Spectral Engineering of Semitransparent Polymer Solar Cells for Greenhouse Applications

In this study, a wavelength selective semitransparent polymer solar cell (ST‐PSC) with a proper transmission spectrum for plant growth is proposed for greenhouse applications. A ternary strategy combining a wide bandgap polymer donor with a near‐infrared absorbing nonfullerene acceptor and a high el...

Full description

Saved in:
Bibliographic Details
Published inAdvanced energy materials Vol. 9; no. 5
Main Authors Shi, Hui, Xia, Ruoxi, Zhang, Guichuan, Yip, Hin‐Lap, Cao, Yong
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 01.02.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this study, a wavelength selective semitransparent polymer solar cell (ST‐PSC) with a proper transmission spectrum for plant growth is proposed for greenhouse applications. A ternary strategy combining a wide bandgap polymer donor with a near‐infrared absorbing nonfullerene acceptor and a high electron mobility fullerene acceptor is introduced to achieve PSCs with power conversion efficiency (PCE) over 10%. The addition of PC71BM into J52:IEICO‐4F binary blend contributes to the suppressed trap‐assisted recombination, enhanced charge extraction, and improved open‐circuit voltage simultaneously. ST‐PSC based on the J52:IEICO‐4F:PC71BM ternary blend shows an optimized performance with PCE of 7.75% and a defined crop growth factor of 24.8%. Such high‐performance ST‐PSC is achieved by carefully engineering the absorption spectrum of the light harvesting materials. As a result, the transmission spectra of the semitransparent devices are well‐matched with the absorption spectra of the photoreceptors, such as chlorophylls, in green plants, which provides adequate lighting conditions for photosynthesis and plant growth, and therefore making it a competitive candidate for photovoltaic greenhouse applications. Spectral engineering and ternary blend approaches were employed to demonstrate an efficient semitransparent polymer solar cell tailored for greenhouse application. The semitransparent device transmits mainly blue and red lights for photosynthesis, and shows a high efficiency of 7.75% with a crop growth factor of 24.8%. Optimal sunlight harvesting in photovoltaics and photosynthesis will be beneficial for future greenhouse application.
AbstractList In this study, a wavelength selective semitransparent polymer solar cell (ST‐PSC) with a proper transmission spectrum for plant growth is proposed for greenhouse applications. A ternary strategy combining a wide bandgap polymer donor with a near‐infrared absorbing nonfullerene acceptor and a high electron mobility fullerene acceptor is introduced to achieve PSCs with power conversion efficiency (PCE) over 10%. The addition of PC71BM into J52:IEICO‐4F binary blend contributes to the suppressed trap‐assisted recombination, enhanced charge extraction, and improved open‐circuit voltage simultaneously. ST‐PSC based on the J52:IEICO‐4F:PC71BM ternary blend shows an optimized performance with PCE of 7.75% and a defined crop growth factor of 24.8%. Such high‐performance ST‐PSC is achieved by carefully engineering the absorption spectrum of the light harvesting materials. As a result, the transmission spectra of the semitransparent devices are well‐matched with the absorption spectra of the photoreceptors, such as chlorophylls, in green plants, which provides adequate lighting conditions for photosynthesis and plant growth, and therefore making it a competitive candidate for photovoltaic greenhouse applications.
In this study, a wavelength selective semitransparent polymer solar cell (ST‐PSC) with a proper transmission spectrum for plant growth is proposed for greenhouse applications. A ternary strategy combining a wide bandgap polymer donor with a near‐infrared absorbing nonfullerene acceptor and a high electron mobility fullerene acceptor is introduced to achieve PSCs with power conversion efficiency (PCE) over 10%. The addition of PC71BM into J52:IEICO‐4F binary blend contributes to the suppressed trap‐assisted recombination, enhanced charge extraction, and improved open‐circuit voltage simultaneously. ST‐PSC based on the J52:IEICO‐4F:PC71BM ternary blend shows an optimized performance with PCE of 7.75% and a defined crop growth factor of 24.8%. Such high‐performance ST‐PSC is achieved by carefully engineering the absorption spectrum of the light harvesting materials. As a result, the transmission spectra of the semitransparent devices are well‐matched with the absorption spectra of the photoreceptors, such as chlorophylls, in green plants, which provides adequate lighting conditions for photosynthesis and plant growth, and therefore making it a competitive candidate for photovoltaic greenhouse applications. Spectral engineering and ternary blend approaches were employed to demonstrate an efficient semitransparent polymer solar cell tailored for greenhouse application. The semitransparent device transmits mainly blue and red lights for photosynthesis, and shows a high efficiency of 7.75% with a crop growth factor of 24.8%. Optimal sunlight harvesting in photovoltaics and photosynthesis will be beneficial for future greenhouse application.
