam subjected to moving loads has been studied extensively in the past decades. However, very little is known about the...
SourceID proquest
crossref
wiley
istex
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 875
SubjectTerms crack propagation
cracked beam
dynamic response
impact factors
stress intensity factor
vehicle-bridge model
Title Response of cracked simply supported concrete beam with moving vehicle load
URI https://api.istex.fr/ark:/67375/WNG-JTHFX479-N/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsuco.201500138
https://www.proquest.com/docview/1854196027
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JbxMxFLZQcoEDYhWBgnxAcIgGZrFnObalIZQqlehERFwsj-2oFdnUJIjy63nPnpnMsBW4jBLHmWT8Pr_F9vseIc8jzYtAppkXqWTqsdTPPBlqJASQMWfTbBoW9rTFKB6O2fGETxo7pphdsileqW-_zCv5H6lCG8gVs2T_QbL1TaEBXoN84QoShutfyfiDO-Bqw351KWFC6v76Yr6aXfXX25WlLMektQV4hhvTL4ycu3XXuVtG-GLO8Y792VK2ynWeWU5Zy8dRfxlXDhosE-iuDt7V2zWfzpfbMsK_2u4O-VzYxuFWIulhc30hiH84q3G9FmtoTxYzjwVlXRbj2hIeeEns6DRrlZs0oMUb-jN1ZVR-0uuOJ3a9VZivCT4s7q_uLFi1az86FYPxyYnIjyZ5-1NrsBkGl2AYMBW8G0JY4XdId__gzcGg0kBI_RNYPvoyZIdn4S4_zT1YRfvph6_bf6bl1nRxhn5txSzNyMe6LvkdcruMOei-A9BdcsMs7pFbDSbK--R9BSW6nNISStRBidZQohUaKEKJIpSogxItoUQRSg_IeHCUHw69ss6Gp6IU7V0mY9DljHOJpk8WvtGp4sbEsfJTFRgecoYF4GON7IXGRLrQOgNfMlKykH70kHQWy4V5RChPElmkCjoXEHornWmsaA79dKYimWQ94lXDJFRJQo-1UGbC0WeHAodV1MPaIy_r_itHv_Lbni_sqNfd5OVnPLSYcPFx9FYc58PBhCWZGPXIXiUWUc6btQCvlYEt8sOkR0Irqmt-TpyND0_rd4__fM8n5OZuZu2RDsxi8xR82U3xrATgd1Jnm50
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Response+of+cracked+simply+supported+concrete+beam+with+moving+vehicle+load&rft.jtitle=Structural+concrete+%3A+journal+of+the+FIB&rft.au=Zhou%2C+Linyun&rft.au=Liu%2C+Huangin&rft.date=2016-12-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1464-4177&rft.eissn=1751-7648&rft.volume=17&rft.issue=5&rft.spage=875&rft_id=info:doi/10.1002%2Fsuco.201500138&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=4289946711
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1464-4177&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1464-4177&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1464-4177&client=summon