A bidimensional finite mixture model for longitudinal data subject to dropout

In longitudinal studies, subjects may be lost to follow up and, thus, present incomplete response sequences. When the mechanism underlying the dropout is nonignorable, we need to account for dependence between the longitudinal and the dropout process. We propose to model such a dependence through di...

Full description

Saved in:
Bibliographic Details
Published inStatistics in medicine Vol. 37; no. 20; pp. 2998 - 3011
Main Authors Spagnoli, Alessandra, Marino, Maria Francesca, Alfò, Marco
Format Journal Article
LanguageEnglish
Published England Wiley Subscription Services, Inc 10.09.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In longitudinal studies, subjects may be lost to follow up and, thus, present incomplete response sequences. When the mechanism underlying the dropout is nonignorable, we need to account for dependence between the longitudinal and the dropout process. We propose to model such a dependence through discrete latent effects, which are outcome‐specific and account for heterogeneity in the univariate profiles. Dependence between profiles is introduced by using a probability matrix to describe the corresponding joint distribution. In this way, we separately model dependence within each outcome and dependence between outcomes. The major feature of this proposal, when compared with standard finite mixture models, is that it allows the nonignorable dropout model to properly nest its ignorable counterpart. We also discuss the use of an index of (local) sensitivity to nonignorability to investigate the effects that assumptions about the dropout process may have on model parameter estimates. The proposal is illustrated via the analysis of data from a longitudinal study on the dynamics of cognitive functioning in the elderly.
AbstractList In longitudinal studies, subjects may be lost to follow up and, thus, present incomplete response sequences. When the mechanism underlying the dropout is nonignorable, we need to account for dependence between the longitudinal and the dropout process. We propose to model such a dependence through discrete latent effects, which are outcome-specific and account for heterogeneity in the univariate profiles. Dependence between profiles is introduced by using a probability matrix to describe the corresponding joint distribution. In this way, we separately model dependence within each outcome and dependence between outcomes. The major feature of this proposal, when compared with standard finite mixture models, is that it allows the nonignorable dropout model to properly nest its ignorable counterpart. We also discuss the use of an index of (local) sensitivity to nonignorability to investigate the effects that assumptions about the dropout process may have on model parameter estimates. The proposal is illustrated via the analysis of data from a longitudinal study on the dynamics of cognitive functioning in the elderly.In longitudinal studies, subjects may be lost to follow up and, thus, present incomplete response sequences. When the mechanism underlying the dropout is nonignorable, we need to account for dependence between the longitudinal and the dropout process. We propose to model such a dependence through discrete latent effects, which are outcome-specific and account for heterogeneity in the univariate profiles. Dependence between profiles is introduced by using a probability matrix to describe the corresponding joint distribution. In this way, we separately model dependence within each outcome and dependence between outcomes. The major feature of this proposal, when compared with standard finite mixture models, is that it allows the nonignorable dropout model to properly nest its ignorable counterpart. We also discuss the use of an index of (local) sensitivity to nonignorability to investigate the effects that assumptions about the dropout process may have on model parameter estimates. The proposal is illustrated via the analysis of data from a longitudinal study on the dynamics of cognitive functioning in the elderly.
In longitudinal studies, subjects may be lost to follow up and, thus, present incomplete response sequences. When the mechanism underlying the dropout is nonignorable, we need to account for dependence between the longitudinal and the dropout process. We propose to model such a dependence through discrete latent effects, which are outcome‐specific and account for heterogeneity in the univariate profiles. Dependence between profiles is introduced by using a probability matrix to describe the corresponding joint distribution. In this way, we separately model dependence within each outcome and dependence between outcomes. The major feature of this proposal, when compared with standard finite mixture models, is that it allows the nonignorable dropout model to properly nest its ignorable counterpart. We also discuss the use of an index of (local) sensitivity to nonignorability to investigate the effects that assumptions about the dropout process may have on model parameter estimates. The proposal is illustrated via the analysis of data from a longitudinal study on the dynamics of cognitive functioning in the elderly.