In this study, a wavelength selective semitransparent polymer solar cell (ST‐PSC) with a proper transmission spectrum for plant growth is proposed for greenhouse applications. A ternary strategy combining a wide bandgap polymer donor with a near‐infrared absorbing nonfullerene acceptor and a high electron mobility fullerene acceptor is introduced to achieve PSCs with power conversion efficiency (PCE) over 10%. The addition of PC 71 BM into J52:IEICO‐4F binary blend contributes to the suppressed trap‐assisted recombination, enhanced charge extraction, and improved open‐circuit voltage simultaneously. ST‐PSC based on the J52:IEICO‐4F:PC 71 BM ternary blend shows an optimized performance with PCE of 7.75% and a defined crop growth factor of 24.8%. Such high‐performance ST‐PSC is achieved by carefully engineering the absorption spectrum of the light harvesting materials. As a result, the transmission spectra of the semitransparent devices are well‐matched with the absorption spectra of the photoreceptors, such as chlorophylls, in green plants, which provides adequate lighting conditions for photosynthesis and plant growth, and therefore making it a competitive candidate for photovoltaic greenhouse applications.
Author Xia, Ruoxi
Zhang, Guichuan
Cao, Yong
Yip, Hin‐Lap
Shi, Hui
Author_xml – sequence: 1
  givenname: Hui
  surname: Shi
  fullname: Shi, Hui
  organization: South China University of Technology
– sequence: 2
  givenname: Ruoxi
  surname: Xia
  fullname: Xia, Ruoxi
  organization: South China University of Technology
– sequence: 3
  givenname: Guichuan
  surname: Zhang
  fullname: Zhang, Guichuan
  organization: South China Institute of Collaborative Innovation
– sequence: 4
  givenname: Hin‐Lap
  orcidid: 0000-0002-5750-9751
  surname: Yip
  fullname: Yip, Hin‐Lap
  email: msangusyip@scut.edu.cn
  organization: South China Institute of Collaborative Innovation
– sequence: 5
  givenname: Yong
  surname: Cao
  fullname: Cao, Yong
  organization: South China University of Technology
BookMark eNqFkE1LAzEQhoNUsNZePQc8b0022Wz2WEqtQv2AKh6XNJ2tKdlkTbZI_71bKxUEcS4zDO8zH-856jnvAKFLSkaUkPRagatHKaGSMM7kCepTQXkiJCe9Y83SMzSMcUO64AUljPXR66IB3QZl8dStjQMIxq2xr_ACatP1XWxUANfiJ293NQS88FYFPAFrI658wLMA4N78NgIeN401WrXGu3iBTitlIwy_8wC93EyfJ7fJ_HF2NxnPE80kk4lgbJkStUqzquBc80zyQhClVSVTSSnTmlPIs6XKhVwppQuqMp0X1YqlFWcqZwN0dZjbBP--hdiWG78NrltZpjTnVIiCiU7FDyodfIwBqlKb9uvQ7kVjS0rKvYvl3sXy6GKHjX5hTTC1Cru_geIAfBgLu3_U5Xj6cP_DfgJHnoeh
CitedBy_id crossref_primary_10_1002_ente_202000611
crossref_primary_10_3390_agriengineering5030085
crossref_primary_10_3390_su13126871
crossref_primary_10_1002_solr_202200679
crossref_primary_10_1021_acsapm_3c01184
crossref_primary_10_1021_acsaem_2c03796
crossref_primary_10_1021_acsaem_9b01176
crossref_primary_10_1002_solr_202100041
crossref_primary_10_1039_C9TA12005J
crossref_primary_10_1016_j_mtener_2021_100852
crossref_primary_10_1039_D1TC02932K
crossref_primary_10_3390_agronomy11061097
crossref_primary_10_1002_solr_202000538
crossref_primary_10_1002_solr_202000015
crossref_primary_10_1002_ejoc_202400112
crossref_primary_10_3389_fenrg_2021_783587
crossref_primary_10_1002_adfm_202202954
crossref_primary_10_1002_marc_202300338
crossref_primary_10_3390_ma16010144
crossref_primary_10_1002_solr_201900317
crossref_primary_10_1007_s40843_024_3149_1
crossref_primary_10_1039_D0TC01313G
crossref_primary_10_1039_D1TC03110D
crossref_primary_10_1039_D0TC00329H
crossref_primary_10_3390_agriengineering4040062
crossref_primary_10_3390_cryst12020168
crossref_primary_10_1002_solr_202000328
crossref_primary_10_1016_j_rser_2022_112126
crossref_primary_10_1039_D2EE00977C
crossref_primary_10_1080_15567036_2021_1904058
crossref_primary_10_1007_s40843_022_2332_9
crossref_primary_10_1002_solr_202300037
crossref_primary_10_1002_adfm_202005763
crossref_primary_10_1021_acsami_0c03508
crossref_primary_10_1016_j_cclet_2019_08_046
crossref_primary_10_1002_adfm_202205338
crossref_primary_10_1021_acsaem_9b02005
crossref_primary_10_1002_solr_202100264
crossref_primary_10_1002_solr_202200070
crossref_primary_10_3390_en14041159
crossref_primary_10_1021_acscentsci_3c00562
crossref_primary_10_1002_adfm_202407403
crossref_primary_10_1021_acsami_1c13404
crossref_primary_10_1007_s11426_019_9556_7
crossref_primary_10_1016_j_xcrp_2023_101518
crossref_primary_10_1371_journal_pone_0281996
crossref_primary_10_1103_PhysRevApplied_12_064039
crossref_primary_10_3390_coatings10030218
crossref_primary_10_1039_D0SE00124D
crossref_primary_10_1016_j_nanoen_2020_105376
crossref_primary_10_1039_C9TA05235F
crossref_primary_10_1016_j_scib_2019_09_016
crossref_primary_10_1002_aenm_202200713
crossref_primary_10_1016_j_mtener_2023_101340
crossref_primary_10_1002_adfm_202406070
crossref_primary_10_1039_D1TC04569E
crossref_primary_10_1002_aenm_201904196
crossref_primary_10_1039_C9TA14216A
crossref_primary_10_1002_adma_202007177
crossref_primary_10_1016_j_solener_2020_05_027
crossref_primary_10_1002_advs_202413045
crossref_primary_10_1002_adom_202100064
crossref_primary_10_1002_aenm_201902066
crossref_primary_10_1016_j_seta_2022_102077
crossref_primary_10_1021_acsaem_0c02912
crossref_primary_10_1021_acssuschemeng_2c06426
crossref_primary_10_1021_acsenergylett_4c02218
crossref_primary_10_1016_j_enconman_2022_116567
crossref_primary_10_1002_adfm_202007931
crossref_primary_10_1002_aenm_202201267
crossref_primary_10_1088_2058_8585_ad50e7
crossref_primary_10_1016_j_nanoen_2020_105111
crossref_primary_10_1002_adfm_202110435
crossref_primary_10_1016_j_enconman_2024_118077
crossref_primary_10_1021_acsami_1c08367
crossref_primary_10_1002_ente_202000875
crossref_primary_10_1016_j_xcrp_2021_100676
crossref_primary_10_1021_acsami_0c10906
crossref_primary_10_1021_acsami_0c00396
crossref_primary_10_1021_acsami_0c09007
crossref_primary_10_1021_acsami_0c08037
crossref_primary_10_1002_pip_3684
crossref_primary_10_1007_s00339_021_05025_3
crossref_primary_10_1016_j_apenergy_2020_115582
crossref_primary_10_3390_agronomy11061152
crossref_primary_10_1364_OE_412101
crossref_primary_10_1002_admt_202000960
crossref_primary_10_1002_solr_202100207
crossref_primary_10_1007_s10973_022_11903_6
crossref_primary_10_1021_acsnano_1c09018
crossref_primary_10_1016_j_isci_2023_108129
crossref_primary_10_1039_D0NR07788G
crossref_primary_10_1021_acsapm_0c00883
crossref_primary_10_1002_adom_202203140
crossref_primary_10_1021_acsaem_0c01097
crossref_primary_10_1021_acsaem_1c03017
crossref_primary_10_1002_aesr_202000035
crossref_primary_10_1055_a_1472_3989
crossref_primary_10_1002_ente_202201176
crossref_primary_10_1016_j_enconman_2022_115215
crossref_primary_10_1016_j_cej_2021_132048
crossref_primary_10_1007_s40820_024_01547_6
crossref_primary_10_1016_j_joule_2021_02_010
crossref_primary_10_1002_solr_201900413
crossref_primary_10_1039_D0QM00198H
crossref_primary_10_1039_D1TC00691F
Cites_doi 10.1126/science.aat2612
10.1016/j.scib.2017.11.003
10.1038/nmat5063
10.1002/2016EF000531
10.1016/j.joule.2018.04.005
10.1002/adfm.200304399
10.1038/nphoton.2012.11
10.1063/1.1889240
10.1021/acs.chemrev.5b00098
10.1038/nphoton.2015.128
10.1016/j.joule.2017.10.014
10.1002/ente.201500131
10.1038/nphoton.2013.276
10.1021/jacs.6b01744
10.1126/science.270.5243.1789
10.1038/natrevmats.2018.3
10.1039/C8TA08891H
10.1002/aenm.201702814
10.1039/C8EE00154E
10.1039/C4EE03132F
10.1002/adma.201703080
10.1039/c2ee22623e
10.1002/adfm.200305156
10.1364/AO.54.010232
10.1002/aenm.201702831
10.1016/j.rser.2016.12.020
10.1021/acsenergylett.7b01266
10.1002/adma.201606574
10.1002/adma.201800613
10.1038/s41560-017-0016-9
10.1103/PhysRevB.82.245207
10.1364/AO.4.000011
10.1002/anie.201610944
10.1038/nphoton.2014.172
10.1038/nmat4797
10.1021/jp4090348
10.1021/jacs.7b11278
10.1002/aenm.201701121
10.1016/j.rser.2015.04.117
10.1002/aenm.201800002
10.1016/j.solener.2017.06.044
10.1038/s41566-018-0104-9
ContentType Journal Article
Copyright 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
DBID AAYXX
CITATION
7SP
7TB
8FD
F28
FR3
H8D
L7M
DOI 10.1002/aenm.201803438
DatabaseName CrossRef
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList Aerospace Database

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1614-6840
EndPage n/a
ExternalDocumentID 10_1002_aenm_201803438
AENM201803438
Genre article
GrantInformation_xml – fundername: China Postdoctoral Science Foundation
  funderid: 2017M622681
– fundername: Science and Technology Program of Guangzhou
  funderid: 201607020010; 2017A050503002
– fundername: Natural Science Foundation of China
  funderid: 21761132001; 91633301
– fundername: Ministry of Science and Technology
  funderid: 2017YF0206600
GroupedDBID 05W
0R~
1OC
33P
4.4
50Y
5VS
8-0
8-1
AAESR
AAHQN
AAIHA
AAMMB
AAMNL
AANLZ
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ABJNI
ACAHQ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADKYN
ADMLS
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFWVQ
AFZJQ
AGHNM
AGXDD
AGYGG
AHBTC
AIACR
AIDQK
AIDYY
AITYG
AIURR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
AZVAB
BDRZF
BFHJK
BMXJE
BRXPI
D-A
DCZOG
EBS
EJD
G-S
HGLYW
HZ~
KBYEO
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MY.
MY~
O9-
P2W
RNS
ROL
RX1
SUPJJ
WBKPD
WOHZO
WXSBR
ZZTAW
~S-
31~
AAHHS
AANHP
AAYXX
ACBWZ
ACCFJ
ACRPL
ACYXJ
ADNMO
ADZOD
AEEZP
AEQDE
AGQPQ
AIWBW
AJBDE
ASPBG
AVWKF
AZFZN
CITATION
FEDTE
GODZA
HVGLF
7SP
7TB
8FD
F28
FR3
H8D
L7M
ID FETCH-LOGICAL-c3838-633b20ad25f944c4584960acaf828113cc41e75ba768daac91a5c79fd32f43a73
ISSN 1614-6832
IngestDate Fri Jul 25 12:24:38 EDT 2025
Thu Apr 24 23:04:15 EDT 2025
Tue Jul 01 01:43:27 EDT 2025
Fri Jul 18 18:30:15 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c3838-633b20ad25f944c4584960acaf828113cc41e75ba768daac91a5c79fd32f43a73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5750-9751
PQID 2174166936
PQPubID 886389
PageCount 8
ParticipantIDs proquest_journals_2174166936
crossref_citationtrail_10_1002_aenm_201803438
crossref_primary_10_1002_aenm_201803438
wiley_primary_10_1002_aenm_201803438_AENM201803438
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 1, 2019
PublicationDateYYYYMMDD 2019-02-01
PublicationDate_xml – month: 02
  year: 2019
  text: February 1, 2019
  day: 01
PublicationDecade 2010
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Advanced energy materials
PublicationYear 2019
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 62
2017; 5
2018; 361
2017; 7
2017; 2
2015; 3
2015; 54
2005; 86
2017; 29
2017; 155
2013; 7
2015; 9
2015; 8
1995; 270
2017; 139
2010; 82
2018; 6
2018; 8
2018; 17
2018; 3
2018; 2
2015; 49
2017; 70
2015; 115
2017; 16
2004; 14
1965; 4
2013; 117
2017; 56
2018; 30
2016; 138
2012; 6
2018; 12
2018; 11
2014; 8
1976; 17
2012; 5
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_1_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_12_1
e_1_2_7_11_1
e_1_2_7_10_1
e_1_2_7_26_1
e_1_2_7_27_1
e_1_2_7_28_1
e_1_2_7_29_1
Inada K. (e_1_2_7_40_1) 1976; 17
e_1_2_7_30_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_37_1
e_1_2_7_38_1
e_1_2_7_39_1
References_xml – volume: 117
  start-page: 26896
  year: 2013
  publication-title: J. Phys. Chem. C
– volume: 29
  start-page: 1606574
  year: 2017
  publication-title: Adv. Mater.
– volume: 2
  start-page: 1
  year: 2018
  publication-title: Joule
– volume: 54
  start-page: 10232
  year: 2015
  publication-title: Appl. Opt.
– volume: 8
  start-page: 1702814
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 361
  start-page: 1094
  year: 2018
  publication-title: Science
– volume: 3
  start-page: 1051
  year: 2015
  publication-title: Energy Technol.
– volume: 62
  start-page: 1562
  year: 2017
  publication-title: Sci. Bull.
– volume: 9
  start-page: 491
  year: 2015
  publication-title: Nat. Photonics
– volume: 6
  start-page: 153
  year: 2012
  publication-title: Nat. Photonics
– volume: 30
  start-page: 1800613
  year: 2018
  publication-title: Adv. Mater.
– volume: 138
  start-page: 4657
  year: 2016
  publication-title: J. Am. Chem. Soc.
– volume: 14
  start-page: 38
  year: 2004
  publication-title: Adv. Funct. Mater.
– volume: 29
  start-page: 1703080
  year: 2017
  publication-title: Adv. Mater.
– volume: 3
  start-page: 669
  year: 2018
  publication-title: ACS Energy Lett.
– volume: 8
  start-page: 716
  year: 2014
  publication-title: Nat. Photonics
– volume: 115
  start-page: 12666
  year: 2015
  publication-title: Chem. Rev.
– volume: 270
  start-page: 1789
  year: 1995
  publication-title: Science
– volume: 8
  start-page: 1800002
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 11
  start-page: 1688
  year: 2018
  publication-title: Energy Environ. Sci.
– volume: 4
  start-page: 11
  year: 1965
  publication-title: Appl. Opt.
– volume: 7
  start-page: 1701121
  year: 2017
  publication-title: Adv. Energy Mater.
– volume: 8
  start-page: 1317
  year: 2015
  publication-title: Energy Environ. Sci.
– volume: 5
  start-page: 9551
  year: 2012
  publication-title: Energy Environ. Sci.
– volume: 6
  start-page: 21485
  year: 2018
  publication-title: J. Mater. Chem. A
– volume: 56
  start-page: 3045
  year: 2017
  publication-title: Angew. Chem., Int. Ed.
– volume: 155
  start-page: 517
  year: 2017
  publication-title: Sol. Energy
– volume: 3
  start-page: 18003
  year: 2018
  publication-title: Nat. Rev. Mater.
– volume: 16
  start-page: 363
  year: 2017
  publication-title: Nat. Mater.
– volume: 86
  start-page: 123509
  year: 2005
  publication-title: Appl. Phys. Lett.
– volume: 49
  start-page: 139
  year: 2015
  publication-title: Renewable Sustainable Energy Rev.
– volume: 12
  start-page: 131
  year: 2018
  publication-title: Nat. Photonics
– volume: 2
  start-page: 849
  year: 2017
  publication-title: Nat. Energy
– volume: 14
  start-page: 865
  year: 2004
  publication-title: Adv. Funct. Mater.
– volume: 139
  start-page: 17114
  year: 2017
  publication-title: J. Am. Chem. Soc.
– volume: 8
  start-page: 1702831
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 2
  start-page: 1039
  year: 2018
  publication-title: Joule
– volume: 82
  start-page: 245207
  year: 2010
  publication-title: Phys. Rev. B
– volume: 17
  start-page: 119
  year: 2018
  publication-title: Nat. Mater.
– volume: 7
  start-page: 995
  year: 2013
  publication-title: Nat. Photonics
– volume: 5
  start-page: 1044
  year: 2017
  publication-title: Earth's Future
– volume: 17
  start-page: 355
  year: 1976
  publication-title: Plant Cell Physiol.
– volume: 70
  start-page: 1178
  year: 2017
  publication-title: Renewable Sustainable Energy Rev.
– ident: e_1_2_7_4_1
  doi: 10.1126/science.aat2612
– volume: 17
  start-page: 355
  year: 1976
  ident: e_1_2_7_40_1
  publication-title: Plant Cell Physiol.
– ident: e_1_2_7_21_1
  doi: 10.1016/j.scib.2017.11.003
– ident: e_1_2_7_18_1
  doi: 10.1038/nmat5063
– ident: e_1_2_7_27_1
  doi: 10.1002/2016EF000531
– ident: e_1_2_7_6_1
  doi: 10.1016/j.joule.2018.04.005
– ident: e_1_2_7_35_1
  doi: 10.1002/adfm.200304399
– ident: e_1_2_7_2_1
  doi: 10.1038/nphoton.2012.11
– ident: e_1_2_7_37_1
  doi: 10.1063/1.1889240
– ident: e_1_2_7_1_1
  doi: 10.1021/acs.chemrev.5b00098
– ident: e_1_2_7_32_1
  doi: 10.1038/nphoton.2015.128
– ident: e_1_2_7_10_1
  doi: 10.1016/j.joule.2017.10.014
– ident: e_1_2_7_9_1
  doi: 10.1002/ente.201500131
– ident: e_1_2_7_43_1
  doi: 10.1038/nphoton.2013.276
– ident: e_1_2_7_29_1
  doi: 10.1021/jacs.6b01744
– ident: e_1_2_7_3_1
  doi: 10.1126/science.270.5243.1789
– ident: e_1_2_7_17_1
  doi: 10.1038/natrevmats.2018.3
– ident: e_1_2_7_26_1
  doi: 10.1039/C8TA08891H
– ident: e_1_2_7_34_1
  doi: 10.1002/aenm.201702814
– ident: e_1_2_7_8_1
  doi: 10.1039/C8EE00154E
– ident: e_1_2_7_12_1
  doi: 10.1039/C4EE03132F
– ident: e_1_2_7_22_1
  doi: 10.1002/adma.201703080
– ident: e_1_2_7_41_1
  doi: 10.1039/c2ee22623e
– ident: e_1_2_7_33_1
  doi: 10.1002/adfm.200305156
– ident: e_1_2_7_11_1
  doi: 10.1364/AO.54.010232
– ident: e_1_2_7_25_1
  doi: 10.1002/aenm.201702831
– ident: e_1_2_7_15_1
  doi: 10.1016/j.rser.2016.12.020
– ident: e_1_2_7_19_1
  doi: 10.1021/acsenergylett.7b01266
– ident: e_1_2_7_23_1
  doi: 10.1002/adma.201606574
– ident: e_1_2_7_20_1
  doi: 10.1002/adma.201800613
– ident: e_1_2_7_5_1
  doi: 10.1038/s41560-017-0016-9
– ident: e_1_2_7_36_1
  doi: 10.1103/PhysRevB.82.245207
– ident: e_1_2_7_13_1
  doi: 10.1364/AO.4.000011
– ident: e_1_2_7_30_1
  doi: 10.1002/anie.201610944
– ident: e_1_2_7_38_1
  doi: 10.1038/nphoton.2014.172
– ident: e_1_2_7_39_1
  doi: 10.1038/nmat4797
– ident: e_1_2_7_14_1
  doi: 10.1021/jp4090348
– ident: e_1_2_7_24_1
  doi: 10.1021/jacs.7b11278
– ident: e_1_2_7_42_1
  doi: 10.1002/aenm.201701121
– ident: e_1_2_7_31_1
  doi: 10.1016/j.rser.2015.04.117
– ident: e_1_2_7_7_1
  doi: 10.1002/aenm.201800002
– ident: e_1_2_7_28_1
  doi: 10.1016/j.solener.2017.06.044
– ident: e_1_2_7_16_1
  doi: 10.1038/s41566-018-0104-9
SSID ssj0000491033
Score 2.584225
Snippet In this study, a wavelength selective semitransparent polymer solar cell (ST‐PSC) with a proper transmission spectrum for plant growth is proposed for...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Absorption spectra
Chlorophyll
Crop growth
crop growth factor
Electron mobility
Energy conversion efficiency
Fullerenes
Growth factors
Photoreceptors
Photosynthesis
Photovoltaic cells
photovoltaic greenhouse
Plant growth
Polymers
semitransparent polymer solar cells
Solar cells
spectral engineering
Title Spectral Engineering of Semitransparent Polymer Solar Cells for Greenhouse Applications
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faenm.201803438
https://www.proquest.com/docview/2174166936
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1BT9swFLYYXLYD2timFdjkA9IOVVgSJ058rBhbNQGaBojuFDmuo0YqKYJGYvv1e7Zjx0WdxrhE6VOSNnlf7fe9vPcZoYOSlzKjlQhg9pdAUDIe5BB2BFRwCgFdCSG9Vvs8o-PL5NsknfS1qrq7ZFkeit9r-0qe4lWwgV9Vl-x_eNZdFAywD_6FLXgYto_ysVo8XmUqfFVB3YUir-ulVi3nWnzp-2L-61reDs8Vjx0eyflcqzAMddHNDLi_NNGon76zyrS2RkCaJkEIcM2dudTMzKx73dbWMjH1tz_axb2zubz017YWs7aH5M9aL5A3rhtXdnHCb_xchGp_cnUdZviEyT6geZexlL7NiDLZMZd50ErXjuRGGZbLRskFRHlIEqMCsyqZ_WAqcwWGRow5LtT5hTv_GdqKgU3AcLg1-nx6cu6ScUCTopDoZgx7B1bgM4w_rf6I1QCmZyU-t9HBycVLtN2xCjwyEHmFNmSzg154qHiNrixYsGfGiwo_AAvuwII1WLAGCwaw4B4s2AfLG3T55fjiaBx0q2oEguQwu1FCyjjk0zitWJII9Z4cWCwXvALyHUVEiCSSWVpyIKJTzgWLeCoyVk1JXCWEZ-Qt2mwWjXyHsKgYEOKYpSwBFp-VLAuZSDgNJZuSnLMBCuyjKkQnOa9WPpkX6_0zQB_d8TdGbOWvR-7bJ190f8i7QrHriFJG6ADF2hv_uEoxOj47dZ92H_3te-h5j_59tLm8beV7iE2X5YcOWX8AhBSLBw
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spectral+Engineering+of+Semitransparent+Polymer+Solar+Cells+for+Greenhouse+Applications&rft.jtitle=Advanced+energy+materials&rft.au=Shi%2C+Hui&rft.au=Xia%2C+Ruoxi&rft.au=Zhang%2C+Guichuan&rft.au=Yip%2C+Hin%E2%80%90Lap&rft.date=2019-02-01&rft.issn=1614-6832&rft.eissn=1614-6840&rft.volume=9&rft.issue=5&rft_id=info:doi/10.1002%2Faenm.201803438&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_aenm_201803438
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1614-6832&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1614-6832&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1614-6832&client=summon