Controlled Synthesis of 2D Palladium Diselenide for Sensitive Photodetector Applications
Palladium diselenide (PdSe2), a thus far scarcely studied group‐10 transition metal dichalcogenide has exhibited promising potential in future optoelectronic and electronic devices due to unique structures and electrical properties. Here, the controllable synthesis of wafer‐scale and homogeneous 2D...
Saved in:
Published in | Advanced functional materials Vol. 29; no. 1 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc
04.01.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Palladium diselenide (PdSe2), a thus far scarcely studied group‐10 transition metal dichalcogenide has exhibited promising potential in future optoelectronic and electronic devices due to unique structures and electrical properties. Here, the controllable synthesis of wafer‐scale and homogeneous 2D PdSe2 film is reported by a simple selenization approach. By choosing different thickness of precursor Pd layer, 2D PdSe2 with thickness of 1.2–20 nm can be readily synthesized. Interestingly, with the increase in thickness, obvious redshift in wavenumber is revealed by Raman spectroscopy. Moreover, in accordance with density functional theory (DFT) calculation, optical absorption and ultraviolet photoemission spectroscopy (UPS) analyses confirm that the PdSe2 exhibits an evolution from a semiconductor (monolayer) to semimetal (bulk). Further combination of the PdSe2 layer with Si leads to a highly sensitive, fast, and broadband photodetector with a high responsivity (300.2 mA W−1) and specific detectivity (≈1013 Jones). By decorating the device with black phosphorus quantum dots, the device performance can be further optimized. These results suggest the as‐selenized PdSe2 is a promising material for optoelectronic application.
This study reports on the wafer‐area synthesis of a high‐quality 2D palladium diselenide (PdSe2) layer through a simple selenization method. Both experimental analysis and theoretical simulation reveal that the PdSe2 film exhibits a gradual transition from a semiconductor (monolayer) to semimetal (bulk). Further combination of PdSe2 with Si leads to a fast and sensitive broadband photodiode, with a high responsivity and specific detectivity. |
---|---|
AbstractList | Palladium diselenide (PdSe2), a thus far scarcely studied group‐10 transition metal dichalcogenide has exhibited promising potential in future optoelectronic and electronic devices due to unique structures and electrical properties. Here, the controllable synthesis of wafer‐scale and homogeneous 2D PdSe2 film is reported by a simple selenization approach. By choosing different thickness of precursor Pd layer, 2D PdSe2 with thickness of 1.2–20 nm can be readily synthesized. Interestingly, with the increase in thickness, obvious redshift in wavenumber is revealed by Raman spectroscopy. Moreover, in accordance with density functional theory (DFT) calculation, optical absorption and ultraviolet photoemission spectroscopy (UPS) analyses confirm that the PdSe2 exhibits an evolution from a semiconductor (monolayer) to semimetal (bulk). Further combination of the PdSe2 layer with Si leads to a highly sensitive, fast, and broadband photodetector with a high responsivity (300.2 mA W−1) and specific detectivity (≈1013 Jones). By decorating the device with black phosphorus quantum dots, the device performance can be further optimized. These results suggest the as‐selenized PdSe2 is a promising material for optoelectronic application.
This study reports on the wafer‐area synthesis of a high‐quality 2D palladium diselenide (PdSe2) layer through a simple selenization method. Both experimental analysis and theoretical simulation reveal that the PdSe2 film exhibits a gradual transition from a semiconductor (monolayer) to semimetal (bulk). Further combination of PdSe2 with Si leads to a fast and sensitive broadband photodiode, with a high responsivity and specific detectivity. Palladium diselenide (PdSe 2 ), a thus far scarcely studied group‐10 transition metal dichalcogenide has exhibited promising potential in future optoelectronic and electronic devices due to unique structures and electrical properties. Here, the controllable synthesis of wafer‐scale and homogeneous 2D PdSe 2 film is reported by a simple selenization approach. By choosing different thickness of precursor Pd layer, 2D PdSe 2 with thickness of 1.2–20 nm can be readily synthesized. Interestingly, with the increase in thickness, obvious redshift in wavenumber is revealed by Raman spectroscopy. Moreover, in accordance with density functional theory (DFT) calculation, optical absorption and ultraviolet photoemission spectroscopy (UPS) analyses confirm that the PdSe 2 exhibits an evolution from a semiconductor (monolayer) to semimetal (bulk). Further combination of the PdSe 2 layer with Si leads to a highly sensitive, fast, and broadband photodetector with a high responsivity (300.2 mA W −1 ) and specific detectivity (≈10 13 Jones). By decorating the device with black phosphorus quantum dots, the device performance can be further optimized. These results suggest the as‐selenized PdSe 2 is a promising material for optoelectronic application. Palladium diselenide (PdSe2), a thus far scarcely studied group‐10 transition metal dichalcogenide has exhibited promising potential in future optoelectronic and electronic devices due to unique structures and electrical properties. Here, the controllable synthesis of wafer‐scale and homogeneous 2D PdSe2 film is reported by a simple selenization approach. By choosing different thickness of precursor Pd layer, 2D PdSe2 with thickness of 1.2–20 nm can be readily synthesized. Interestingly, with the increase in thickness, obvious redshift in wavenumber is revealed by Raman spectroscopy. Moreover, in accordance with density functional theory (DFT) calculation, optical absorption and ultraviolet photoemission spectroscopy (UPS) analyses confirm that the PdSe2 exhibits an evolution from a semiconductor (monolayer) to semimetal (bulk). Further combination of the PdSe2 layer with Si leads to a highly sensitive, fast, and broadband photodetector with a high responsivity (300.2 mA W−1) and specific detectivity (≈1013 Jones). By decorating the device with black phosphorus quantum dots, the device performance can be further optimized. These results suggest the as‐selenized PdSe2 is a promising material for optoelectronic application. |
Author | Lin, Sheng‐Huang Zeng, Long‐Hui Lu, Wei Tsang, Yuen Hong Xie, Chao Lau, Shu Ping Yuan, Hui‐Yu Chai, Yang Luo, Lin‐Bao Wu, Di Li, Zhong‐Jun |
Author_xml | – sequence: 1 givenname: Long‐Hui surname: Zeng fullname: Zeng, Long‐Hui organization: The Hong Kong Polytechnic University – sequence: 2 givenname: Di surname: Wu fullname: Wu, Di organization: Zhengzhou University – sequence: 3 givenname: Sheng‐Huang surname: Lin fullname: Lin, Sheng‐Huang organization: The Hong Kong Polytechnic University – sequence: 4 givenname: Chao surname: Xie fullname: Xie, Chao organization: Hefei University of Technology – sequence: 5 givenname: Hui‐Yu surname: Yuan fullname: Yuan, Hui‐Yu organization: Zhengzhou University – sequence: 6 givenname: Wei surname: Lu fullname: Lu, Wei organization: The Hong Kong Polytechnic University – sequence: 7 givenname: Shu Ping surname: Lau fullname: Lau, Shu Ping organization: The Hong Kong Polytechnic University – sequence: 8 givenname: Yang surname: Chai fullname: Chai, Yang organization: The Hong Kong Polytechnic University – sequence: 9 givenname: Lin‐Bao surname: Luo fullname: Luo, Lin‐Bao email: luolb@hfut.edu.cn organization: Hefei University of Technology – sequence: 10 givenname: Zhong‐Jun surname: Li fullname: Li, Zhong‐Jun email: zjli@hfut.edu.cn organization: Hefei University of Technology – sequence: 11 givenname: Yuen Hong orcidid: 0000-0001-5632-5224 surname: Tsang fullname: Tsang, Yuen Hong email: Yuen.Tsang@polyu.edu.hk organization: The Hong Kong Polytechnic University |
BookMark | eNqFkN1LAkEUxYcwSK3Xnhd6XpvPnfFRNCswEizwbRl37-LIuLPNjIX_fWuGQRA93cvl_O7hnB7q1K4GhK4JHhCM6a0uq-2AYqJwpqQ6Q12SkSxlmKrOaSfLC9QLYYMxkZLxLlqOXR29sxbKZLGv4xqCCYmrEjpJ5tpaXZrdNpmYABZqU0JSOZ8soA4mmndI5msXXQkRitjeR01jTaGjcXW4ROeVtgGuvmcfvU7vXsYP6ez5_nE8mqUFU0ylUnCBBc4kkVpVlBZsRQgwIYdK06ooqCj5CgQISQhngq-4HGqsRKvNqlJz1kc3x7-Nd287CDHfuJ2vW8uckoxyKqlgrWpwVBXeheChyhtvttrvc4LzQ3v5ob381F4L8F9AYeJXsui1sX9jwyP2YSzs_zHJR5Pp0w_7Ca6dhmg |
CitedBy_id | crossref_primary_10_1002_aelm_202000094 crossref_primary_10_1002_adfm_202204230 crossref_primary_10_1021_acsenergylett_2c01810 crossref_primary_10_1002_smll_202207641 crossref_primary_10_1016_j_optlastec_2023_109237 crossref_primary_10_1021_acsami_1c11277 crossref_primary_10_1021_acsanm_4c07065 crossref_primary_10_1002_smll_202105188 crossref_primary_10_1039_D0NR00319K crossref_primary_10_1002_smll_201804404 crossref_primary_10_1002_aelm_202001057 crossref_primary_10_1007_s12274_020_3247_1 crossref_primary_10_1002_adom_202401379 crossref_primary_10_1021_acsnano_1c02007 crossref_primary_10_1364_OE_425777 crossref_primary_10_1021_acs_jpclett_4c00765 crossref_primary_10_1016_j_spmi_2020_106514 crossref_primary_10_1002_solr_202200965 crossref_primary_10_1007_s40820_020_0402_x crossref_primary_10_1002_adfm_202412896 crossref_primary_10_1002_aelm_202100005 crossref_primary_10_1038_s41928_022_00747_5 crossref_primary_10_1021_acs_jpclett_2c00315 