Plasmon‐Dictated Photo‐Electrochemical Water Splitting for Solar‐to‐Chemical Energy Conversion: Current Status and Future Perspectives

Surface plasmon resonance (SPR) effect of metal nanostructures is established as an efficient and attractive strategy to boost visible‐light or even near‐infrared‐responsive photo‐electrochemical (PEC) water splitting devices for substantial solar‐to‐chemical energy conversion. Rational integration...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials interfaces Vol. 5; no. 6
Main Authors Xiao, Fang‐Xing, Liu, Bin
Format Journal Article
LanguageEnglish
Published Weinheim John Wiley & Sons, Inc 23.03.2018
Subjects
Online AccessGet full text
ISSN2196-7350
2196-7350
DOI10.1002/admi.201701098

Cover

Loading…
Abstract Surface plasmon resonance (SPR) effect of metal nanostructures is established as an efficient and attractive strategy to boost visible‐light or even near‐infrared‐responsive photo‐electrochemical (PEC) water splitting devices for substantial solar‐to‐chemical energy conversion. Rational integration of plasmonic metal nanostructures with semiconductors in an appropriate fashion is beneficial for creating a large variety of plasmonic metal/semiconductor photoelectrodes. However, up to date, construction of well‐defined and highly efficient plasmonic metal/semiconductor heterostructures is still in its infant stage. In this review, basic principles of PEC water splitting over semiconductors, SPR‐excited plasmonic effect of metal nanostructures, and their intrinsic correlation with each other are first concisely introduced. Subsequently, it is paid great attention to specifically summarize the diverse plasmonic metal/semiconductor photoelectrodes currently being extensively explored for indirect plasmon‐induced PEC water splitting. Particularly, different plasmonic metal/semiconductor nanoarchitectures including planar thin films, 1D composited, and 3D spatially hierarchical heterostructures are systematically classified and elucidated. Finally, future perspectives and challenges in triggering further innovative thinking on plasmon‐enhanced solar water splitting are envisaged. It is anticipated that this review can provide enriched information on rational design and construction of various plasmonic metal/semiconductor heterostructures for solar‐powered plasmon‐based PEC devices. Surface plasmon resonance effect of metal nanostructures is established as an efficient and attractive strategy to boost visible‐light or even near‐infrared‐responsive photo‐electrochemical water splitting devices for substantial solar‐to‐chemical energy conversion. In this review article, different plasmonic metal/semiconductor nanoarchitectures including planar thin films, 1D composited, and 3D spatially hierarchical heterostructures are comprehensively and systematically elucidated.
AbstractList Surface plasmon resonance (SPR) effect of metal nanostructures is established as an efficient and attractive strategy to boost visible‐light or even near‐infrared‐responsive photo‐electrochemical (PEC) water splitting devices for substantial solar‐to‐chemical energy conversion. Rational integration of plasmonic metal nanostructures with semiconductors in an appropriate fashion is beneficial for creating a large variety of plasmonic metal/semiconductor photoelectrodes. However, up to date, construction of well‐defined and highly efficient plasmonic metal/semiconductor heterostructures is still in its infant stage. In this review, basic principles of PEC water splitting over semiconductors, SPR‐excited plasmonic effect of metal nanostructures, and their intrinsic correlation with each other are first concisely introduced. Subsequently, it is paid great attention to specifically summarize the diverse plasmonic metal/semiconductor photoelectrodes currently being extensively explored for indirect plasmon‐induced PEC water splitting. Particularly, different plasmonic metal/semiconductor nanoarchitectures including planar thin films, 1D composited, and 3D spatially hierarchical heterostructures are systematically classified and elucidated. Finally, future perspectives and challenges in triggering further innovative thinking on plasmon‐enhanced solar water splitting are envisaged. It is anticipated that this review can provide enriched information on rational design and construction of various plasmonic metal/semiconductor heterostructures for solar‐powered plasmon‐based PEC devices.
Surface plasmon resonance (SPR) effect of metal nanostructures is established as an efficient and attractive strategy to boost visible‐light or even near‐infrared‐responsive photo‐electrochemical (PEC) water splitting devices for substantial solar‐to‐chemical energy conversion. Rational integration of plasmonic metal nanostructures with semiconductors in an appropriate fashion is beneficial for creating a large variety of plasmonic metal/semiconductor photoelectrodes. However, up to date, construction of well‐defined and highly efficient plasmonic metal/semiconductor heterostructures is still in its infant stage. In this review, basic principles of PEC water splitting over semiconductors, SPR‐excited plasmonic effect of metal nanostructures, and their intrinsic correlation with each other are first concisely introduced. Subsequently, it is paid great attention to specifically summarize the diverse plasmonic metal/semiconductor photoelectrodes currently being extensively explored for indirect plasmon‐induced PEC water splitting. Particularly, different plasmonic metal/semiconductor nanoarchitectures including planar thin films, 1D composited, and 3D spatially hierarchical heterostructures are systematically classified and elucidated. Finally, future perspectives and challenges in triggering further innovative thinking on plasmon‐enhanced solar water splitting are envisaged. It is anticipated that this review can provide enriched information on rational design and construction of various plasmonic metal/semiconductor heterostructures for solar‐powered plasmon‐based PEC devices. Surface plasmon resonance effect of metal nanostructures is established as an efficient and attractive strategy to boost visible‐light or even near‐infrared‐responsive photo‐electrochemical water splitting devices for substantial solar‐to‐chemical energy conversion. In this review article, different plasmonic metal/semiconductor nanoarchitectures including planar thin films, 1D composited, and 3D spatially hierarchical heterostructures are comprehensively and systematically elucidated.