Author Marino, Maria Francesca
Alfò, Marco
Spagnoli, Alessandra
Author_xml – sequence: 1
  givenname: Alessandra
  surname: Spagnoli
  fullname: Spagnoli, Alessandra
  organization: Sapienza Università di Roma
– sequence: 2
  givenname: Maria Francesca
  orcidid: 0000-0002-5841-7613
  surname: Marino
  fullname: Marino, Maria Francesca
  email: mariafrancesca.marino@unifi.it
  organization: Università degli Studi di Firenze
– sequence: 3
  givenname: Marco
  surname: Alfò
  fullname: Alfò, Marco
  organization: Sapienza Università di Roma
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29873102$$D View this record in MEDLINE/PubMed
BookMark eNp1kV1LwzAUhoNM3IeCv0AK3njTeZI2S3s5hh-DiRfqdUnSVDLaZiYpun9v6qbC0KsDh-c9H-87RoPWtAqhcwxTDECunW6mbJZnR2iEIWcxEJoN0AgIY_GMYTpEY-fWABhTwk7QkOQZSzCQEXqYR0KXulGt06bldVTpVnsVNfrDdzZUU6rQNDaqTfuqfVfqniq555HrxFpJH3kTldZsTOdP0XHFa6fO9nWCXm5vnhf38erxbrmYr2KZZEkWM04TgKpUORYiTUUFWVlJpiQTIhFUhosrgITklONwfsoIkTwhTDGMqwxoMkFXu7kba9465XzRaCdVXfNWmc4VBCiGGSMUB_TyAF2bzoYfeipLWbAtrJqgiz3ViUaVxcbqhttt8W3U70ZpjXNWVT8IhqLPoAgZFH0GAZ0eoFJ77oO93nJd_yWId4J3Xavtv4OLp-XDF_8JvOmV3Q
CitedBy_id crossref_primary_10_1007_s11634_021_00446_7
crossref_primary_10_1080_00273171_2019_1660606
crossref_primary_10_1515_ijb_2022_0014
Cites_doi 10.1080/01621459.1995.10476615
10.1016/j.csda.2010.11.021
10.2307/1403146
10.2174/15672050113109990156
10.1214/11-STS361
10.1214/aos/1176344136
10.1002/sim.3604
10.1002/sim.3117
10.1002/sim.2107
10.1080/0266476022000006711
10.1111/1467-9868.00188
10.1002/sim.1710
10.1177/1471082X1001100401
10.2307/2531694
10.1111/j.2517-6161.1977.tb01600.x
10.1111/biom.12224
10.1111/1541-0420.00048
10.1002/bimj.201500162
10.1111/j.1541-0420.2007.00894.x
10.1111/j.1541-0420.2008.01021.x
10.1177/1471082X13504716
10.1007/978-1-4612-1694-0_15
10.1191/1740774504cn005oa
10.1080/01621459.1999.10473862
10.1002/sim.7078
10.2307/1912934
10.1111/j.1541-0420.2007.00837.x
10.1111/j.1467-9868.2007.00640.x
10.1080/02664763.2016.1182128
10.1016/0022-3956(75)90026-6
10.1016/j.spl.2013.04.004
10.1023/A:1008999824193
10.2307/2531905
10.1093/biomet/63.3.581
10.1007/978-3-642-35588-2_15
ContentType Journal Article
Copyright Copyright © 2018 John Wiley & Sons, Ltd.
2018 John Wiley & Sons, Ltd.
Copyright_xml – notice: Copyright © 2018 John Wiley & Sons, Ltd.
– notice: 2018 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
K9.
7X8
DOI 10.1002/sim.7698
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef

ProQuest Health & Medical Complete (Alumni)
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Statistics
Public Health
EISSN 1097-0258
EndPage 3011
ExternalDocumentID 29873102
10_1002_sim_7698
SIM7698
Genre article
Journal Article
GeographicLocations Netherlands
GeographicLocations_xml – name: Netherlands
GroupedDBID ---
.3N
.GA
05W
0R~
10A
123
1L6
1OB
1OC
1ZS
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5RE
5VS
66C
6PF
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAWTL
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABOCM
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
ROL
RWI
RX1
RYL
SUPJJ
SV3
TN5
UB1
V2E
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WUP
WWH
WXSBR
WYISQ
XBAML
XG1
XV2
ZZTAW
~IA
~WT
AAYXX
AEYWJ
AGHNM
AGYGG
AMVHM
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
CGR
CUY
CVF
ECM
EIF
NPM
K9.
