Controlled Synthesis of 2D Palladium Diselenide for Sensitive Photodetector Applications

Palladium diselenide (PdSe2), a thus far scarcely studied group‐10 transition metal dichalcogenide has exhibited promising potential in future optoelectronic and electronic devices due to unique structures and electrical properties. Here, the controllable synthesis of wafer‐scale and homogeneous 2D...

Full description

Saved in:
Bibliographic Details
Published inAdvanced functional materials Vol. 29; no. 1
Main Authors Zeng, Long‐Hui, Wu, Di, Lin, Sheng‐Huang, Xie, Chao, Yuan, Hui‐Yu, Lu, Wei, Lau, Shu Ping, Chai, Yang, Luo, Lin‐Bao, Li, Zhong‐Jun, Tsang, Yuen Hong
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 04.01.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Palladium diselenide (PdSe2), a thus far scarcely studied group‐10 transition metal dichalcogenide has exhibited promising potential in future optoelectronic and electronic devices due to unique structures and electrical properties. Here, the controllable synthesis of wafer‐scale and homogeneous 2D PdSe2 film is reported by a simple selenization approach. By choosing different thickness of precursor Pd layer, 2D PdSe2 with thickness of 1.2–20 nm can be readily synthesized. Interestingly, with the increase in thickness, obvious redshift in wavenumber is revealed by Raman spectroscopy. Moreover, in accordance with density functional theory (DFT) calculation, optical absorption and ultraviolet photoemission spectroscopy (UPS) analyses confirm that the PdSe2 exhibits an evolution from a semiconductor (monolayer) to semimetal (bulk). Further combination of the PdSe2 layer with Si leads to a highly sensitive, fast, and broadband photodetector with a high responsivity (300.2 mA W−1) and specific detectivity (≈1013 Jones). By decorating the device with black phosphorus quantum dots, the device performance can be further optimized. These results suggest the as‐selenized PdSe2 is a promising material for optoelectronic application. This study reports on the wafer‐area synthesis of a high‐quality 2D palladium diselenide (PdSe2) layer through a simple selenization method. Both experimental analysis and theoretical simulation reveal that the PdSe2 film exhibits a gradual transition from a semiconductor (monolayer) to semimetal (bulk). Further combination of PdSe2 with Si leads to a fast and sensitive broadband photodiode, with a high responsivity and specific detectivity.
AbstractList Palladium diselenide (PdSe2), a thus far scarcely studied group‐10 transition metal dichalcogenide has exhibited promising potential in future optoelectronic and electronic devices due to unique structures and electrical properties. Here, the controllable synthesis of wafer‐scale and homogeneous 2D PdSe2 film is reported by a simple selenization approach. By choosing different thickness of precursor Pd layer, 2D PdSe2 with thickness of 1.2–20 nm can be readily synthesized. Interestingly, with the increase in thickness, obvious redshift in wavenumber is revealed by Raman spectroscopy. Moreover, in accordance with density functional theory (DFT) calculation, optical absorption and ultraviolet photoemission spectroscopy (UPS) analyses confirm that the PdSe2 exhibits an evolution from a semiconductor (monolayer) to semimetal (bulk). Further combination of the PdSe2 layer with Si leads to a highly sensitive, fast, and broadband photodetector with a high responsivity (300.2 mA W−1) and specific detectivity (≈1013 Jones). By decorating the device with black phosphorus quantum dots, the device performance can be further optimized. These results suggest the as‐selenized PdSe2 is a promising material for optoelectronic application. This study reports on the wafer‐area synthesis of a high‐quality 2D palladium diselenide (PdSe2) layer through a simple selenization method. Both experimental analysis and theoretical simulation reveal that the PdSe2 film exhibits a gradual transition from a semiconductor (monolayer) to semimetal (bulk). Further combination of PdSe2 with Si leads to a fast and sensitive broadband photodiode, with a high responsivity and specific detectivity.
Palladium diselenide (PdSe 2 ), a thus far scarcely studied group‐10 transition metal dichalcogenide has exhibited promising potential in future optoelectronic and electronic devices due to unique structures and electrical properties. Here, the controllable synthesis of wafer‐scale and homogeneous 2D PdSe 2 film is reported by a simple selenization approach. By choosing different thickness of precursor Pd layer, 2D PdSe 2 with thickness of 1.2–20 nm can be readily synthesized. Interestingly, with the increase in thickness, obvious redshift in wavenumber is revealed by Raman spectroscopy. Moreover, in accordance with density functional theory (DFT) calculation, optical absorption and ultraviolet photoemission spectroscopy (UPS) analyses confirm that the PdSe 2 exhibits an evolution from a semiconductor (monolayer) to semimetal (bulk). Further combination of the PdSe 2 layer with Si leads to a highly sensitive, fast, and broadband photodetector with a high responsivity (300.2 mA W −1 ) and specific detectivity (≈10 13 Jones). By decorating the device with black phosphorus quantum dots, the device performance can be further optimized. These results suggest the as‐selenized PdSe 2 is a promising material for optoelectronic application.
Palladium diselenide (PdSe2), a thus far scarcely studied group‐10 transition metal dichalcogenide has exhibited promising potential in future optoelectronic and electronic devices due to unique structures and electrical properties. Here, the controllable synthesis of wafer‐scale and homogeneous 2D PdSe2 film is reported by a simple selenization approach. By choosing different thickness of precursor Pd layer, 2D PdSe2 with thickness of 1.2–20 nm can be readily synthesized. Interestingly, with the increase in thickness, obvious redshift in wavenumber is revealed by Raman spectroscopy. Moreover, in accordance with density functional theory (DFT) calculation, optical absorption and ultraviolet photoemission spectroscopy (UPS) analyses confirm that the PdSe2 exhibits an evolution from a semiconductor (monolayer) to semimetal (bulk). Further combination of the PdSe2 layer with Si leads to a highly sensitive, fast, and broadband photodetector with a high responsivity (300.2 mA W−1) and specific detectivity (≈1013 Jones). By decorating the device with black phosphorus quantum dots, the device performance can be further optimized. These results suggest the as‐selenized PdSe2 is a promising material for optoelectronic application.