crossref_primary_10_1039_D3TA00950E crossref_primary_10_1002_adom_202401122 crossref_primary_10_1021_acsomega_4c01546 crossref_primary_10_1002_adom_202400038 crossref_primary_10_1007_s12274_023_5759_y crossref_primary_10_1515_nanoph_2020_0267 crossref_primary_10_1063_5_0231608 crossref_primary_10_1002_adom_202101963 crossref_primary_10_1088_2053_1583_ab8d82 crossref_primary_10_1021_acsami_1c10888 crossref_primary_10_1038_s41699_021_00205_4 crossref_primary_10_1016_j_optlastec_2021_106983 crossref_primary_10_1021_acsaenm_3c00682 crossref_primary_10_1063_5_0082509 crossref_primary_10_1002_adom_202300213 crossref_primary_10_1002_aelm_202100278 crossref_primary_10_1088_1361_6528_ab33d2 crossref_primary_10_1002_adfm_202111970 crossref_primary_10_1021_acs_jpcc_0c00521 crossref_primary_10_1088_1361_6528_abc1a2 crossref_primary_10_1016_j_jechem_2022_11_021 crossref_primary_10_1002_cphc_202400640 crossref_primary_10_1039_D3CP00022B crossref_primary_10_1007_s11467_024_1428_1 crossref_primary_10_1002_advs_202300925 crossref_primary_10_1063_5_0222227 crossref_primary_10_3390_app131911037 crossref_primary_10_1016_j_apmt_2019_07_004 crossref_primary_10_1021_acsanm_1c01339 crossref_primary_10_1016_j_apsusc_2024_161057 crossref_primary_10_1039_C8TC06398B crossref_primary_10_1039_C9TC03935J crossref_primary_10_1021_acs_nanolett_4c02300 crossref_primary_10_1088_1361_6528_ad568e crossref_primary_10_1021_acsanm_2c02538 crossref_primary_10_1002_adom_202002214 crossref_primary_10_1021_acsami_1c16197 crossref_primary_10_1016_j_apsusc_2021_149013 crossref_primary_10_1002_inf2_12484 crossref_primary_10_1021_acs_chemrev_4c00174 crossref_primary_10_1021_acsanm_0c03253 crossref_primary_10_1039_D4TC03659J crossref_primary_10_1021_acsaelm_2c00552 crossref_primary_10_1002_adom_202402795 crossref_primary_10_1039_D0MH00340A crossref_primary_10_1016_j_apsusc_2022_154054 crossref_primary_10_1021_acsami_9b22898 crossref_primary_10_1002_adma_202404013 crossref_primary_10_1002_adfm_202104143 crossref_primary_10_1002_adom_202200862 crossref_primary_10_1039_D3NA00463E crossref_primary_10_1063_5_0223521 crossref_primary_10_1021_acsanm_4c06731 crossref_primary_10_15541_jim20200540 crossref_primary_10_1002_adma_202201488 crossref_primary_10_1021_acsnano_0c01139 crossref_primary_10_1109_LED_2021_3059667 crossref_primary_10_1021_acsami_1c12564 crossref_primary_10_1039_C9NR03101D crossref_primary_10_1039_D0NR02574G crossref_primary_10_1002_adfm_202004896 crossref_primary_10_1364_OE_496766 crossref_primary_10_1039_C9TC00797K crossref_primary_10_1021_acsnano_1c10181 crossref_primary_10_1021_acsphotonics_3c01803 crossref_primary_10_1002_adom_202200856 crossref_primary_10_1364_OE_482370 crossref_primary_10_1016_j_matpr_2019_08_226 crossref_primary_10_1039_C8NR09368G crossref_primary_10_1088_2053_1583_ac5d83 crossref_primary_10_1021_acsnano_9b06892 crossref_primary_10_1063_5_0229999 crossref_primary_10_1016_j_matpr_2022_10_296 crossref_primary_10_1038_s41467_025_58155_0 crossref_primary_10_1021_acsaelm_3c00401 crossref_primary_10_1002_smsc_202100097 crossref_primary_10_1063_1674_0068_cjcp2005066 crossref_primary_10_1002_adom_202403065 crossref_primary_10_1007_s12274_021_3979_6 crossref_primary_10_1039_D1TC02054D crossref_primary_10_1002_adfm_202001033 crossref_primary_10_1016_j_apsusc_2024_160990 crossref_primary_10_1063_5_0160944 crossref_primary_10_1002_inf2_12261 crossref_primary_10_1002_adom_202001708 crossref_primary_10_1021_acs_nanolett_3c03310 crossref_primary_10_1021_acsaom_4c00121 crossref_primary_10_1021_acs_cgd_3c01166 crossref_primary_10_1002_adom_202200284 crossref_primary_10_1021_acsnano_0c05751 crossref_primary_10_1002_adom_202401306 crossref_primary_10_1142_S0129156424400639 crossref_primary_10_1002_adma_201906238 crossref_primary_10_1021_acsaelm_1c00990 crossref_primary_10_1021_acsnano_0c00180 crossref_primary_10_3390_photonics12010006 crossref_primary_10_1007_s12274_023_6171_3 crossref_primary_10_1039_C9NR10348A crossref_primary_10_1039_D4TC00612G crossref_primary_10_1021_acsaelm_4c02331 crossref_primary_10_1002_adfm_202106105 crossref_primary_10_1002_smll_202406148 crossref_primary_10_1016_j_nanoen_2022_106916 crossref_primary_10_1002_adfm_201906556 crossref_primary_10_1002_inf2_12275 crossref_primary_10_1007_s12274_022_4806_4 crossref_primary_10_1016_j_jhazmat_2023_131852 crossref_primary_10_1002_adfm_202007587 crossref_primary_10_1021_acs_jpcc_2c08009 crossref_primary_10_1088_1361_6528_ab9472 crossref_primary_10_1002_adfm_202408154 crossref_primary_10_1039_D4NR00342J crossref_primary_10_1002_adom_202101374 crossref_primary_10_1007_s12274_021_4008_5 crossref_primary_10_1002_adfm_202210268 crossref_primary_10_1016_j_infrared_2022_104195 crossref_primary_10_1088_2053_1583_ac255a crossref_primary_10_1515_nanoph_2020_0116 crossref_primary_10_1002_adfm_201904932 crossref_primary_10_1002_aelm_202101282 crossref_primary_10_1002_advs_202003713 crossref_primary_10_1002_aisy_202000117 crossref_primary_10_1002_aelm_201900159 crossref_primary_10_1038_s41699_021_00282_5 crossref_primary_10_1002_inf2_12164 crossref_primary_10_1016_j_jallcom_2024_177177 crossref_primary_10_1007_s11082_024_07102_2 crossref_primary_10_1063_5_0050475 crossref_primary_10_1016_j_cej_2020_127484 crossref_primary_10_1021_acsami_0c20535 crossref_primary_10_1038_s41699_019_0132_4 crossref_primary_10_1021_acsami_1c08028 crossref_primary_10_1021_acsami_1c12885 crossref_primary_10_1016_j_optlastec_2020_106642 crossref_primary_10_1515_nanoph_2020_0649 crossref_primary_10_1039_D0TC00004C crossref_primary_10_1016_j_bios_2019_111617 crossref_primary_10_1039_C9TA13611H crossref_primary_10_1007_s12274_020_3160_7 crossref_primary_10_1038_s41467_024_44972_2 crossref_primary_10_1364_PRJ_380146 crossref_primary_10_1007_s40843_021_1955_0 crossref_primary_10_1016_j_matchemphys_2020_123588 crossref_primary_10_1021_prechem_4c00049 crossref_primary_10_1039_D4TA04573D crossref_primary_10_1002_aelm_202000008 crossref_primary_10_1063_5_0150018 crossref_primary_10_1007_s40820_024_01553_8 crossref_primary_10_1021_acsanm_2c03125 crossref_primary_10_1021_accountsmr_2c00146 crossref_primary_10_3390_coatings13121993 crossref_primary_10_1002_adma_202404336 crossref_primary_10_1002_adom_202402501 crossref_primary_10_1016_j_optlastec_2022_108945 crossref_primary_10_1002_smll_202302760 crossref_primary_10_1038_s41598_019_46658_y crossref_primary_10_1002_smtd_202101046 crossref_primary_10_1016_j_matdes_2022_111446 crossref_primary_10_1021_acs_nanolett_0c00358 crossref_primary_10_1002_adma_202004412 crossref_primary_10_1002_adma_202107772 crossref_primary_10_1002_smll_202100439 crossref_primary_10_1515_nanoph_2019_0542 crossref_primary_10_1007_s11664_023_10245_9 crossref_primary_10_1002_smtd_202300425 crossref_primary_10_1021_acsami_2c09674 crossref_primary_10_1021_acsanm_4c07233 crossref_primary_10_1007_s11467_023_1369_0 crossref_primary_10_1039_C9TC04933A crossref_primary_10_1002_elt2_43 crossref_primary_10_1007_s12274_020_2815_8 crossref_primary_10_1016_j_jhazmat_2022_129917 crossref_primary_10_1007_s11467_023_1286_2 crossref_primary_10_1002_adpr_202100091 crossref_primary_10_1007_s00339_020_04067_3 crossref_primary_10_1021_acsnano_4c11627 crossref_primary_10_1039_C9NR09070C crossref_primary_10_1021_acs_chemmater_3c00568 crossref_primary_10_1039_D1TC01245B crossref_primary_10_1021_acsphotonics_4c00331 crossref_primary_10_1021_acsami_1c04598 crossref_primary_10_1007_s12274_022_4574_1 crossref_primary_10_1007_s12274_021_3634_2 crossref_primary_10_1016_j_nanoen_2019_104107 crossref_primary_10_1002_smll_202103938 crossref_primary_10_1103_PhysRevB_99_245114 crossref_primary_10_3390_nano13061038 crossref_primary_10_1016_j_optlastec_2023_109779 crossref_primary_10_1016_j_optlastec_2023_109531 crossref_primary_10_1021_acsnano_1c08756 crossref_primary_10_1002_aelm_202200485 crossref_primary_10_1063_5_0097044 crossref_primary_10_3390_s24186127 crossref_primary_10_1002_advs_201901134 crossref_primary_10_1039_D4TC03836C crossref_primary_10_1063_5_0093115 crossref_primary_10_1631_FITEE_2000339 crossref_primary_10_1002_adfm_202203555 crossref_primary_10_1039_D3NR03248E crossref_primary_10_1039_D2TC00785A crossref_primary_10_1002_ange_201914886 crossref_primary_10_1103_PhysRevMaterials_7_034002 crossref_primary_10_1002_marc_202400449 crossref_primary_10_1364_AO_538611 crossref_primary_10_1007_s12274_021_3346_7 crossref_primary_10_1016_j_optmat_2022_112115 crossref_primary_10_1039_C9TC03866C crossref_primary_10_1039_D1NR03243G crossref_primary_10_1002_adom_202000559 crossref_primary_10_1016_j_jallcom_2023_170712 crossref_primary_10_1039_D1MA00054C crossref_primary_10_22144_ctujos_2024_257 crossref_primary_10_3390_nano15060459 crossref_primary_10_1021_acsaelm_3c00943 crossref_primary_10_1088_2053_1583_abfe9f crossref_primary_10_1021_acs_jpcc_5c00015 crossref_primary_10_1002_adfm_202108061 crossref_primary_10_1088_1361_6528_acd855 crossref_primary_10_1039_D3NR03845A crossref_primary_10_1364_AO_444008 crossref_primary_10_1002_advs_202205609 crossref_primary_10_1002_nano_202000237 crossref_primary_10_3390_ma16134569 crossref_primary_10_1002_adma_202102541 crossref_primary_10_3390_app10175840 crossref_primary_10_1021_acsanm_0c01239 crossref_primary_10_1002_anie_201914886 crossref_primary_10_1021_acsnano_9b03994 crossref_primary_10_1063_5_0091625 crossref_primary_10_1002_advs_202100503 crossref_primary_10_1021_acsami_3c16047 crossref_primary_10_1002_adfm_202104787 crossref_primary_10_3390_su13084155 crossref_primary_10_3390_ma16134795 crossref_primary_10_1002_adma_202005037 crossref_primary_10_1016_j_mser_2024_100839 crossref_primary_10_1016_j_jallcom_2024_178092 crossref_primary_10_1021_acsanm_2c05068 crossref_primary_10_1016_j_mssp_2023_107943 crossref_primary_10_1016_j_optlastec_2021_107258 crossref_primary_10_1021_acsami_4c18702 crossref_primary_10_1002_smll_201902789 crossref_primary_10_1039_D2RA04677F crossref_primary_10_1039_D0TC02651D crossref_primary_10_1063_5_0226193 crossref_primary_10_1039_D3NR06643F crossref_primary_10_1039_D0TC05701K crossref_primary_10_1002_adpr_202200231 crossref_primary_10_1021_acsnano_9b03645 crossref_primary_10_1039_D1TC04290D crossref_primary_10_1039_D0TC03872E crossref_primary_10_1021_acs_nanolett_9b04598 crossref_primary_10_1039_D3CP04936A crossref_primary_10_1021_acsnano_0c04230 crossref_primary_10_1039_D1CP03202J crossref_primary_10_1109_TED_2022_3187062 crossref_primary_10_1016_j_optlastec_2022_108632 crossref_primary_10_1016_j_optlastec_2022_108753 crossref_primary_10_1039_D1TC03248H crossref_primary_10_1039_D1NR07126B crossref_primary_10_1021_acsaem_0c01304 crossref_primary_10_1021_acsanm_3c02435 crossref_primary_10_1016_j_jallcom_2022_165580 crossref_primary_10_1002_adfm_202103106 crossref_primary_10_1021_acsanm_2c00613 crossref_primary_10_1007_s12274_022_4971_5 crossref_primary_10_1007_s40820_022_01010_4 crossref_primary_10_1039_D0NR05670G crossref_primary_10_1016_j_infrared_2023_104626 crossref_primary_10_1002_admi_201901304 crossref_primary_10_1002_admi_202102350 crossref_primary_10_1063_5_0142575 crossref_primary_10_1088_1361_6528_ad2482 crossref_primary_10_1103_PhysRevApplied_11_064031 crossref_primary_10_1021_acsnano_4c12298 crossref_primary_10_1016_j_optmat_2020_109694 crossref_primary_10_1021_acsanm_4c05944 crossref_primary_10_3390_ma17184522 crossref_primary_10_1002_adom_202201893 crossref_primary_10_1016_j_elecom_2021_107053 crossref_primary_10_1088_1674_1056_28_4_047804 crossref_primary_10_1002_admt_201900108 crossref_primary_10_1039_D0TC01115K crossref_primary_10_1039_D2NR07107J crossref_primary_10_1002_adfm_201900849 crossref_primary_10_1088_1361_6463_ac378e crossref_primary_10_1007_s40820_021_00660_0 crossref_primary_10_1021_jacs_4c11531 crossref_primary_10_1002_adom_202302399 crossref_primary_10_1002_adfm_202006774 crossref_primary_10_1021_acs_chemrev_2c00426 crossref_primary_10_1002_adpr_202000187 crossref_primary_10_1103_PhysRevB_106_L121110 crossref_primary_10_1016_j_optlastec_2022_108849 crossref_primary_10_1021_acsphotonics_4c02148 crossref_primary_10_1021_acs_jpcc_2c05815 crossref_primary_10_1088_1361_6463_ab57a8 crossref_primary_10_1364_AO_457465 crossref_primary_10_1021_acsnano_2c02711 crossref_primary_10_1364_OL_532885 crossref_primary_10_1016_j_matdes_2023_111848 crossref_primary_10_1002_adfm_202316733 crossref_primary_10_22144_ctujos_2024_337 crossref_primary_10_1016_j_infrared_2024_105240 crossref_primary_10_1016_j_apsusc_2024_160685 crossref_primary_10_1002_smll_201901347 crossref_primary_10_1007_s40843_021_1939_0 crossref_primary_10_1088_1361_6463_ab3883 crossref_primary_10_1002_adom_201901741 crossref_primary_10_1021_acsami_2c22409 crossref_primary_10_1002_adfm_202304523 crossref_primary_10_1021_acsaelm_3c00220 crossref_primary_10_1021_acs_nanolett_2c02099 crossref_primary_10_1002_smll_202000754 crossref_primary_10_1103_PhysRevB_105_115110 crossref_primary_10_1002_adom_202301055 crossref_primary_10_1007_s40820_020_00515_0 crossref_primary_10_1002_adom_202400056 crossref_primary_10_1016_j_jallcom_2020_157344 crossref_primary_10_1142_S0218863523400131 crossref_primary_10_3390_nano12172996 crossref_primary_10_1002_adfm_201902483 crossref_primary_10_1002_smll_202005520 crossref_primary_10_1021_acsaelm_2c01561 |
Cites_doi | 10.1038/srep20343 10.1021/nl303682j 10.1021/acsphotonics.6b00079 10.1038/srep03914 10.1103/PhysRevB.87.041108 10.1021/acs.nanolett.6b04332 10.1103/PhysRevLett.77.3865 10.1021/acs.jpclett.8b00266 10.1002/anie.201512038 10.1038/s41427-018-0035-4 10.1021/nl5008085 10.1021/acs.nanolett.6b01977 10.1021/acsnano.6b00980 10.1002/smll.201502336 10.1021/jacs.7b04865 10.1002/adfm.201500216 10.1039/C8NR04004D 10.1038/nnano.2014.215 10.1039/C4CS00256C 10.1002/smll.201604033 10.1021/nl502570f 10.1002/smll.201502923 10.1002/adfm.201701011 10.1038/am.2016.51 10.1002/adfm.201603886 10.1002/advs.201600018 10.1002/adfm.201705970 10.1063/1.3521275 10.1021/acsami.7b14745 10.1016/S1369-7021(12)70044-5 10.1038/nature14417 10.1002/smll.201700894 10.1038/s41467-018-06776-z 10.1002/adma.201602969 10.1021/acsami.6b05109 10.1016/j.mattod.2015.11.003 10.1063/1.4933302 10.1021/acsami.7b00912 10.1103/PhysRevB.90.075434 10.1002/anie.201707510 10.1088/2053-1583/aa8919 10.1002/adma.201402471 10.1002/adma.201604230 10.1073/pnas.1405435111 10.1038/s41467-018-05874-2 10.1109/LED.2013.2275169 10.1021/nn500508c 10.1016/j.sse.2015.08.023 10.1021/acs.nanolett.8b00583 10.3390/ma10020210 10.1103/PhysRevLett.115.036402 10.1038/nnano.2013.100 10.1038/s41467-017-00358-1 |
ContentType | Journal Article |
Copyright | 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | AAYXX CITATION 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1002/adfm.201806878 |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | CrossRef Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1616-3028 |
EndPage | n/a |
ExternalDocumentID | 10_1002_adfm_201806878 ADFM201806878 |
Genre | article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 61575167; 61605174; 61675062 – fundername: Anhui Natural Science Foundation of China funderid: 1708085ME122 – fundername: Shenzhen Science and Technology Innovation Commission funderid: JCYJ20170303160136888 – fundername: Hong Kong Polytechnic University funderid: 1‐ZVGH; G‐YBVG – fundername: Fundamental Research Funds for the Central Universities funderid: JZ2018HGPB0275; JZ2018HGTA0220 |
GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHQN AAMMB AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADMLS ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFPM AFGKR AFWVQ AFZJQ AGHNM AGXDD AGYGG AHBTC AIDQK AIDYY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WFSAM WIH WIK WJL WOHZO WQJ WXSBR WYISQ XG1 XPP XV2 ~IA ~WT .Y3 31~ AAHHS AANHP AAYXX ACBWZ ACCFJ ACRPL ACYXJ ADNMO ADZOD AEEZP AEQDE AGQPQ AIWBW AJBDE ASPBG AVWKF AZFZN CITATION FEDTE HF~ HVGLF LW6 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
ID | FETCH-LOGICAL-c3838-75450506717a8f22c3b11e35798a2fcc25d4be5e57114354b479a0858f26fda43 |
IEDL.DBID | DR2 |
ISSN | 1616-301X |
IngestDate | Sun Jul 13 04:37:12 EDT 2025 Tue Jul 01 04:11:54 EDT 2025 Thu Apr 24 22:51:40 EDT 2025 Wed Aug 20 07:26:40 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3838-75450506717a8f22c3b11e35798a2fcc25d4be5e57114354b479a0858f26fda43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-5632-5224 |
PQID | 2162427253 |
PQPubID | 2045204 |
PageCount | 9 |
ParticipantIDs | proquest_journals_2162427253 crossref_primary_10_1002_adfm_201806878 crossref_citationtrail_10_1002_adfm_201806878 wiley_primary_10_1002_adfm_201806878_ADFM201806878 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 4, 2019 |
PublicationDateYYYYMMDD | 2019-01-04 |
PublicationDate_xml | – month: 01 year: 2019 text: January 4, 2019 day: 04 |
PublicationDecade | 2010 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | Advanced functional materials |
PublicationYear | 2019 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2018; 28 2017; 8 2014; 90 2016; 19 2017; 4 2013; 87 2017; 27 2015; 520 2016; 10 2017; 29 2012; 15 2015; 107 2013; 8 2014; 111 2016; 16 2017; 9 2017; 139 2016; 12 2016; 55 1996; 77 2016; 6 2018; 9 2018; 18 2015; 25 2014; 4 2015; 27 2016; 3 2015; 115 2013; 13 2017; 17 2013; 34 2017; 10 2015; 44 2017; 13 2017; 56 2010; 133 2014; 14 2018 2016; 115 2014; 9 2014; 8 2018; 10 2016; 8 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 Peng H. (e_1_2_7_55_1) 2016; 6 e_1_2_7_7_1 e_1_2_7_19_1 Li E. (e_1_2_7_17_1) 2018 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_1_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 e_1_2_7_50_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_54_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_37_1 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_48_1 e_1_2_7_27_1 e_1_2_7_29_1 e_1_2_7_51_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_38_1 |
References_xml | – volume: 29 start-page: 1604230 year: 2017 publication-title: Adv. Mater. – volume: 16 start-page: 4648 year: 2016 publication-title: Nano Lett. – volume: 6 start-page: 20343 year: 2016 publication-title: Sci. Rep. – volume: 44 start-page: 2744 year: 2015 publication-title: Chem. Soc. Rev. – volume: 10 start-page: 15285 year: 2018 publication-title: Nanoscale – volume: 133 start-page: 244103 year: 2010 publication-title: J. Chem. Phys. – volume: 8 start-page: 497 year: 2013 publication-title: Nat. Nanotechnol. – volume: 9 start-page: 780 year: 2014 publication-title: Nat. Nanotechnol. – volume: 13 start-page: 1604033 year: 2017 publication-title: Small – volume: 15 start-page: 86 year: 2012 publication-title: Mater. Today – volume: 10 start-page: 210 year: 2017 publication-title: Materials – volume: 77 start-page: 3865 year: 1996 publication-title: Phys. Rev. Lett. – volume: 12 start-page: 1062 year: 2016 publication-title: Small – volume: 10 start-page: 2801 year: 2018 publication-title: ACS Appl. Mater. Interfaces – volume: 9 start-page: 3311 year: 2018 publication-title: Nat. Commun. – volume: 3 start-page: 692 year: 2016 publication-title: ACS Photonics – volume: 12 start-page: 595 year: 2016 publication-title: Small – volume: 56 start-page: 13717 year: 2017 publication-title: Angew. Chem., Int. Ed. – volume: 9 start-page: 12728 year: 2017 publication-title: ACS Appl. Mater. Interfaces – volume: 115 start-page: 036402 year: 2015 publication-title: Phys. Rev. Lett. – volume: 18 start-page: 3523 year: 2018 publication-title: Nano Lett. – volume: 8 start-page: 278 year: 2017 publication-title: Nat. Commun. – volume: 28 start-page: 1705970 year: 2018 publication-title: Adv. Funct. Mater. – volume: 8 start-page: 18375 year: 2016 publication-title: ACS Appl. Mater. Interfaces – volume: 107 start-page: 153902 year: 2015 publication-title: Appl. Phys. Lett. – volume: 14 start-page: 3347 year: 2014 publication-title: Nano Lett. – volume: 25 start-page: 2910 year: 2015 publication-title: Adv. Funct. Mater. – volume: 10 start-page: 3852 year: 2016 publication-title: ACS Nano – volume: 3 start-page: 1600018 year: 2016 publication-title: Adv. Sci. – volume: 4 start-page: 3914 year: 2014 publication-title: Sci. Rep. – volume: 111 start-page: 6198 year: 2014 publication-title: Proc. Natl. Acad. Sci. USA – volume: 520 start-page: 656 year: 2015 publication-title: Nature – volume: 4 start-page: 045015 year: 2017 publication-title: 2D Mater. – volume: 90 start-page: 075434 year: 2014 publication-title: Phys. Rev. B – volume: 9 start-page: 1185 year: 2018 publication-title: J. Phys. Chem. Lett. – volume: 17 start-page: 985 year: 2017 publication-title: Nano Lett. – volume: 8 start-page: 4133 year: 2014 publication-title: ACS Nano – volume: 13 start-page: 1700894 year: 2017 publication-title: Small – volume: 139 start-page: 14090 year: 2017 publication-title: J. Am. Chem. Soc. – volume: 29 start-page: 1602969 year: 2017 publication-title: Adv. Mater. – volume: 19 start-page: 322 year: 2016 publication-title: Mater. Today – volume: 27 start-page: 1603886 year: 2017 publication-title: Adv. Funct. Mater. – volume: 34 start-page: 1337 year: 2013 publication-title: IEEE Electron Device Lett. – volume: 115 start-page: 207 year: 2016 publication-title: Solid‐State Electron. – volume: 27 start-page: 176 year: 2015 publication-title: Adv. Mater. – volume: 9 start-page: 4299 year: 2018 publication-title: Nat. Commun. – volume: 8 start-page: e264 year: 2016 publication-title: NPG Asia Mater. – volume: 6 start-page: 041005 year: 2016 publication-title: Phys. Rev. X – volume: 55 start-page: 5003 year: 2016 publication-title: Angew. Chem., Int. Ed. – volume: 27 start-page: 1701011 year: 2017 publication-title: Adv. Funct. Mater. – volume: 13 start-page: 909 year: 2013 publication-title: Nano Lett. – volume: 14 start-page: 6842 year: 2014 publication-title: Nano Lett. – year: 2018 publication-title: Nano Res. – volume: 87 start-page: 041108 year: 2013 publication-title: Phys. Rev. B – volume: 10 start-page: 352 year: 2018 publication-title: NPG Asia Mater. – ident: e_1_2_7_6_1 doi: 10.1038/srep20343 – ident: e_1_2_7_27_1 doi: 10.1021/nl303682j – ident: e_1_2_7_10_1 doi: 10.1021/acsphotonics.6b00079 – ident: e_1_2_7_35_1 doi: 10.1038/srep03914 – ident: e_1_2_7_53_1 doi: 10.1103/PhysRevB.87.041108 – year: 2018 ident: e_1_2_7_17_1 publication-title: Nano Res. – ident: e_1_2_7_34_1 doi: 10.1021/acs.nanolett.6b04332 – ident: e_1_2_7_51_1 doi: 10.1103/PhysRevLett.77.3865 – ident: e_1_2_7_30_1 doi: 10.1021/acs.jpclett.8b00266 – ident: e_1_2_7_40_1 doi: 10.1002/anie.201512038 – ident: e_1_2_7_45_1 doi: 10.1038/s41427-018-0035-4 – ident: e_1_2_7_13_1 doi: 10.1021/nl5008085 – volume: 6 start-page: 041005 year: 2016 ident: e_1_2_7_55_1 publication-title: Phys. Rev. X – ident: e_1_2_7_14_1 doi: 10.1021/acs.nanolett.6b01977 – ident: e_1_2_7_38_1 doi: 10.1021/acsnano.6b00980 – ident: e_1_2_7_28_1 doi: 10.1002/smll.201502336 – ident: e_1_2_7_15_1 doi: 10.1021/jacs.7b04865 – ident: e_1_2_7_23_1 doi: 10.1002/adfm.201500216 – ident: e_1_2_7_49_1 doi: 10.1039/C8NR04004D – ident: e_1_2_7_9_1 doi: 10.1038/nnano.2014.215 – ident: e_1_2_7_3_1 doi: 10.1039/C4CS00256C – ident: e_1_2_7_47_1 doi: 10.1002/smll.201604033 – ident: e_1_2_7_19_1 doi: 10.1021/nl502570f – ident: e_1_2_7_48_1 doi: 10.1002/smll.201502923 – ident: e_1_2_7_12_1 doi: 10.1002/adfm.201701011 – ident: e_1_2_7_20_1 doi: 10.1038/am.2016.51 – ident: e_1_2_7_1_1 doi: 10.1002/adfm.201603886 – ident: e_1_2_7_24_1 doi: 10.1002/advs.201600018 – ident: e_1_2_7_31_1 doi: 10.1002/adfm.201705970 – ident: e_1_2_7_54_1 doi: 10.1063/1.3521275 – ident: e_1_2_7_44_1 doi: 10.1021/acsami.7b14745 – ident: e_1_2_7_5_1 doi: 10.1016/S1369-7021(12)70044-5 – ident: e_1_2_7_32_1 doi: 10.1038/nature14417 – ident: e_1_2_7_4_1 doi: 10.1002/smll.201700894 – ident: e_1_2_7_8_1 doi: 10.1038/s41467-018-06776-z – ident: e_1_2_7_18_1 doi: 10.1002/adma.201602969 – ident: e_1_2_7_46_1 doi: 10.1021/acsami.6b05109 – ident: e_1_2_7_2_1 doi: 10.1016/j.mattod.2015.11.003 – ident: e_1_2_7_16_1 doi: 10.1063/1.4933302 – ident: e_1_2_7_43_1 doi: 10.1021/acsami.7b00912 – ident: e_1_2_7_37_1 doi: 10.1103/PhysRevB.90.075434 – ident: e_1_2_7_50_1 doi: 10.1002/anie.201707510 – ident: e_1_2_7_21_1 doi: 10.1088/2053-1583/aa8919 – ident: e_1_2_7_41_1 doi: 10.1002/adma.201402471 – ident: e_1_2_7_29_1 doi: 10.1002/adma.201604230 – ident: e_1_2_7_39_1 doi: 10.1073/pnas.1405435111 – ident: e_1_2_7_11_1 doi: 10.1038/s41467-018-05874-2 – ident: e_1_2_7_25_1 doi: 10.1109/LED.2013.2275169 – ident: e_1_2_7_42_1 doi: 10.1021/nn500508c – ident: e_1_2_7_26_1 doi: 10.1016/j.sse.2015.08.023 – ident: e_1_2_7_22_1 doi: 10.1021/acs.nanolett.8b00583 – ident: e_1_2_7_36_1 doi: 10.3390/ma10020210 – ident: e_1_2_7_52_1 doi: 10.1103/PhysRevLett.115.036402 – ident: e_1_2_7_7_1 doi: 10.1038/nnano.2013.100 – ident: e_1_2_7_33_1 doi: 10.1038/s41467-017-00358-1 |
SSID | ssj0017734 |
Score | 2.687222 |
Snippet | Palladium diselenide (PdSe2), a thus far scarcely studied group‐10 transition metal dichalcogenide has exhibited promising potential in future optoelectronic... Palladium diselenide (PdSe 2 ), a thus far scarcely studied group‐10 transition metal dichalcogenide has exhibited promising potential in future optoelectronic... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Broadband broadband photodetectors Density functional theory Electrical properties Electronic devices heterojunction Materials science Optoelectronic devices Palladium photodetectors Photoelectric emission Photometers Quantum dots Raman spectroscopy Red shift Spectrum analysis Stability Synthesis Thickness Transition metal compounds transitional metal dichalcogenides Wavelengths |
Title | Controlled Synthesis of 2D Palladium Diselenide for Sensitive Photodetector Applications |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.201806878 https://www.proquest.com/docview/2162427253 |
Volume | 29 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3LS8MwHMeD6EUPvsXpHDkInro1WdK0x7E6hjgZzsFuJa_icLbiuoP-9SZt122CCHprIb8-8vwk-f2-AeCaelIEwkxLuC-pQ5QbO2YagR1COeFSs1joXO3zweuPyd2ETtai-At9iGrBzbaMvL-2DZyLeWslGspVbCPJke96PrPRvtZhy1LRY6UfhRgrtpU9ZB280GSp2uji1qb55qi0Qs11YM1HnN4B4MtvLRxNXpqLTDTl5zcZx__8zCHYL3EUdor6cwS2dHIM9tZECk_ApFt4s8-0gqOPxADjfDqHaQxxCId2GV5NF68wzI9tSqZKQ4PBcGT94m1PCofPaZYqneW7A7Cztl9-Csa926du3ynPY3Ckmcf6DjO05VIzvCHG_Rhj2RYI6TZlgc9xLCWmighNNWXIUhgRhAXcIJ1J68WKk_YZ2E7SRJ8DGHBmuE252gZwasMcnnI5ppK3jaHBiBpwluURyVKs3J6ZMYsKmWUc2RyLqhyrgZsq_Vsh0_FjyvqyeKOyuc4jjGyYDMPUvBjn5fTLU6JO2BtUdxd_MboEu-Y6yJdzSB1sZ-8LfWUAJxMNsNMJB_ejRl6ZvwCr6fKv |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELagDMDAG_Eo4AGJKSV27TgZq5aqQIsQUKlb5FdEBaSIpgP8emynCS0SQoIxkZ2Hz2d_d777DoBTGkgRCWOW8FBSjyg_8YwZgT1COeFSs0Rox_Z5E3T65GpAi2hCmwuT80OUDjerGW69tgpuHdLnX6yhXCU2lRyFfhCycBEs2bLezqq6KxmkEGP5wXKAbIgXGhS8jT4-n-8_vy99gc1ZyOr2nPY6EMXX5qEmT7VJJmry4xuR479-ZwOsTREpbORTaBMs6HQLrM7wFG6DQTMPaH_WCt6_pwYzjodjOEogbsFb64lXw8kLbLnKTelQaWiQMLy3ofF2MYW3j6NspHTmDghgY-bIfAf02xcPzY43LcngSWPKhh4zgMunZodDjIcJxrIuENJ1yqKQ40RKTBURmmrKkAViRBAWcYPqTNsgUZzUd0ElHaV6D8CIMwPdlK9tDqc2sCNQPsdU8rrpaJDEPvAKgcRyylduy2Y8xznTMo7tiMXliO2Ds7L9a87U8WPLaiHfeKqx4xgjmynDMDUvxk5QvzwlbrTavfLq4C-dTsBy56HXjbuXN9eHYMXcj5x3h1RBJXub6CODdzJx7Gb0Jzx69TY |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NT8IwFG8UE6MHv40oag8mngZr167bkTAJfhEiknBburaLRBxExkH_etsNBpgYEz1u6dtH33vtr33v_QrAFXVF5Ed6WcI9QS0i7djSywhsEcoJF4rFkcrYPttuq0fu-rS_VMWf80MUG27GM7Lx2jj4WMa1BWkol7GpJEee7XrMWwcbxLU9Y9fBU0EghRjL48ouMhleqD-nbbRxbVV-dVpaYM1lxJpNOc1dwOcfm2eavFanaVQVn994HP_zN3tgZ4ZHYT03oH2wppIDsL3EUngI-o08nX2oJOx-JBoxTgYTOIohDmDH7MPLwfQNBtm5TclAKqhxMOyaxHgzlMLOyygdSZVm4QFYXwqYH4Fe8-a50bJmBzJYQi9kPYtpuGVTPb8hxr0YY-FECCmHMt_jOBYCU0kiRRVlyMAwEhHmc43pdFs3lpw4x6CUjBJ1AqDPmQZu0lamglNp0OFKm2MquKMFNY4oA2uuj1DM2MrNoRnDMOdZxqHpsbDosTK4LtqPc56OH1tW5uoNZ_46CTEydTIMU_1inOnpl6eE9aD5WFyd_kXoEmx2gmb4cNu-PwNb-rafbe2QCiil71N1rsFOGl1k9vwFdeHz7g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Controlled+Synthesis+of+2D+Palladium+Diselenide+for+Sensitive+Photodetector+Applications&rft.jtitle=Advanced+functional+materials&rft.au=Long%E2%80%90Hui+Zeng&rft.au=Wu%2C+Di&rft.au=Sheng%E2%80%90Huang+Lin&rft.au=Xie%2C+Chao&rft.date=2019-01-04&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=29&rft.issue=1&rft_id=info:doi/10.1002%2Fadfm.201806878&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon |