A bidimensional finite mixture model for longitudinal data subject to dropout
In longitudinal studies, subjects may be lost to follow up and, thus, present incomplete response sequences. When the mechanism underlying the dropout is nonignorable, we need to account for dependence between the longitudinal and the dropout process. We propose to model such a dependence through di...
Saved in:
Published in | Statistics in medicine Vol. 37; no. 20; pp. 2998 - 3011 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
England
Wiley Subscription Services, Inc
10.09.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In longitudinal studies, subjects may be lost to follow up and, thus, present incomplete response sequences. When the mechanism underlying the dropout is nonignorable, we need to account for dependence between the longitudinal and the dropout process. We propose to model such a dependence through discrete latent effects, which are outcome‐specific and account for heterogeneity in the univariate profiles. Dependence between profiles is introduced by using a probability matrix to describe the corresponding joint distribution. In this way, we separately model dependence within each outcome and dependence between outcomes. The major feature of this proposal, when compared with standard finite mixture models, is that it allows the nonignorable dropout model to properly nest its ignorable counterpart. We also discuss the use of an index of (local) sensitivity to nonignorability to investigate the effects that assumptions about the dropout process may have on model parameter estimates. The proposal is illustrated via the analysis of data from a longitudinal study on the dynamics of cognitive functioning in the elderly. |
---|---|
AbstractList | In longitudinal studies, subjects may be lost to follow up and, thus, present incomplete response sequences. When the mechanism underlying the dropout is nonignorable, we need to account for dependence between the longitudinal and the dropout process. We propose to model such a dependence through discrete latent effects, which are outcome-specific and account for heterogeneity in the univariate profiles. Dependence between profiles is introduced by using a probability matrix to describe the corresponding joint distribution. In this way, we separately model dependence within each outcome and dependence between outcomes. The major feature of this proposal, when compared with standard finite mixture models, is that it allows the nonignorable dropout model to properly nest its ignorable counterpart. We also discuss the use of an index of (local) sensitivity to nonignorability to investigate the effects that assumptions about the dropout process may have on model parameter estimates. The proposal is illustrated via the analysis of data from a longitudinal study on the dynamics of cognitive functioning in the elderly.In longitudinal studies, subjects may be lost to follow up and, thus, present incomplete response sequences. When the mechanism underlying the dropout is nonignorable, we need to account for dependence between the longitudinal and the dropout process. We propose to model such a dependence through discrete latent effects, which are outcome-specific and account for heterogeneity in the univariate profiles. Dependence between profiles is introduced by using a probability matrix to describe the corresponding joint distribution. In this way, we separately model dependence within each outcome and dependence between outcomes. The major feature of this proposal, when compared with standard finite mixture models, is that it allows the nonignorable dropout model to properly nest its ignorable counterpart. We also discuss the use of an index of (local) sensitivity to nonignorability to investigate the effects that assumptions about the dropout process may have on model parameter estimates. The proposal is illustrated via the analysis of data from a longitudinal study on the dynamics of cognitive functioning in the elderly. In longitudinal studies, subjects may be lost to follow up and, thus, present incomplete response sequences. When the mechanism underlying the dropout is nonignorable, we need to account for dependence between the longitudinal and the dropout process. We propose to model such a dependence through discrete latent effects, which are outcome‐specific and account for heterogeneity in the univariate profiles. Dependence between profiles is introduced by using a probability matrix to describe the corresponding joint distribution. In this way, we separately model dependence within each outcome and dependence between outcomes. The major feature of this proposal, when compared with standard finite mixture models, is that it allows the nonignorable dropout model to properly nest its ignorable counterpart. We also discuss the use of an index of (local) sensitivity to nonignorability to investigate the effects that assumptions about the dropout process may have on model parameter estimates. The proposal is illustrated via the analysis of data from a longitudinal study on the dynamics of cognitive functioning in the elderly. |
Author | Marino, Maria Francesca Alfò, Marco Spagnoli, Alessandra |
Author_xml | – sequence: 1 givenname: Alessandra surname: Spagnoli fullname: Spagnoli, Alessandra organization: Sapienza Università di Roma – sequence: 2 givenname: Maria Francesca orcidid: 0000-0002-5841-7613 surname: Marino fullname: Marino, Maria Francesca email: mariafrancesca.marino@unifi.it organization: Università degli Studi di Firenze – sequence: 3 givenname: Marco surname: Alfò fullname: Alfò, Marco organization: Sapienza Università di Roma |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29873102$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kV1LwzAUhoNM3IeCv0AK3njTeZI2S3s5hh-DiRfqdUnSVDLaZiYpun9v6qbC0KsDh-c9H-87RoPWtAqhcwxTDECunW6mbJZnR2iEIWcxEJoN0AgIY_GMYTpEY-fWABhTwk7QkOQZSzCQEXqYR0KXulGt06bldVTpVnsVNfrDdzZUU6rQNDaqTfuqfVfqniq555HrxFpJH3kTldZsTOdP0XHFa6fO9nWCXm5vnhf38erxbrmYr2KZZEkWM04TgKpUORYiTUUFWVlJpiQTIhFUhosrgITklONwfsoIkTwhTDGMqwxoMkFXu7kba9465XzRaCdVXfNWmc4VBCiGGSMUB_TyAF2bzoYfeipLWbAtrJqgiz3ViUaVxcbqhttt8W3U70ZpjXNWVT8IhqLPoAgZFH0GAZ0eoFJ77oO93nJd_yWId4J3Xavtv4OLp-XDF_8JvOmV3Q |
CitedBy_id | crossref_primary_10_1007_s11634_021_00446_7 crossref_primary_10_1080_00273171_2019_1660606 crossref_primary_10_1515_ijb_2022_0014 |
