Plasmon‐Dictated Photo‐Electrochemical Water Splitting for Solar‐to‐Chemical Energy Conversion: Current Status and Future Perspectives
Surface plasmon resonance (SPR) effect of metal nanostructures is established as an efficient and attractive strategy to boost visible‐light or even near‐infrared‐responsive photo‐electrochemical (PEC) water splitting devices for substantial solar‐to‐chemical energy conversion. Rational integration...
Saved in:
Published in | Advanced materials interfaces Vol. 5; no. 6 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Weinheim
John Wiley & Sons, Inc
23.03.2018
|
Subjects | |
Online Access | Get full text |
ISSN | 2196-7350 2196-7350 |
DOI | 10.1002/admi.201701098 |
Cover
Loading…
Abstract | Surface plasmon resonance (SPR) effect of metal nanostructures is established as an efficient and attractive strategy to boost visible‐light or even near‐infrared‐responsive photo‐electrochemical (PEC) water splitting devices for substantial solar‐to‐chemical energy conversion. Rational integration of plasmonic metal nanostructures with semiconductors in an appropriate fashion is beneficial for creating a large variety of plasmonic metal/semiconductor photoelectrodes. However, up to date, construction of well‐defined and highly efficient plasmonic metal/semiconductor heterostructures is still in its infant stage. In this review, basic principles of PEC water splitting over semiconductors, SPR‐excited plasmonic effect of metal nanostructures, and their intrinsic correlation with each other are first concisely introduced. Subsequently, it is paid great attention to specifically summarize the diverse plasmonic metal/semiconductor photoelectrodes currently being extensively explored for indirect plasmon‐induced PEC water splitting. Particularly, different plasmonic metal/semiconductor nanoarchitectures including planar thin films, 1D composited, and 3D spatially hierarchical heterostructures are systematically classified and elucidated. Finally, future perspectives and challenges in triggering further innovative thinking on plasmon‐enhanced solar water splitting are envisaged. It is anticipated that this review can provide enriched information on rational design and construction of various plasmonic metal/semiconductor heterostructures for solar‐powered plasmon‐based PEC devices.
Surface plasmon resonance effect of metal nanostructures is established as an efficient and attractive strategy to boost visible‐light or even near‐infrared‐responsive photo‐electrochemical water splitting devices for substantial solar‐to‐chemical energy conversion. In this review article, different plasmonic metal/semiconductor nanoarchitectures including planar thin films, 1D composited, and 3D spatially hierarchical heterostructures are comprehensively and systematically elucidated. |
---|---|
AbstractList | Surface plasmon resonance (SPR) effect of metal nanostructures is established as an efficient and attractive strategy to boost visible‐light or even near‐infrared‐responsive photo‐electrochemical (PEC) water splitting devices for substantial solar‐to‐chemical energy conversion. Rational integration of plasmonic metal nanostructures with semiconductors in an appropriate fashion is beneficial for creating a large variety of plasmonic metal/semiconductor photoelectrodes. However, up to date, construction of well‐defined and highly efficient plasmonic metal/semiconductor heterostructures is still in its infant stage. In this review, basic principles of PEC water splitting over semiconductors, SPR‐excited plasmonic effect of metal nanostructures, and their intrinsic correlation with each other are first concisely introduced. Subsequently, it is paid great attention to specifically summarize the diverse plasmonic metal/semiconductor photoelectrodes currently being extensively explored for indirect plasmon‐induced PEC water splitting. Particularly, different plasmonic metal/semiconductor nanoarchitectures including planar thin films, 1D composited, and 3D spatially hierarchical heterostructures are systematically classified and elucidated. Finally, future perspectives and challenges in triggering further innovative thinking on plasmon‐enhanced solar water splitting are envisaged. It is anticipated that this review can provide enriched information on rational design and construction of various plasmonic metal/semiconductor heterostructures for solar‐powered plasmon‐based PEC devices. Surface plasmon resonance (SPR) effect of metal nanostructures is established as an efficient and attractive strategy to boost visible‐light or even near‐infrared‐responsive photo‐electrochemical (PEC) water splitting devices for substantial solar‐to‐chemical energy conversion. Rational integration of plasmonic metal nanostructures with semiconductors in an appropriate fashion is beneficial for creating a large variety of plasmonic metal/semiconductor photoelectrodes. However, up to date, construction of well‐defined and highly efficient plasmonic metal/semiconductor heterostructures is still in its infant stage. In this review, basic principles of PEC water splitting over semiconductors, SPR‐excited plasmonic effect of metal nanostructures, and