Author Liu, Bin
Xiao, Fang‐Xing
Author_xml – sequence: 1
  givenname: Fang‐Xing
  surname: Xiao
  fullname: Xiao, Fang‐Xing
  email: fxxiao@fzu.edu.cn
  organization: Fuzhou University
– sequence: 2
  givenname: Bin
  orcidid: 0000-0002-4685-2052
  surname: Liu
  fullname: Liu, Bin
  email: liubin@ntu.edu.sg
  organization: Nanyang Technological University
BookMark eNqFkM1KAzEUhYNUUGu3rgOuW_PTmUnclbFqoWKhgsshzWTayDSpSUbpzicQn9EnMbX-IYiLcJPc893DPQegZaxRABxh1MMIkRNRLnWPIJwhjDjbAfsE87Sb0QS1ftz3QMf7O4QQxgQTRvfB86QWfmnN69PLmZZBBFXCycIGGz-GtZLBWblQSy1FDW9j18HpqtYhaDOHlY0vWwsXte9A_qkcGuXma5hb86Cc19acwrxxTpkAp9Gj8VCYEp43oXEKTqJkFZ30g_KHYLcStVedj9oG0_PhTX7ZHV9fjPLBuCspo6xLueB9QZkqOSFMZoySbKb6yYyXiHGVJYixWcpKUjKWpllWVTyTNJ6KsYTQNjjeTl05e98oH4o72zgTDYtNhJxikqRR1duqpLPeO1UVK6eXwq0LjIpN6MUm9OIr9Aj0fwFSx23j-sEJXf-N8S32qGu1_sekGJxdjb7ZN2bcnqk
CitedBy_id crossref_primary_10_1021_acs_jpcc_9b10132
crossref_primary_10_1021_acs_inorgchem_3c02857
crossref_primary_10_1515_nanoph_2019_0019
crossref_primary_10_1039_D3TA02889E
crossref_primary_10_1016_j_mtchem_2018_11_001
crossref_primary_10_1039_D2NR02741K
crossref_primary_10_1021_acs_energyfuels_4c00601
crossref_primary_10_1002_smll_202307619
crossref_primary_10_1021_acs_inorgchem_4c01091
crossref_primary_10_1021_acs_jpcc_8b02895
crossref_primary_10_1039_D2NR05937A
crossref_primary_10_1007_s11708_024_0950_8
crossref_primary_10_1016_j_cej_2022_140378
crossref_primary_10_1039_D0NJ06089E
crossref_primary_10_1016_j_optmat_2021_110944
crossref_primary_10_1002_adfm_201900194
crossref_primary_10_1039_C8TA08841A
crossref_primary_10_6023_A21080405
crossref_primary_10_1002_slct_201901546
crossref_primary_10_1039_D3TA01154B
crossref_primary_10_3390_en13020420
crossref_primary_10_1016_j_mtchem_2023_101783
crossref_primary_10_1021_acs_inorgchem_3c02700
crossref_primary_10_1038_s42004_024_01149_8
crossref_primary_10_1039_C9QI00750D
crossref_primary_10_1016_j_ijhydene_2020_11_191
crossref_primary_10_1039_D0TA07235D
crossref_primary_10_1016_j_jcat_2023_115203
crossref_primary_10_1038_s41598_018_34248_3
crossref_primary_10_1038_s41598_024_82949_9
crossref_primary_10_1021_acsomega_2c01335
crossref_primary_10_1016_j_electacta_2021_138995
crossref_primary_10_1039_C9NR00229D
crossref_primary_10_1021_acsaem_0c01154
crossref_primary_10_1016_j_ceramint_2019_08_033
crossref_primary_10_1088_1361_6463_abfb18
crossref_primary_10_1021_acsanm_2c02442
crossref_primary_10_1021_acs_inorgchem_3c04083
crossref_primary_10_1021_acs_jpcc_9b08738
crossref_primary_10_1088_2515_7655_ab0718
crossref_primary_10_1039_D2NR05044G
crossref_primary_10_1039_C8CY02283F
crossref_primary_10_1039_C9TA01144G
crossref_primary_10_1021_acs_jpcc_9b09421
crossref_primary_10_1002_adfm_202110848
crossref_primary_10_1021_acs_inorgchem_3c02951
crossref_primary_10_1039_C9TA11579J
crossref_primary_10_1039_D3SC05761E
crossref_primary_10_1002_smll_202404727
crossref_primary_10_1016_j_ijhydene_2019_12_196
crossref_primary_10_1007_s00604_024_06592_x
crossref_primary_10_1016_S1003_6326_20_65325_0
crossref_primary_10_1021_acsaem_0c00648
crossref_primary_10_1039_C8NR03557A
crossref_primary_10_1016_j_ccr_2023_215285
crossref_primary_10_1016_j_ccr_2023_215362
crossref_primary_10_1016_j_renene_2020_12_076
crossref_primary_10_1021_acsphotonics_1c00885
crossref_primary_10_3390_molecules29010034
crossref_primary_10_1016_j_cjsc_2023_100173
crossref_primary_10_1039_C9NJ02593F
crossref_primary_10_1021_acsaem_0c01133
crossref_primary_10_1088_1361_6463_ab6e9f
crossref_primary_10_1002_admi_202300230
crossref_primary_10_1016_j_coco_2023_101558
crossref_primary_10_1039_C8TA10379H
crossref_primary_10_1016_j_cej_2021_133222
crossref_primary_10_1021_acs_inorgchem_3c03283
crossref_primary_10_1039_C9QM00066F
crossref_primary_10_1016_j_surfin_2021_101323
crossref_primary_10_1007_s10563_018_9259_0
crossref_primary_10_1021_acssuschemeng_0c08140
crossref_primary_10_1021_acsanm_0c00210
crossref_primary_10_1039_C8NR06788K
crossref_primary_10_1016_j_jphotochem_2020_112575
crossref_primary_10_1002_adfm_202006738
crossref_primary_10_1016_j_jphotochem_2019_04_026
crossref_primary_10_1039_D3NR05657K
crossref_primary_10_1002_admi_202001395
crossref_primary_10_1002_cptc_201900252
crossref_primary_10_1021_acsami_9b14543
crossref_primary_10_1039_D3NR02631K
crossref_primary_10_1016_j_elecom_2023_107645
crossref_primary_10_1039_D3QI00472D
crossref_primary_10_1021_acsanm_3c05964
crossref_primary_10_1021_acssuschemeng_3c02150
crossref_primary_10_1002_aesr_202100092
crossref_primary_10_1016_j_apsusc_2019_07_034
crossref_primary_10_1021_acs_jpcc_4c06969
crossref_primary_10_1007_s10853_019_03780_6
crossref_primary_10_1021_acsanm_2c02222
crossref_primary_10_1002_cnma_201900751
crossref_primary_10_1007_s12598_019_01255_w
crossref_primary_10_1002_aesr_202100094
crossref_primary_10_1002_ppsc_202400190
crossref_primary_10_1007_s12274_022_4203_z
Cites_doi 10.1021/jp3034984
10.1515/nanoph-2015-0017
10.1016/j.jechem.2016.02.013
10.1038/srep02997
10.1186/s11671-016-1492-8
10.1021/cm4021518
10.1021/ja042192u
10.1039/c3ta01450a
10.1126/science.1203056
10.1039/C7NR04802E
10.1039/C2CS35367A
10.1126/science.275.5303.1102
10.1021/jp011118k
10.1002/adma.201600305
10.1038/238037a0
10.1016/j.rinp.2016.07.002
10.1021/acs.nanolett.5b02453
10.1021/jp905247j
10.1039/c0jm00135j
10.1021/nn3024877
10.1002/cnma.201600035
10.1039/C4CY00974F
10.1016/j.apcatb.2016.06.050
10.1016/j.cplett.2014.06.045
10.1039/C5TA08202A
10.1021/cs200320h
10.1021/am503044f
10.1021/acssuschemeng.6b02883
10.1039/C4RA08216H
10.1016/j.ccr.2012.06.017
10.1021/jp508618t
10.1039/c1cc10665a
10.1016/j.cplett.2010.01.062
10.1021/ja042925a
10.1002/anie.200604637
10.1021/ac9712310
10.1002/aenm.201501654
10.1039/C6NR05605A
10.1021/acsami.6b14618
10.1039/c3ta12856c
10.1002/aenm.201501339
10.1021/nl201766h
10.1103/PhysRevLett.83.2942
10.1038/ncomms5948
10.1002/adma.201500888
10.1039/C6TA06405A
10.1002/smll.201402420
10.1016/j.nanoen.2014.07.019
10.1016/j.nantod.2013.12.002
10.1039/C4NR04886E
10.1038/srep29907
10.1038/ncomms3651
10.1039/c3ee43278e
10.1039/C4CS00408F
10.1021/ja411651e
10.1021/ja0578350
10.1246/bcsj.20120256
10.1021/nl203457v
10.1021/ja034650p
10.1002/smll.201400970
10.1021/nl049573q
10.1021/acsnano.5b01226
10.1039/c3sc50496d
10.1039/C4NR01380H
10.1039/C6TA10471A
10.1016/j.materresbull.2013.10.017
10.1038/35104607
10.1021/cs400993w
10.1103/PhysRevLett.58.2059
10.1038/ncomms8447
10.1021/ja3051734
10.1039/C7NR06697J
10.1016/j.nanoen.2017.03.035
10.1038/nmat4281
10.1002/anie.200600356
10.1038/nnano.2014.311
10.1021/acsami.5b09091
10.1016/j.cplett.2011.03.074
10.1021/nn504484u
10.1021/cm4023198
10.1039/C3MH00097D
10.1039/C1EE02875H
10.1021/jacs.5b06323
10.1038/nphoton.2008.146
10.1063/1.4916224
10.1002/anie.201409116
10.1021/nl100199h
10.1002/cssc.201301120
10.1146/annurev.pc.29.100178.001201
10.1021/nl1022354
10.1002/adma.201205076
10.1039/C7TA08415C
10.1039/C2EE23668K
10.1021/am500234v
10.1021/nl4018385
10.1039/C2EE22618A
10.1021/jp405291g
10.1021/nn5051954
10.1021/nn300679d
10.1007/s12274-016-1067-0
10.1002/aenm.201501496
10.1002/cssc.201403013
10.1039/c3nr03425a
10.1021/cr00033a003
10.1021/acs.jpcc.5b02357
10.1039/C5RA06241A
10.1021/ja502704n
10.1021/ja210755h
10.1088/0957-4484/27/30/305403
10.1021/ja200086g
10.1021/cm802894z
10.1021/jp026731y
10.1038/nature06381
10.1021/nn501996a
10.1007/s11468-012-9418-5
10.1039/C2CS35260E
10.1039/C0SC00578A
10.1021/jp044228a
10.1039/C6NR09280B
10.1039/B812177J
10.1039/C6CP06903G
10.1021/nn503751s
10.1021/acssuschemeng.7b00242
10.1038/ncomms10348
10.1021/nl500008y
10.1088/0957-4484/27/23/235401
10.1016/j.nanoen.2014.12.037
10.1515/nanoph-2016-0018
10.1021/jp507988c
10.1002/advs.201500243
10.1002/smll.201401919
10.1021/jp406733k
10.1088/0034-4885/76/4/046401
10.1021/nl2029392
10.1038/nmat2162
10.1021/cr1002326
10.1021/cr200061k
10.1039/C4NR03735A
10.1021/jp306555j
10.1007/s12274-015-0794-y
10.1021/jp071906v
10.1038/nmat3151
ContentType Journal Article
Copyright 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
DBID AAYXX
CITATION
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/admi.201701098
DatabaseName CrossRef
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList Materials Research Database

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2196-7350
EndPage n/a
ExternalDocumentID 10_1002_admi_201701098
ADMI201701098
Genre reviewArticle
GrantInformation_xml – fundername: Prime Minister's Office, Singapore under its Campus for Research Excellence and Technological Enterprise
– fundername: Singapore Ministry of Education Academic Research Fund
  funderid: RG111/15; RG10/16; MOE2016‐T2‐2‐004
– fundername: Agency for Science, Technology and Research of Singapore
  funderid: M4070232.120
– fundername: National Research Foundation
GroupedDBID 0R~
1OC
24P
33P
AAESR
AAFWJ
AAIHA
AAMMB
AAXRX
AAZKR
ABCUV
ABJNI
ACAHQ
ACCZN
ACGFS
ACPOU
ACXBN
ACXQS
ADBBV
ADKYN
ADMLS
ADOZA
ADXAS
ADZMN
AEFGJ
AENEX
AFBPY
AFPKN
AGXDD
AIACR
AIDQK
AIDYY
AIURR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMYDB
ARCSS
AVUZU
AZVAB
BMXJE
BRXPI
DCZOG
DPXWK
EBS
EJD
G-S
GODZA
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MY~
M~E
O9-
P2W
R.K
ROL
SUPJJ
WBKPD
WOHZO
WXSBR
ZZTAW
AAHHS
AAYXX
ABJCF
ACCFJ
ACCMX
ADZOD
AEEZP
AEQDE
AFKRA
AIWBW
AJBDE
ARAPS
BENPR
BFHJK
BGLVJ
CCPQU
CITATION
GROUPED_DOAJ
HCIFZ
KB.
M7S
PDBOC
PHGZM
PHGZT
PTHSS
7SR
7U5
8BQ
8FD
JG9
L7M
ID FETCH-LOGICAL-c3838-39a94a38ed9228c78327be45b9d089e75088b68d2d886677ff97c397cf88523
ISSN 2196-7350
IngestDate Fri Jul 25 12:09:10 EDT 2025
Thu Apr 24 22:54:43 EDT 2025
Tue Jul 01 00:39:28 EDT 2025
Wed Aug 20 07:25:26 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c3838-39a94a38ed9228c78327be45b9d089e75088b68d2d886677ff97c397cf88523
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4685-2052
PQID 2017931256
PQPubID 2034582
PageCount 21
ParticipantIDs proquest_journals_2017931256
crossref_primary_10_1002_admi_201701098
crossref_citationtrail_10_1002_admi_201701098
wiley_primary_10_1002_admi_201701098_ADMI201701098
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 23, 2018
PublicationDateYYYYMMDD 2018-03-23
PublicationDate_xml – month: 03
  year: 2018
  text: March 23, 2018
  day: 23
PublicationDecade 2010
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Advanced materials interfaces
PublicationYear 2018
Publisher John Wiley & Sons, Inc
Publisher_xml – name: John Wiley & Sons, Inc
References 2010; 10
2013; 3
2013; 4
2013; 1
1997; 275
2004; 4
2014; 26
2009; 113
2013; 8
2013; 5
2013; 6
2014; 136
2011; 111
2010; 20
2012; 134
2012; 256
2015; 137
2013; 117
2010; 110
2014; 14
2005; 109
2001; 414
2014; 10
1987; 58
2011; 2
2011; 1
2013; 86
2015; 54
2016; 18
2011; 133
2016; 11
2016; 4
2016; 5
2016; 6
2016; 7
2016; 2
2016; 3
2006; 45
2013; 76
2005; 127
1998; 70
2015; 119
2016; 28
2012; 116
2016; 27
2016; 25
2016; 8
2016; 9
2017; 5
2013; 25
2008; 7
2011; 11
2011; 10
2015; 106
1999; 83
2008; 2
2017; 9
2001; 105
2014; 1
2014; 5
2014; 4
2013; 13
2014; 609
2017; 35
2015; 44
2002; 107
1978; 29
2016; 199
2014; 9
2014; 8
2003; 125
2014; 50
2014; 7
2014; 6
2006; 128
2014; 118
2015; 12
1995; 95
2015; 15
2015; 14
2015; 6
2015; 5
2009; 21
2015; 4
2015; 11
2013; 42
2015; 10
2010; 487
2015; 9
2015; 8
2015; 7
1972; 238
2011; 332
2015; 27
2011; 507
2007; 111
2011; 47
2012; 6
2009; 2
2008; 451
2012; 5
2007; 46
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_68_1
e_1_2_8_132_1
e_1_2_8_5_1
e_1_2_8_9_1
e_1_2_8_117_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_64_1
e_1_2_8_87_1
e_1_2_8_113_1
e_1_2_8_136_1
e_1_2_8_1_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_83_1
e_1_2_8_19_1
e_1_2_8_109_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
e_1_2_8_120_1
e_1_2_8_143_1
e_1_2_8_91_1
e_1_2_8_95_1
e_1_2_8_99_1
e_1_2_8_105_1
e_1_2_8_128_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_76_1
e_1_2_8_101_1
e_1_2_8_124_1
e_1_2_8_147_1
e_1_2_8_30_1
e_1_2_8_72_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_48_1
e_1_2_8_2_1
e_1_2_8_133_1
e_1_2_8_110_1
e_1_2_8_6_1
e_1_2_8_21_1
e_1_2_8_67_1
e_1_2_8_44_1
e_1_2_8_86_1
e_1_2_8_118_1
e_1_2_8_63_1
e_1_2_8_137_1
e_1_2_8_40_1
e_1_2_8_82_1
e_1_2_8_114_1
e_1_2_8_18_1
e_1_2_8_14_1
e_1_2_8_37_1
e_1_2_8_79_1
e_1_2_8_94_1
e_1_2_8_144_1
e_1_2_8_90_1
e_1_2_8_121_1
e_1_2_8_98_1
e_1_2_8_140_1
e_1_2_8_10_1
e_1_2_8_56_1
e_1_2_8_106_1
e_1_2_8_33_1
e_1_2_8_75_1
e_1_2_8_129_1
e_1_2_8_52_1
e_1_2_8_102_1
e_1_2_8_148_1
e_1_2_8_71_1
e_1_2_8_125_1
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_3_1
e_1_2_8_81_1
e_1_2_8_111_1
e_1_2_8_130_1
e_1_2_8_7_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_66_1
e_1_2_8_89_1
e_1_2_8_119_1
e_1_2_8_138_1
e_1_2_8_62_1
e_1_2_8_85_1
e_1_2_8_115_1
e_1_2_8_134_1
e_1_2_8_17_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_70_1
e_1_2_8_122_1
e_1_2_8_141_1
e_1_2_8_97_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_78_1
e_1_2_8_107_1
e_1_2_8_149_1
e_1_2_8_51_1
e_1_2_8_74_1
e_1_2_8_103_1
e_1_2_8_126_1
e_1_2_8_145_1
e_1_2_8_93_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_69_1
e_1_2_8_80_1
e_1_2_8_4_1
e_1_2_8_131_1
e_1_2_8_150_1
e_1_2_8_8_1
e_1_2_8_42_1
e_1_2_8_88_1
e_1_2_8_116_1
e_1_2_8_23_1
e_1_2_8_65_1
e_1_2_8_139_1
e_1_2_8_84_1
e_1_2_8_112_1
e_1_2_8_61_1
e_1_2_8_135_1
e_1_2_8_39_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_58_1
e_1_2_8_92_1
e_1_2_8_96_1
e_1_2_8_100_1
e_1_2_8_142_1
e_1_2_8_31_1
e_1_2_8_77_1
e_1_2_8_127_1
e_1_2_8_12_1
e_1_2_8_54_1
e_1_2_8_108_1
e_1_2_8_73_1
e_1_2_8_123_1
e_1_2_8_50_1
e_1_2_8_104_1
e_1_2_8_146_1
References_xml – volume: 7
  start-page: 10348
  year: 2016
  publication-title: Nat. Commun.
– volume: 1
  start-page: 5790
  year: 2013
  publication-title: J. Mater. Chem. A
– volume: 95
  start-page: 49
  year: 1995
  publication-title: Chem. Rev.
– volume: 26
  start-page: 407
  year: 2014
  publication-title: Chem. Mater.
– volume: 4
  start-page: 1085
  year: 2004
  publication-title: Nano Lett.
– volume: 7
  start-page: 28105
  year: 2015
  publication-title: ACS Appl. Mater. Interfaces
– volume: 2
  start-page: 737
  year: 2011
  publication-title: Chem. Sci.
– volume: 27
  start-page: 305403
  year: 2016
  publication-title: Nanotechnology
– volume: 86
  start-page: 1
  year: 2013
  publication-title: Bull. Chem. Soc. Jpn.
– volume: 83
  start-page: 2942
  year: 1999
  publication-title: Phys. Rev. Lett.
– volume: 76
  start-page: 046401
  year: 2013
  publication-title: Rep. Prog. Phys.
– volume: 4
  start-page: 17891
  year: 2016
  publication-title: J. Mater. Chem. A
– volume: 15
  start-page: 6155
  year: 2015
  publication-title: Nano Lett.
– volume: 5
  start-page: 1501654
  year: 2015
  publication-title: Adv. Energy Mater.
– volume: 2
  start-page: 660
  year: 2016
  publication-title: ChemNanoMat
– volume: 238
  start-page: 37
  year: 1972
  publication-title: Nature
– volume: 127
  start-page: 3928
  year: 2005
  publication-title: J. Am. Chem. Soc.
– volume: 116
  start-page: 19039
  year: 2012
  publication-title: J. Phys. Chem. C
– volume: 18
  start-page: 31622
  year: 2016
  publication-title: Phys. Chem. Chem. Phys.
– volume: 10
  start-page: 3970
  year: 2014
  publication-title: Small
– volume: 507
  start-page: 209
  year: 2011
  publication-title: Chem. Phys. Lett.
– volume: 5
  start-page: 5133
  year: 2012
  publication-title: Energy Environ. Sci.
– volume: 109
  start-page: 6334
  year: 2005
  publication-title: J. Phys. Chem. B
– volume: 8
  start-page: 15720
  year: 2016
  publication-title: Nanoscale
– volume: 6
  start-page: 5060
  year: 2012
  publication-title: ACS Nano
– volume: 45
  start-page: 4819
  year: 2006
  publication-title: Angew. Chem., Int. Ed.
– volume: 11
  start-page: 3026
  year: 2011
  publication-title: Nano Lett.
– volume: 5
  start-page: 1360
  year: 2015
  publication-title: Catal. Sci. Technol.
– volume: 117
  start-page: 22060
  year: 2013
  publication-title: J. Phys. Chem. C
– volume: 11
  start-page: 35
  year: 2011
  publication-title: Nano Lett.
– volume: 116
  start-page: 16487
  year: 2012
  publication-title: J. Phys. Chem. C
– volume: 8
  start-page: 501
  year: 2013
  publication-title: Plasmonics
– volume: 13
  start-page: 3817
  year: 2013
  publication-title: Nano Lett.
– volume: 14
  start-page: 1093
  year: 2014
  publication-title: Nano Lett.
– volume: 7
  start-page: 77
  year: 2015
  publication-title: Nanoscale
– volume: 609
  start-page: 59
  year: 2014
  publication-title: Chem. Phys. Lett.
– volume: 7
  start-page: 442
  year: 2008
  publication-title: Nat. Mater.
– volume: 125
  start-page: 6303
  year: 2003
  publication-title: J. Am. Chem. Soc.