Cites_doi | 10.1080/01621459.1995.10476615 10.1016/j.csda.2010.11.021 10.2307/1403146 10.2174/15672050113109990156 10.1214/11-STS361 10.1214/aos/1176344136 10.1002/sim.3604 10.1002/sim.3117 10.1002/sim.2107 10.1080/0266476022000006711 10.1111/1467-9868.00188 10.1002/sim.1710 10.1177/1471082X1001100401 10.2307/2531694 10.1111/j.2517-6161.1977.tb01600.x 10.1111/biom.12224 10.1111/1541-0420.00048 10.1002/bimj.201500162 10.1111/j.1541-0420.2007.00894.x 10.1111/j.1541-0420.2008.01021.x 10.1177/1471082X13504716 10.1007/978-1-4612-1694-0_15 10.1191/1740774504cn005oa 10.1080/01621459.1999.10473862 10.1002/sim.7078 10.2307/1912934 10.1111/j.1541-0420.2007.00837.x 10.1111/j.1467-9868.2007.00640.x 10.1080/02664763.2016.1182128 10.1016/0022-3956(75)90026-6 10.1016/j.spl.2013.04.004 10.1023/A:1008999824193 10.2307/2531905 10.1093/biomet/63.3.581 10.1007/978-3-642-35588-2_15 |
ContentType | Journal Article |
Copyright | Copyright © 2018 John Wiley & Sons, Ltd. 2018 John Wiley & Sons, Ltd. |
Copyright_xml | – notice: Copyright © 2018 John Wiley & Sons, Ltd. – notice: 2018 John Wiley & Sons, Ltd. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM K9. 7X8 |
DOI | 10.1002/sim.7698 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef ProQuest Health & Medical Complete (Alumni) MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Statistics Public Health |
EISSN | 1097-0258 |
EndPage | 3011 |
ExternalDocumentID | 29873102 10_1002_sim_7698 SIM7698 |
Genre | article Journal Article |
GeographicLocations | Netherlands |
GeographicLocations_xml | – name: Netherlands |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 123 1L6 1OB 1OC 1ZS 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5RE 5VS 66C 6PF 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAWTL AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABOCM ABPVW ACAHQ ACCFJ ACCZN ACGFS ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K ROL RWI RX1 RYL SUPJJ SV3 TN5 UB1 V2E W8V W99 WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WUP WWH WXSBR WYISQ XBAML XG1 XV2 ZZTAW ~IA ~WT AAYXX AEYWJ AGHNM AGYGG AMVHM CITATION AAMMB AEFGJ AGXDD AIDQK AIDYY CGR CUY CVF ECM EIF NPM K9. 7X8 |
ID | FETCH-LOGICAL-c3838-7a5300fde91bb44bf08dfc7ec7bb3b5c715f003295a16714722ca327e711f8053 |
IEDL.DBID | DR2 |
ISSN | 0277-6715 1097-0258 |
IngestDate | Thu Jul 10 22:01:49 EDT 2025 Mon Jul 21 01:57:13 EDT 2025 Mon Jul 21 05:55:16 EDT 2025 Tue Jul 01 03:28:13 EDT 2025 Thu Apr 24 22:55:50 EDT 2025 Wed Jan 22 16:59:32 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 20 |
Keywords | nonparametric maximum likelihood sensitivity to nonignorability latent variables informative missingness |
Language | English |
License | Copyright © 2018 John Wiley & Sons, Ltd. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3838-7a5300fde91bb44bf08dfc7ec7bb3b5c715f003295a16714722ca327e711f8053 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-5841-7613 |
OpenAccessLink | http://hdl.handle.net/11573/1135202 |
PMID | 29873102 |
PQID | 2084776900 |
PQPubID | 48361 |
PageCount | 14 |
ParticipantIDs | proquest_miscellaneous_2051067251 proquest_journals_2084776900 pubmed_primary_29873102 crossref_primary_10_1002_sim_7698 crossref_citationtrail_10_1002_sim_7698 wiley_primary_10_1002_sim_7698_SIM7698 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 10 September 2018 |
PublicationDateYYYYMMDD | 2018-09-10 |
PublicationDate_xml | – month: 09 year: 2018 text: 10 September 2018 day: 10 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: New York |
PublicationTitle | Statistics in medicine |
PublicationTitleAlternate | Stat Med |