their intrinsic correlation with each other are first concisely introduced. Subsequently, it is paid great attention to specifically summarize the diverse plasmonic metal/semiconductor photoelectrodes currently being extensively explored for indirect plasmon‐induced PEC water splitting. Particularly, different plasmonic metal/semiconductor nanoarchitectures including planar thin films, 1D composited, and 3D spatially hierarchical heterostructures are systematically classified and elucidated. Finally, future perspectives and challenges in triggering further innovative thinking on plasmon‐enhanced solar water splitting are envisaged. It is anticipated that this review can provide enriched information on rational design and construction of various plasmonic metal/semiconductor heterostructures for solar‐powered plasmon‐based PEC devices. Surface plasmon resonance effect of metal nanostructures is established as an efficient and attractive strategy to boost visible‐light or even near‐infrared‐responsive photo‐electrochemical water splitting devices for substantial solar‐to‐chemical energy conversion. In this review article, different plasmonic metal/semiconductor nanoarchitectures including planar thin films, 1D composited, and 3D spatially hierarchical heterostructures are comprehensively and systematically elucidated. |
Author | Liu, Bin Xiao, Fang‐Xing |
Author_xml | – sequence: 1 givenname: Fang‐Xing surname: Xiao fullname: Xiao, Fang‐Xing email: fxxiao@fzu.edu.cn organization: Fuzhou University – sequence: 2 givenname: Bin orcidid: 0000-0002-4685-2052 surname: Liu fullname: Liu, Bin email: liubin@ntu.edu.sg organization: Nanyang Technological University |
BookMark | eNqFkM1KAzEUhYNUUGu3rgOuW_PTmUnclbFqoWKhgsshzWTayDSpSUbpzicQn9EnMbX-IYiLcJPc893DPQegZaxRABxh1MMIkRNRLnWPIJwhjDjbAfsE87Sb0QS1ftz3QMf7O4QQxgQTRvfB86QWfmnN69PLmZZBBFXCycIGGz-GtZLBWblQSy1FDW9j18HpqtYhaDOHlY0vWwsXte9A_qkcGuXma5hb86Cc19acwrxxTpkAp9Gj8VCYEp43oXEKTqJkFZ30g_KHYLcStVedj9oG0_PhTX7ZHV9fjPLBuCspo6xLueB9QZkqOSFMZoySbKb6yYyXiHGVJYixWcpKUjKWpllWVTyTNJ6KsYTQNjjeTl05e98oH4o72zgTDYtNhJxikqRR1duqpLPeO1UVK6eXwq0LjIpN6MUm9OIr9Aj0fwFSx23j-sEJXf-N8S32qGu1_sekGJxdjb7ZN2bcnqk |
CitedBy_id | crossref_primary_10_1021_acs_jpcc_9b10132 crossref_primary_10_1021_acs_inorgchem_3c02857 crossref_primary_10_1515_nanoph_2019_0019 crossref_primary_10_1039_D3TA02889E crossref_primary_10_1016_j_mtchem_2018_11_001 crossref_primary_10_1039_D2NR02741K crossref_primary_10_1021_acs_energyfuels_4c00601 crossref_primary_10_1002_smll_202307619 crossref_primary_10_1021_acs_inorgchem_4c01091 crossref_primary_10_1021_acs_jpcc_8b02895 crossref_primary_10_1039_D2NR05937A crossref_primary_10_1007_s11708_024_0950_8 crossref_primary_10_1016_j_cej_2022_140378 crossref_primary_10_1039_D0NJ06089E crossref_primary_10_1016_j_optmat_2021_110944 crossref_primary_10_1002_adfm_201900194 crossref_primary_10_1039_C8TA08841A crossref_primary_10_6023_A21080405 crossref_primary_10_1002_slct_201901546 crossref_primary_10_1039_D3TA01154B crossref_primary_10_3390_en13020420 crossref_primary_10_1016_j_mtchem_2023_101783 crossref_primary_10_1021_acs_inorgchem_3c02700 crossref_primary_10_1038_s42004_024_01149_8 crossref_primary_10_1039_C9QI00750D crossref_primary_10_1016_j_ijhydene_2020_11_191 crossref_primary_10_1039_D0TA07235D crossref_primary_10_1016_j_jcat_2023_115203 crossref_primary_10_1038_s41598_018_34248_3 crossref_primary_10_1038_s41598_024_82949_9 crossref_primary_10_1021_acsomega_2c01335 crossref_primary_10_1016_j_electacta_2021_138995 crossref_primary_10_1039_C9NR00229D crossref_primary_10_1021_acsaem_0c01154 crossref_primary_10_1016_j_ceramint_2019_08_033 crossref_primary_10_1088_1361_6463_abfb18 crossref_primary_10_1021_acsanm_2c02442 crossref_primary_10_1021_acs_inorgchem_3c04083 crossref_primary_10_1021_acs_jpcc_9b08738 crossref_primary_10_1088_2515_7655_ab0718 crossref_primary_10_1039_D2NR05044G crossref_primary_10_1039_C8CY02283F crossref_primary_10_1039_C9TA01144G crossref_primary_10_1021_acs_jpcc_9b09421 crossref_primary_10_1002_adfm_202110848 crossref_primary_10_1021_acs_inorgchem_3c02951 crossref_primary_10_1039_C9TA11579J crossref_primary_10_1039_D3SC05761E crossref_primary_10_1002_smll_202404727 crossref_primary_10_1016_j_ijhydene_2019_12_196 crossref_primary_10_1007_s00604_024_06592_x crossref_primary_10_1016_S1003_6326_20_65325_0 crossref_primary_10_1021_acsaem_0c00648 crossref_primary_10_1039_C8NR03557A crossref_primary_10_1016_j_ccr_2023_215285 crossref_primary_10_1016_j_ccr_2023_215362 crossref_primary_10_1016_j_renene_2020_12_076 crossref_primary_10_1021_acsphotonics_1c00885 crossref_primary_10_3390_molecules29010034 crossref_primary_10_1016_j_cjsc_2023_100173 crossref_primary_10_1039_C9NJ02593F crossref_primary_10_1021_acsaem_0c01133 crossref_primary_10_1088_1361_6463_ab6e9f crossref_primary_10_1002_admi_202300230 crossref_primary_10_1016_j_coco_2023_101558 crossref_primary_10_1039_C8TA10379H crossref_primary_10_1016_j_cej_2021_133222 crossref_primary_10_1021_acs_inorgchem_3c03283 crossref_primary_10_1039_C9QM00066F crossref_primary_10_1016_j_surfin_2021_101323 crossref_primary_10_1007_s10563_018_9259_0 crossref_primary_10_1021_acssuschemeng_0c08140 crossref_primary_10_1021_acsanm_0c00210 crossref_primary_10_1039_C8NR06788K crossref_primary_10_1016_j_jphotochem_2020_112575 crossref_primary_10_1002_adfm_202006738 crossref_primary_10_1016_j_jphotochem_2019_04_026 crossref_primary_10_1039_D3NR05657K crossref_primary_10_1002_admi_202001395 crossref_primary_10_1002_cptc_201900252 crossref_primary_10_1021_acsami_9b14543 crossref_primary_10_1039_D3NR02631K crossref_primary_10_1016_j_elecom_2023_107645 crossref_primary_10_1039_D3QI00472D crossref_primary_10_1021_acsanm_3c05964 crossref_primary_10_1021_acssuschemeng_3c02150 crossref_primary_10_1002_aesr_202100092 crossref_primary_10_1016_j_apsusc_2019_07_034 crossref_primary_10_1021_acs_jpcc_4c06969 crossref_primary_10_1007_s10853_019_03780_6 crossref_primary_10_1021_acsanm_2c02222 crossref_primary_10_1002_cnma_201900751 crossref_primary_10_1007_s12598_019_01255_w crossref_primary_10_1002_aesr_202100094 crossref_primary_10_1002_ppsc_202400190 crossref_primary_10_1007_s12274_022_4203_z |
Cites_doi | 10.1021/jp3034984 10.1515/nanoph-2015-0017 10.1016/j.jechem.2016.02.013 10.1038/srep02997 10.1186/s11671-016-1492-8 10.1021/cm4021518 10.1021/ja042192u 10.1039/c3ta01450a 10.1126/science.1203056 10.1039/C7NR04802E 10.1039/C2CS35367A 10.1126/science.275.5303.1102 10.1021/jp011118k 10.1002/adma.201600305 10.1038/238037a0 10.1016/j.rinp.2016.07.002 10.1021/acs.nanolett.5b02453 10.1021/jp905247j 10.1039/c0jm00135j 10.1021/nn3024877 10.1002/cnma.201600035 10.1039/C4CY00974F 10.1016/j.apcatb.2016.06.050 10.1016/j.cplett.2014.06.045 10.1039/C5TA08202A 10.1021/cs200320h 10.1021/am503044f 10.1021/acssuschemeng.6b02883 10.1039/C4RA08216H 10.1016/j.ccr.2012.06.017 10.1021/jp508618t 10.1039/c1cc10665a 10.1016/j.cplett.2010.01.062 10.1021/ja042925a 10.1002/anie.200604637 10.1021/ac9712310 10.1002/aenm.201501654 10.1039/C6NR05605A 10.1021/acsami.6b14618 10.1039/c3ta12856c 10.1002/aenm.201501339 10.1021/nl201766h 10.1103/PhysRevLett.83.2942 10.1038/ncomms5948 10.1002/adma.201500888 10.1039/C6TA06405A 10.1002/smll.201402420 10.1016/j.nanoen.2014.07.019 10.1016/j.nantod.2013.12.002 10.1039/C4NR04886E 10.1038/srep29907 10.1038/ncomms3651 10.1039/c3ee43278e 10.1039/C4CS00408F 10.1021/ja411651e 10.1021/ja0578350 10.1246/bcsj.20120256 10.1021/nl203457v 10.1021/ja034650p 10.1002/smll.201400970 10.1021/nl049573q 10.1021/acsnano.5b01226 10.1039/c3sc50496d 10.1039/C4NR01380H 10.1039/C6TA10471A 10.1016/j.materresbull.2013.10.017 10.1038/35104607 10.1021/cs400993w 10.1103/PhysRevLett.58.2059 10.1038/ncomms8447 10.1021/ja3051734 10.1039/C7NR06697J 10.1016/j.nanoen.2017.03.035 10.1038/nmat4281 10.1002/anie.200600356 10.1038/nnano.2014.311 10.1021/acsami.5b09091 10.1016/j.cplett.2011.03.074 10.1021/nn504484u 10.1021/cm4023198 10.1039/C3MH00097D 10.1039/C1EE02875H 10.1021/jacs.5b06323 10.1038/nphoton.2008.146 10.1063/1.4916224 10.1002/anie.201409116 10.1021/nl100199h 10.1002/cssc.201301120 10.1146/annurev.pc.29.100178.001201 10.1021/nl1022354 10.1002/adma.201205076 10.1039/C7TA08415C 10.1039/C2EE23668K 10.1021/am500234v 10.1021/nl4018385 10.1039/C2EE22618A 10.1021/jp405291g 10.1021/nn5051954 10.1021/nn300679d 10.1007/s12274-016-1067-0 10.1002/aenm.201501496 10.1002/cssc.201403013 10.1039/c3nr03425a 10.1021/cr00033a003 10.1021/acs.jpcc.5b02357 10.1039/C5RA06241A 10.1021/ja502704n 10.1021/ja210755h 10.1088/0957-4484/27/30/305403 10.1021/ja200086g 10.1021/cm802894z 10.1021/jp026731y 10.1038/nature06381 10.1021/nn501996a 10.1007/s11468-012-9418-5 10.1039/C2CS35260E 10.1039/C0SC00578A 10.1021/jp044228a 10.1039/C6NR09280B 10.1039/B812177J 10.1039/C6CP06903G 10.1021/nn503751s 10.1021/acssuschemeng.7b00242 10.1038/ncomms10348 10.1021/nl500008y 10.1088/0957-4484/27/23/235401 10.1016/j.nanoen.2014.12.037 10.1515/nanoph-2016-0018 10.1021/jp507988c 10.1002/advs.201500243 10.1002/smll.201401919 10.1021/jp406733k 10.1088/0034-4885/76/4/046401 10.1021/nl2029392 10.1038/nmat2162 10.1021/cr1002326 10.1021/cr200061k 10.1039/C4NR03735A 10.1021/jp306555j 10.1007/s12274-015-0794-y 10.1021/jp071906v 10.1038/nmat3151 |
ContentType | Journal Article |
Copyright | 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | AAYXX CITATION 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1002/admi.201701098 |
DatabaseName | CrossRef Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | Materials Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 2196-7350 |
EndPage | n/a |
ExternalDocumentID | 10_1002_admi_201701098 ADMI201701098 |
Genre | reviewArticle |
GrantInformation_xml | – fundername: Prime Minister's Office, Singapore under its Campus for Research Excellence and Technological Enterprise – fundername: Singapore Ministry of Education Academic Research Fund funderid: RG111/15; RG10/16; MOE2016‐T2‐2‐004 – fundername: Agency for Science, Technology and Research of Singapore funderid: M4070232.120 – fundername: National Research Foundation |
GroupedDBID | 0R~ 1OC 24P 33P AAESR AAFWJ AAIHA AAMMB AAXRX AAZKR ABCUV ABJNI ACAHQ ACCZN ACGFS ACPOU ACXBN ACXQS ADBBV ADKYN ADMLS ADOZA ADXAS ADZMN AEFGJ AENEX AFBPY AFPKN AGXDD AIACR AIDQK AIDYY AIURR ALMA_UNASSIGNED_HOLDINGS ALUQN AMYDB ARCSS AVUZU AZVAB BMXJE BRXPI DCZOG DPXWK EBS EJD G-S GODZA LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MY~ M~E O9- P2W R.K ROL SUPJJ WBKPD WOHZO WXSBR ZZTAW AAHHS AAYXX ABJCF ACCFJ ACCMX ADZOD AEEZP AEQDE AFKRA AIWBW AJBDE ARAPS BENPR BFHJK BGLVJ CCPQU CITATION GROUPED_DOAJ HCIFZ KB. M7S PDBOC PHGZM PHGZT PTHSS 7SR 7U5 8BQ 8FD JG9 L7M |