7X8
ID FETCH-LOGICAL-c3838-7a5300fde91bb44bf08dfc7ec7bb3b5c715f003295a16714722ca327e711f8053
IEDL.DBID DR2
ISSN 0277-6715
1097-0258
IngestDate Thu Jul 10 22:01:49 EDT 2025
Mon Jul 21 01:57:13 EDT 2025
Mon Jul 21 05:55:16 EDT 2025
Tue Jul 01 03:28:13 EDT 2025
Thu Apr 24 22:55:50 EDT 2025
Wed Jan 22 16:59:32 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 20
Keywords nonparametric maximum likelihood
sensitivity to nonignorability
latent variables
informative missingness
Language English
License Copyright © 2018 John Wiley & Sons, Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3838-7a5300fde91bb44bf08dfc7ec7bb3b5c715f003295a16714722ca327e711f8053
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-5841-7613
OpenAccessLink http://hdl.handle.net/11573/1135202
PMID 29873102
PQID 2084776900
PQPubID 48361
PageCount 14
ParticipantIDs proquest_miscellaneous_2051067251
proquest_journals_2084776900
pubmed_primary_29873102
crossref_primary_10_1002_sim_7698
crossref_citationtrail_10_1002_sim_7698
wiley_primary_10_1002_sim_7698_SIM7698
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 10 September 2018
PublicationDateYYYYMMDD 2018-09-10
PublicationDate_xml – month: 09
  year: 2018
  text: 10 September 2018
  day: 10
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: New York
PublicationTitle Statistics in medicine
PublicationTitleAlternate Stat Med
PublicationYear 2018
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 1980; 48
1989; 45
2009; 65
1995; 90
2015; 71
1986; 54
2017; 44
2013; 83
2004; 23
1998
1975; 12
2011; 11
2003; 59
1999; 61
2004; 1
2008; 70
2012; 56
2016; 58
2016; 35
2005; 24
1978; 6
2009; 28
2002; 29
2001
2013; 10
1977; 39
2000; 10
2004; 14
2008; 27
1988; 44
2014; 14
2017
1975; 63
2011; 26
1999; 94
2008; 64
2013
e_1_2_11_10_1
e_1_2_11_32_1
e_1_2_11_31_1
e_1_2_11_30_1
e_1_2_11_36_1
e_1_2_11_14_1
e_1_2_11_35_1
e_1_2_11_12_1
e_1_2_11_34_1
e_1_2_11_11_1
e_1_2_11_33_1
e_1_2_11_7_1
e_1_2_11_29_1
e_1_2_11_6_1
e_1_2_11_28_1
e_1_2_11_5_1
e_1_2_11_27_1
e_1_2_11_4_1
e_1_2_11_3_1
e_1_2_11_2_1
Troxel AB (e_1_2_11_13_1) 2004; 14
White I (e_1_2_11_39_1) 2017
e_1_2_11_21_1
e_1_2_11_20_1
e_1_2_11_25_1
e_1_2_11_24_1
e_1_2_11_9_1
e_1_2_11_23_1
e_1_2_11_8_1
e_1_2_11_22_1
e_1_2_11_18_1
e_1_2_11_17_1
e_1_2_11_16_1
e_1_2_11_15_1
e_1_2_11_37_1
e_1_2_11_38_1
e_1_2_11_19_1
Dempster AP (e_1_2_11_26_1) 1977; 39
References_xml – volume: 29
  start-page: 1011
  year: 2002
  end-page: 1021
  article-title: A Monte Carlo EM algorithm for random‐coefficient‐based dropout models
  publication-title: J Appl Stat
– year: 2017
  article-title: A mean score method for sensitivity analysis to departures from the missing at random assumption in randomised trials
  publication-title: Statistica Sinica
– volume: 45
  start-page: 939
  year: 1989
  end-page: 955
  article-title: Estimation and comparison of changes in the presence of informative right censoring: conditional linear models
  publication-title: Biometrics
– volume: 63
  start-page: 581
  year: 1975
  end-page: 592
  article-title: Inference and missing data