PublicationYear | 2018 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 1980; 48 1989; 45 2009; 65 1995; 90 2015; 71 1986; 54 2017; 44 2013; 83 2004; 23 1998 1975; 12 2011; 11 2003; 59 1999; 61 2004; 1 2008; 70 2012; 56 2016; 58 2016; 35 2005; 24 1978; 6 2009; 28 2002; 29 2001 2013; 10 1977; 39 2000; 10 2004; 14 2008; 27 1988; 44 2014; 14 2017 1975; 63 2011; 26 1999; 94 2008; 64 2013 e_1_2_11_10_1 e_1_2_11_32_1 e_1_2_11_31_1 e_1_2_11_30_1 e_1_2_11_36_1 e_1_2_11_14_1 e_1_2_11_35_1 e_1_2_11_12_1 e_1_2_11_34_1 e_1_2_11_11_1 e_1_2_11_33_1 e_1_2_11_7_1 e_1_2_11_29_1 e_1_2_11_6_1 e_1_2_11_28_1 e_1_2_11_5_1 e_1_2_11_27_1 e_1_2_11_4_1 e_1_2_11_3_1 e_1_2_11_2_1 Troxel AB (e_1_2_11_13_1) 2004; 14 White I (e_1_2_11_39_1) 2017 e_1_2_11_21_1 e_1_2_11_20_1 e_1_2_11_25_1 e_1_2_11_24_1 e_1_2_11_9_1 e_1_2_11_23_1 e_1_2_11_8_1 e_1_2_11_22_1 e_1_2_11_18_1 e_1_2_11_17_1 e_1_2_11_16_1 e_1_2_11_15_1 e_1_2_11_37_1 e_1_2_11_38_1 e_1_2_11_19_1 Dempster AP (e_1_2_11_26_1) 1977; 39 |
References_xml | – volume: 29 start-page: 1011 year: 2002 end-page: 1021 article-title: A Monte Carlo EM algorithm for random‐coefficient‐based dropout models publication-title: J Appl Stat – year: 2017 article-title: A mean score method for sensitivity analysis to departures from the missing at random assumption in randomised trials publication-title: Statistica Sinica – volume: 45 start-page: 939 year: 1989 end-page: 955 article-title: Estimation and comparison of changes in the presence of informative right censoring: conditional linear models publication-title: Biometrics – volume: 63 start-page: 581 year: 1975 end-page: 592 article-title: Inference and missing data publication-title: Biometrika – volume: 44 start-page: 620 year: 2017 end-page: 641 article-title: Local influence diagnostics for generalized linear mixed models with overdispersion publication-title: J Appl Stat – volume: 26 start-page: 388 year: 2011 end-page: 402 article-title: Misspecifying the shape of a random effects distribution: why getting it wrong may not matter publication-title: Stat Sci – volume: 59 start-page: 410 year: 2003 end-page: 419 article-title: A local influence approach applied to binary data from a psychiatric study publication-title: Biometrics – volume: 58 start-page: 1390 year: 2016 end-page: 1408 article-title: Local influence diagnostics for hierarchical count data models with overdispersion and excess zeros publication-title: Biom J – volume: 24 start-page: 2129 year: 2005 end-page: 2150 article-title: An index of local sensitivity to non‐ignorability in longitudinal modeling publication-title: Stat Med – volume: 44 start-page: 175 year: 1988 end-page: 188 article-title: Estimation and comparison of changes in the presence of informative right censoring by modeling the censoring process publication-title: Biometrics – year: 2001 – volume: 39 start-page: 1 year: 1977 end-page: 38 article-title: Maximum likelihood from incomplete data via the EM algorithm publication-title: J R Stat Soc Ser B – volume: 94 start-page: 1096 year: 1999 end-page: 1120 article-title: Adjusting for nonignorable drop‐out using semiparametric nonresponse models publication-title: J Am Stat Assoc – volume: 65 start-page: 81 year: 2009 end-page: 87 article-title: A semi‐parametric shared parameter model to handle nonmonotone nonignorable missingness publication-title: Biometrics – volume: 54 start-page: 221 year: 1986 end-page: 226 article-title: Model robust confidence intervals using maximum likelihood estimators publication-title: Int Stat Rev – volume: 56 start-page: 1287 year: 2012 end-page: 1300 article-title: Analyzing longitudinal clinical trial data with nonignorable missingness and unknown missingness reasons publication-title: Comput Stat Data Anal – volume: 90 start-page: 1112 year: 1995 end-page: 1121 article-title: Modeling the drop‐out mechanism in repeated‐measures studies publication-title: J Am Stat Assoc – volume: 61 start-page: 479 year: 1999 end-page: 482 article-title: Direct calculation of the information matrix via the EM algorithm publication-title: J R Stat Soc Ser B – volume: 14 start-page: 1221 year: 2004 end-page: 1237 article-title: An index of local sensitivity to non‐ignorability publication-title: Stat Sin – volume: 64 start-page: 611 year: 2008 end-page: 619 article-title: A two‐part joint model for the analysis of survival and longitudinal binary data with excess zeros publication-title: Biometrics – volume: 6 start-page: 461 year: 1978 end-page: 464 article-title: Estimating the dimension of a model publication-title: Ann Stat – volume: 64 start-page: 96 year: 2008 end-page: 105 article-title: A latent‐class mixture model for incomplete longitudinal Gaussian data publication-title: Biometrics – volume: 70 start-page: 371 year: 2008 end-page: 388 article-title: Every missing not at random model has got a missing at random counterpart with equal fit publication-title: J R Stat Soc Ser B – volume: 14 start-page: 205 year: 2014 end-page: 228 article-title: Local sensitivity to non‐ignorability in joint models publication-title: Stat Model – volume: 83 start-page: 1754 year: 2013 end-page: 1758 article-title: A flexible approach to finite mixture regression models for multivariate mixed responses publication-title: Stat Probab Lett – start-page: 155 year: 2013 end-page: 165 – volume: 11 start-page: 279 year: 2011 end-page: 310 article-title: Generalized shared‐parameter models and missingness at random publication-title: Stat Model – volume: 1 start-page: 21 year: 2004 end-page: 30 article-title: Sensitivity analysis of causal inference in a clinical trial subject to crossover publication-title: Clin Trials – volume: 10 start-page: 279 year: 2000 end-page: 287 article-title: Random coefficient models for binary longitudinal responses with attrition publication-title: Stat Comput – volume: 10 start-page: 809 year: 2013 end-page: 817 article-title: Impact of Apolipoprotein E on Alzheimer's disease publication-title: Curr Alzheimer Res – volume: 23 start-page: 211 year: 2004 end-page: 219 article-title: A shared random effect parameter approach for longitudinal dementia data with non‐ignorable missing data publication-title: Stat Med – volume: 48 start-page: 817 year: 1980 end-page: 838 article-title: A heteroskedasticity‐consistent covariance matrix estimator and a direct test for heteroskedasticity publication-title: Econometrica – volume: 71 start-page: 80 year: 2015 end-page: 89 article-title: A discrete time event‐history approach to informative drop‐out in mixed latent Markov models with covariates publication-title: Biometrics – volume: 28 start-page: 2435 year: 2009 end-page: 2450 article-title: A selection model for longitudinal binary responses subject to non‐ignorable attrition publication-title: Stat Med – volume: 12 start-page: 189 year: 1975 end-page: 198 article-title: Mini‐mental state: a practical method for grading the cognitive state of patients for the clinician publication-title: J Psychiatr Res – volume: 35 start-page: 5579 year: 2016 end-page: 5602 article-title: A scalable approach to measuring the impact of nonignorable nonresponse with an EMA application publication-title: Stat Med – start-page: 199 year: 1998 end-page: 213 – volume: 27 start-page: 3155 year: 2008 end-page: 3177 article-title: A local sensitivity analysis approach to longitudinal non‐Gaussian data with non‐ignorable dropout publication-title: Stat Med – ident: e_1_2_11_3_1 doi: 10.1080/01621459.1995.10476615 – ident: e_1_2_11_34_1 doi: 10.1016/j.csda.2010.11.021 – ident: e_1_2_11_31_1 doi: 10.2307/1403146 – ident: e_1_2_11_18_1 doi: 10.2174/15672050113109990156 – ident: e_1_2_11_35_1 doi: 10.1214/11-STS361 – ident: e_1_2_11_29_1 doi: 10.1214/aos/1176344136 – ident: e_1_2_11_8_1 doi: 10.1002/sim.3604 – ident: e_1_2_11_15_1 doi: 10.1002/sim.3117 – ident: e_1_2_11_14_1 doi: 10.1002/sim.2107 – ident: e_1_2_11_4_1 doi: 10.1080/0266476022000006711 – ident: e_1_2_11_32_1 doi: 10.1111/1467-9868.00188 – ident: e_1_2_11_5_1 doi: 10.1002/sim.1710 – ident: e_1_2_11_22_1 doi: 10.1177/1471082X1001100401 – ident: e_1_2_11_21_1 doi: 10.2307/2531694 – volume: 39 start-page: 1 year: 1977 ident: e_1_2_11_26_1 article-title: Maximum likelihood from incomplete data via the EM algorithm publication-title: J R Stat Soc Ser B doi: 10.1111/j.2517-6161.1977.tb01600.x – ident: e_1_2_11_11_1 doi: 10.1111/biom.12224 – ident: e_1_2_11_36_1 doi: 10.1111/1541-0420.00048 – ident: e_1_2_11_37_1 doi: 10.1002/bimj.201500162 – ident: e_1_2_11_27_1 – ident: e_1_2_11_23_1 doi: 10.1111/j.1541-0420.2007.00894.x – ident: e_1_2_11_9_1 doi: 10.1111/j.1541-0420.2008.01021.x – ident: e_1_2_11_16_1 doi: 10.1177/1471082X13504716 – ident: e_1_2_11_28_1 doi: 10.1007/978-1-4612-1694-0_15 – ident: e_1_2_11_33_1 doi: 10.1191/1740774504cn005oa – year: 2017 ident: e_1_2_11_39_1 article-title: A mean score method for sensitivity analysis to departures from the missing at random assumption in randomised trials publication-title: Statistica Sinica – ident: e_1_2_11_6_1 doi: 10.1080/01621459.1999.10473862 – ident: e_1_2_11_17_1 doi: 10.1002/sim.7078 – volume: 14 start-page: 1221 year: 2004 ident: e_1_2_11_13_1 article-title: An index of local sensitivity to non‐ignorability publication-title: Stat Sin – ident: e_1_2_11_30_1 doi: 10.2307/1912934 – ident: e_1_2_11_10_1 doi: 10.1111/j.1541-0420.2007.00837.x – ident: e_1_2_11_12_1 doi: 10.1111/j.1467-9868.2007.00640.x – ident: e_1_2_11_38_1 doi: 10.1080/02664763.2016.1182128 – ident: e_1_2_11_19_1 doi: 10.1016/0022-3956(75)90026-6 – ident: e_1_2_11_24_1 doi: 10.1016/j.spl.2013.04.004 – ident: e_1_2_11_7_1 doi: 10.1023/A:1008999824193 – ident: e_1_2_11_20_1 doi: 10.2307/2531905 – ident: e_1_2_11_2_1 doi: 10.1093/biomet/63.3.581 – ident: e_1_2_11_25_1 doi: 10.1007/978-3-642-35588-2_15 |
SSID | ssj0011527 |
Score | 2.271619 |
Snippet | In longitudinal studies, subjects may be lost to follow up and, thus, present incomplete response sequences. When the mechanism underlying the dropout is... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2998 |