– volume: 5
  start-page: 11118
  year: 2013
  publication-title: Nanoscale
– volume: 6
  start-page: 7362
  year: 2012
  publication-title: ACS Nano
– volume: 106
  start-page: 123901
  year: 2015
  publication-title: Appl. Phys. Lett.
– volume: 136
  start-page: 6870
  year: 2014
  publication-title: J. Am. Chem. Soc.
– volume: 6
  start-page: 1501496
  year: 2016
  publication-title: Adv. Energy Mater.
– volume: 5
  start-page: 4233
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 4
  start-page: 2651
  year: 2013
  publication-title: Nat. Commun.
– volume: 8
  start-page: 10756
  year: 2014
  publication-title: ACS Nano
– volume: 44
  start-page: 5053
  year: 2015
  publication-title: Chem. Soc. Rev.
– volume: 10
  start-page: 1398
  year: 2010
  publication-title: Nano Lett.
– volume: 199
  start-page: 282
  year: 2016
  publication-title: Appl. Catal. B
– volume: 8
  start-page: 598
  year: 2013
  publication-title: Nano Today
– volume: 256
  start-page: 2521
  year: 2012
  publication-title: Coord. Chem. Rev.
– volume: 35
  start-page: 171
  year: 2017
  publication-title: Nano Energy
– volume: 275
  start-page: 1102
  year: 1997
  publication-title: Science
– volume: 117
  start-page: 17879
  year: 2013
  publication-title: J. Phys. Chem. C
– volume: 127
  start-page: 7632
  year: 2005
  publication-title: J. Am. Chem. Soc.
– volume: 1
  start-page: 259
  year: 2014
  publication-title: Mater. Horiz.
– volume: 28
  start-page: 6781
  year: 2016
  publication-title: Adv. Mater.
– volume: 9
  start-page: 4583
  year: 2015
  publication-title: ACS Nano
– volume: 3
  start-page: 1500243
  year: 2016
  publication-title: Adv. Sci.
– volume: 11
  start-page: 2115
  year: 2015
  publication-title: Small
– volume: 5
  start-page: 3829
  year: 2017
  publication-title: ACS Sustainable Chem. Eng.
– volume: 11
  start-page: 5548
  year: 2011
  publication-title: Nano Lett.
– volume: 111
  start-page: 8677
  year: 2007
  publication-title: J. Phys. Chem. C
– volume: 4
  start-page: 116
  year: 2014
  publication-title: ACS Catal.
– volume: 70
  start-page: 3898
  year: 1998
  publication-title: Anal. Chem.
– volume: 3
  start-page: 2997
  year: 2013
  publication-title: Sci. Rep.
– volume: 6
  start-page: 15052
  year: 2014
  publication-title: ACS Appl. Mater. Interfaces
– volume: 9
  start-page: 17118
  year: 2017
  publication-title: Nanoscale
– volume: 9
  start-page: 7075
  year: 2017
  publication-title: ACS Appl. Mater. Interfaces
– volume: 8
  start-page: 10403
  year: 2014
  publication-title: ACS Nano
– volume: 5
  start-page: 23681
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 11
  start-page: 4978
  year: 2011
  publication-title: Nano Lett.
– volume: 137
  start-page: 10735
  year: 2015
  publication-title: J. Am. Chem. Soc.
– volume: 110
  start-page: 6446
  year: 2010
  publication-title: Chem. Rev.
– volume: 8
  start-page: 11739
  year: 2014
  publication-title: ACS Nano
– volume: 128
  start-page: 2200
  year: 2006
  publication-title: J. Am. Chem. Soc.
– volume: 7
  start-page: 1409
  year: 2014
  publication-title: Energy Environ. Sci.
– volume: 5
  start-page: 4948
  year: 2014
  publication-title: Nat. Commun.
– volume: 118
  start-page: 26560
  year: 2014
  publication-title: J. Phys. Chem. C
– volume: 9
  start-page: 3010
  year: 2017
  publication-title: Nanoscale
– volume: 10
  start-page: 911
  year: 2011
  publication-title: Nat. Mater.
– volume: 4
  start-page: 269
  year: 2015
  publication-title: Nanophotonics
– volume: 332
  start-page: 702
  year: 2011
  publication-title: Science
– volume: 4
  start-page: 2724
  year: 2013
  publication-title: Chem. Sci.
– volume: 50
  start-page: 31
  year: 2014
  publication-title: Mater. Res. Bull.
– volume: 25
  start-page: 3264
  year: 2013
  publication-title: Adv. Mater.
– volume: 119
  start-page: 1271
  year: 2015
  publication-title: J. Phys. Chem. C
– volume: 27
  start-page: 235401
  year: 2016
  publication-title: Nanotechnology
– volume: 5
  start-page: 4249
  year: 2017
  publication-title: ACS Sustainable Chem. Eng.
– volume: 11
  start-page: 283
  year: 2016
  publication-title: Nanoscale Res. Lett.
– volume: 133
  start-page: 5202
  year: 2011
  publication-title: J. Am. Chem. Soc.
– volume: 7
  start-page: 421
  year: 2014
  publication-title: ChemSusChem
– volume: 9
  start-page: 237
  year: 2014
  publication-title: Nano Energy
– volume: 10
  start-page: 25
  year: 2015
  publication-title: Nat. Nanotechnol.
– volume: 1
  start-page: 12229
  year: 2013
  publication-title: J. Mater. Chem. A
– volume: 8
  start-page: 2891
  year: 2015
  publication-title: Nano Res.
– volume: 6
  start-page: 373
  year: 2016
  publication-title: Results Phys.
– volume: 9
  start-page: 16922
  year: 2017
  publication-title: Nanoscale
– volume: 14
  start-page: 567
  year: 2015
  publication-title: Nat. Mater.
– volume: 6
  start-page: 6727
  year: 2014
  publication-title: Nanoscale
– volume: 136
  start-page: 1559
  year: 2014
  publication-title: J. Am. Chem. Soc.
– volume: 29
  start-page: 189
  year: 1978
  publication-title: Annu. Rev. Phys. Chem.
– volume: 6
  start-page: 29907
  year: 2016
  publication-title: Sci. Rep.
– volume: 47
  start-page: 6763
  year: 2011
  publication-title: Chem. Commun.
– volume: 42
  start-page: 2321
  year: 2013
  publication-title: Chem. Soc. Rev.
– volume: 12
  start-page: 231
  year: 2015
  publication-title: Nano Energy
– volume: 54
  start-page: 3259
  year: 2015
  publication-title: Angew. Chem., Int. Ed.
– volume: 25
  start-page: 371
  year: 2016
  publication-title: J. Energy Chem.
– volume: 414
  start-page: 338
  year: 2001
  publication-title: Nature
– volume: 26
  start-page: 415
  year: 2014
  publication-title: Chem. Mater.
– volume: 2
  start-page: 465
  year: 2008
  publication-title: Nat. Photonics
– volume: 6
  start-page: 1501339
  year: 2016
  publication-title: Adv. Energy Mater.
– volume: 9
  start-page: 1735
  year: 2016
  publication-title: Nano Res.
– volume: 4
  start-page: 46697
  year: 2014
  publication-title: RSC Adv.
– volume: 134
  start-page: 12406
  year: 2012
  publication-title: J. Am. Chem. Soc.
– volume: 27
  start-page: 5328
  year: 2015
  publication-title: Adv. Mater.
– volume: 119
  start-page: 15506
  year: 2015
  publication-title: J. Phys. Chem. C
– volume: 451
  start-page: 163
  year: 2008
  publication-title: Nature
– volume: 1
  start-page: 1441
  year: 2011
  publication-title: ACS Catal.
– volume: 8
  start-page: 618
  year: 2015
  publication-title: ChemSusChem
– volume: 6
  start-page: 407
  year: 2013
  publication-title: Energy Environ. Sci.
– volume: 107
  start-page: 668
  year: 2002
  publication-title: J. Phys. Chem. B
– volume: 6
  start-page: 7447
  year: 2015
  publication-title: Nat. Commun.
– volume: 21
  start-page: 547
  year: 2009
  publication-title: Chem. Mater.
– volume: 2
  start-page: 103
  year: 2009
  publication-title: Energy Environ. Sci.
– volume: 134
  start-page: 4294
  year: 2012
  publication-title: J. Am. Chem. Soc.
– volume: 20
  start-page: 4371
  year: 2010
  publication-title: J. Mater. Chem.
– volume: 58
  start-page: 2059
  year: 1987
  publication-title: Phys. Rev. Lett.
– volume: 5
  start-page: 112
  year: 2016
  publication-title: Nanophotonics
– volume: 42
  start-page: 2679
  year: 2013
  publication-title: Chem. Soc. Rev.
– volume: 11
  start-page: 554
  year: 2015
  publication-title: Small
– volume: 5
  start-page: 60339
  year: 2015
  publication-title: RSC Adv.
– volume: 6
  start-page: 14950
  year: 2014
  publication-title: Nanoscale
– volume: 111
  start-page: 3913
  year: 2011
  publication-title: Chem. Rev.
– volume: 8
  start-page: 7088
  year: 2014
  publication-title: ACS Nano
– volume: 46
  start-page: 2036
  year: 2007
  publication-title: Angew. Chem., Int. Ed.
– volume: 113
  start-page: 16394
  year: 2009
  publication-title: J. Phys. Chem. C
– volume: 105
  start-page: 11439
  year: 2001
  publication-title: J. Phys. Chem. B
– volume: 6
  start-page: 347
  year: 2013
  publication-title: Energy Environ. Sci.
– volume: 4
  start-page: 6926
  year: 2016
  publication-title: J. Mater. Chem. A
– volume: 6
  start-page: 4480
  year: 2014
  publication-title: ACS Appl. Mater. Interfaces
– volume: 487
  start-page: 153
  year: 2010
  publication-title: Chem. Phys. Lett.
– ident: e_1_2_8_24_1
  doi: 10.1021/jp3034984
– ident: e_1_2_8_146_1
  doi: 10.1515/nanoph-2015-0017
– ident: e_1_2_8_48_1
  doi: 10.1016/j.jechem.2016.02.013
– ident: e_1_2_8_59_1
  doi: 10.1038/srep02997
– ident: e_1_2_8_125_1
  doi: 10.1186/s11671-016-1492-8
– ident: e_1_2_8_41_1
  doi: 10.1021/cm4021518
– ident: e_1_2_8_68_1
  doi: 10.1021/ja042192u
– ident: e_1_2_8_55_1
  doi: 10.1039/c3ta01450a
– ident: e_1_2_8_67_1
  doi: 10.1126/science.1203056
– ident: e_1_2_8_25_1
  doi: 10.1039/C7NR04802E
– ident: e_1_2_8_26_1
  doi: 10.1039/C2CS35367A
– ident: e_1_2_8_57_1
  doi: 10.1126/science.275.5303.1102
– ident: e_1_2_8_29_1
  doi: 10.1021/jp011118k
– ident: e_1_2_8_32_1
  doi: 10.1002/adma.201600305
– ident: e_1_2_8_5_1
  doi: 10.1038/238037a0
– ident: e_1_2_8_107_1
  doi: 10.1016/j.rinp.2016.07.002
– ident: e_1_2_8_126_1
  doi: 10.1021/acs.nanolett.5b02453
– ident: e_1_2_8_27_1
  doi: 10.1021/jp905247j
– ident: e_1_2_8_82_1
  doi: 10.1039/c0jm00135j
– ident: e_1_2_8_95_1
  doi: 10.1021/nn3024877
– ident: e_1_2_8_10_1
  doi: 10.1002/cnma.201600035
– ident: e_1_2_8_54_1
  doi: 10.1039/C4CY00974F
– ident: e_1_2_8_87_1
  doi: 10.1016/j.apcatb.2016.06.050
– ident: e_1_2_8_127_1
  doi: 10.1016/j.cplett.2014.06.045
– ident: e_1_2_8_9_1
  doi: 10.1039/C5TA08202A
– ident: e_1_2_8_70_1
  doi: 10.1021/cs200320h
– ident: e_1_2_8_93_1
  doi: 10.1021/am503044f
– ident: e_1_2_8_128_1
  doi: 10.1021/acssuschemeng.6b02883
– ident: e_1_2_8_88_1
  doi: 10.1039/C4RA08216H
– ident: e_1_2_8_111_1
  doi: 10.1016/j.ccr.2012.06.017
– ident: e_1_2_8_6_1
  doi: 10.1021/jp508618t
– ident: e_1_2_8_21_1
  doi: 10.1039/c1cc10665a
– ident: e_1_2_8_75_1
  doi: 10.1016/j.cplett.2010.01.062
– ident: e_1_2_8_30_1
  doi: 10.1021/ja042925a
– ident: e_1_2_8_61_1
  doi: 10.1002/anie.200604637
– ident: e_1_2_8_52_1
  doi: 10.1021/ac9712310
– ident: e_1_2_8_148_1
  doi: 10.1002/aenm.201501654
– ident: e_1_2_8_100_1
  doi: 10.1039/C6NR05605A
– ident: e_1_2_8_135_1
  doi: 10.1021/acsami.6b14618
– ident: e_1_2_8_16_1
  doi: 10.1039/c3ta12856c
– ident: e_1_2_8_106_1
  doi: 10.1002/aenm.201501339
– ident: e_1_2_8_77_1
  doi: 10.1021/nl201766h
– ident: e_1_2_8_131_1
  doi: 10.1103/PhysRevLett.83.2942
– ident: e_1_2_8_86_1
  doi: 10.1038/ncomms5948
– ident: e_1_2_8_33_1
  doi: 10.1002/adma.201500888
– ident: e_1_2_8_34_1
  doi: 10.1039/C6TA06405A
– ident: e_1_2_8_4_1
  doi: 10.1002/smll.201402420
– ident: e_1_2_8_96_1
  doi: 10.1016/j.nanoen.2014.07.019
– ident: e_1_2_8_43_1
  doi: 10.1016/j.nantod.2013.12.002
– ident: e_1_2_8_20_1
  doi: 10.1039/C4NR04886E
– ident: e_1_2_8_98_1
  doi: 10.1038/srep29907
– ident: e_1_2_8_119_1
  doi: 10.1038/ncomms3651
– ident: e_1_2_8_134_1
  doi: 10.1039/c3ee43278e
– ident: e_1_2_8_138_1
  doi: 10.1039/C4CS00408F
– ident: e_1_2_8_12_1
  doi: 10.1021/ja411651e
– ident: e_1_2_8_72_1
  doi: 10.1021/ja0578350
– ident: e_1_2_8_53_1
  doi: 10.1246/bcsj.20120256
– ident: e_1_2_8_69_1
  doi: 10.1021/nl203457v
– ident: e_1_2_8_132_1
  doi: 10.1021/ja034650p
– ident: e_1_2_8_136_1
  doi: 10.1002/smll.201400970
– ident: e_1_2_8_51_1
  doi: 10.1021/nl049573q
– ident: e_1_2_8_147_1
  doi: 10.1021/acsnano.5b01226
– ident: e_1_2_8_84_1
  doi: 10.1039/c3sc50496d
– ident: e_1_2_8_19_1
  doi: 10.1039/C4NR01380H
– ident: e_1_2_8_23_1
  doi: 10.1039/C6TA10471A
– ident: e_1_2_8_79_1
  doi: 10.1016/j.materresbull.2013.10.017
– ident: e_1_2_8_42_1
  doi: 10.1038/35104607
– ident: e_1_2_8_31_1
  doi: 10.1021/cs400993w
– ident: e_1_2_8_129_1
  doi: 10.1103/PhysRevLett.58.2059
– ident: e_1_2_8_46_1
  doi: 10.1038/ncomms8447
– ident: e_1_2_8_112_1
  doi: 10.1021/ja3051734
– ident: e_1_2_8_3_1
  doi: 10.1039/C7NR06697J
– ident: e_1_2_8_118_1
  doi: 10.1016/j.nanoen.2017.03.035
– ident: e_1_2_8_141_1
  doi: 10.1038/nmat4281
– ident: e_1_2_8_73_1
  doi: 10.1002/anie.200600356
– ident: e_1_2_8_65_1
  doi: 10.1038/nnano.2014.311
– ident: e_1_2_8_109_1
  doi: 10.1021/acsami.5b09091
– ident: e_1_2_8_39_1
  doi: 10.1016/j.cplett.2011.03.074
– ident: e_1_2_8_78_1
  doi: 10.1021/nn504484u
– ident: e_1_2_8_1_1
  doi: 10.1021/cm4023198
– ident: e_1_2_8_14_1
  doi: 10.1039/C3MH00097D
– ident: e_1_2_8_50_1
  doi: 10.1039/C1EE02875H
– ident: e_1_2_8_110_1
  doi: 10.1021/jacs.5b06323
– ident: e_1_2_8_130_1
  doi: 10.1038/nphoton.2008.146
– ident: e_1_2_8_91_1
  doi: 10.1063/1.4916224
– ident: e_1_2_8_120_1
  doi: 10.1038/35104607
– ident: e_1_2_8_40_1
  doi: 10.1002/anie.201409116
– ident: e_1_2_8_63_1
  doi: 10.1021/nl100199h
– ident: e_1_2_8_113_1
  doi: 10.1002/cssc.201301120
– ident: e_1_2_8_89_1
  doi: 10.1021/ja042192u
– ident: e_1_2_8_7_1
  doi: 10.1146/annurev.pc.29.100178.001201
– ident: e_1_2_8_117_1
  doi: 10.1021/nl1022354
– ident: e_1_2_8_145_1
  doi: 10.1002/adma.201205076
– ident: e_1_2_8_8_1
  doi: 10.1039/C7TA08415C
– ident: e_1_2_8_83_1
  doi: 10.1039/C2EE23668K
– ident: e_1_2_8_139_1
  doi: 10.1021/am500234v
– ident: e_1_2_8_11_1
  doi: 10.1039/c3ta12856c
– ident: e_1_2_8_104_1
  doi: 10.1021/nl4018385
– ident: e_1_2_8_38_1
  doi: 10.1039/C2EE22618A
– ident: e_1_2_8_13_1
  doi: 10.1039/C4NR01380H
– ident: e_1_2_8_45_1
  doi: 10.1021/jp405291g
– ident: e_1_2_8_90_1
  doi: 10.1021/acs.nanolett.5b02453
– ident: e_1_2_8_17_1
  doi: 10.1021/nn5051954
– ident: e_1_2_8_97_1
  doi: 10.1021/nn300679d
– ident: e_1_2_8_142_1
  doi: 10.1021/cs400993w
– ident: e_1_2_8_121_1
  doi: 10.1007/s12274-016-1067-0
– ident: e_1_2_8_149_1
  doi: 10.1002/aenm.201501496
– ident: e_1_2_8_116_1
  doi: 10.1002/cssc.201403013
– ident: e_1_2_8_15_1
  doi: 10.1039/c3nr03425a
– ident: e_1_2_8_37_1
  doi: 10.1021/cr00033a003
– ident: e_1_2_8_85_1
  doi: 10.1021/acs.jpcc.5b02357
– ident: e_1_2_8_81_1
  doi: 10.1039/C5RA06241A
– ident: e_1_2_8_144_1
  doi: 10.1021/ja502704n
– ident: e_1_2_8_114_1
  doi: 10.1021/ja210755h
– ident: e_1_2_8_92_1
  doi: 10.1088/0957-4484/27/30/305403
– ident: e_1_2_8_71_1
  doi: 10.1021/ja200086g
– ident: e_1_2_8_122_1
  doi: 10.1021/cm802894z
– ident: e_1_2_8_49_1
  doi: 10.1021/jp026731y
– ident: e_1_2_8_2_1
  doi: 10.1038/nature06381
– ident: e_1_2_8_137_1
  doi: 10.1021/nn501996a
– ident: e_1_2_8_28_1
  doi: 10.1007/s11468-012-9418-5
– ident: e_1_2_8_123_1
  doi: 10.1039/C2CS35260E
– ident: e_1_2_8_115_1
  doi: 10.1039/C0SC00578A
– ident: e_1_2_8_133_1
  doi: 10.1021/jp044228a
– ident: e_1_2_8_35_1
  doi: 10.1039/C6NR09280B
– ident: e_1_2_8_44_1
  doi: 10.1039/B812177J
– ident: e_1_2_8_108_1
  doi: 10.1039/C6CP06903G
– ident: e_1_2_8_47_1
  doi: 10.1021/nn503751s
– ident: e_1_2_8_101_1
  doi: 10.1021/acssuschemeng.7b00242
– ident: e_1_2_8_56_1
  doi: 10.1039/C1EE02875H
– ident: e_1_2_8_150_1
  doi: 10.1038/ncomms10348
– ident: e_1_2_8_62_1
  doi: 10.1021/nl500008y
– ident: e_1_2_8_74_1
  doi: 10.1038/ncomms3651
– ident: e_1_2_8_124_1
  doi: 10.1088/0957-4484/27/23/235401
– ident: e_1_2_8_140_1
  doi: 10.1016/j.nanoen.2014.12.037
– ident: e_1_2_8_22_1
  doi: 10.1515/nanoph-2016-0018
– ident: e_1_2_8_80_1
  doi: 10.1021/jp507988c
– ident: e_1_2_8_105_1
  doi: 10.1002/advs.201500243
– ident: e_1_2_8_18_1
  doi: 10.1002/smll.201401919
– ident: e_1_2_8_64_1
  doi: 10.1021/jp406733k
– ident: e_1_2_8_66_1
  doi: 10.1088/0034-4885/76/4/046401
– ident: e_1_2_8_103_1
  doi: 10.1021/nl2029392
– ident: e_1_2_8_58_1
  doi: 10.1038/nmat2162
– ident: e_1_2_8_36_1
  doi: 10.1021/cr1002326
– ident: e_1_2_8_76_1
  doi: 10.1021/cr200061k
– ident: e_1_2_8_94_1
  doi: 10.1039/C4NR03735A
– ident: e_1_2_8_143_1
  doi: 10.1021/jp306555j
– ident: e_1_2_8_99_1
  doi: 10.1007/s12274-015-0794-y
– ident: e_1_2_8_102_1
  doi: 10.1021/jp071906v
– ident: e_1_2_8_60_1
  doi: 10.1038/nmat3151
SSID ssj0001121283
Score 2.421291
SecondaryResourceType review_article
Snippet Surface plasmon resonance (SPR) effect of metal nanostructures is established as an efficient and attractive strategy to boost visible‐light or even...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Chemical energy
Energy conversion
Heterostructures
Infrared radiation
Nanostructure
noble metal
photo‐electrochemical water splitting
Semiconductors
surface plasmon resonance
Thin films
Three dimensional composites
Water splitting
Well construction
Title Plasmon‐Dictated Photo‐Electrochemical Water Splitting for Solar‐to‐Chemical Energy Conversion: Current Status and Future Perspectives
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadmi.201701098
https://www.proquest.com/docview/2017931256
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LbtNAFB2FVEhsEE9RKGgWSCyQSzK258EuahMVpKJKaSBiY3keViPRBDXJhhVfgPgQvoov4c4zDpRXFclKxjO243s89-F7zyD0VChREqGbTNFCgoOiRWYpoDOp-7KgnJmeWw7o-A09mhSvp-W00_nWylpar-S--nRpXclVpAptIFdbJfsfkk0HhQb4DvKFLUgYtv8k4xMwfeFkKWHhcKas7aifn5wtVovUPPRL3ajIDfCutsyIYzA_fdKzzTQcWxc3jWgNTowCQ18leGDT1F2MzQYTIr2TtVnXnu555FhKXGp9qOJcti3gQUw6OLdXYe-Ro6y4aGxuWBT_dFa7EO7IRrPjlUyjlrX5Q7O1Q2bgDQ9hi76r4_OVxX52g5mSZiz3rLP75pK2MD2XLRTSlp5OWuwXJeBJZWt9PrOpe8y-_OMbdRdf8aee5Z_7enLgw-NXaf81tEPAKSFdtDN4O3k_2cT0-mAIOObX9E8iT2iPvNg-ybYdtHFu2i6Ss3FOb6GbwTnBA4-026hj5nfQdZckrJZ30ZeAt--fv0akYYc0aPgJY9hhDCeMYcAYdhiDvm5AxBX2uMIbXL3EAVXYowoDqrBHFW6j6h4aj4anB0dZWM8jUzkHvZqLWhR1zo0WhHDFQJkwaYpSCt3jwjDrK0jKNdGcU8pY0wimwF5WDeclye-j7nwxNw8QNoxLkpu6D58il0xyCt4XrRuV9zT82EVZvLeVClT3dsWVD5Un6SaVlUWVZLGLnqX-Hz3Jy2977kVRVWEiWLq9IgdPAU5MnPj-cpRqC04PrzLoEbqxear2UHd1sTaPwTxeyScBlT8APaO2pA
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JS8NAFB60InoRV1yqzkHwFJpO0lm8lS602kqhVsVLyCxBQVvpcvcXiL_RX-KbSdLqQQTJadZA3ryZb17e-x5CZ0KJChE68RQNJVxQtPAsBbQndVmGlDPju3RA3WvaGoSX95Xcm9DGwqT8EHODm9UMt19bBbcG6dKCNTTWL0_WN4vZvzt8Ga1YaMMLaKV6O3gYLAwtZdidHR0nKCf1WFDxc_JGn5R-TvLzcFogzu-41R08zU20kSFGXE1FvIWWzHAbrTrPTTXZQe89wL-wlj7fPupPykJHjXuPo-kIKhppjhuVkQLgO2gd4z7gTuftjAGw4r6920JfNyCnD8ANFxKIa9Yn3RnULnDG5IQtPJ1NcDzUuOkISXBvEbA52UX9ZuOm1vKyJAuegssp9wIRizAOuNGCEK4YaDiTJqxIoX0uDLMATlKuieacUsaSRDAFIEYlnMMldg8VhqOh2UfYMC5JYOIyPGEgmeQUIDGNExX4GgoHyMu_baQy_nGbBuM5SpmTSWRlEc1lcYDO5_1fU-aNX3sWc1FFmQZOXKsIAL7Bi4kT3x-zRNV6tz0vHf5n0Claa910O1GnfX11hNah3oUvkqCICtPxzBwDfpnKk2yFfgHEquya
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF60ongRn1ifexA8BdNNug9vxTbUR0uhVsVLyD6CBW3Ftnd_gfgb_SXObtLGHkSQnPYZyOzsfrOZ-QahE6FElQideoqGEgwULTxLAe1JXZEh5cz4Lh1Qq02bvfDqofrwI4o_44eYXbhZzXD7tVXwV52eFaShiX7pW9csZn_u8EW0ZKnyYF0v1e56j73inqUCm7Nj4wTdpB4Lqv6Uu9EnZ_OTzJ9NBeD8CVvduROto7UcMOJaJuENtGAGm2jZOW6q0Rb66AD8haX09f5Z7yuLHDXuPA3HQ6hoZCluVM4JgO-h9Q13AXY6Z2cMeBV3rWkLfd2AKXsAbriIQHxhXdLdfdo5zomcsEWnkxFOBhpHjo8Ed4p4zdE26kaN24uml-dY8BTYptwLRCLCJOBGC0K4YqDgTJqwKoX2uTDM4jdJuSaac0oZS1PBFGAYlXIONuwOKg2GA7OLsGFcksAkFXjCQDLJKSBimqQq8DUUysibfttY5fTjNgvGc5wRJ5PYyiKeyaKMTmf9XzPijV97HkxFFecKOHKtIgD0Bi8mTnx_zBLX6q3LWWnvP4OO0UqnHsU3l-3rfbQK1S54kQQHqDR-m5hDQC9jeZQv0G9fNuvD
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Plasmon%E2%80%90Dictated+Photo%E2%80%90Electrochemical+Water+Splitting+for+Solar%E2%80%90to%E2%80%90Chemical+Energy+Conversion%3A+Current+Status+and+Future+Perspectives&rft.jtitle=Advanced+materials+interfaces&rft.au=Xiao%2C+Fang%E2%80%90Xing&rft.au=Liu%2C+Bin&rft.date=2018-03-23&rft.issn=2196-7350&rft.eissn=2196-7350&rft.volume=5&rft.issue=6&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadmi.201701098&rft.externalDBID=10.1002%252Fadmi.201701098&rft.externalDocID=ADMI201701098
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2196-7350&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2196-7350&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2196-7350&client=summon