ID | FETCH-LOGICAL-c3838-39a94a38ed9228c78327be45b9d089e75088b68d2d886677ff97c397cf88523 |
ISSN | 2196-7350 |
IngestDate | Fri Jul 25 12:09:10 EDT 2025 Thu Apr 24 22:54:43 EDT 2025 Tue Jul 01 00:39:28 EDT 2025 Wed Aug 20 07:25:26 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c3838-39a94a38ed9228c78327be45b9d089e75088b68d2d886677ff97c397cf88523 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-4685-2052 |
PQID | 2017931256 |
PQPubID | 2034582 |
PageCount | 21 |
ParticipantIDs | proquest_journals_2017931256 crossref_primary_10_1002_admi_201701098 crossref_citationtrail_10_1002_admi_201701098 wiley_primary_10_1002_admi_201701098_ADMI201701098 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March 23, 2018 |
PublicationDateYYYYMMDD | 2018-03-23 |
PublicationDate_xml | – month: 03 year: 2018 text: March 23, 2018 day: 23 |
PublicationDecade | 2010 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Advanced materials interfaces |
PublicationYear | 2018 |
Publisher | John Wiley & Sons, Inc |
Publisher_xml | – name: John Wiley & Sons, Inc |
References | 2010; 10 2013; 3 2013; 4 2013; 1 1997; 275 2004; 4 2014; 26 2009; 113 2013; 8 2013; 5 2013; 6 2014; 136 2011; 111 2010; 20 2012; 134 2012; 256 2015; 137 2013; 117 2010; 110 2014; 14 2005; 109 2001; 414 2014; 10 1987; 58 2011; 2 2011; 1 2013; 86 2015; 54 2016; 18 2011; 133 2016; 11 2016; 4 2016; 5 2016; 6 2016; 7 2016; 2 2016; 3 2006; 45 2013; 76 2005; 127 1998; 70 2015; 119 2016; 28 2012; 116 2016; 27 2016; 25 2016; 8 2016; 9 2017; 5 2013; 25 2008; 7 2011; 11 2011; 10 2015; 106 1999; 83 2008; 2 2017; 9 2001; 105 2014; 1 2014; 5 2014; 4 2013; 13 2014; 609 2017; 35 2015; 44 2002; 107 1978; 29 2016; 199 2014; 9 2014; 8 2003; 125 2014; 50 2014; 7 2014; 6 2006; 128 2014; 118 2015; 12 1995; 95 2015; 15 2015; 14 2015; 6 2015; 5 2009; 21 2015; 4 2015; 11 2013; 42 2015; 10 2010; 487 2015; 9 2015; 8 2015; 7 1972; 238 2011; 332 2015; 27 2011; 507 2007; 111 2011; 47 2012; 6 2009; 2 2008; 451 2012; 5 2007; 46 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_68_1 e_1_2_8_132_1 e_1_2_8_5_1 e_1_2_8_9_1 e_1_2_8_117_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_64_1 e_1_2_8_87_1 e_1_2_8_113_1 e_1_2_8_136_1 e_1_2_8_1_1 e_1_2_8_41_1 e_1_2_8_60_1 e_1_2_8_83_1 e_1_2_8_19_1 e_1_2_8_109_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 e_1_2_8_120_1 e_1_2_8_143_1 e_1_2_8_91_1 e_1_2_8_95_1 e_1_2_8_99_1 e_1_2_8_105_1 e_1_2_8_128_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_76_1 e_1_2_8_101_1 e_1_2_8_124_1 e_1_2_8_147_1 e_1_2_8_30_1 e_1_2_8_72_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_48_1 e_1_2_8_2_1 e_1_2_8_133_1 e_1_2_8_110_1 e_1_2_8_6_1 e_1_2_8_21_1 e_1_2_8_67_1 e_1_2_8_44_1 e_1_2_8_86_1 e_1_2_8_118_1 e_1_2_8_63_1 e_1_2_8_137_1 e_1_2_8_40_1 e_1_2_8_82_1 e_1_2_8_114_1 e_1_2_8_18_1 e_1_2_8_14_1 e_1_2_8_37_1 e_1_2_8_79_1 e_1_2_8_94_1 e_1_2_8_144_1 e_1_2_8_90_1 e_1_2_8_121_1 e_1_2_8_98_1 e_1_2_8_140_1 e_1_2_8_10_1 e_1_2_8_56_1 e_1_2_8_106_1 e_1_2_8_33_1 e_1_2_8_75_1 e_1_2_8_129_1 e_1_2_8_52_1 e_1_2_8_102_1 e_1_2_8_148_1 e_1_2_8_71_1 e_1_2_8_125_1 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_3_1 e_1_2_8_81_1 e_1_2_8_111_1 e_1_2_8_130_1 e_1_2_8_7_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_66_1 e_1_2_8_89_1 e_1_2_8_119_1 e_1_2_8_138_1 e_1_2_8_62_1 e_1_2_8_85_1 e_1_2_8_115_1 e_1_2_8_134_1 e_1_2_8_17_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_70_1 e_1_2_8_122_1 e_1_2_8_141_1 e_1_2_8_97_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_78_1 e_1_2_8_107_1 e_1_2_8_149_1 e_1_2_8_51_1 e_1_2_8_74_1 e_1_2_8_103_1 e_1_2_8_126_1 e_1_2_8_145_1 e_1_2_8_93_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_69_1 e_1_2_8_80_1 e_1_2_8_4_1 e_1_2_8_131_1 e_1_2_8_150_1 e_1_2_8_8_1 e_1_2_8_42_1 e_1_2_8_88_1 e_1_2_8_116_1 e_1_2_8_23_1 e_1_2_8_65_1 e_1_2_8_139_1 e_1_2_8_84_1 e_1_2_8_112_1 e_1_2_8_61_1 e_1_2_8_135_1 e_1_2_8_39_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_58_1 e_1_2_8_92_1 e_1_2_8_96_1 e_1_2_8_100_1 e_1_2_8_142_1 e_1_2_8_31_1 e_1_2_8_77_1 e_1_2_8_127_1 e_1_2_8_12_1 e_1_2_8_54_1 e_1_2_8_108_1 e_1_2_8_73_1 e_1_2_8_123_1 e_1_2_8_50_1 e_1_2_8_104_1 e_1_2_8_146_1 |
References_xml | – volume: 7 start-page: 10348 year: 2016 publication-title: Nat. Commun. – volume: 1 start-page: 5790 year: 2013 publication-title: J. Mater. Chem. A – volume: 95 start-page: 49 year: 1995 publication-title: Chem. Rev. – volume: 26 start-page: 407 year: 2014 publication-title: Chem. Mater. – volume: 4 start-page: 1085 year: 2004 publication-title: Nano Lett. – volume: 7 start-page: 28105 year: 2015 publication-title: ACS Appl. Mater. Interfaces – volume: 2 start-page: 737 year: 2011 publication-title: Chem. Sci. – volume: 27 start-page: 305403 year: 2016 publication-title: Nanotechnology – volume: 86 start-page: 1 year: 2013 publication-title: Bull. Chem. Soc. Jpn. – volume: 83 start-page: 2942 year: 1999 publication-title: Phys. Rev. Lett. – volume: 76 start-page: 046401 year: 2013 publication-title: Rep. Prog. Phys. – volume: 4 start-page: 17891 year: 2016 publication-title: J. Mater. Chem. A – volume: 15 start-page: 6155 year: 2015 publication-title: Nano Lett. – volume: 5 start-page: 1501654 year: 2015 publication-title: Adv. Energy Mater. – volume: 2 start-page: 660 year: 2016 publication-title: ChemNanoMat – volume: 238 start-page: 37 year: 1972 publication-title: Nature – volume: 127 start-page: 3928 year: 2005 publication-title: J. Am. Chem. Soc. – volume: 116 start-page: 19039 year: 2012 publication-title: J. Phys. Chem. C – volume: 18 start-page: 31622 year: 2016 publication-title: Phys. Chem. Chem. Phys. – volume: 10 start-page: 3970 year: 2014 publication-title: Small – volume: 507 start-page: 209 year: 2011 publication-title: Chem. Phys. Lett. – volume: 5 start-page: 5133 year: 2012 publication-title: Energy Environ. Sci. – volume: 109 start-page: 6334 year: 2005 publication-title: J. Phys. Chem. B – volume: 8 start-page: 15720 year: 2016 publication-title: Nanoscale – volume: 6 start-page: 5060 year: 2012 publication-title: ACS Nano – volume: 45 start-page: 4819 year: 2006 publication-title: Angew. Chem., Int. Ed. – volume: 11 start-page: 3026 year: 2011 publication-title: Nano Lett. – volume: 5 start-page: 1360 year: 2015 publication-title: Catal. Sci. Technol. – volume: 117 start-page: 22060 year: 2013 publication-title: J. Phys. Chem. C – volume: 11 start-page: 35 year: 2011 publication-title: Nano Lett. – volume: 116 start-page: 16487 year: 2012 publication-title: J. Phys. Chem. C – volume: 8 start-page: 501 year: 2013 publication-title: Plasmonics – volume: 13 start-page: 3817 year: 2013 publication-title: Nano Lett. – volume: 14 start-page: 1093 year: 2014 publication-title: Nano Lett. – volume: 7 start-page: 77 year: 2015 publication-title: Nanoscale – volume: 609 start-page: 59 year: 2014 publication-title: Chem. Phys. Lett. – volume: 7 start-page: 442 year: 2008 publication-title: Nat. Mater. – volume: 125 start-page: 6303 year: 2003 publication-title: J. Am. Chem. Soc. – volume: 5 start-page: 11118 year: 2013 publication-title: Nanoscale – volume: 6 start-page: 7362 year: 2012 publication-title: ACS Nano – volume: 106 start-page: 123901 year: 2015 publication-title: Appl. Phys. Lett. – volume: 136 start-page: 6870 year: 2014 publication-title: J. Am. Chem. Soc. – volume: 6 start-page: 1501496 year: 2016 publication-title: Adv. Energy Mater. – volume: 5 start-page: 4233 year: 2017 publication-title: J. Mater. Chem. A – volume: 4 start-page: 2651 year: 2013 publication-title: Nat. Commun. – volume: 8 start-page: 10756 year: 2014 publication-title: ACS Nano – volume: 44 start-page: 5053 year: 2015 publication-title: Chem. Soc. Rev. – volume: 10 start-page: 1398 year: 2010 publication-title: Nano Lett. – volume: 199 start-page: 282 year: 2016 publication-title: Appl. Catal. B – volume: 8 start-page: 598 year: 2013 publication-title: Nano Today – volume: 256 start-page: 2521 year: 2012 publication-title: Coord. Chem. Rev. – volume: 35 start-page: 171 year: 2017 publication-title: Nano Energy – volume: 275 start-page: 1102 year: 1997 publication-title: Science – volume: 117 start-page: 17879 year: 2013 publication-title: J. Phys. Chem. C – volume: 127 start-page: 7632 year: 2005 publication-title: J. Am. Chem. Soc. – volume: 1 start-page: 259 year: 2014 publication-title: Mater. Horiz. – volume: 28 start-page: 6781 year: 2016 publication-title: Adv. Mater. – volume: 9 start-page: 4583 year: 2015 publication-title: ACS Nano – volume: 3 start-page: 1500243 year: 2016 publication-title: Adv. Sci. – volume: 11 start-page: 2115 year: 2015 publication-title: Small – volume: 5 start-page: 3829 year: 2017 publication-title: ACS Sustainable Chem. Eng. – volume: 11 start-page: 5548 year: 2011 publication-title: Nano Lett. – volume: 111 start-page: 8677 year: 2007 publication-title: J. Phys. Chem. C – volume: 4 start-page: 116 year: 2014 publication-title: ACS Catal. – volume: 70 start-page: 3898 year: 1998 publication-title: Anal. Chem. – volume: 3 start-page: 2997 year: 2013 publication-title: Sci. Rep. – volume: 6 start-page: 15052 year: 2014 publication-title: ACS Appl. Mater. Interfaces – volume: 9 start-page: 17118 year: 2017 publication-title: Nanoscale – volume: 9 start-page: 7075 year: 2017 publication-title: ACS Appl. Mater. Interfaces – volume: 8 start-page: 10403 year: 2014 publication-title: ACS Nano – volume: 5 start-page: 23681 year: 2017 publication-title: J. Mater. Chem. A – volume: 11 start-page: 4978 year: 2011 publication-title: Nano Lett. – volume: 137 start-page: 10735 year: 2015 publication-title: J. Am. Chem. Soc. – volume: 110 start-page: 6446 year: 2010 publication-title: Chem. Rev. – volume: 8 start-page: 11739 year: 2014 publication-title: ACS Nano – volume: 128 start-page: 2200 year: 2006 publication-title: J. Am. Chem. Soc. – volume: 7 start-page: 1409 year: 2014 publication-title: Energy Environ. Sci. – volume: 5 start-page: 4948 year: 2014 publication-title: Nat. Commun. – volume: 118 start-page: 26560 year: 2014 publication-title: J. Phys. Chem. C – volume: 9 start-page: 3010 year: 2017 publication-title: Nanoscale – volume: 10 start-page: 911 year: 2011 publication-title: Nat. Mater. – volume: 4 start-page: 269 year: 2015 publication-title: Nanophotonics – volume: 332 start-page: 702 year: 2011 publication-title: Science – volume: 4 start-page: 2724 year: 2013 publication-title: Chem. Sci. – volume: 50 start-page: 31 year: 2014 publication-title: Mater. Res. Bull. – volume: 25 start-page: 3264 year: 2013 publication-title: Adv. Mater. – volume: 119 start-page: 1271 year: 2015 publication-title: J. Phys. Chem. C – volume: 27 start-page: 235401 year: 2016 publication-title: Nanotechnology – volume: 5 start-page: 4249 year: 2017 publication-title: ACS Sustainable Chem. Eng. – volume: 11 start-page: 283 year: 2016 publication-title: Nanoscale Res. Lett. – volume: 133 start-page: 5202 year: 2011 publication-title: J. Am. Chem. Soc. – volume: 7 start-page: 421 year: 2014 publication-title: ChemSusChem – volume: 9 start-page: 237 year: 2014 publication-title: Nano Energy – volume: 10 start-page: 25 year: 2015 publication-title: Nat. Nanotechnol. – volume: 1 start-page: 12229 year: 2013 publication-title: J. Mater. Chem. A – volume: 8 start-page: 2891 year: 2015 publication-title: Nano Res. – volume: 6 start-page: 373 year: 2016 publication-title: Results Phys. – volume: 9 start-page: 16922 year: 2017 publication-title: Nanoscale – volume: 14 start-page: 567 year: 2015 publication-title: Nat. Mater. – volume: 6 start-page: 6727 year: 2014 publication-title: Nanoscale – volume: 136 start-page: 1559 year: 2014 publication-title: J. Am. Chem. Soc. – volume: 29 start-page: 189 year: 1978 publication-title: Annu. Rev. Phys. Chem. – volume: 6 start-page: 29907 year: 2016 publication-title: Sci. Rep. – volume: 47 start-page: 6763 year: 2011 publication-title: Chem. Commun. – volume: 42 start-page: 2321 year: 2013 publication-title: Chem. Soc. Rev. – volume: 12 start-page: 231 year: 2015 publication-title: Nano Energy – volume: 54 start-page: 3259 year: 2015 publication-title: Angew. Chem., Int. Ed. – volume: 25 start-page: 371 year: 2016 publication-title: J. Energy Chem. – volume: 414 start-page: 338 year: 2001 publication-title: Nature – volume: 26 start-page: 415 year: 2014 publication-title: Chem. Mater. – volume: 2 start-page: 465 year: 2008 publication-title: Nat. Photonics – volume: 6 start-page: 1501339 year: 2016 publication-title: Adv. Energy Mater. – volume: 9 start-page: 1735 year: 2016 publication-title: Nano Res. – volume: 4 start-page: 46697 year: 2014 publication-title: RSC Adv. – volume: 134 start-page: 12406 year: 2012 publication-title: J. Am. Chem. Soc. – volume: 27 start-page: 5328 year: 2015 publication-title: Adv. Mater. – volume: 119 start-page: 15506 year: 2015 publication-title: J. Phys. Chem. C – volume: 451 start-page: 163 year: 2008 publication-title: Nature – volume: 1 start-page: 1441 year: 2011 publication-title: ACS Catal. – volume: 8 start-page: 618 year: 2015 publication-title: ChemSusChem – volume: 6 start-page: 407 year: 2013 publication-title: Energy Environ. Sci. – volume: 107 start-page: 668 year: 2002 publication-title: J. Phys. Chem. B – volume: 6 start-page: 7447 year: 2015 publication-title: Nat. Commun. – volume: 21 start-page: 547 year: 2009 publication-title: Chem. Mater. – volume: 2 start-page: 103 year: 2009 publication-title: Energy Environ. Sci. – volume: 134 start-page: 4294 year: 2012 publication-title: J. Am. Chem. Soc. – volume: 20 start-page: 4371 year: 2010 publication-title: J. Mater. Chem. – volume: 58 start-page: 2059 year: 1987 publication-title: Phys. Rev. Lett. – volume: 5 start-page: 112 year: 2016 publication-title: Nanophotonics – volume: 42 start-page: 2679 year: 2013 publication-title: Chem. Soc. Rev. – volume: 11 start-page: 554 year: 2015 publication-title: Small – volume: 5 start-page: 60339 year: 2015 publication-title: RSC Adv. – volume: 6 start-page: 14950 year: 2014 publication-title: Nanoscale – volume: 111 start-page: 3913 year: 2011 publication-title: Chem. Rev. – volume: 8 start-page: 7088 year: 2014 publication-title: ACS Nano – volume: 46 start-page: 2036 year: 2007 publication-title: Angew. Chem., Int. Ed. – volume: 113 start-page: 16394 year: 2009 publication-title: J. Phys. Chem. C – volume: 105 start-page: 11439 year: 2001 publication-title: J. Phys. Chem. B – volume: 6 start-page: 347 year: 2013 publication-title: Energy Environ. Sci. – volume: 4 start-page: 6926 year: 2016 publication-title: J. Mater. Chem. A – volume: 6 start-page: 4480 year: 2014 publication-title: ACS Appl. Mater. Interfaces – volume: 487 start-page: 153 year: 2010 publication-title: Chem. Phys. Lett. – ident: e_1_2_8_24_1 doi: 10.1021/jp3034984 – ident: e_1_2_8_146_1 doi: 10.1515/nanoph-2015-0017 – ident: e_1_2_8_48_1 doi: 10.1016/j.jechem.2016.02.013 – ident: e_1_2_8_59_1 doi: 10.1038/srep02997 – ident: e_1_2_8_125_1 doi: 10.1186/s11671-016-1492-8 – ident: e_1_2_8_41_1 doi: 10.1021/cm4021518 – ident: e_1_2_8_68_1 doi: 10.1021/ja042192u – ident: e_1_2_8_55_1 doi: 10.1039/c3ta01450a – ident: e_1_2_8_67_1 doi: 10.1126/science.1203056 – ident: e_1_2_8_25_1 doi: 10.1039/C7NR04802E – ident: e_1_2_8_26_1 doi: 10.1039/C2CS35367A – ident: e_1_2_8_57_1 doi: 10.1126/science.275.5303.1102 – ident: e_1_2_8_29_1 doi: 10.1021/jp011118k – ident: e_1_2_8_32_1 doi: 10.1002/adma.201600305 – ident: e_1_2_8_5_1 doi: 10.1038/238037a0 – ident: e_1_2_8_107_1 doi: 10.1016/j.rinp.2016.07.002 – ident: e_1_2_8_126_1 doi: 10.1021/acs.nanolett.5b02453 – ident: e_1_2_8_27_1 doi: 10.1021/jp905247j – ident: e_1_2_8_82_1 doi: 10.1039/c0jm00135j – ident: e_1_2_8_95_1 doi: 10.1021/nn3024877 – ident: e_1_2_8_10_1 doi: 10.1002/cnma.201600035 – ident: e_1_2_8_54_1 doi: 10.1039/C4CY00974F – ident: e_1_2_8_87_1 doi: 10.1016/j.apcatb.2016.06.050 – ident: e_1_2_8_127_1 doi: 10.1016/j.cplett.2014.06.045 – ident: e_1_2_8_9_1 doi: 10.1039/C5TA08202A – ident: e_1_2_8_70_1 doi: 10.1021/cs200320h – ident: e_1_2_8_93_1 doi: 10.1021/am503044f – ident: e_1_2_8_128_1 doi: 10.1021/acssuschemeng.6b02883 – ident: e_1_2_8_88_1 doi: 10.1039/C4RA08216H – ident: e_1_2_8_111_1 doi: 10.1016/j.ccr.2012.06.017 – ident: e_1_2_8_6_1 doi: 10.1021/jp508618t – ident: e_1_2_8_21_1 doi: 10.1039/c1cc10665a – ident: e_1_2_8_75_1 doi: 10.1016/j.cplett.2010.01.062 – ident: e_1_2_8_30_1 doi: 10.1021/ja042925a – ident: e_1_2_8_61_1 doi: 10.1002/anie.200604637 – ident: e_1_2_8_52_1 doi: 10.1021/ac9712310 – ident: e_1_2_8_148_1 doi: 10.1002/aenm.201501654 – ident: e_1_2_8_100_1 doi: 10.1039/C6NR05605A – ident: e_1_2_8_135_1 doi: 10.1021/acsami.6b14618 – ident: e_1_2_8_16_1 doi: 10.1039/c3ta12856c – ident: e_1_2_8_106_1 doi: 10.1002/aenm.201501339 – ident: e_1_2_8_77_1 doi: 10.1021/nl201766h – ident: e_1_2_8_131_1 doi: 10.1103/PhysRevLett.83.2942 – ident: e_1_2_8_86_1 doi: 10.1038/ncomms5948 – ident: e_1_2_8_33_1 doi: 10.1002/adma.201500888 – ident: e_1_2_8_34_1 doi: 10.1039/C6TA06405A – ident: e_1_2_8_4_1 doi: 10.1002/smll.201402420 – ident: e_1_2_8_96_1 doi: 10.1016/j.nanoen.2014.07.019 – ident: e_1_2_8_43_1 doi: 10.1016/j.nantod.2013.12.002 – ident: e_1_2_8_20_1 doi: 10.1039/C4NR04886E – ident: e_1_2_8_98_1 doi: 10.1038/srep29907 – ident: e_1_2_8_119_1 doi: 10.1038/ncomms3651 – ident: e_1_2_8_134_1 doi: 10.1039/c3ee43278e – ident: e_1_2_8_138_1 doi: 10.1039/C4CS00408F – ident: e_1_2_8_12_1 doi: 10.1021/ja411651e – ident: e_1_2_8_72_1 doi: 10.1021/ja0578350 – ident: e_1_2_8_53_1 doi: 10.1246/bcsj.20120256 – ident: e_1_2_8_69_1 doi: 10.1021/nl203457v – ident: e_1_2_8_132_1 doi: 10.1021/ja034650p – ident: e_1_2_8_136_1 doi: 10.1002/smll.201400970 – ident: e_1_2_8_51_1 doi: 10.1021/nl049573q – ident: e_1_2_8_147_1 doi: 10.1021/acsnano.5b01226 – ident: e_1_2_8_84_1 doi: 10.1039/c3sc50496d – ident: e_1_2_8_19_1 doi: 10.1039/C4NR01380H – ident: e_1_2_8_23_1 doi: 10.1039/C6TA10471A – ident: e_1_2_8_79_1 doi: 10.1016/j.materresbull.2013.10.017 – ident: e_1_2_8_42_1 doi: 10.1038/35104607 – ident: e_1_2_8_31_1 doi: 10.1021/cs400993w – ident: e_1_2_8_129_1 doi: 10.1103/PhysRevLett.58.2059 – ident: e_1_2_8_46_1 doi: 10.1038/ncomms8447 – ident: e_1_2_8_112_1 doi: 10.1021/ja3051734 – ident: e_1_2_8_3_1 doi: 10.1039/C7NR06697J – ident: e_1_2_8_118_1 doi: 10.1016/j.nanoen.2017.03.035 – ident: e_1_2_8_141_1 doi: 10.1038/nmat4281 – ident: e_1_2_8_73_1 doi: 10.1002/anie.200600356 – ident: e_1_2_8_65_1 doi: 10.1038/nnano.2014.311 – ident: e_1_2_8_109_1 doi: 10.1021/acsami.5b09091 – ident: e_1_2_8_39_1 doi: 10.1016/j.cplett.2011.03.074 – ident: e_1_2_8_78_1 doi: 10.1021/nn504484u – ident: e_1_2_8_1_1 doi: 10.1021/cm4023198 – ident: e_1_2_8_14_1 doi: 10.1039/C3MH00097D – ident: e_1_2_8_50_1 doi: 10.1039/C1EE02875H – ident: e_1_2_8_110_1 doi: 10.1021/jacs.5b06323 – ident: e_1_2_8_130_1 doi: 10.1038/nphoton.2008.146 – ident: e_1_2_8_91_1 doi: 10.1063/1.4916224 – ident: e_1_2_8_120_1 doi: 10.1038/35104607 – ident: e_1_2_8_40_1 doi: 10.1002/anie.201409116 – ident: e_1_2_8_63_1 doi: 10.1021/nl100199h – ident: e_1_2_8_113_1 doi: 10.1002/cssc.201301120 – ident: e_1_2_8_89_1 doi: 10.1021/ja042192u – ident: e_1_2_8_7_1 doi: 10.1146/annurev.pc.29.100178.001201 – ident: e_1_2_8_117_1 doi: 10.1021/nl1022354 – ident: e_1_2_8_145_1 doi: 10.1002/adma.201205076 – ident: e_1_2_8_8_1 doi: 10.1039/C7TA08415C – ident: e_1_2_8_83_1 doi: 10.1039/C2EE23668K – ident: e_1_2_8_139_1 doi: 10.1021/am500234v – ident: e_1_2_8_11_1 doi: 10.1039/c3ta12856c – ident: e_1_2_8_104_1 doi: 10.1021/nl4018385 – ident: e_1_2_8_38_1 doi: 10.1039/C2EE22618A – ident: e_1_2_8_13_1 doi: 10.1039/C4NR01380H – ident: e_1_2_8_45_1 doi: 10.1021/jp405291g – ident: e_1_2_8_90_1 doi: 10.1021/acs.nanolett.5b02453 – ident: e_1_2_8_17_1 doi: 10.1021/nn5051954 – ident: e_1_2_8_97_1 doi: 10.1021/nn300679d – ident: e_1_2_8_142_1 doi: 10.1021/cs400993w – ident: e_1_2_8_121_1 doi: 10.1007/s12274-016-1067-0 – ident: e_1_2_8_149_1 doi: 10.1002/aenm.201501496 – ident: e_1_2_8_116_1 doi: 10.1002/cssc.201403013 – ident: e_1_2_8_15_1 doi: 10.1039/c3nr03425a – ident: e_1_2_8_37_1 doi: 10.1021/cr00033a003 – ident: e_1_2_8_85_1 doi: 10.1021/acs.jpcc.5b02357 – ident: e_1_2_8_81_1 doi: 10.1039/C5RA06241A – ident: e_1_2_8_144_1 doi: 10.1021/ja502704n – ident: e_1_2_8_114_1 doi: 10.1021/ja210755h – ident: e_1_2_8_92_1 doi: 10.1088/0957-4484/27/30/305403 – ident: e_1_2_8_71_1 doi: 10.1021/ja200086g – ident: e_1_2_8_122_1 doi: 10.1021/cm802894z – ident: e_1_2_8_49_1 doi: 10.1021/jp026731y – ident: e_1_2_8_2_1 doi: 10.1038/nature06381 – ident: e_1_2_8_137_1 doi: 10.1021/nn501996a – ident: e_1_2_8_28_1 doi: 10.1007/s11468-012-9418-5 – ident: e_1_2_8_123_1 doi: 10.1039/C2CS35260E – ident: e_1_2_8_115_1 doi: 10.1039/C0SC00578A – ident: e_1_2_8_133_1 doi: 10.1021/jp044228a – ident: e_1_2_8_35_1 doi: 10.1039/C6NR09280B – ident: e_1_2_8_44_1 doi: 10.1039/B812177J – ident: e_1_2_8_108_1 doi: 10.1039/C6CP06903G – ident: e_1_2_8_47_1 doi: 10.1021/nn503751s – ident: e_1_2_8_101_1 doi: 10.1021/acssuschemeng.7b00242 – ident: e_1_2_8_56_1 doi: 10.1039/C1EE02875H – ident: e_1_2_8_150_1 doi: 10.1038/ncomms10348 – ident: e_1_2_8_62_1 doi: 10.1021/nl500008y – ident: e_1_2_8_74_1 doi: 10.1038/ncomms3651 – ident: e_1_2_8_124_1 doi: 10.1088/0957-4484/27/23/235401 – ident: e_1_2_8_140_1 doi: 10.1016/j.nanoen.2014.12.037 – ident: e_1_2_8_22_1 doi: 10.1515/nanoph-2016-0018 – ident: e_1_2_8_80_1 doi: 10.1021/jp507988c – ident: e_1_2_8_105_1 doi: 10.1002/advs.201500243 – ident: e_1_2_8_18_1 doi: 10.1002/smll.201401919 – ident: e_1_2_8_64_1 doi: 10.1021/jp406733k – ident: e_1_2_8_66_1 doi: 10.1088/0034-4885/76/4/046401 – ident: e_1_2_8_103_1 doi: 10.1021/nl2029392 – ident: e_1_2_8_58_1 doi: 10.1038/nmat2162 – ident: e_1_2_8_36_1 doi: 10.1021/cr1002326 – ident: e_1_2_8_76_1 doi: 10.1021/cr200061k – ident: e_1_2_8_94_1 doi: 10.1039/C4NR03735A – ident: e_1_2_8_143_1 doi: 10.1021/jp306555j – ident: e_1_2_8_99_1 doi: 10.1007/s12274-015-0794-y – ident: e_1_2_8_102_1 doi: 10.1021/jp071906v – ident: e_1_2_8_60_1 doi: 10.1038/nmat3151 |
SSID | ssj0001121283 |
Score | 2.421291 |
SecondaryResourceType | review_article |
Snippet | Surface plasmon resonance (SPR) effect of metal nanostructures is established as an efficient and attractive strategy to boost visible‐light or even... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Chemical energy Energy conversion Heterostructures Infrared radiation Nanostructure noble metal photo‐electrochemical water splitting Semiconductors surface plasmon resonance Thin films Three dimensional composites Water splitting Well construction |
Title | Plasmon‐Dictated Photo‐Electrochemical Water Splitting for Solar‐to‐Chemical Energy Conversion: Current Status and Future Perspectives |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadmi.201701098 https://www.proquest.com/docview/2017931256 |
Volume | 5 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LbtNAFB2FVEhsEE9RKGgWSCyQSzK258EuahMVpKJKaSBiY3keViPRBDXJhhVfgPgQvoov4c4zDpRXFclKxjO243s89-F7zyD0VChREqGbTNFCgoOiRWYpoDOp-7KgnJmeWw7o-A09mhSvp-W00_nWylpar-S--nRpXclVpAptIFdbJfsfkk0HhQb4DvKFLUgYtv8k4xMwfeFkKWHhcKas7aifn5wtVovUPPRL3ajIDfCutsyIYzA_fdKzzTQcWxc3jWgNTowCQ18leGDT1F2MzQYTIr2TtVnXnu555FhKXGp9qOJcti3gQUw6OLdXYe-Ro6y4aGxuWBT_dFa7EO7IRrPjlUyjlrX5Q7O1Q2bgDQ9hi76r4_OVxX52g5mSZiz3rLP75pK2MD2XLRTSlp5OWuwXJeBJZWt9PrOpe8y-_OMbdRdf8aee5Z_7enLgw-NXaf81tEPAKSFdtDN4O3k_2cT0-mAIOObX9E8iT2iPvNg-ybYdtHFu2i6Ss3FOb6GbwTnBA4-026hj5nfQdZckrJZ30ZeAt--fv0akYYc0aPgJY9hhDCeMYcAYdhiDvm5AxBX2uMIbXL3EAVXYowoDqrBHFW6j6h4aj4anB0dZWM8jUzkHvZqLWhR1zo0WhHDFQJkwaYpSCt3jwjDrK0jKNdGcU8pY0wimwF5WDeclye-j7nwxNw8QNoxLkpu6D58il0xyCt4XrRuV9zT82EVZvLeVClT3dsWVD5Un6SaVlUWVZLGLnqX-Hz3Jy2977kVRVWEiWLq9IgdPAU5MnPj-cpRqC04PrzLoEbqxear2UHd1sTaPwTxeyScBlT8APaO2pA |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JS8NAFB60InoRV1yqzkHwFJpO0lm8lS602kqhVsVLyCxBQVvpcvcXiL_RX-KbSdLqQQTJadZA3ryZb17e-x5CZ0KJChE68RQNJVxQtPAsBbQndVmGlDPju3RA3WvaGoSX95Xcm9DGwqT8EHODm9UMt19bBbcG6dKCNTTWL0_WN4vZvzt8Ga1YaMMLaKV6O3gYLAwtZdidHR0nKCf1WFDxc_JGn5R-TvLzcFogzu-41R08zU20kSFGXE1FvIWWzHAbrTrPTTXZQe89wL-wlj7fPupPykJHjXuPo-kIKhppjhuVkQLgO2gd4z7gTuftjAGw4r6920JfNyCnD8ANFxKIa9Yn3RnULnDG5IQtPJ1NcDzUuOkISXBvEbA52UX9ZuOm1vKyJAuegssp9wIRizAOuNGCEK4YaDiTJqxIoX0uDLMATlKuieacUsaSRDAFIEYlnMMldg8VhqOh2UfYMC5JYOIyPGEgmeQUIDGNExX4GgoHyMu_baQy_nGbBuM5SpmTSWRlEc1lcYDO5_1fU-aNX3sWc1FFmQZOXKsIAL7Bi4kT3x-zRNV6tz0vHf5n0Claa910O1GnfX11hNah3oUvkqCICtPxzBwDfpnKk2yFfgHEquya |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF60ongRn1ifexA8BdNNug9vxTbUR0uhVsVLyD6CBW3Ftnd_gfgb_SXObtLGHkSQnPYZyOzsfrOZ-QahE6FElQideoqGEgwULTxLAe1JXZEh5cz4Lh1Qq02bvfDqofrwI4o_44eYXbhZzXD7tVXwV52eFaShiX7pW9csZn_u8EW0ZKnyYF0v1e56j73inqUCm7Nj4wTdpB4Lqv6Uu9EnZ_OTzJ9NBeD8CVvduROto7UcMOJaJuENtGAGm2jZOW6q0Rb66AD8haX09f5Z7yuLHDXuPA3HQ6hoZCluVM4JgO-h9Q13AXY6Z2cMeBV3rWkLfd2AKXsAbriIQHxhXdLdfdo5zomcsEWnkxFOBhpHjo8Ed4p4zdE26kaN24uml-dY8BTYptwLRCLCJOBGC0K4YqDgTJqwKoX2uTDM4jdJuSaac0oZS1PBFGAYlXIONuwOKg2GA7OLsGFcksAkFXjCQDLJKSBimqQq8DUUysibfttY5fTjNgvGc5wRJ5PYyiKeyaKMTmf9XzPijV97HkxFFecKOHKtIgD0Bi8mTnx_zBLX6q3LWWnvP4OO0UqnHsU3l-3rfbQK1S54kQQHqDR-m5hDQC9jeZQv0G9fNuvD |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Plasmon%E2%80%90Dictated+Photo%E2%80%90Electrochemical+Water+Splitting+for+Solar%E2%80%90to%E2%80%90Chemical+Energy+Conversion%3A+Current+Status+and+Future+Perspectives&rft.jtitle=Advanced+materials+interfaces&rft.au=Xiao%2C+Fang%E2%80%90Xing&rft.au=Liu%2C+Bin&rft.date=2018-03-23&rft.issn=2196-7350&rft.eissn=2196-7350&rft.volume=5&rft.issue=6&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadmi.201701098&rft.externalDBID=10.1002%252Fadmi.201701098&rft.externalDocID=ADMI201701098 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2196-7350&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2196-7350&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2196-7350&client=summon |