SubjectTerms | Aged, 80 and over Algorithms Cognition Disorders - genetics Female Humans informative missingness latent variables Longitudinal Studies Lost to Follow-Up Male Medical research Mental Status and Dementia Tests Models, Statistical Netherlands nonparametric maximum likelihood Nonparametric statistics sensitivity to nonignorability |
Title | A bidimensional finite mixture model for longitudinal data subject to dropout |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsim.7698 https://www.ncbi.nlm.nih.gov/pubmed/29873102 https://www.proquest.com/docview/2084776900 https://www.proquest.com/docview/2051067251 |
Volume | 37 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swED9KHkZhtGu6dukXGpTtyaksW1byWMZCWsgetgYKezCSLENYEpfGhtK_vneW7dJ9QNmTHyRbtu7O-t3p9DuA80xzgT6aClBjdBAbdHeMFjrA1c-IWKoschSHnH1LpvP4-lbeNlmVdBbG80N0ATeyjPp_TQauzebimTR0s1gNVTKmc76UqkV46HvHHBW21VpphzJRoWx5Z7m4aG98uRL9AS9fotV6uZnsws_2RX2Wya9hVZqhffyNw_H_vuQd7DQolF16tdmDLbfuw5tZs8_eh7c-msf8IaU-bBMm9ZTO-zC7ZGaRUVUAz-jB8gUBV7ZaPNB2BKuL6zAEw2xZUDWkKqPKW4xyUdmmMhT4YWXBMqrPUJXvYT75evNlGjRVGQKL3uwoUFpGnOeZG4fGxLHJ-SjLrXJWGRMZaXGycxS8GEsd4swTGaXVkVBOhWE-Qps_gN66WLsPwKJEq8RFkUYfM7aRNeitSq2lRiwd4mUAn1sJpbahLKfKGcvUky2LFKcupakbwMeu552n6fhLn5NWyGljqJtUcFyesZVzfETXjCZG-yZ67YqK-kgi2kMkOIBDrxzdIGI8UoiQxQA-1SL-5-jpj6sZXY9e2_EYthGc1bkpIT-BXnlfuVMEQKU5q1X9CQFMAQI |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Na9wwEB3SBNpAadJtmmybNiqU9uSNLFuWl55Ck7D5cA5tAjkUjCTLsDTZDVkbSn59ZizbJf2A0pMPki1b0lhvZqT3AN4Xmgv00VSAM0YHsUF3x2ihA1z9jIilKiJHccjsLJlcxMeX8nIJPnVnYTw_RB9wI8to_tdk4BSQ3v3JGrqYXo9UMk4fwQoJehNx_v6Xnjsq7PRaKUeZqFB2zLNc7HZ3PlyLfgOYD_Fqs-AcrsG37lX9PpPvo7oyI3v3C4vjf37LOjxrgSjb8zPnOSy52QAeZ22qfQBPfUCP-XNKA1glWOpZnV9AtsfMtCBhAE_qwcopYVd2Pf1BGQnW6OswxMPsak6CSHVB4luMtqOyRW0o9sOqOStIoqGuNuDi8OD88yRohRkCiw5tGigtI87Lwo1DY-LYlDwtSqucVcZERlrs7RLHXoylDrHriY_S6kgop8KwTNHsX8LybD5zW8CiRKvERZFGNzO2kTXosEqtpUY4HeJlCB-7Icpty1pO4hlXuedbFjl2XU5dN4R3fc0bz9Txhzrb3Sjnra0ucsFxhcZSzvERfTFaGaVO9MzNa6ojiWsPweAQNv3s6BsR41QhSBZD-NCM8V9bz78eZXR99a8Vd-DJ5Dw7zU-Pzk5ewypitWarSsi3Ybm6rd0bxEOVedvM-3sJTgUe |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fS9xAEB6qBRGKba9ar7V2C0Wfcm422WzyKLWHtj0RW0HwIexuNnCod-IlIP3rO5NNUmwtFJ_ysJtssjOT_WZ_fB_Ax0JzgTmaCtBjdBAbTHeMFjrA0c-IWKoicjQPOTlODs_iL-fyvN1VSWdhPD9EP-FGkdH8rynAb4py7zdp6GJ6PVJJli7B0zjhGck2HJz21FFhJ9dKS5SJCmVHPMvFXnfn_aHoL3x5H6424834OVx0b-q3mVyO6sqM7M8_SBwf9ykvYK2FoWzf-81LeOJmA1iZtAvtA3jmp_OYP6U0gFUCpZ7T-RVM9pmZFiQL4Ck9WDkl5Mqup3e0HsEadR2GaJhdzUkOqS5IeovRZlS2qA3N_LBqzgoSaKirdTgbf_7x6TBoZRkCi-lsGigtI87LwmWhMXFsSp4WpVXOKmMiIy12domWF5nUIfY8sVFaHQnlVBiWKQb9BizP5jO3CSxKtEpcFGlMMmMbWYPpqtRaagTTIV6GsNtZKLctZzlJZ1zlnm1Z5Nh1OXXdED70NW88T8cDdbY6I-dtpC5ywXF8xlLO8RF9McYYLZzomZvXVEcS0x5CwSG89s7RNyKyVCFEFkPYaUz8z9bz70cTur7534rvYeXkYJx_Ozr--hZWEag1-1RCvgXL1W3t3iEYqsx24_W_APppA80 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+bidimensional+finite+mixture+model+for+longitudinal+data+subject+to+dropout&rft.jtitle=Statistics+in+medicine&rft.au=Spagnoli%2C+Alessandra&rft.au=Marino%2C+Maria+Francesca&rft.au=Alf%C3%B2%2C+Marco&rft.date=2018-09-10&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0277-6715&rft.eissn=1097-0258&rft.volume=37&rft.issue=20&rft.spage=2998&rft.epage=3011&rft_id=info:doi/10.1002%2Fsim.7698&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0277-6715&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0277-6715&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0277-6715&client=summon |