Author Lin, Sheng‐Huang
Zeng, Long‐Hui
Lu, Wei
Tsang, Yuen Hong
Xie, Chao
Lau, Shu Ping
Yuan, Hui‐Yu
Chai, Yang
Luo, Lin‐Bao
Wu, Di
Li, Zhong‐Jun
Author_xml – sequence: 1
  givenname: Long‐Hui
  surname: Zeng
  fullname: Zeng, Long‐Hui
  organization: The Hong Kong Polytechnic University
– sequence: 2
  givenname: Di
  surname: Wu
  fullname: Wu, Di
  organization: Zhengzhou University
– sequence: 3
  givenname: Sheng‐Huang
  surname: Lin
  fullname: Lin, Sheng‐Huang
  organization: The Hong Kong Polytechnic University
– sequence: 4
  givenname: Chao
  surname: Xie
  fullname: Xie, Chao
  organization: Hefei University of Technology
– sequence: 5
  givenname: Hui‐Yu
  surname: Yuan
  fullname: Yuan, Hui‐Yu
  organization: Zhengzhou University
– sequence: 6
  givenname: Wei
  surname: Lu
  fullname: Lu, Wei
  organization: The Hong Kong Polytechnic University
– sequence: 7
  givenname: Shu Ping
  surname: Lau
  fullname: Lau, Shu Ping
  organization: The Hong Kong Polytechnic University
– sequence: 8
  givenname: Yang
  surname: Chai
  fullname: Chai, Yang
  organization: The Hong Kong Polytechnic University
– sequence: 9
  givenname: Lin‐Bao
  surname: Luo
  fullname: Luo, Lin‐Bao
  email: luolb@hfut.edu.cn
  organization: Hefei University of Technology
– sequence: 10
  givenname: Zhong‐Jun
  surname: Li
  fullname: Li, Zhong‐Jun
  email: zjli@hfut.edu.cn
  organization: Hefei University of Technology
– sequence: 11
  givenname: Yuen Hong
  orcidid: 0000-0001-5632-5224
  surname: Tsang
  fullname: Tsang, Yuen Hong
  email: Yuen.Tsang@polyu.edu.hk
  organization: The Hong Kong Polytechnic University
BookMark eNqFkN1LAkEUxYcwSK3Xnhd6XpvPnfFRNCswEizwbRl37-LIuLPNjIX_fWuGQRA93cvl_O7hnB7q1K4GhK4JHhCM6a0uq-2AYqJwpqQ6Q12SkSxlmKrOaSfLC9QLYYMxkZLxLlqOXR29sxbKZLGv4xqCCYmrEjpJ5tpaXZrdNpmYABZqU0JSOZ8soA4mmndI5msXXQkRitjeR01jTaGjcXW4ROeVtgGuvmcfvU7vXsYP6ez5_nE8mqUFU0ylUnCBBc4kkVpVlBZsRQgwIYdK06ooqCj5CgQISQhngq-4HGqsRKvNqlJz1kc3x7-Nd287CDHfuJ2vW8uckoxyKqlgrWpwVBXeheChyhtvttrvc4LzQ3v5ob381F4L8F9AYeJXsui1sX9jwyP2YSzs_zHJR5Pp0w_7Ca6dhmg
CitedBy_id crossref_primary_10_1002_aelm_202000094
crossref_primary_10_1002_adfm_202204230
crossref_primary_10_1021_acsenergylett_2c01810
crossref_primary_10_1002_smll_202207641
crossref_primary_10_1016_j_optlastec_2023_109237
crossref_primary_10_1021_acsami_1c11277
crossref_primary_10_1021_acsanm_4c07065
crossref_primary_10_1002_smll_202105188
crossref_primary_10_1039_D0NR00319K
crossref_primary_10_1002_smll_201804404
crossref_primary_10_1002_aelm_202001057
crossref_primary_10_1007_s12274_020_3247_1
crossref_primary_10_1002_adom_202401379
crossref_primary_10_1021_acsnano_1c02007
crossref_primary_10_1364_OE_425777
crossref_primary_10_1021_acs_jpclett_4c00765
crossref_primary_10_1016_j_spmi_2020_106514
crossref_primary_10_1002_solr_202200965
crossref_primary_10_1007_s40820_020_0402_x
crossref_primary_10_1002_adfm_202412896
crossref_primary_10_1002_aelm_202100005
crossref_primary_10_1038_s41928_022_00747_5
crossref_primary_10_1021_acs_jpclett_2c00315
crossref_primary_10_1039_D3TA00950E
crossref_primary_10_1002_adom_202401122
crossref_primary_10_1021_acsomega_4c01546
crossref_primary_10_1002_adom_202400038
crossref_primary_10_1007_s12274_023_5759_y
crossref_primary_10_1515_nanoph_2020_0267
crossref_primary_10_1063_5_0231608
crossref_primary_10_1002_adom_202101963
crossref_primary_10_1088_2053_1583_ab8d82
crossref_primary_10_1021_acsami_1c10888
crossref_primary_10_1038_s41699_021_00205_4
crossref_primary_10_1016_j_optlastec_2021_106983
crossref_primary_10_1021_acsaenm_3c00682
crossref_primary_10_1063_5_0082509
crossref_primary_10_1002_adom_202300213
crossref_primary_10_1002_aelm_202100278
crossref_primary_10_1088_1361_6528_ab33d2
crossref_primary_10_1002_adfm_202111970
crossref_primary_10_1021_acs_jpcc_0c00521
crossref_primary_10_1088_1361_6528_abc1a2
crossref_primary_10_1016_j_jechem_2022_11_021
crossref_primary_10_1002_cphc_202400640
crossref_primary_10_1039_D3CP00022B
crossref_primary_10_1007_s11467_024_1428_1
crossref_primary_10_1002_advs_202300925
crossref_primary_10_1063_5_0222227
crossref_primary_10_3390_app131911037
crossref_primary_10_1016_j_apmt_2019_07_004
crossref_primary_10_1021_acsanm_1c01339
crossref_primary_10_1016_j_apsusc_2024_161057
crossref_primary_10_1039_C8TC06398B
crossref_primary_10_1039_C9TC03935J
crossref_primary_10_1021_acs_nanolett_4c02300
crossref_primary_10_1088_1361_6528_ad568e
crossref_primary_10_1021_acsanm_2c02538
crossref_primary_10_1002_adom_202002214
crossref_primary_10_1021_acsami_1c16197
crossref_primary_10_1016_j_apsusc_2021_149013
crossref_primary_10_1002_inf2_12484
crossref_primary_10_1021_acs_chemrev_4c00174
crossref_primary_10_1021_acsanm_0c03253
crossref_primary_10_1039_D4TC03659J