  publication-title: Biometrika
– volume: 44
  start-page: 620
  year: 2017
  end-page: 641
  article-title: Local influence diagnostics for generalized linear mixed models with overdispersion
  publication-title: J Appl Stat
– volume: 26
  start-page: 388
  year: 2011
  end-page: 402
  article-title: Misspecifying the shape of a random effects distribution: why getting it wrong may not matter
  publication-title: Stat Sci
– volume: 59
  start-page: 410
  year: 2003
  end-page: 419
  article-title: A local influence approach applied to binary data from a psychiatric study
  publication-title: Biometrics
– volume: 58
  start-page: 1390
  year: 2016
  end-page: 1408
  article-title: Local influence diagnostics for hierarchical count data models with overdispersion and excess zeros
  publication-title: Biom J
– volume: 24
  start-page: 2129
  year: 2005
  end-page: 2150
  article-title: An index of local sensitivity to non‐ignorability in longitudinal modeling
  publication-title: Stat Med
– volume: 44
  start-page: 175
  year: 1988
  end-page: 188
  article-title: Estimation and comparison of changes in the presence of informative right censoring by modeling the censoring process
  publication-title: Biometrics
– year: 2001
– volume: 39
  start-page: 1
  year: 1977
  end-page: 38
  article-title: Maximum likelihood from incomplete data via the EM algorithm
  publication-title: J R Stat Soc Ser B
– volume: 94
  start-page: 1096
  year: 1999
  end-page: 1120
  article-title: Adjusting for nonignorable drop‐out using semiparametric nonresponse models
  publication-title: J Am Stat Assoc
– volume: 65
  start-page: 81
  year: 2009
  end-page: 87
  article-title: A semi‐parametric shared parameter model to handle nonmonotone nonignorable missingness
  publication-title: Biometrics
– volume: 54
  start-page: 221
  year: 1986
  end-page: 226
  article-title: Model robust confidence intervals using maximum likelihood estimators
  publication-title: Int Stat Rev
– volume: 56
  start-page: 1287
  year: 2012
  end-page: 1300
  article-title: Analyzing longitudinal clinical trial data with nonignorable missingness and unknown missingness reasons
  publication-title: Comput Stat Data Anal
– volume: 90
  start-page: 1112
  year: 1995
  end-page: 1121
  article-title: Modeling the drop‐out mechanism in repeated‐measures studies
  publication-title: J Am Stat Assoc
– volume: 61
  start-page: 479
  year: 1999
  end-page: 482
  article-title: Direct calculation of the information matrix via the EM algorithm
  publication-title: J R Stat Soc Ser B
– volume: 14
  start-page: 1221
  year: 2004
  end-page: 1237
  article-title: An index of local sensitivity to non‐ignorability
  publication-title: Stat Sin
– volume: 64
  start-page: 611
  year: 2008
  end-page: 619
  article-title: A two‐part joint model for the analysis of survival and longitudinal binary data with excess zeros
  publication-title: Biometrics
– volume: 6
  start-page: 461
  year: 1978
  end-page: 464
  article-title: Estimating the dimension of a model
  publication-title: Ann Stat
– volume: 64
  start-page: 96
  year: 2008
  end-page: 105
  article-title: A latent‐class mixture model for incomplete longitudinal Gaussian data
  publication-title: Biometrics
– volume: 70
  start-page: 371
  year: 2008
  end-page: 388
  article-title: Every missing not at random model has got a missing at random counterpart with equal fit
  publication-title: J R Stat Soc Ser B
– volume: 14
  start-page: 205
  year: 2014
  end-page: 228
  article-title: Local sensitivity to non‐ignorability in joint models
  publication-title: Stat Model
– volume: 83
  start-page: 1754
  year: 2013
  end-page: 1758
  article-title: A flexible approach to finite mixture regression models for multivariate mixed responses
  publication-title: Stat Probab Lett
– start-page: 155
  year: 2013
  end-page: 165
– volume: 11
  start-page: 279
  year: 2011
  end-page: 310
  article-title: Generalized shared‐parameter models and missingness at random
  publication-title: Stat Model
– volume: 1
  start-page: 21
  year: 2004
  end-page: 30
  article-title: Sensitivity analysis of causal inference in a clinical trial subject to crossover
  publication-title: Clin Trials
– volume: 10
  start-page: 279
  year: 2000
  end-page: 287
  article-title: Random coefficient models for binary longitudinal responses with attrition
  publication-title: Stat Comput
– volume: 10
  start-page: 809
  year: 2013
  end-page: 817
  article-title: Impact of Apolipoprotein E on Alzheimer's disease
  publication-title: Curr Alzheimer Res
– volume: 23
  start-page: 211
  year: 2004
  end-page: 219
  article-title: A shared random effect parameter approach for longitudinal dementia data with non‐ignorable missing data
  publication-title: Stat Med
– volume: 48
  start-page: 817
  year: 1980
  end-page: 838
  article-title: A heteroskedasticity‐consistent covariance matrix estimator and a direct test for heteroskedasticity
  publication-title: Econometrica
– volume: 71
  start-page: 80
  year: 2015
  end-page: 89
  article-title: A discrete time event‐history approach to informative drop‐out in mixed latent Markov models with covariates
  publication-title: Biometrics
– volume: 28
  start-page: 2435
  year: 2009
  end-page: 2450
  article-title: A selection model for longitudinal binary responses subject to non‐ignorable attrition
  publication-title: Stat Med
– volume: 12
  start-page: 189
  year: 1975
  end-page: 198
  article-title: Mini‐mental state: a practical method for grading the cognitive state of patients for the clinician
  publication-title: J Psychiatr Res
– volume: 35
  start-page: 5579
  year: 2016
  end-page: 5602
  article-title: A scalable approach to measuring the impact of nonignorable nonresponse with an EMA application
  publication-title: Stat Med
– start-page: 199
  year: 1998
  end-page: 213
– volume: 27
  start-page: 3155
  year: 2008
  end-page: 3177
  article-title: A local sensitivity analysis approach to longitudinal non‐Gaussian data with non‐ignorable dropout
  publication-title: Stat Med
– ident: e_1_2_11_3_1
  doi: 10.1080/01621459.1995.10476615
– ident: e_1_2_11_34_1
  doi: 10.1016/j.csda.2010.11.021
– ident: e_1_2_11_31_1
  doi: 10.2307/1403146
– ident: e_1_2_11_18_1
  doi: 10.2174/15672050113109990156
– ident: e_1_2_11_35_1
  doi: 10.1214/11-STS361
– ident: e_1_2_11_29_1
  doi: 10.1214/aos/1176344136
– ident: e_1_2_11_8_1
  doi: 10.1002/sim.3604
– ident: e_1_2_11_15_1
  doi: 10.1002/sim.3117
– ident: e_1_2_11_14_1
  doi: 10.1002/sim.2107
– ident: e_1_2_11_4_1
  doi: 10.1080/0266476022000006711
– ident: e_1_2_11_32_1
  doi: 10.1111/1467-9868.00188
– ident: e_1_2_11_5_1
  doi: 10.1002/sim.1710
– ident: e_1_2_11_22_1
  doi: 10.1177/1471082X1001100401
– ident: e_1_2_11_21_1
  doi: 10.2307/2531694
– volume: 39
  start-page: 1
  year: 1977
  ident: e_1_2_11_26_1
  article-title: Maximum likelihood from incomplete data via the EM algorithm
  publication-title: J R Stat Soc Ser B
  doi: 10.1111/j.2517-6161.1977.tb01600.x
– ident: e_1_2_11_11_1
  doi: 10.1111/biom.12224
– ident: e_1_2_11_36_1
  doi: 10.1111/1541-0420.00048
– ident: e_1_2_11_37_1
  doi: 10.1002/bimj.201500162
– ident: e_1_2_11_27_1
– ident: e_1_2_11_23_1
  doi: 10.1111/j.1541-0420.2007.00894.x
– ident: e_1_2_11_9_1
  doi: 10.1111/j.1541-0420.2008.01021.x
– ident: e_1_2_11_16_1
  doi: 10.1177/1471082X13504716
– ident: e_1_2_11_28_1
  doi: 10.1007/978-1-4612-1694-0_15
– ident: e_1_2_11_33_1
  doi: 10.1191/1740774504cn005oa
– year: 2017
  ident: e_1_2_11_39_1
  article-title: A mean score method for sensitivity analysis to departures from the missing at random assumption in randomised trials
  publication-title: Statistica Sinica
– ident: e_1_2_11_6_1
  doi: 10.1080/01621459.1999.10473862
– ident: e_1_2_11_17_1
  doi: 10.1002/sim.7078
– volume: 14
  start-page: 1221
  year: 2004
  ident: e_1_2_11_13_1
  article-title: An index of local sensitivity to non‐ignorability
  publication-title: Stat Sin
– ident: e_1_2_11_30_1
  doi: 10.2307/1912934
– ident: e_1_2_11_10_1
  doi: 10.1111/j.1541-0420.2007.00837.x
– ident: e_1_2_11_12_1
  doi: 10.1111/j.1467-9868.2007.00640.x
– ident: e_1_2_11_38_1
  doi: 10.1080/02664763.2016.1182128
– ident: e_1_2_11_19_1
  doi: 10.1016/0022-3956(75)90026-6
– ident: e_1_2_11_24_1
  doi: 10.1016/j.spl.2013.04.004
– ident: e_1_2_11_7_1
  doi: 10.1023/A:1008999824193
– ident: e_1_2_11_20_1
  doi: 10.2307/2531905
– ident: e_1_2_11_2_1
  doi: 10.1093/biomet/63.3.581
– ident: e_1_2_11_25_1
  doi: 10.1007/978-3-642-35588-2_15
SSID ssj0011527
Score 2.271619
Snippet In longitudinal studies, subjects may be lost to follow up and, thus, present incomplete response sequences. When the mechanism underlying the dropout is...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2998
SubjectTerms Aged, 80 and over
Algorithms
Cognition Disorders - genetics
Female
Humans
informative missingness
latent variables
Longitudinal Studies
Lost to Follow-Up
Male
Medical research
Mental Status and Dementia Tests
Models, Statistical
Netherlands
nonparametric maximum likelihood
Nonparametric statistics
sensitivity to nonignorability
Title A bidimensional finite mixture model for longitudinal data subject to dropout
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsim.7698
https://www.ncbi.nlm.nih.gov/pubmed/29873102
https://www.proquest.com/docview/2084776900
https://www.proquest.com/docview/2051067251
Volume 37
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swED9KHkZhtGu6dukXGpTtyaksW1byWMZCWsgetgYKezCSLENYEpfGhtK_vneW7dJ9QNmTHyRbtu7O-t3p9DuA80xzgT6aClBjdBAbdHeMFjrA1c-IWKoschSHnH1LpvP4-lbeNlmVdBbG80N0ATeyjPp_TQauzebimTR0s1gNVTKmc76UqkV46HvHHBW21VpphzJRoWx5Z7m4aG98uRL9AS9fotV6uZnsws_2RX2Wya9hVZqhffyNw_H_vuQd7DQolF16tdmDLbfuw5tZs8_eh7c-msf8IaU-bBMm9ZTO-zC7ZGaRUVUAz-jB8gUBV7ZaPNB2BKuL6zAEw2xZUDWkKqPKW4xyUdmmMhT4YWXBMqrPUJXvYT75evNlGjRVGQKL3uwoUFpGnOeZG4fGxLHJ-SjLrXJWGRMZaXGycxS8GEsd4swTGaXVkVBOhWE-Qps_gN66WLsPwKJEq8RFkUYfM7aRNeitSq2lRiwd4mUAn1sJpbahLKfKGcvUky2LFKcupakbwMeu552n6fhLn5NWyGljqJtUcFyesZVzfETXjCZG-yZ67YqK-kgi2kMkOIBDrxzdIGI8UoiQxQA-1SL-5-jpj6sZXY9e2_EYthGc1bkpIT-BXnlfuVMEQKU5q1X9CQFMAQI
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Na9wwEB3SBNpAadJtmmybNiqU9uSNLFuWl55Ck7D5cA5tAjkUjCTLsDTZDVkbSn59ZizbJf2A0pMPki1b0lhvZqT3AN4Xmgv00VSAM0YHsUF3x2ihA1z9jIilKiJHccjsLJlcxMeX8nIJPnVnYTw_RB9wI8to_tdk4BSQ3v3JGrqYXo9UMk4fwQoJehNx_v6Xnjsq7PRaKUeZqFB2zLNc7HZ3PlyLfgOYD_Fqs-AcrsG37lX9PpPvo7oyI3v3C4vjf37LOjxrgSjb8zPnOSy52QAeZ22qfQBPfUCP-XNKA1glWOpZnV9AtsfMtCBhAE_qwcopYVd2Pf1BGQnW6OswxMPsak6CSHVB4luMtqOyRW0o9sOqOStIoqGuNuDi8OD88yRohRkCiw5tGigtI87Lwo1DY-LYlDwtSqucVcZERlrs7RLHXoylDrHriY_S6kgop8KwTNHsX8LybD5zW8CiRKvERZFGNzO2kTXosEqtpUY4HeJlCB-7Icpty1pO4hlXuedbFjl2XU5dN4R3fc0bz9Txhzrb3Sjnra0ucsFxhcZSzvERfTFaGaVO9MzNa6ojiWsPweAQNv3s6BsR41QhSBZD-NCM8V9bz78eZXR99a8Vd-DJ5Dw7zU-Pzk5ewypitWarSsi3Ybm6rd0bxEOVedvM-3sJTgUe
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fS9xAEB6qBRGKba9ar7V2C0Wfcm422WzyKLWHtj0RW0HwIexuNnCod-IlIP3rO5NNUmwtFJ_ysJtssjOT_WZ_fB_Ax0JzgTmaCtBjdBAbTHeMFjrA0c-IWKoicjQPOTlODs_iL-fyvN1VSWdhPD9EP-FGkdH8rynAb4py7zdp6GJ6PVJJli7B0zjhGck2HJz21FFhJ9dKS5SJCmVHPMvFXnfn_aHoL3x5H6424834OVx0b-q3mVyO6sqM7M8_SBwf9ykvYK2FoWzf-81LeOJmA1iZtAvtA3jmp_OYP6U0gFUCpZ7T-RVM9pmZFiQL4Ck9WDkl5Mqup3e0HsEadR2GaJhdzUkOqS5IeovRZlS2qA3N_LBqzgoSaKirdTgbf_7x6TBoZRkCi-lsGigtI87LwmWhMXFsSp4WpVXOKmMiIy12domWF5nUIfY8sVFaHQnlVBiWKQb9BizP5jO3CSxKtEpcFGlMMmMbWYPpqtRaagTTIV6GsNtZKLctZzlJZ1zlnm1Z5Nh1OXXdED70NW88T8cDdbY6I-dtpC5ywXF8xlLO8RF9McYYLZzomZvXVEcS0x5CwSG89s7RNyKyVCFEFkPYaUz8z9bz70cTur7534rvYeXkYJx_Ozr--hZWEag1-1RCvgXL1W3t3iEYqsx24_W_APppA80
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+bidimensional+finite+mixture+model+for+longitudinal+data+subject+to+dropout&rft.jtitle=Statistics+in+medicine&rft.au=Spagnoli%2C+Alessandra&rft.au=Marino%2C+Maria+Francesca&rft.au=Alf%C3%B2%2C+Marco&rft.date=2018-09-10&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0277-6715&rft.eissn=1097-0258&rft.volume=37&rft.issue=20&rft.spage=2998&rft.epage=3011&rft_id=info:doi/10.1002%2Fsim.7698&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0277-6715&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0277-6715&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0277-6715&client=summon