Spectral Engineering of Semitransparent Polymer Solar Cells for Greenhouse Applications
In this study, a wavelength selective semitransparent polymer solar cell (ST‐PSC) with a proper transmission spectrum for plant growth is proposed for greenhouse applications. A ternary strategy combining a wide bandgap polymer donor with a near‐infrared absorbing nonfullerene acceptor and a high el...
Saved in:
Published in | Advanced energy materials Vol. 9; no. 5 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
01.02.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this study, a wavelength selective semitransparent polymer solar cell (ST‐PSC) with a proper transmission spectrum for plant growth is proposed for greenhouse applications. A ternary strategy combining a wide bandgap polymer donor with a near‐infrared absorbing nonfullerene acceptor and a high electron mobility fullerene acceptor is introduced to achieve PSCs with power conversion efficiency (PCE) over 10%. The addition of PC71BM into J52:IEICO‐4F binary blend contributes to the suppressed trap‐assisted recombination, enhanced charge extraction, and improved open‐circuit voltage simultaneously. ST‐PSC based on the J52:IEICO‐4F:PC71BM ternary blend shows an optimized performance with PCE of 7.75% and a defined crop growth factor of 24.8%. Such high‐performance ST‐PSC is achieved by carefully engineering the absorption spectrum of the light harvesting materials. As a result, the transmission spectra of the semitransparent devices are well‐matched with the absorption spectra of the photoreceptors, such as chlorophylls, in green plants, which provides adequate lighting conditions for photosynthesis and plant growth, and therefore making it a competitive candidate for photovoltaic greenhouse applications.
Spectral engineering and ternary blend approaches were employed to demonstrate an efficient semitransparent polymer solar cell tailored for greenhouse application. The semitransparent device transmits mainly blue and red lights for photosynthesis, and shows a high efficiency of 7.75% with a crop growth factor of 24.8%. Optimal sunlight harvesting in photovoltaics and photosynthesis will be beneficial for future greenhouse application. |
---|---|
AbstractList | In this study, a wavelength selective semitransparent polymer solar cell (ST‐PSC) with a proper transmission spectrum for plant growth is proposed for greenhouse applications. A ternary strategy combining a wide bandgap polymer donor with a near‐infrared absorbing nonfullerene acceptor and a high electron mobility fullerene acceptor is introduced to achieve PSCs with power conversion efficiency (PCE) over 10%. The addition of PC71BM into J52:IEICO‐4F binary blend contributes to the suppressed trap‐assisted recombination, enhanced charge extraction, and improved open‐circuit voltage simultaneously. ST‐PSC based on the J52:IEICO‐4F:PC71BM ternary blend shows an optimized performance with PCE of 7.75% and a defined crop growth factor of 24.8%. Such high‐performance ST‐PSC is achieved by carefully engineering the absorption spectrum of the light harvesting materials. As a result, the transmission spectra of the semitransparent devices are well‐matched with the absorption spectra of the photoreceptors, such as chlorophylls, in green plants, which provides adequate lighting conditions for photosynthesis and plant growth, and therefore making it a competitive candidate for photovoltaic greenhouse applications. In this study, a wavelength selective semitransparent polymer solar cell (ST‐PSC) with a proper transmission spectrum for plant growth is proposed for greenhouse applications. A ternary strategy combining a wide bandgap polymer donor with a near‐infrared absorbing nonfullerene acceptor and a high electron mobility fullerene acceptor is introduced to achieve PSCs with power conversion efficiency (PCE) over 10%. The addition of PC71BM into J52:IEICO‐4F binary blend contributes to the suppressed trap‐assisted recombination, enhanced charge extraction, and improved open‐circuit voltage simultaneously. ST‐PSC based on the J52:IEICO‐4F:PC71BM ternary blend shows an optimized performance with PCE of 7.75% and a defined crop growth factor of 24.8%. Such high‐performance ST‐PSC is achieved by carefully engineering the absorption spectrum of the light harvesting materials. As a result, the transmission spectra of the semitransparent devices are well‐matched with the absorption spectra of the photoreceptors, such as chlorophylls, in green plants, which provides adequate lighting conditions for photosynthesis and plant growth, and therefore making it a competitive candidate for photovoltaic greenhouse applications. Spectral engineering and ternary blend approaches were employed to demonstrate an efficient semitransparent polymer solar cell tailored for greenhouse application. The semitransparent device transmits mainly blue and red lights for photosynthesis, and shows a high efficiency of 7.75% with a crop growth factor of 24.8%. Optimal sunlight harvesting in photovoltaics and photosynthesis will be beneficial for future greenhouse application. In this study, a wavelength selective semitransparent polymer solar cell (ST‐PSC) with a proper transmission spectrum for plant growth is proposed for greenhouse applications. A ternary strategy combining a wide bandgap polymer donor with a near‐infrared absorbing nonfullerene acceptor and a high electron mobility fullerene acceptor is introduced to achieve PSCs with power conversion efficiency (PCE) over 10%. The addition of PC 71 BM into J52:IEICO‐4F binary blend contributes to the suppressed trap‐assisted recombination, enhanced charge extraction, and improved open‐circuit voltage simultaneously. ST‐PSC based on the J52:IEICO‐4F:PC 71 BM ternary blend shows an optimized performance with PCE of 7.75% and a defined crop growth factor of 24.8%. Such high‐performance ST‐PSC is achieved by carefully engineering the absorption spectrum of the light harvesting materials. As a result, the transmission spectra of the semitransparent devices are well‐matched with the absorption spectra of the photoreceptors, such as chlorophylls, in green plants, which provides adequate lighting conditions for photosynthesis and plant growth, and therefore making it a competitive candidate for photovoltaic greenhouse applications. |
Author | Xia, Ruoxi Zhang, Guichuan Cao, Yong Yip, Hin‐Lap Shi, Hui |
Author_xml | – sequence: 1 givenname: Hui surname: Shi fullname: Shi, Hui organization: South China University of Technology – sequence: 2 givenname: Ruoxi surname: Xia fullname: Xia, Ruoxi organization: South China University of Technology – sequence: 3 givenname: Guichuan surname: Zhang fullname: Zhang, Guichuan organization: South China Institute of Collaborative Innovation – sequence: 4 givenname: Hin‐Lap orcidid: 0000-0002-5750-9751 surname: Yip fullname: Yip, Hin‐Lap email: msangusyip@scut.edu.cn organization: South China Institute of Collaborative Innovation – sequence: 5 givenname: Yong surname: Cao fullname: Cao, Yong organization: South China University of Technology |
BookMark | eNqFkE1LAzEQhoNUsNZePQc8b0022Wz2WEqtQv2AKh6XNJ2tKdlkTbZI_71bKxUEcS4zDO8zH-856jnvAKFLSkaUkPRagatHKaGSMM7kCepTQXkiJCe9Y83SMzSMcUO64AUljPXR66IB3QZl8dStjQMIxq2xr_ACatP1XWxUANfiJ293NQS88FYFPAFrI658wLMA4N78NgIeN401WrXGu3iBTitlIwy_8wC93EyfJ7fJ_HF2NxnPE80kk4lgbJkStUqzquBc80zyQhClVSVTSSnTmlPIs6XKhVwppQuqMp0X1YqlFWcqZwN0dZjbBP--hdiWG78NrltZpjTnVIiCiU7FDyodfIwBqlKb9uvQ7kVjS0rKvYvl3sXy6GKHjX5hTTC1Cru_geIAfBgLu3_U5Xj6cP_DfgJHnoeh |
CitedBy_id | crossref_primary_10_1002_ente_202000611 crossref_primary_10_3390_agriengineering5030085 crossref_primary_10_3390_su13126871 crossref_primary_10_1002_solr_202200679 crossref_primary_10_1021_acsapm_3c01184 crossref_primary_10_1021_acsaem_2c03796 crossref_primary_10_1021_acsaem_9b01176 crossref_primary_10_1002_solr_202100041 crossref_primary_10_1039_C9TA12005J crossref_primary_10_1016_j_mtener_2021_100852 crossref_primary_10_1039_D1TC02932K crossref_primary_10_3390_agronomy11061097 crossref_primary_10_1002_solr_202000538 crossref_primary_10_1002_solr_202000015 crossref_primary_10_1002_ejoc_202400112 crossref_primary_10_3389_fenrg_2021_783587 crossref_primary_10_1002_adfm_202202954 crossref_primary_10_1002_marc_202300338 crossref_primary_10_3390_ma16010144 crossref_primary_10_1002_solr_201900317 crossref_primary_10_1007_s40843_024_3149_1 crossref_primary_10_1039_D0TC01313G crossref_primary_10_1039_D1TC03110D crossref_primary_10_1039_D0TC00329H crossref_primary_10_3390_agriengineering4040062 crossref_primary_10_3390_cryst12020168 crossref_primary_10_1002_solr_202000328 crossref_primary_10_1016_j_rser_2022_112126 crossref_primary_10_1039_D2EE00977C crossref_primary_10_1080_15567036_2021_1904058 crossref_primary_10_1007_s40843_022_2332_9 crossref_primary_10_1002_solr_202300037 crossref_primary_10_1002_adfm_202005763 crossref_primary_10_1021_acsami_0c03508 crossref_primary_10_1016_j_cclet_2019_08_046 crossref_primary_10_1002_adfm_202205338 crossref_primary_10_1021_acsaem_9b02005 crossref_primary_10_1002_solr_202100264 crossref_primary_10_1002_solr_202200070 crossref_primary_10_3390_en14041159 crossref_primary_10_1021_acscentsci_3c00562 crossref_primary_10_1002_adfm_202407403 crossref_primary_10_1021_acsami_1c13404 crossref_primary_10_1007_s11426_019_9556_7 crossref_primary_10_1016_j_xcrp_2023_101518 crossref_primary_10_1371_journal_pone_0281996 crossref_primary_10_1103_PhysRevApplied_12_064039 crossref_primary_10_3390_coatings10030218 crossref_primary_10_1039_D0SE00124D crossref_primary_10_1016_j_nanoen_2020_105376 crossref_primary_10_1039_C9TA05235F crossref_primary_10_1016_j_scib_2019_09_016 crossref_primary_10_1002_aenm_202200713 crossref_primary_10_1016_j_mtener_2023_101340 crossref_primary_10_1002_adfm_202406070 crossref_primary_10_1039_D1TC04569E crossref_primary_10_1002_aenm_201904196 crossref_primary_10_1039_C9TA14216A crossref_primary_10_1002_adma_202007177 crossref_primary_10_1016_j_solener_2020_05_027 crossref_primary_10_1002_advs_202413045 crossref_primary_10_1002_adom_202100064 crossref_primary_10_1002_aenm_201902066 crossref_primary_10_1016_j_seta_2022_102077 crossref_primary_10_1021_acsaem_0c02912 crossref_primary_10_1021_acssuschemeng_2c06426 crossref_primary_10_1021_acsenergylett_4c02218 crossref_primary_10_1016_j_enconman_2022_116567 crossref_primary_10_1002_adfm_202007931 crossref_primary_10_1002_aenm_202201267 crossref_primary_10_1088_2058_8585_ad50e7 crossref_primary_10_1016_j_nanoen_2020_105111 crossref_primary_10_1002_adfm_202110435 crossref_primary_10_1016_j_enconman_2024_118077 crossref_primary_10_1021_acsami_1c08367 crossref_primary_10_1002_ente_202000875 crossref_primary_10_1016_j_xcrp_2021_100676 crossref_primary_10_1021_acsami_0c10906 crossref_primary_10_1021_acsami_0c00396 crossref_primary_10_1021_acsami_0c09007 crossref_primary_10_1021_acsami_0c08037 crossref_primary_10_1002_pip_3684 crossref_primary_10_1007_s00339_021_05025_3 crossref_primary_10_1016_j_apenergy_2020_115582 crossref_primary_10_3390_agronomy11061152 crossref_primary_10_1364_OE_412101 crossref_primary_10_1002_admt_202000960 crossref_primary_10_1002_solr_202100207 crossref_primary_10_1007_s10973_022_11903_6 crossref_primary_10_1021_acsnano_1c09018 crossref_primary_10_1016_j_isci_2023_108129 crossref_primary_10_1039_D0NR07788G crossref_primary_10_1021_acsapm_0c00883 crossref_primary_10_1002_adom_202203140 crossref_primary_10_1021_acsaem_0c01097 crossref_primary_10_1021_acsaem_1c03017 crossref_primary_10_1002_aesr_202000035 crossref_primary_10_1055_a_1472_3989 crossref_primary_10_1002_ente_202201176 crossref_primary_10_1016_j_enconman_2022_115215 crossref_primary_10_1016_j_cej_2021_132048 crossref_primary_10_1007_s40820_024_01547_6 crossref_primary_10_1016_j_joule_2021_02_010 crossref_primary_10_1002_solr_201900413 crossref_primary_10_1039_D0QM00198H crossref_primary_10_1039_D1TC00691F |
Cites_doi | 10.1126/science.aat2612 10.1016/j.scib.2017.11.003 10.1038/nmat5063 10.1002/2016EF000531 10.1016/j.joule.2018.04.005 10.1002/adfm.200304399 10.1038/nphoton.2012.11 10.1063/1.1889240 10.1021/acs.chemrev.5b00098 10.1038/nphoton.2015.128 10.1016/j.joule.2017.10.014 10.1002/ente.201500131 10.1038/nphoton.2013.276 10.1021/jacs.6b01744 10.1126/science.270.5243.1789 10.1038/natrevmats.2018.3 10.1039/C8TA08891H 10.1002/aenm.201702814 10.1039/C8EE00154E 10.1039/C4EE03132F 10.1002/adma.201703080 10.1039/c2ee22623e 10.1002/adfm.200305156 10.1364/AO.54.010232 10.1002/aenm.201702831 10.1016/j.rser.2016.12.020 10.1021/acsenergylett.7b01266 10.1002/adma.201606574 10.1002/adma.201800613 10.1038/s41560-017-0016-9 10.1103/PhysRevB.82.245207 10.1364/AO.4.000011 10.1002/anie.201610944 10.1038/nphoton.2014.172 10.1038/nmat4797 10.1021/jp4090348 10.1021/jacs.7b11278 10.1002/aenm.201701121 10.1016/j.rser.2015.04.117 10.1002/aenm.201800002 10.1016/j.solener.2017.06.044 10.1038/s41566-018-0104-9 |
ContentType | Journal Article |
Copyright | 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | AAYXX CITATION 7SP 7TB 8FD F28 FR3 H8D L7M |
DOI | 10.1002/aenm.201803438 |
DatabaseName | CrossRef Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering |
DatabaseTitleList | Aerospace Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1614-6840 |
EndPage | n/a |
ExternalDocumentID | 10_1002_aenm_201803438 AENM201803438 |
Genre | article |
GrantInformation_xml | – fundername: China Postdoctoral Science Foundation funderid: 2017M622681 – fundername: Science and Technology Program of Guangzhou funderid: 201607020010; 2017A050503002 – fundername: Natural Science Foundation of China funderid: 21761132001; 91633301 – fundername: Ministry of Science and Technology funderid: 2017YF0206600 |
GroupedDBID | 05W 0R~ 1OC 33P 4.4 50Y 5VS 8-0 8-1 AAESR AAHQN AAIHA AAMMB AAMNL AANLZ AASGY AAXRX AAYCA AAZKR ABCUV ABJNI ACAHQ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADKYN ADMLS ADOZA ADXAS ADZMN AEFGJ AEIGN AENEX AEUYR AEYWJ AFBPY AFFPM AFWVQ AFZJQ AGHNM AGXDD AGYGG AHBTC AIACR AIDQK AIDYY AITYG AIURR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB AZVAB BDRZF BFHJK BMXJE BRXPI D-A DCZOG EBS EJD G-S HGLYW HZ~ KBYEO LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MY. MY~ O9- P2W RNS ROL RX1 SUPJJ WBKPD WOHZO WXSBR ZZTAW ~S- 31~ AAHHS AANHP AAYXX ACBWZ ACCFJ ACRPL ACYXJ ADNMO ADZOD AEEZP AEQDE AGQPQ AIWBW AJBDE ASPBG AVWKF AZFZN CITATION FEDTE GODZA HVGLF 7SP 7TB 8FD F28 FR3 H8D L7M |
ID | FETCH-LOGICAL-c3838-633b20ad25f944c4584960acaf828113cc41e75ba768daac91a5c79fd32f43a73 |
ISSN | 1614-6832 |
IngestDate | Fri Jul 25 12:24:38 EDT 2025 Thu Apr 24 23:04:15 EDT 2025 Tue Jul 01 01:43:27 EDT 2025 Fri Jul 18 18:30:15 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c3838-633b20ad25f944c4584960acaf828113cc41e75ba768daac91a5c79fd32f43a73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-5750-9751 |
PQID | 2174166936 |
PQPubID | 886389 |
PageCount | 8 |
ParticipantIDs | proquest_journals_2174166936 crossref_citationtrail_10_1002_aenm_201803438 crossref_primary_10_1002_aenm_201803438 wiley_primary_10_1002_aenm_201803438_AENM201803438 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 1, 2019 |
PublicationDateYYYYMMDD | 2019-02-01 |
PublicationDate_xml | – month: 02 year: 2019 text: February 1, 2019 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Advanced energy materials |
PublicationYear | 2019 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017; 62 2017; 5 2018; 361 2017; 7 2017; 2 2015; 3 2015; 54 2005; 86 2017; 29 2017; 155 2013; 7 2015; 9 2015; 8 1995; 270 2017; 139 2010; 82 2018; 6 2018; 8 2018; 17 2018; 3 2018; 2 2015; 49 2017; 70 2015; 115 2017; 16 2004; 14 1965; 4 2013; 117 2017; 56 2018; 30 2016; 138 2012; 6 2018; 12 2018; 11 2014; 8 1976; 17 2012; 5 e_1_2_7_6_1 e_1_2_7_5_1 e_1_2_7_4_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_8_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_18_1 e_1_2_7_17_1 e_1_2_7_16_1 e_1_2_7_2_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_1_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_12_1 e_1_2_7_11_1 e_1_2_7_10_1 e_1_2_7_26_1 e_1_2_7_27_1 e_1_2_7_28_1 e_1_2_7_29_1 Inada K. (e_1_2_7_40_1) 1976; 17 e_1_2_7_30_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_37_1 e_1_2_7_38_1 e_1_2_7_39_1 |
References_xml | – volume: 117 start-page: 26896 year: 2013 publication-title: J. Phys. Chem. C – volume: 29 start-page: 1606574 year: 2017 publication-title: Adv. Mater. – volume: 2 start-page: 1 year: 2018 publication-title: Joule – volume: 54 start-page: 10232 year: 2015 publication-title: Appl. Opt. – volume: 8 start-page: 1702814 year: 2018 publication-title: Adv. Energy Mater. – volume: 361 start-page: 1094 year: 2018 publication-title: Science – volume: 3 start-page: 1051 year: 2015 publication-title: Energy Technol. – volume: 62 start-page: 1562 year: 2017 publication-title: Sci. Bull. – volume: 9 start-page: 491 year: 2015 publication-title: Nat. Photonics – volume: 6 start-page: 153 year: 2012 publication-title: Nat. Photonics – volume: 30 start-page: 1800613 year: 2018 publication-title: Adv. Mater. – volume: 138 start-page: 4657 year: 2016 publication-title: J. Am. Chem. Soc. – volume: 14 start-page: 38 year: 2004 publication-title: Adv. Funct. Mater. – volume: 29 start-page: 1703080 year: 2017 publication-title: Adv. Mater. – volume: 3 start-page: 669 year: 2018 publication-title: ACS Energy Lett. – volume: 8 start-page: 716 year: 2014 publication-title: Nat. Photonics – volume: 115 start-page: 12666 year: 2015 publication-title: Chem. Rev. – volume: 270 start-page: 1789 year: 1995 publication-title: Science – volume: 8 start-page: 1800002 year: 2018 publication-title: Adv. Energy Mater. – volume: 11 start-page: 1688 year: 2018 publication-title: Energy Environ. Sci. – volume: 4 start-page: 11 year: 1965 publication-title: Appl. Opt. – volume: 7 start-page: 1701121 year: 2017 publication-title: Adv. Energy Mater. – volume: 8 start-page: 1317 year: 2015 publication-title: Energy Environ. Sci. – volume: 5 start-page: 9551 year: 2012 publication-title: Energy Environ. Sci. – volume: 6 start-page: 21485 year: 2018 publication-title: J. Mater. Chem. A – volume: 56 start-page: 3045 year: 2017 publication-title: Angew. Chem., Int. Ed. – volume: 155 start-page: 517 year: 2017 publication-title: Sol. Energy – volume: 3 start-page: 18003 year: 2018 publication-title: Nat. Rev. Mater. – volume: 16 start-page: 363 year: 2017 publication-title: Nat. Mater. – volume: 86 start-page: 123509 year: 2005 publication-title: Appl. Phys. Lett. – volume: 49 start-page: 139 year: 2015 publication-title: Renewable Sustainable Energy Rev. – volume: 12 start-page: 131 year: 2018 publication-title: Nat. Photonics – volume: 2 start-page: 849 year: 2017 publication-title: Nat. Energy – volume: 14 start-page: 865 year: 2004 publication-title: Adv. Funct. Mater. – volume: 139 start-page: 17114 year: 2017 publication-title: J. Am. Chem. Soc. – volume: 8 start-page: 1702831 year: 2018 publication-title: Adv. Energy Mater. – volume: 2 start-page: 1039 year: 2018 publication-title: Joule – volume: 82 start-page: 245207 year: 2010 publication-title: Phys. Rev. B – volume: 17 start-page: 119 year: 2018 publication-title: Nat. Mater. – volume: 7 start-page: 995 year: 2013 publication-title: Nat. Photonics – volume: 5 start-page: 1044 year: 2017 publication-title: Earth's Future – volume: 17 start-page: 355 year: 1976 publication-title: Plant Cell Physiol. – volume: 70 start-page: 1178 year: 2017 publication-title: Renewable Sustainable Energy Rev. – ident: e_1_2_7_4_1 doi: 10.1126/science.aat2612 – volume: 17 start-page: 355 year: 1976 ident: e_1_2_7_40_1 publication-title: Plant Cell Physiol. – ident: e_1_2_7_21_1 doi: 10.1016/j.scib.2017.11.003 – ident: e_1_2_7_18_1 doi: 10.1038/nmat5063 – ident: e_1_2_7_27_1 doi: 10.1002/2016EF000531 – ident: e_1_2_7_6_1 doi: 10.1016/j.joule.2018.04.005 – ident: e_1_2_7_35_1 doi: 10.1002/adfm.200304399 – ident: e_1_2_7_2_1 doi: 10.1038/nphoton.2012.11 – ident: e_1_2_7_37_1 doi: 10.1063/1.1889240 – ident: e_1_2_7_1_1 doi: 10.1021/acs.chemrev.5b00098 – ident: e_1_2_7_32_1 doi: 10.1038/nphoton.2015.128 – ident: e_1_2_7_10_1 doi: 10.1016/j.joule.2017.10.014 – ident: e_1_2_7_9_1 doi: 10.1002/ente.201500131 – ident: e_1_2_7_43_1 doi: 10.1038/nphoton.2013.276 – ident: e_1_2_7_29_1 doi: 10.1021/jacs.6b01744 – ident: e_1_2_7_3_1 doi: 10.1126/science.270.5243.1789 – ident: e_1_2_7_17_1 doi: 10.1038/natrevmats.2018.3 – ident: e_1_2_7_26_1 doi: 10.1039/C8TA08891H – ident: e_1_2_7_34_1 doi: 10.1002/aenm.201702814 – ident: e_1_2_7_8_1 doi: 10.1039/C8EE00154E – ident: e_1_2_7_12_1 doi: 10.1039/C4EE03132F – ident: e_1_2_7_22_1 doi: 10.1002/adma.201703080 – ident: e_1_2_7_41_1 doi: 10.1039/c2ee22623e – ident: e_1_2_7_33_1 doi: 10.1002/adfm.200305156 – ident: e_1_2_7_11_1 doi: 10.1364/AO.54.010232 – ident: e_1_2_7_25_1 doi: 10.1002/aenm.201702831 – ident: e_1_2_7_15_1 doi: 10.1016/j.rser.2016.12.020 – ident: e_1_2_7_19_1 doi: 10.1021/acsenergylett.7b01266 – ident: e_1_2_7_23_1 doi: 10.1002/adma.201606574 – ident: e_1_2_7_20_1 doi: 10.1002/adma.201800613 – ident: e_1_2_7_5_1 doi: 10.1038/s41560-017-0016-9 – ident: e_1_2_7_36_1 doi: 10.1103/PhysRevB.82.245207 – ident: e_1_2_7_13_1 doi: 10.1364/AO.4.000011 – ident: e_1_2_7_30_1 doi: 10.1002/anie.201610944 – ident: e_1_2_7_38_1 doi: 10.1038/nphoton.2014.172 – ident: e_1_2_7_39_1 doi: 10.1038/nmat4797 – ident: e_1_2_7_14_1 doi: 10.1021/jp4090348 – ident: e_1_2_7_24_1 doi: 10.1021/jacs.7b11278 – ident: e_1_2_7_42_1 doi: 10.1002/aenm.201701121 – ident: e_1_2_7_31_1 doi: 10.1016/j.rser.2015.04.117 – ident: e_1_2_7_7_1 doi: 10.1002/aenm.201800002 – ident: e_1_2_7_28_1 doi: 10.1016/j.solener.2017.06.044 – ident: e_1_2_7_16_1 doi: 10.1038/s41566-018-0104-9 |
SSID | ssj0000491033 |
Score | 2.584225 |
Snippet | In this study, a wavelength selective semitransparent polymer solar cell (ST‐PSC) with a proper transmission spectrum for plant growth is proposed for... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Absorption spectra Chlorophyll Crop growth crop growth factor Electron mobility Energy conversion efficiency Fullerenes Growth factors Photoreceptors Photosynthesis Photovoltaic cells photovoltaic greenhouse Plant growth Polymers semitransparent polymer solar cells Solar cells spectral engineering |
Title | Spectral Engineering of Semitransparent Polymer Solar Cells for Greenhouse Applications |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faenm.201803438 https://www.proquest.com/docview/2174166936 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1BT9swFLYYXLYD2timFdjkA9IOVVgSJ058rBhbNQGaBojuFDmuo0YqKYJGYvv1e7Zjx0WdxrhE6VOSNnlf7fe9vPcZoYOSlzKjlQhg9pdAUDIe5BB2BFRwCgFdCSG9Vvs8o-PL5NsknfS1qrq7ZFkeit9r-0qe4lWwgV9Vl-x_eNZdFAywD_6FLXgYto_ysVo8XmUqfFVB3YUir-ulVi3nWnzp-2L-61reDs8Vjx0eyflcqzAMddHNDLi_NNGon76zyrS2RkCaJkEIcM2dudTMzKx73dbWMjH1tz_axb2zubz017YWs7aH5M9aL5A3rhtXdnHCb_xchGp_cnUdZviEyT6geZexlL7NiDLZMZd50ErXjuRGGZbLRskFRHlIEqMCsyqZ_WAqcwWGRow5LtT5hTv_GdqKgU3AcLg1-nx6cu6ScUCTopDoZgx7B1bgM4w_rf6I1QCmZyU-t9HBycVLtN2xCjwyEHmFNmSzg154qHiNrixYsGfGiwo_AAvuwII1WLAGCwaw4B4s2AfLG3T55fjiaBx0q2oEguQwu1FCyjjk0zitWJII9Z4cWCwXvALyHUVEiCSSWVpyIKJTzgWLeCoyVk1JXCWEZ-Qt2mwWjXyHsKgYEOKYpSwBFp-VLAuZSDgNJZuSnLMBCuyjKkQnOa9WPpkX6_0zQB_d8TdGbOWvR-7bJ190f8i7QrHriFJG6ADF2hv_uEoxOj47dZ92H_3te-h5j_59tLm8beV7iE2X5YcOWX8AhBSLBw |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spectral+Engineering+of+Semitransparent+Polymer+Solar+Cells+for+Greenhouse+Applications&rft.jtitle=Advanced+energy+materials&rft.au=Shi%2C+Hui&rft.au=Xia%2C+Ruoxi&rft.au=Zhang%2C+Guichuan&rft.au=Yip%2C+Hin%E2%80%90Lap&rft.date=2019-02-01&rft.issn=1614-6832&rft.eissn=1614-6840&rft.volume=9&rft.issue=5&rft_id=info:doi/10.1002%2Faenm.201803438&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_aenm_201803438 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1614-6832&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1614-6832&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1614-6832&client=summon |