crossref_primary_10_1021_acsaelm_2c00552
crossref_primary_10_1002_adom_202402795
crossref_primary_10_1039_D0MH00340A
crossref_primary_10_1016_j_apsusc_2022_154054
crossref_primary_10_1021_acsami_9b22898
crossref_primary_10_1002_adma_202404013
crossref_primary_10_1002_adfm_202104143
crossref_primary_10_1002_adom_202200862
crossref_primary_10_1039_D3NA00463E
crossref_primary_10_1063_5_0223521
crossref_primary_10_1021_acsanm_4c06731
crossref_primary_10_15541_jim20200540
crossref_primary_10_1002_adma_202201488
crossref_primary_10_1021_acsnano_0c01139
crossref_primary_10_1109_LED_2021_3059667
crossref_primary_10_1021_acsami_1c12564
crossref_primary_10_1039_C9NR03101D
crossref_primary_10_1039_D0NR02574G
crossref_primary_10_1002_adfm_202004896
crossref_primary_10_1364_OE_496766
crossref_primary_10_1039_C9TC00797K
crossref_primary_10_1021_acsnano_1c10181
crossref_primary_10_1021_acsphotonics_3c01803
crossref_primary_10_1002_adom_202200856
crossref_primary_10_1364_OE_482370
crossref_primary_10_1016_j_matpr_2019_08_226
crossref_primary_10_1039_C8NR09368G
crossref_primary_10_1088_2053_1583_ac5d83
crossref_primary_10_1021_acsnano_9b06892
crossref_primary_10_1063_5_0229999
crossref_primary_10_1016_j_matpr_2022_10_296
crossref_primary_10_1038_s41467_025_58155_0
crossref_primary_10_1021_acsaelm_3c00401
crossref_primary_10_1002_smsc_202100097
crossref_primary_10_1063_1674_0068_cjcp2005066
crossref_primary_10_1002_adom_202403065
crossref_primary_10_1007_s12274_021_3979_6
crossref_primary_10_1039_D1TC02054D
crossref_primary_10_1002_adfm_202001033
crossref_primary_10_1016_j_apsusc_2024_160990
crossref_primary_10_1063_5_0160944
crossref_primary_10_1002_inf2_12261
crossref_primary_10_1002_adom_202001708
crossref_primary_10_1021_acs_nanolett_3c03310
crossref_primary_10_1021_acsaom_4c00121
crossref_primary_10_1021_acs_cgd_3c01166
crossref_primary_10_1002_adom_202200284
crossref_primary_10_1021_acsnano_0c05751
crossref_primary_10_1002_adom_202401306
crossref_primary_10_1142_S0129156424400639
crossref_primary_10_1002_adma_201906238
crossref_primary_10_1021_acsaelm_1c00990
crossref_primary_10_1021_acsnano_0c00180
crossref_primary_10_3390_photonics12010006
crossref_primary_10_1007_s12274_023_6171_3
crossref_primary_10_1039_C9NR10348A
crossref_primary_10_1039_D4TC00612G
crossref_primary_10_1021_acsaelm_4c02331
crossref_primary_10_1002_adfm_202106105
crossref_primary_10_1002_smll_202406148
crossref_primary_10_1016_j_nanoen_2022_106916
crossref_primary_10_1002_adfm_201906556
crossref_primary_10_1002_inf2_12275
crossref_primary_10_1007_s12274_022_4806_4
crossref_primary_10_1016_j_jhazmat_2023_131852
crossref_primary_10_1002_adfm_202007587
crossref_primary_10_1021_acs_jpcc_2c08009
crossref_primary_10_1088_1361_6528_ab9472
crossref_primary_10_1002_adfm_202408154
crossref_primary_10_1039_D4NR00342J
crossref_primary_10_1002_adom_202101374
crossref_primary_10_1007_s12274_021_4008_5
crossref_primary_10_1002_adfm_202210268
crossref_primary_10_1016_j_infrared_2022_104195
crossref_primary_10_1088_2053_1583_ac255a
crossref_primary_10_1515_nanoph_2020_0116
crossref_primary_10_1002_adfm_201904932
crossref_primary_10_1002_aelm_202101282
crossref_primary_10_1002_advs_202003713
crossref_primary_10_1002_aisy_202000117
crossref_primary_10_1002_aelm_201900159
crossref_primary_10_1038_s41699_021_00282_5
crossref_primary_10_1002_inf2_12164
crossref_primary_10_1016_j_jallcom_2024_177177
crossref_primary_10_1007_s11082_024_07102_2
crossref_primary_10_1063_5_0050475
crossref_primary_10_1016_j_cej_2020_127484
crossref_primary_10_1021_acsami_0c20535
crossref_primary_10_1038_s41699_019_0132_4
crossref_primary_10_1021_acsami_1c08028
crossref_primary_10_1021_acsami_1c12885
crossref_primary_10_1016_j_optlastec_2020_106642
crossref_primary_10_1515_nanoph_2020_0649
crossref_primary_10_1039_D0TC00004C
crossref_primary_10_1016_j_bios_2019_111617
crossref_primary_10_1039_C9TA13611H
crossref_primary_10_1007_s12274_020_3160_7
crossref_primary_10_1038_s41467_024_44972_2
crossref_primary_10_1364_PRJ_380146
crossref_primary_10_1007_s40843_021_1955_0
crossref_primary_10_1016_j_matchemphys_2020_123588
crossref_primary_10_1021_prechem_4c00049
crossref_primary_10_1039_D4TA04573D
crossref_primary_10_1002_aelm_202000008
crossref_primary_10_1063_5_0150018
crossref_primary_10_1007_s40820_024_01553_8
crossref_primary_10_1021_acsanm_2c03125
crossref_primary_10_1021_accountsmr_2c00146
crossref_primary_10_3390_coatings13121993
crossref_primary_10_1002_adma_202404336
crossref_primary_10_1002_adom_202402501
crossref_primary_10_1016_j_optlastec_2022_108945
crossref_primary_10_1002_smll_202302760
crossref_primary_10_1038_s41598_019_46658_y
crossref_primary_10_1002_smtd_202101046
crossref_primary_10_1016_j_matdes_2022_111446
crossref_primary_10_1021_acs_nanolett_0c00358
crossref_primary_10_1002_adma_202004412
crossref_primary_10_1002_adma_202107772
crossref_primary_10_1002_smll_202100439
crossref_primary_10_1515_nanoph_2019_0542
crossref_primary_10_1007_s11664_023_10245_9
crossref_primary_10_1002_smtd_202300425
crossref_primary_10_1021_acsami_2c09674
crossref_primary_10_1021_acsanm_4c07233
crossref_primary_10_1007_s11467_023_1369_0
crossref_primary_10_1039_C9TC04933A
crossref_primary_10_1002_elt2_43
crossref_primary_10_1007_s12274_020_2815_8
crossref_primary_10_1016_j_jhazmat_2022_129917
crossref_primary_10_1007_s11467_023_1286_2
crossref_primary_10_1002_adpr_202100091
crossref_primary_10_1007_s00339_020_04067_3
crossref_primary_10_1021_acsnano_4c11627
crossref_primary_10_1039_C9NR09070C
crossref_primary_10_1021_acs_chemmater_3c00568
crossref_primary_10_1039_D1TC01245B
crossref_primary_10_1021_acsphotonics_4c00331
crossref_primary_10_1021_acsami_1c04598
crossref_primary_10_1007_s12274_022_4574_1
crossref_primary_10_1007_s12274_021_3634_2
crossref_primary_10_1016_j_nanoen_2019_104107
crossref_primary_10_1002_smll_202103938
crossref_primary_10_1103_PhysRevB_99_245114
crossref_primary_10_3390_nano13061038
crossref_primary_10_1016_j_optlastec_2023_109779
crossref_primary_10_1016_j_optlastec_2023_109531
crossref_primary_10_1021_acsnano_1c08756
crossref_primary_10_1002_aelm_202200485
crossref_primary_10_1063_5_0097044
crossref_primary_10_3390_s24186127
crossref_primary_10_1002_advs_201901134
crossref_primary_10_1039_D4TC03836C
crossref_primary_10_1063_5_0093115
crossref_primary_10_1631_FITEE_2000339
crossref_primary_10_1002_adfm_202203555
crossref_primary_10_1039_D3NR03248E
crossref_primary_10_1039_D2TC00785A
crossref_primary_10_1002_ange_201914886
crossref_primary_10_1103_PhysRevMaterials_7_034002
crossref_primary_10_1002_marc_202400449
crossref_primary_10_1364_AO_538611
crossref_primary_10_1007_s12274_021_3346_7
crossref_primary_10_1016_j_optmat_2022_112115
crossref_primary_10_1039_C9TC03866C
crossref_primary_10_1039_D1NR03243G
crossref_primary_10_1002_adom_202000559
crossref_primary_10_1016_j_jallcom_2023_170712
crossref_primary_10_1039_D1MA00054C
crossref_primary_10_22144_ctujos_2024_257
crossref_primary_10_3390_nano15060459
crossref_primary_10_1021_acsaelm_3c00943
crossref_primary_10_1088_2053_1583_abfe9f
crossref_primary_10_1021_acs_jpcc_5c00015
crossref_primary_10_1002_adfm_202108061
crossref_primary_10_1088_1361_6528_acd855
crossref_primary_10_1039_D3NR03845A
crossref_primary_10_1364_AO_444008
crossref_primary_10_1002_advs_202205609
crossref_primary_10_1002_nano_202000237
crossref_primary_10_3390_ma16134569
crossref_primary_10_1002_adma_202102541
crossref_primary_10_3390_app10175840
crossref_primary_10_1021_acsanm_0c01239
crossref_primary_10_1002_anie_201914886
crossref_primary_10_1021_acsnano_9b03994
crossref_primary_10_1063_5_0091625
crossref_primary_10_1002_advs_202100503
crossref_primary_10_1021_acsami_3c16047
crossref_primary_10_1002_adfm_202104787
crossref_primary_10_3390_su13084155
crossref_primary_10_3390_ma16134795
crossref_primary_10_1002_adma_202005037
crossref_primary_10_1016_j_mser_2024_100839
crossref_primary_10_1016_j_jallcom_2024_178092
crossref_primary_10_1021_acsanm_2c05068
crossref_primary_10_1016_j_mssp_2023_107943
crossref_primary_10_1016_j_optlastec_2021_107258
crossref_primary_10_1021_acsami_4c18702
crossref_primary_10_1002_smll_201902789
crossref_primary_10_1039_D2RA04677F
crossref_primary_10_1039_D0TC02651D
crossref_primary_10_1063_5_0226193
crossref_primary_10_1039_D3NR06643F
crossref_primary_10_1039_D0TC05701K
crossref_primary_10_1002_adpr_202200231
crossref_primary_10_1021_acsnano_9b03645
crossref_primary_10_1039_D1TC04290D
crossref_primary_10_1039_D0TC03872E
crossref_primary_10_1021_acs_nanolett_9b04598
crossref_primary_10_1039_D3CP04936A
crossref_primary_10_1021_acsnano_0c04230
crossref_primary_10_1039_D1CP03202J
crossref_primary_10_1109_TED_2022_3187062
crossref_primary_10_1016_j_optlastec_2022_108632
crossref_primary_10_1016_j_optlastec_2022_108753
crossref_primary_10_1039_D1TC03248H
crossref_primary_10_1039_D1NR07126B
crossref_primary_10_1021_acsaem_0c01304
crossref_primary_10_1021_acsanm_3c02435
crossref_primary_10_1016_j_jallcom_2022_165580
crossref_primary_10_1002_adfm_202103106
crossref_primary_10_1021_acsanm_2c00613
crossref_primary_10_1007_s12274_022_4971_5
crossref_primary_10_1007_s40820_022_01010_4
crossref_primary_10_1039_D0NR05670G
crossref_primary_10_1016_j_infrared_2023_104626
crossref_primary_10_1002_admi_201901304
crossref_primary_10_1002_admi_202102350
crossref_primary_10_1063_5_0142575
crossref_primary_10_1088_1361_6528_ad2482
crossref_primary_10_1103_PhysRevApplied_11_064031
crossref_primary_10_1021_acsnano_4c12298
crossref_primary_10_1016_j_optmat_2020_109694
crossref_primary_10_1021_acsanm_4c05944
crossref_primary_10_3390_ma17184522
crossref_primary_10_1002_adom_202201893
crossref_primary_10_1016_j_elecom_2021_107053
crossref_primary_10_1088_1674_1056_28_4_047804
crossref_primary_10_1002_admt_201900108
crossref_primary_10_1039_D0TC01115K
crossref_primary_10_1039_D2NR07107J
crossref_primary_10_1002_adfm_201900849
crossref_primary_10_1088_1361_6463_ac378e
crossref_primary_10_1007_s40820_021_00660_0
crossref_primary_10_1021_jacs_4c11531
crossref_primary_10_1002_adom_202302399
crossref_primary_10_1002_adfm_202006774
crossref_primary_10_1021_acs_chemrev_2c00426
crossref_primary_10_1002_adpr_202000187
crossref_primary_10_1103_PhysRevB_106_L121110
crossref_primary_10_1016_j_optlastec_2022_108849
crossref_primary_10_1021_acsphotonics_4c02148
crossref_primary_10_1021_acs_jpcc_2c05815
crossref_primary_10_1088_1361_6463_ab57a8
crossref_primary_10_1364_AO_457465
crossref_primary_10_1021_acsnano_2c02711
crossref_primary_10_1364_OL_532885
crossref_primary_10_1016_j_matdes_2023_111848
crossref_primary_10_1002_adfm_202316733
crossref_primary_10_22144_ctujos_2024_337
crossref_primary_10_1016_j_infrared_2024_105240
crossref_primary_10_1016_j_apsusc_2024_160685
crossref_primary_10_1002_smll_201901347
crossref_primary_10_1007_s40843_021_1939_0
crossref_primary_10_1088_1361_6463_ab3883
crossref_primary_10_1002_adom_201901741
crossref_primary_10_1021_acsami_2c22409
crossref_primary_10_1002_adfm_202304523
crossref_primary_10_1021_acsaelm_3c00220
crossref_primary_10_1021_acs_nanolett_2c02099
crossref_primary_10_1002_smll_202000754
crossref_primary_10_1103_PhysRevB_105_115110
crossref_primary_10_1002_adom_202301055
crossref_primary_10_1007_s40820_020_00515_0
crossref_primary_10_1002_adom_202400056
crossref_primary_10_1016_j_jallcom_2020_157344
crossref_primary_10_1142_S0218863523400131
crossref_primary_10_3390_nano12172996
crossref_primary_10_1002_adfm_201902483
crossref_primary_10_1002_smll_202005520
crossref_primary_10_1021_acsaelm_2c01561
Cites_doi 10.1038/srep20343
10.1021/nl303682j
10.1021/acsphotonics.6b00079
10.1038/srep03914
10.1103/PhysRevB.87.041108
10.1021/acs.nanolett.6b04332
10.1103/PhysRevLett.77.3865
10.1021/acs.jpclett.8b00266
10.1002/anie.201512038
10.1038/s41427-018-0035-4
10.1021/nl5008085
10.1021/acs.nanolett.6b01977
10.1021/acsnano.6b00980
10.1002/smll.201502336
10.1021/jacs.7b04865
10.1002/adfm.201500216
10.1039/C8NR04004D
10.1038/nnano.2014.215
10.1039/C4CS00256C
10.1002/smll.201604033
10.1021/nl502570f
10.1002/smll.201502923
10.1002/adfm.201701011
10.1038/am.2016.51
10.1002/adfm.201603886
10.1002/advs.201600018
10.1002/adfm.201705970
10.1063/1.3521275
10.1021/acsami.7b14745
10.1016/S1369-7021(12)70044-5
10.1038/nature14417
10.1002/smll.201700894
10.1038/s41467-018-06776-z
10.1002/adma.201602969
10.1021/acsami.6b05109
10.1016/j.mattod.2015.11.003
10.1063/1.4933302
10.1021/acsami.7b00912
10.1103/PhysRevB.90.075434
10.1002/anie.201707510
10.1088/2053-1583/aa8919
10.1002/adma.201402471
10.1002/adma.201604230
10.1073/pnas.1405435111
10.1038/s41467-018-05874-2
10.1109/LED.2013.2275169
10.1021/nn500508c
10.1016/j.sse.2015.08.023
10.1021/acs.nanolett.8b00583
10.3390/ma10020210
10.1103/PhysRevLett.115.036402
10.1038/nnano.2013.100
10.1038/s41467-017-00358-1
ContentType Journal Article
Copyright 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
DBID AAYXX
CITATION
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/adfm.201806878
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList
CrossRef
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1616-3028
EndPage n/a
ExternalDocumentID 10_1002_adfm_201806878
ADFM201806878
Genre article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 61575167; 61605174; 61675062
– fundername: Anhui Natural Science Foundation of China
  funderid: 1708085ME122
– fundername: Shenzhen Science and Technology Innovation Commission
  funderid: JCYJ20170303160136888
– fundername: Hong Kong Polytechnic University
  funderid: 1‐ZVGH; G‐YBVG
– fundername: Fundamental Research Funds for the Central Universities
  funderid: JZ2018HGPB0275; JZ2018HGTA0220
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMLS
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
.Y3
31~
AAHHS
AANHP
AAYXX
ACBWZ
ACCFJ
ACRPL
ACYXJ
ADNMO
ADZOD
AEEZP
AEQDE
AGQPQ
AIWBW
AJBDE
ASPBG
AVWKF
AZFZN
CITATION
FEDTE
HF~
HVGLF
LW6
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
ID FETCH-LOGICAL-c3838-75450506717a8f22c3b11e35798a2fcc25d4be5e57114354b479a0858f26fda43
IEDL.DBID DR2
ISSN 1616-301X
IngestDate Sun Jul 13 04:37:12 EDT 2025
Tue Jul 01 04:11:54 EDT 2025
Thu Apr 24 22:51:40 EDT 2025
Wed Aug 20 07:26:40 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3838-75450506717a8f22c3b11e35798a2fcc25d4be5e57114354b479a0858f26fda43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5632-5224
PQID 2162427253
PQPubID 2045204
PageCount 9
ParticipantIDs proquest_journals_2162427253
crossref_primary_10_1002_adfm_201806878
crossref_citationtrail_10_1002_adfm_201806878
wiley_primary_10_1002_adfm_201806878_ADFM201806878
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 4, 2019
PublicationDateYYYYMMDD 2019-01-04
PublicationDate_xml – month: 01
  year: 2019
  text: January 4, 2019
  day: 04
PublicationDecade 2010
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Advanced functional materials
PublicationYear 2019
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2018; 28
2017; 8
2014; 90
2016; 19
2017; 4
2013; 87
2017; 27
2015; 520
2016; 10
2017; 29
2012; 15
2015; 107
2013; 8
2014; 111
2016; 16
2017; 9
2017; 139
2016; 12
2016; 55
1996; 77
2016; 6
2018; 9
2018; 18
2015; 25
2014; 4
2015; 27
2016; 3
2015; 115
2013; 13
2017; 17
2013; 34
2017; 10
2015; 44
2017; 13
2017; 56
2010; 133
2014; 14
2018
2016; 115
2014; 9
2014; 8
2018; 10
2016; 8
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
Peng H. (e_1_2_7_55_1) 2016; 6
e_1_2_7_7_1
e_1_2_7_19_1
Li E. (e_1_2_7_17_1) 2018
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_1_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
e_1_2_7_50_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_54_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_37_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_48_1
e_1_2_7_27_1
e_1_2_7_29_1
e_1_2_7_51_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_38_1
References_xml – volume: 29
  start-page: 1604230
  year: 2017
  publication-title: Adv. Mater.
– volume: 16
  start-page: 4648
  year: 2016
  publication-title: Nano Lett.
– volume: 6
  start-page: 20343
  year: 2016
  publication-title: Sci. Rep.
– volume: 44
  start-page: 2744
  year: 2015
  publication-title: Chem. Soc. Rev.
– volume: 10
  start-page: 15285
  year: 2018
  publication-title: Nanoscale
– volume: 133
  start-page: 244103
  year: 2010
  publication-title: J. Chem. Phys.
– volume: 8
  start-page: 497
  year: 2013
  publication-title: Nat. Nanotechnol.
– volume: 9
  start-page: 780
  year: 2014
  publication-title: Nat. Nanotechnol.
– volume: 13
  start-page: 1604033
  year: 2017
  publication-title: Small
– volume: 15
  start-page: 86
  year: 2012
  publication-title: Mater. Today
– volume: 10
  start-page: 210
  year: 2017
  publication-title: Materials
– volume: 77
  start-page: 3865
  year: 1996
  publication-title: Phys. Rev. Lett.
– volume: 12
  start-page: 1062
  year: 2016
  publication-title: Small
– volume: 10
  start-page: 2801
  year: 2018
  publication-title: ACS Appl. Mater. Interfaces
– volume: 9
  start-page: 3311
  year: 2018
  publication-title: Nat. Commun.
– volume: 3
  start-page: 692
  year: 2016
  publication-title: ACS Photonics
– volume: 12
  start-page: 595
  year: 2016
  publication-title: Small
– volume: 56
  start-page: 13717
  year: 2017
  publication-title: Angew. Chem., Int. Ed.
– volume: 9
  start-page: 12728
  year: 2017
  publication-title: ACS Appl. Mater. Interfaces
– volume: 115
  start-page: 036402
  year: 2015
  publication-title: Phys. Rev. Lett.
– volume: 18
  start-page: 3523
  year: 2018
  publication-title: Nano Lett.
– volume: 8
  start-page: 278
  year: 2017
  publication-title: Nat. Commun.
– volume: 28
  start-page: 1705970
  year: 2018
  publication-title: Adv. Funct. Mater.
– volume: 8
  start-page: 18375
  year: 2016
  publication-title: ACS Appl. Mater. Interfaces
– volume: 107
  start-page: 153902
  year: 2015
  publication-title: Appl. Phys. Lett.
– volume: 14
  start-page: 3347
  year: 2014
  publication-title: Nano Lett.
– volume: 25
  start-page: 2910
  year: 2015
  publication-title: Adv. Funct. Mater.
– volume: 10
  start-page: 3852
  year: 2016
  publication-title: ACS Nano
– volume: 3
  start-page: 1600018
  year: 2016
  publication-title: Adv. Sci.
– volume: 4
  start-page: 3914
  year: 2014
  publication-title: Sci. Rep.
– volume: 111
  start-page: 6198
  year: 2014
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 520
  start-page: 656
  year: 2015
  publication-title: Nature
– volume: 4
  start-page: 045015
  year: 2017
  publication-title: 2D Mater.
– volume: 90
  start-page: 075434
  year: 2014
  publication-title: Phys. Rev. B
– volume: 9
  start-page: 1185
  year: 2018
  publication-title: J. Phys. Chem. Lett.
– volume: 17
  start-page: 985
  year: 2017
  publication-title: Nano Lett.
– volume: 8
  start-page: 4133
  year: 2014
  publication-title: ACS Nano
– volume: 13
  start-page: 1700894
  year: 2017
  publication-title: Small
– volume: 139
  start-page: 14090
  year: 2017
  publication-title: J. Am. Chem. Soc.
– volume: 29
  start-page: 1602969
  year: 2017
  publication-title: Adv. Mater.
– volume: 19
  start-page: 322
  year: 2016
  publication-title: Mater. Today
– volume: 27
  start-page: 1603886
  year: 2017
  publication-title: Adv. Funct. Mater.
– volume: 34
  start-page: 1337
  year: 2013
  publication-title: IEEE Electron Device Lett.
– volume: 115
  start-page: 207
  year: 2016
  publication-title: Solid‐State Electron.
– volume: 27
  start-page: 176
  year: 2015
  publication-title: Adv. Mater.
– volume: 9
  start-page: 4299
  year: 2018
  publication-title: Nat. Commun.
– volume: 8
  start-page: e264
  year: 2016
  publication-title: NPG Asia Mater.
– volume: 6
  start-page: 041005
  year: 2016
  publication-title: Phys. Rev. X
– volume: 55
  start-page: 5003
  year: 2016
  publication-title: Angew. Chem., Int. Ed.
– volume: 27
  start-page: 1701011
  year: 2017
  publication-title: Adv. Funct. Mater.
– volume: 13
  start-page: 909
  year: 2013
  publication-title: Nano Lett.
– volume: 14
  start-page: 6842
  year: 2014
  publication-title: Nano Lett.
– year: 2018
  publication-title: Nano Res.
– volume: 87
  start-page: 041108
  year: 2013
  publication-title: Phys. Rev. B
– volume: 10
  start-page: 352
  year: 2018
  publication-title: NPG Asia Mater.
– ident: e_1_2_7_6_1
  doi: 10.1038/srep20343
– ident: e_1_2_7_27_1
  doi: 10.1021/nl303682j
– ident: e_1_2_7_10_1
  doi: 10.1021/acsphotonics.6b00079
– ident: e_1_2_7_35_1
  doi: 10.1038/srep03914
– ident: e_1_2_7_53_1
  doi: 10.1103/PhysRevB.87.041108
– year: 2018
  ident: e_1_2_7_17_1
  publication-title: Nano Res.
– ident: e_1_2_7_34_1
  doi: 10.1021/acs.nanolett.6b04332
– ident: e_1_2_7_51_1
  doi: 10.1103/PhysRevLett.77.3865
– ident: e_1_2_7_30_1
  doi: 10.1021/acs.jpclett.8b00266
– ident: e_1_2_7_40_1
  doi: 10.1002/anie.201512038
– ident: e_1_2_7_45_1
  doi: 10.1038/s41427-018-0035-4
– ident: e_1_2_7_13_1
  doi: 10.1021/nl5008085
– volume: 6
  start-page: 041005
  year: 2016
  ident: e_1_2_7_55_1
  publication-title: Phys. Rev. X
– ident: e_1_2_7_14_1
  doi: 10.1021/acs.nanolett.6b01977
– ident: e_1_2_7_38_1
  doi: 10.1021/acsnano.6b00980
– ident: e_1_2_7_28_1
  doi: 10.1002/smll.201502336
– ident: e_1_2_7_15_1
  doi: 10.1021/jacs.7b04865
– ident: e_1_2_7_23_1
  doi: 10.1002/adfm.201500216
– ident: e_1_2_7_49_1
  doi: 10.1039/C8NR04004D
– ident: e_1_2_7_9_1
  doi: 10.1038/nnano.2014.215
– ident: e_1_2_7_3_1
  doi: 10.1039/C4CS00256C
– ident: e_1_2_7_47_1
  doi: 10.1002/smll.201604033
– ident: e_1_2_7_19_1
  doi: 10.1021/nl502570f
– ident: e_1_2_7_48_1
  doi: 10.1002/smll.201502923
– ident: e_1_2_7_12_1
  doi: 10.1002/adfm.201701011
– ident: e_1_2_7_20_1
  doi: 10.1038/am.2016.51
– ident: e_1_2_7_1_1
  doi: 10.1002/adfm.201603886
– ident: e_1_2_7_24_1
  doi: 10.1002/advs.201600018
– ident: e_1_2_7_31_1
  doi: 10.1002/adfm.201705970
– ident: e_1_2_7_54_1
  doi: 10.1063/1.3521275
– ident: e_1_2_7_44_1
  doi: 10.1021/acsami.7b14745
– ident: e_1_2_7_5_1
  doi: 10.1016/S1369-7021(12)70044-5
– ident: e_1_2_7_32_1
  doi: 10.1038/nature14417
– ident: e_1_2_7_4_1
  doi: 10.1002/smll.201700894
– ident: e_1_2_7_8_1
  doi: 10.1038/s41467-018-06776-z
– ident: e_1_2_7_18_1
  doi: 10.1002/adma.201602969
– ident: e_1_2_7_46_1
  doi: 10.1021/acsami.6b05109
– ident: e_1_2_7_2_1
  doi: 10.1016/j.mattod.2015.11.003
– ident: e_1_2_7_16_1
  doi: 10.1063/1.4933302
– ident: e_1_2_7_43_1
  doi: 10.1021/acsami.7b00912
– ident: e_1_2_7_37_1
  doi: 10.1103/PhysRevB.90.075434
– ident: e_1_2_7_50_1
  doi: 10.1002/anie.201707510
– ident: e_1_2_7_21_1
  doi: 10.1088/2053-1583/aa8919
– ident: e_1_2_7_41_1
  doi: 10.1002/adma.201402471
– ident: e_1_2_7_29_1
  doi: 10.1002/adma.201604230
– ident: e_1_2_7_39_1
  doi: 10.1073/pnas.1405435111
– ident: e_1_2_7_11_1
  doi: 10.1038/s41467-018-05874-2
– ident: e_1_2_7_25_1
  doi: 10.1109/LED.2013.2275169
– ident: e_1_2_7_42_1
  doi: 10.1021/nn500508c
– ident: e_1_2_7_26_1
  doi: 10.1016/j.sse.2015.08.023
– ident: e_1_2_7_22_1
  doi: 10.1021/acs.nanolett.8b00583
– ident: e_1_2_7_36_1
  doi: 10.3390/ma10020210
– ident: e_1_2_7_52_1
  doi: 10.1103/PhysRevLett.115.036402
– ident: e_1_2_7_7_1
  doi: 10.1038/nnano.2013.100
– ident: e_1_2_7_33_1
  doi: 10.1038/s41467-017-00358-1
SSID ssj0017734
Score 2.687222
Snippet Palladium diselenide (PdSe2), a thus far scarcely studied group‐10 transition metal dichalcogenide has exhibited promising potential in future optoelectronic...
Palladium diselenide (PdSe 2 ), a thus far scarcely studied group‐10 transition metal dichalcogenide has exhibited promising potential in future optoelectronic...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Broadband
broadband photodetectors
Density functional theory
Electrical properties
Electronic devices
heterojunction
Materials science
Optoelectronic devices
Palladium
photodetectors
Photoelectric emission
Photometers
Quantum dots
Raman spectroscopy
Red shift
Spectrum analysis
Stability
Synthesis
Thickness
Transition metal compounds
transitional metal dichalcogenides
Wavelengths
Title Controlled Synthesis of 2D Palladium Diselenide for Sensitive Photodetector Applications
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.201806878
https://www.proquest.com/docview/2162427253
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3LS8MwHMeD6EUPvsXpHDkInro1WdK0x7E6hjgZzsFuJa_icLbiuoP-9SZt122CCHprIb8-8vwk-f2-AeCaelIEwkxLuC-pQ5QbO2YagR1COeFSs1joXO3zweuPyd2ETtai-At9iGrBzbaMvL-2DZyLeWslGspVbCPJke96PrPRvtZhy1LRY6UfhRgrtpU9ZB280GSp2uji1qb55qi0Qs11YM1HnN4B4MtvLRxNXpqLTDTl5zcZx__8zCHYL3EUdor6cwS2dHIM9tZECk_ApFt4s8-0gqOPxADjfDqHaQxxCId2GV5NF68wzI9tSqZKQ4PBcGT94m1PCofPaZYqneW7A7Cztl9-Csa926du3ynPY3Ckmcf6DjO05VIzvCHG_Rhj2RYI6TZlgc9xLCWmighNNWXIUhgRhAXcIJ1J68WKk_YZ2E7SRJ8DGHBmuE252gZwasMcnnI5ppK3jaHBiBpwluURyVKs3J6ZMYsKmWUc2RyLqhyrgZsq_Vsh0_FjyvqyeKOyuc4jjGyYDMPUvBjn5fTLU6JO2BtUdxd_MboEu-Y6yJdzSB1sZ-8LfWUAJxMNsNMJB_ejRl6ZvwCr6fKv
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELagDMDAG_Eo4AGJKSV27TgZq5aqQIsQUKlb5FdEBaSIpgP8emynCS0SQoIxkZ2Hz2d_d777DoBTGkgRCWOW8FBSjyg_8YwZgT1COeFSs0Rox_Z5E3T65GpAi2hCmwuT80OUDjerGW69tgpuHdLnX6yhXCU2lRyFfhCycBEs2bLezqq6KxmkEGP5wXKAbIgXGhS8jT4-n-8_vy99gc1ZyOr2nPY6EMXX5qEmT7VJJmry4xuR479-ZwOsTREpbORTaBMs6HQLrM7wFG6DQTMPaH_WCt6_pwYzjodjOEogbsFb64lXw8kLbLnKTelQaWiQMLy3ofF2MYW3j6NspHTmDghgY-bIfAf02xcPzY43LcngSWPKhh4zgMunZodDjIcJxrIuENJ1yqKQ40RKTBURmmrKkAViRBAWcYPqTNsgUZzUd0ElHaV6D8CIMwPdlK9tDqc2sCNQPsdU8rrpaJDEPvAKgcRyylduy2Y8xznTMo7tiMXliO2Ds7L9a87U8WPLaiHfeKqx4xgjmynDMDUvxk5QvzwlbrTavfLq4C-dTsBy56HXjbuXN9eHYMXcj5x3h1RBJXub6CODdzJx7Gb0Jzx69TY
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NT8IwFG8UE6MHv40oag8mngZr167bkTAJfhEiknBburaLRBxExkH_etsNBpgYEz1u6dtH33vtr33v_QrAFXVF5Ed6WcI9QS0i7djSywhsEcoJF4rFkcrYPttuq0fu-rS_VMWf80MUG27GM7Lx2jj4WMa1BWkol7GpJEee7XrMWwcbxLU9Y9fBU0EghRjL48ouMhleqD-nbbRxbVV-dVpaYM1lxJpNOc1dwOcfm2eavFanaVQVn994HP_zN3tgZ4ZHYT03oH2wppIDsL3EUngI-o08nX2oJOx-JBoxTgYTOIohDmDH7MPLwfQNBtm5TclAKqhxMOyaxHgzlMLOyygdSZVm4QFYXwqYH4Fe8-a50bJmBzJYQi9kPYtpuGVTPb8hxr0YY-FECCmHMt_jOBYCU0kiRRVlyMAwEhHmc43pdFs3lpw4x6CUjBJ1AqDPmQZu0lamglNp0OFKm2MquKMFNY4oA2uuj1DM2MrNoRnDMOdZxqHpsbDosTK4LtqPc56OH1tW5uoNZ_46CTEydTIMU_1inOnpl6eE9aD5WFyd_kXoEmx2gmb4cNu-PwNb-rafbe2QCiil71N1rsFOGl1k9vwFdeHz7g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Controlled+Synthesis+of+2D+Palladium+Diselenide+for+Sensitive+Photodetector+Applications&rft.jtitle=Advanced+functional+materials&rft.au=Long%E2%80%90Hui+Zeng&rft.au=Wu%2C+Di&rft.au=Sheng%E2%80%90Huang+Lin&rft.au=Xie%2C+Chao&rft.date=2019-01-04&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=29&rft.issue=1&rft_id=info:doi/10.1002%2Fadfm.201806878&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon