7 tricks for 7 T CEST: Improving the reproducibility of multipool evaluation provides insights into the effects of age and the early stages of Parkinson's disease
The objective of the current study was to optimize the postprocessing pipeline of 7 T chemical exchange saturation transfer (CEST) imaging for reproducibility and to prove this optimization for the detection of age differences and differences between patients with Parkinson's disease versus nor...
Saved in:
Published in | NMR in biomedicine Vol. 36; no. 6; pp. e4717 - n/a |
---|---|
Main Authors | , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Wiley Subscription Services, Inc
01.06.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The objective of the current study was to optimize the postprocessing pipeline of 7 T chemical exchange saturation transfer (CEST) imaging for reproducibility and to prove this optimization for the detection of age differences and differences between patients with Parkinson's disease versus normal subjects. The following 7 T CEST MRI experiments were analyzed: repeated measurements of a healthy subject, subjects of two age cohorts (14 older, seven younger subjects), and measurements of 12 patients with Parkinson's disease. A slab‐selective,
B1+‐homogeneous parallel transmit protocol was used. The postprocessing, consisting of motion correction, smoothing,
B0‐correction, normalization, denoising,
B1+‐correction and Lorentzian fitting, was optimized regarding the intrasubject and intersubject coefficient of variation (CoV) of the amplitudes of the amide pool and the aliphatic relayed nuclear Overhauser effect (rNOE) pool within the brain. Seven “tricks” for postprocessing accomplished an improvement of the mean voxel CoV of the amide pool and the aliphatic rNOE pool amplitudes of less than 5% and 3%, respectively. These postprocessing steps are: motion correction with interpolation of the motion of low‐signal offsets (1) using the amide pool frequency offset image as reference (2), normalization of the Z‐spectrum using the outermost saturated measurements (3),
B0 correction of the Z‐spectrum with moderate spline smoothing (4), denoising using principal component analysis preserving the 11 highest intensity components (5),
B1+ correction using a linear fit (6) and Lorentzian fitting using the five‐pool fit model (7). With the optimized postprocessing pipeline, a significant age effect in the amide pool can be detected. Additionally, for the first time, an aliphatic rNOE contrast between subjects with Parkinson's disease and age‐matched healthy controls in the substantia nigra is detected. We propose an optimized postprocessing pipeline for CEST multipool evaluation. It is shown that by the use of these seven “tricks”, the reproducibility and, thus, the statistical power of a CEST measurement, can be greatly improved and subtle changes can be detected.
The presented postprocessing pipeline provides increased homogeneity and reproducibility. The mean voxel CoV is decreased to less than 5% for amide and to less than 3% for aliphatic rNOE contrast. Healthy aging‐related changes and altered aliphatic rNOE pools in the substantia nigra of patients in the early stages of Parkinson's disease are detected. |
---|---|
AbstractList | The objective of the current study was to optimize the postprocessing pipeline of 7 T chemical exchange saturation transfer (CEST) imaging for reproducibility and to prove this optimization for the detection of age differences and differences between patients with Parkinson's disease versus normal subjects. The following 7 T CEST MRI experiments were analyzed: repeated measurements of a healthy subject, subjects of two age cohorts (14 older, seven younger subjects), and measurements of 12 patients with Parkinson's disease. A slab-selective, B 1 + -homogeneous parallel transmit protocol was used. The postprocessing, consisting of motion correction, smoothing, B 0 -correction, normalization, denoising, B 1 + -correction and Lorentzian fitting, was optimized regarding the intrasubject and intersubject coefficient of variation (CoV) of the amplitudes of the amide pool and the aliphatic relayed nuclear Overhauser effect (rNOE) pool within the brain. Seven "tricks" for postprocessing accomplished an improvement of the mean voxel CoV of the amide pool and the aliphatic rNOE pool amplitudes of less than 5% and 3%, respectively. These postprocessing steps are: motion correction with interpolation of the motion of low-signal offsets (1) using the amide pool frequency offset image as reference (2), normalization of the Z-spectrum using the outermost saturated measurements (3), B 0 correction of the Z-spectrum with moderate spline smoothing (4), denoising using principal component analysis preserving the 11 highest intensity components (5), B 1 + correction using a linear fit (6) and Lorentzian fitting using the five-pool fit model (7). With the optimized postprocessing pipeline, a significant age effect in the amide pool can be detected. Additionally, for the first time, an aliphatic rNOE contrast between subjects with Parkinson's disease and age-matched healthy controls in the substantia nigra is detected. We propose an optimized postprocessing pipeline for CEST multipool evaluation. It is shown that by the use of these seven "tricks", the reproducibility and, thus, the statistical power of a CEST measurement, can be greatly improved and subtle changes can be detected.The objective of the current study was to optimize the postprocessing pipeline of 7 T chemical exchange saturation transfer (CEST) imaging for reproducibility and to prove this optimization for the detection of age differences and differences between patients with Parkinson's disease versus normal subjects. The following 7 T CEST MRI experiments were analyzed: repeated measurements of a healthy subject, subjects of two age cohorts (14 older, seven younger subjects), and measurements of 12 patients with Parkinson's disease. A slab-selective, B 1 + -homogeneous parallel transmit protocol was used. The postprocessing, consisting of motion correction, smoothing, B 0 -correction, normalization, denoising, B 1 + -correction and Lorentzian fitting, was optimized regarding the intrasubject and intersubject coefficient of variation (CoV) of the amplitudes of the amide pool and the aliphatic relayed nuclear Overhauser effect (rNOE) pool within the brain. Seven "tricks" for postprocessing accomplished an improvement of the mean voxel CoV of the amide pool and the aliphatic rNOE pool amplitudes of less than 5% and 3%, respectively. These postprocessing steps are: motion correction with interpolation of the motion of low-signal offsets (1) using the amide pool frequency offset image as reference (2), normalization of the Z-spectrum using the outermost saturated measurements (3), B 0 correction of the Z-spectrum with moderate spline smoothing (4), denoising using principal component analysis preserving the 11 highest intensity components (5), B 1 + correction using a linear fit (6) and Lorentzian fitting using the five-pool fit model (7). With the optimized postprocessing pipeline, a significant age effect in the amide pool can be detected. Additionally, for the first time, an aliphatic rNOE contrast between subjects with Parkinson's disease and age-matched healthy controls in the substantia nigra is detected. We propose an optimized postprocessing pipeline for CEST multipool evaluation. It is shown that by the use of these seven "tricks", the reproducibility and, thus, the statistical power of a CEST measurement, can be greatly improved and subtle changes can be detected. The objective of the current study was to optimize the postprocessing pipeline of 7 T chemical exchange saturation transfer (CEST) imaging for reproducibility and to prove this optimization for the detection of age differences and differences between patients with Parkinson's disease versus normal subjects. The following 7 T CEST MRI experiments were analyzed: repeated measurements of a healthy subject, subjects of two age cohorts (14 older, seven younger subjects), and measurements of 12 patients with Parkinson's disease. A slab‐selective, B1+‐homogeneous parallel transmit protocol was used. The postprocessing, consisting of motion correction, smoothing, B0‐correction, normalization, denoising, B1+‐correction and Lorentzian fitting, was optimized regarding the intrasubject and intersubject coefficient of variation (CoV) of the amplitudes of the amide pool and the aliphatic relayed nuclear Overhauser effect (rNOE) pool within the brain. Seven “tricks” for postprocessing accomplished an improvement of the mean voxel CoV of the amide pool and the aliphatic rNOE pool amplitudes of less than 5% and 3%, respectively. These postprocessing steps are: motion correction with interpolation of the motion of low‐signal offsets (1) using the amide pool frequency offset image as reference (2), normalization of the Z‐spectrum using the outermost saturated measurements (3), B0 correction of the Z‐spectrum with moderate spline smoothing (4), denoising using principal component analysis preserving the 11 highest intensity components (5), B1+ correction using a linear fit (6) and Lorentzian fitting using the five‐pool fit model (7). With the optimized postprocessing pipeline, a significant age effect in the amide pool can be detected. Additionally, for the first time, an aliphatic rNOE contrast between subjects with Parkinson's disease and age‐matched healthy controls in the substantia nigra is detected. We propose an optimized postprocessing pipeline for CEST multipool evaluation. It is shown that by the use of these seven “tricks”, the reproducibility and, thus, the statistical power of a CEST measurement, can be greatly improved and subtle changes can be detected. The objective of the current study was to optimize the postprocessing pipeline of 7 T chemical exchange saturation transfer (CEST) imaging for reproducibility and to prove this optimization for the detection of age differences and differences between patients with Parkinson's disease versus normal subjects. The following 7 T CEST MRI experiments were analyzed: repeated measurements of a healthy subject, subjects of two age cohorts (14 older, seven younger subjects), and measurements of 12 patients with Parkinson's disease. A slab‐selective, ‐homogeneous parallel transmit protocol was used. The postprocessing, consisting of motion correction, smoothing, ‐correction, normalization, denoising, ‐correction and Lorentzian fitting, was optimized regarding the intrasubject and intersubject coefficient of variation (CoV) of the amplitudes of the amide pool and the aliphatic relayed nuclear Overhauser effect (rNOE) pool within the brain. Seven “tricks” for postprocessing accomplished an improvement of the mean voxel CoV of the amide pool and the aliphatic rNOE pool amplitudes of less than 5% and 3%, respectively. These postprocessing steps are: motion correction with interpolation of the motion of low‐signal offsets (1) using the amide pool frequency offset image as reference (2), normalization of the Z‐spectrum using the outermost saturated measurements (3), correction of the Z‐spectrum with moderate spline smoothing (4), denoising using principal component analysis preserving the 11 highest intensity components (5), correction using a linear fit (6) and Lorentzian fitting using the five‐pool fit model (7). With the optimized postprocessing pipeline, a significant age effect in the amide pool can be detected. Additionally, for the first time, an aliphatic rNOE contrast between subjects with Parkinson's disease and age‐matched healthy controls in the substantia nigra is detected. We propose an optimized postprocessing pipeline for CEST multipool evaluation. It is shown that by the use of these seven “tricks”, the reproducibility and, thus, the statistical power of a CEST measurement, can be greatly improved and subtle changes can be detected. The objective of the current study was to optimize the postprocessing pipeline of 7 T chemical exchange saturation transfer (CEST) imaging for reproducibility and to prove this optimization for the detection of age differences and differences between patients with Parkinson's disease versus normal subjects. The following 7 T CEST MRI experiments were analyzed: repeated measurements of a healthy subject, subjects of two age cohorts (14 older, seven younger subjects), and measurements of 12 patients with Parkinson's disease. A slab‐selective, B1+‐homogeneous parallel transmit protocol was used. The postprocessing, consisting of motion correction, smoothing, B0‐correction, normalization, denoising, B1+‐correction and Lorentzian fitting, was optimized regarding the intrasubject and intersubject coefficient of variation (CoV) of the amplitudes of the amide pool and the aliphatic relayed nuclear Overhauser effect (rNOE) pool within the brain. Seven “tricks” for postprocessing accomplished an improvement of the mean voxel CoV of the amide pool and the aliphatic rNOE pool amplitudes of less than 5% and 3%, respectively. These postprocessing steps are: motion correction with interpolation of the motion of low‐signal offsets (1) using the amide pool frequency offset image as reference (2), normalization of the Z‐spectrum using the outermost saturated measurements (3), B0 correction of the Z‐spectrum with moderate spline smoothing (4), denoising using principal component analysis preserving the 11 highest intensity components (5), B1+ correction using a linear fit (6) and Lorentzian fitting using the five‐pool fit model (7). With the optimized postprocessing pipeline, a significant age effect in the amide pool can be detected. Additionally, for the first time, an aliphatic rNOE contrast between subjects with Parkinson's disease and age‐matched healthy controls in the substantia nigra is detected. We propose an optimized postprocessing pipeline for CEST multipool evaluation. It is shown that by the use of these seven “tricks”, the reproducibility and, thus, the statistical power of a CEST measurement, can be greatly improved and subtle changes can be detected. The presented postprocessing pipeline provides increased homogeneity and reproducibility. The mean voxel CoV is decreased to less than 5% for amide and to less than 3% for aliphatic rNOE contrast. Healthy aging‐related changes and altered aliphatic rNOE pools in the substantia nigra of patients in the early stages of Parkinson's disease are detected. |
Author | German, Alexander Nagel, Armin M. Schmidt, Manuel Khakzar, Katrin M. Mennecke, Angelika Zaiss, Moritz Kasper, Burkhard S. Fabian, Moritz S. Winkler, Jürgen Liebert, Andrzej Laun, Frederik B. Blümcke, Ingmar Herz, Kai Dörfler, Arnd |
Author_xml | – sequence: 1 givenname: Angelika orcidid: 0000-0001-6795-5627 surname: Mennecke fullname: Mennecke, Angelika email: angelika.mennecke@uk-erlangen.de organization: University Hospital Erlangen, Friedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU) – sequence: 2 givenname: Katrin M. surname: Khakzar fullname: Khakzar, Katrin M. organization: University Hospital Erlangen, Friedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU) – sequence: 3 givenname: Alexander surname: German fullname: German, Alexander organization: University Hospital Erlangen, Friedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU) – sequence: 4 givenname: Kai orcidid: 0000-0002-7286-1454 surname: Herz fullname: Herz, Kai organization: University of Tuebingen – sequence: 5 givenname: Moritz S. orcidid: 0000-0001-5437-8576 surname: Fabian fullname: Fabian, Moritz S. email: moritz.fabian@uk-erlangen.de organization: University Hospital Erlangen, Friedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU) – sequence: 6 givenname: Andrzej orcidid: 0000-0002-8450-3021 surname: Liebert fullname: Liebert, Andrzej organization: University Hospital Erlangen, Friedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU) – sequence: 7 givenname: Ingmar surname: Blümcke fullname: Blümcke, Ingmar organization: University Hospital Erlangen, Friedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU) – sequence: 8 givenname: Burkhard S. surname: Kasper fullname: Kasper, Burkhard S. organization: University Hospital Erlangen, Friedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU) – sequence: 9 givenname: Armin M. orcidid: 0000-0003-0948-1421 surname: Nagel fullname: Nagel, Armin M. organization: University Hospital Erlangen, Friedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU) – sequence: 10 givenname: Frederik B. orcidid: 0000-0002-9269-5609 surname: Laun fullname: Laun, Frederik B. organization: University Hospital Erlangen, Friedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU) – sequence: 11 givenname: Manuel orcidid: 0000-0002-8560-2582 surname: Schmidt fullname: Schmidt, Manuel organization: University Hospital Erlangen, Friedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU) – sequence: 12 givenname: Jürgen surname: Winkler fullname: Winkler, Jürgen organization: University Hospital Erlangen, Friedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU) – sequence: 13 givenname: Arnd surname: Dörfler fullname: Dörfler, Arnd organization: University Hospital Erlangen, Friedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU) – sequence: 14 givenname: Moritz orcidid: 0000-0001-9780-3616 surname: Zaiss fullname: Zaiss, Moritz organization: University Hospital Erlangen, Friedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU) |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35194865$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kV1vFCEUhompsdtq4i8wJF7ozax8zQLe6abVJvUjcb2eMMBsaRlYganZv9NfKrtbNWn0Cnh53vfAOSfgKMRgAXiO0RwjRN6EfpwzjvkjMMNIygYzSY7ADMmWNJQJdAxOcr5GCAlGyRNwTFssmVi0M3DHYUlO32Q4xAQ5XMHl2bfVW3gxblK8dWENy5WFydaTmbTrnXdlC-MAx8kXt4nRQ3ur_KSKiwHuPcZm6EJ266uy25S4j7DDYHUVqlWtLVTBHGSV_BbmUrX93VeVbqo5hlcZGpetyvYpeDwon-2z-_UUfD8_Wy0_NpdfPlws3102mgrKG8OoNKpvDTWsp1oLISQ1XHKJpGoZUS2lvO-l7pGlHEm20JpbztAgNBdC0VPw-pBbf_Fjsrl0o8vaeq-CjVPuyIIS3CJCcEVfPkCv45RCfV1HBF7UalTuqBf31NSP1nSb5EaVtt3v7v-tqFPMOdnhD4JRtxtsVwfb7QZb0fkDVLuyb3pJyvl_GZqD4afzdvvf4O7z-097_hcan7Ps |
CitedBy_id | crossref_primary_10_1002_nbm_5096 crossref_primary_10_1021_cbmi_3c00019 crossref_primary_10_1002_mrm_30233 crossref_primary_10_1002_nbm_4960 crossref_primary_10_1002_nbm_4697 crossref_primary_10_1371_journal_pone_0299961 crossref_primary_10_1002_mrm_30129 crossref_primary_10_1002_nbm_5310 crossref_primary_10_1002_mrm_29739 |
Cites_doi | 10.1016/j.neuroimage.2021.117822 10.1002/mrm.28643 10.1016/j.neuroimage.2005.02.018 10.1002/mrm.28298 10.1109/TMI.2009.2035616 10.1002/nbm.3920 10.1007/s00330‐019‐06285‐7 10.1016/j.stem.2018.06.015 10.1002/mrm.28745 10.1016/j.neuroimage.2013.03.047 10.1007/s11307‐016‐0995‐0 10.1002/mrm.27762 10.1007/s00330‐014‐3241‐7 10.1007/s11307‐019‐01352‐3 10.1002/mrm.27655 10.1093/neuonc/noy073 10.1002/mrm.26802 10.1002/cmmi.240 10.1002/nbm.4697 10.1016/j.neuroimage.2021.117910 10.1002/mrm.28961 10.3233/jad‐132750 10.1016/j.neuroimage.2018.06.026 10.1016/j.jmr.2018.11.002 10.1002/jmri.26645 10.1002/nbm.3283 10.1016/j.nicl.2019.101833 10.3389/fneur.2019.01307 10.1016/j.neuroimage.2021.117986 10.1016/j.clinimag.2019.09.005 10.1002/mrm.28825 10.1016/j.arr.2020.101075 10.1002/mrm.27367 10.1002/nbm.3665 10.1016/j.neuroimage.2015.02.040 10.3389/fneur.2019.00789 10.1113/JP271081 10.1002/jmri.25838 10.1038/nm907 10.1002/nbm.3879 10.1002/mrm.27751 10.1002/mrm.27206 10.1002/mrm.26799 10.1002/mrm.28770 10.1002/mrm.27569 10.1002/nbm.4720 10.1002/jmri.25027 10.1016/S0896‐6273(03)00568‐3 10.1002/nbm.3054 10.1016/j.jmr.2011.05.001 10.1002/mrm.22884 10.1002/nbm.4133 10.1002/mrm.24784 10.1002/nbm.3716 |
ContentType | Journal Article |
Copyright | 2022 The Authors. published by John Wiley & Sons Ltd. 2022 The Authors. NMR in Biomedicine published by John Wiley & Sons Ltd. 2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2022 The Authors. published by John Wiley & Sons Ltd. – notice: 2022 The Authors. NMR in Biomedicine published by John Wiley & Sons Ltd. – notice: 2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 8FD FR3 K9. P64 7X8 |
DOI | 10.1002/nbm.4717 |
DatabaseName | Wiley Online Library Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Health & Medical Complete (Alumni) Engineering Research Database Biotechnology Research Abstracts Technology Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic ProQuest Health & Medical Complete (Alumni) CrossRef MEDLINE |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Chemistry Physics |
EISSN | 1099-1492 |
EndPage | n/a |
ExternalDocumentID | 35194865 10_1002_nbm_4717 NBM4717 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: German Research Foundation DFG funderid: ZA 814/5‐1 – fundername: Max‐Planck‐Society |
GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 123 1L6 1OB 1OC 1ZS 24P 31~ 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52V 52W 52X 53G 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHHS AAHQN AAIPD AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFS ACGOF ACIWK ACMXC ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AIACR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BY8 CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 DUUFO EBD EBS EJD EMOBN F00 F01 F04 F5P FEDTE FUBAC G-S G.N GNP GODZA H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KBYEO LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M65 MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P2Z P4D PALCI Q.N Q11 QB0 QRW R.K RGB RIWAO RJQFR ROL RWI RX1 SAMSI SUPJJ SV3 UB1 V2E W8V W99 WBKPD WHWMO WIB WIH WIJ WIK WJL WOHZO WQJ WRC WUP WVDHM WXSBR XG1 XPP XV2 ZZTAW ~IA ~WT AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION CGR CUY CVF ECM EIF NPM 7QO 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY FR3 K9. P64 7X8 |
ID | FETCH-LOGICAL-c3837-d439dab5d3d4b3cc88893d797909a542a5337bb9cb0e370946cc7e740f8c788a3 |
IEDL.DBID | DR2 |
ISSN | 0952-3480 1099-1492 |
IngestDate | Thu Jul 10 23:10:57 EDT 2025 Fri Jul 25 09:59:21 EDT 2025 Wed Feb 19 02:23:24 EST 2025 Thu Apr 24 23:13:44 EDT 2025 Tue Jul 01 02:45:45 EDT 2025 Wed Jan 22 16:23:11 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | amide 7 T Lorentzian fitting rNOE standardization CEST Parkinson age |
Language | English |
License | Attribution 2022 The Authors. NMR in Biomedicine published by John Wiley & Sons Ltd. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3837-d439dab5d3d4b3cc88893d797909a542a5337bb9cb0e370946cc7e740f8c788a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-8560-2582 0000-0002-8450-3021 0000-0001-9780-3616 0000-0001-5437-8576 0000-0001-6795-5627 0000-0002-9269-5609 0000-0002-7286-1454 0000-0003-0948-1421 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fnbm.4717 |
PMID | 35194865 |
PQID | 2816542391 |
PQPubID | 2029982 |
PageCount | 16 |
ParticipantIDs | proquest_miscellaneous_2632150221 proquest_journals_2816542391 pubmed_primary_35194865 crossref_primary_10_1002_nbm_4717 crossref_citationtrail_10_1002_nbm_4717 wiley_primary_10_1002_nbm_4717_NBM4717 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 2023 2023-06-00 20230601 |
PublicationDateYYYYMMDD | 2023-06-01 |
PublicationDate_xml | – month: 06 year: 2023 text: June 2023 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Oxford |
PublicationTitle | NMR in biomedicine |
PublicationTitleAlternate | NMR Biomed |
PublicationYear | 2023 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2021; 86 2019; 50 2020; 84 2019; 10 2019; 32 2020; 61 2014; 27 2008 2018; 80 2020; 59 2013; 70 2014; 24 2003; 39 2008; 3 2022; 87 2005; 26 2018; 23 2018; 20 2011; 211 2018; 47 2014; 42 2017; 30 2019; 82 2015; 28 2019; 81 2021; 234 2013; 77 2022 2020; 30 2010; 29 2020 2019; 21 2018; 179 2015; 112 2019; 23 2003; 9 2017; 78 2016; 43 2011; 66 2016; 594 2017; 19 2021; 232 2021; 231 2021; 85 2018; 31 2019; 298 e_1_2_10_23_1 e_1_2_10_46_1 e_1_2_10_21_1 e_1_2_10_44_1 e_1_2_10_42_1 e_1_2_10_40_1 e_1_2_10_2_1 e_1_2_10_4_1 e_1_2_10_18_1 e_1_2_10_53_1 e_1_2_10_6_1 e_1_2_10_16_1 e_1_2_10_39_1 e_1_2_10_55_1 e_1_2_10_8_1 e_1_2_10_14_1 e_1_2_10_37_1 e_1_2_10_57_1 e_1_2_10_58_1 e_1_2_10_13_1 e_1_2_10_34_1 e_1_2_10_11_1 e_1_2_10_32_1 e_1_2_10_30_1 e_1_2_10_51_1 e_1_2_10_61_1 e_1_2_10_29_1 e_1_2_10_27_1 e_1_2_10_25_1 e_1_2_10_48_1 e_1_2_10_24_1 e_1_2_10_45_1 e_1_2_10_22_1 e_1_2_10_43_1 e_1_2_10_20_1 e_1_2_10_41_1 e_1_2_10_52_1 e_1_2_10_3_1 e_1_2_10_19_1 e_1_2_10_54_1 e_1_2_10_5_1 e_1_2_10_17_1 e_1_2_10_38_1 e_1_2_10_56_1 e_1_2_10_7_1 e_1_2_10_15_1 e_1_2_10_36_1 e_1_2_10_12_1 e_1_2_10_35_1 e_1_2_10_9_1 e_1_2_10_59_1 e_1_2_10_10_1 e_1_2_10_33_1 e_1_2_10_31_1 e_1_2_10_50_1 e_1_2_10_60_1 e_1_2_10_28_1 e_1_2_10_49_1 e_1_2_10_26_1 e_1_2_10_47_1 |
References_xml | – volume: 21 start-page: 1064 issue: 6 year: 2019 end-page: 1070 article-title: Retrospective brain motion correction in glutamate chemical exchange saturation transfer (GluCEST) MRI publication-title: Mol Imaging Biol – year: 2022 article-title: Motion correction for 3D CEST imaging without direct water saturation artifacts publication-title: NMR Biomed – volume: 30 issue: 1 year: 2017 article-title: Aggregation‐induced changes in the chemical exchange saturation transfer (CEST) signals of proteins publication-title: NMR Biomed – volume: 39 start-page: 889 issue: 6 year: 2003 end-page: 909 article-title: Parkinson's disease: mechanisms and models publication-title: Neuron – volume: 30 issue: 7 year: 2017 article-title: Accuracy in the quantification of chemical exchange saturation transfer (CEST) and relayed nuclear Overhauser enhancement (rNOE) saturation transfer effects publication-title: NMR Biomed – volume: 20 start-page: 1661 issue: 12 year: 2018 end-page: 1671 article-title: Assessing the predictability of IDH mutation and MGMT methylation status in glioma patients using relaxation‐compensated multipool CEST MRI at 7.0 T publication-title: Neuro Oncol – volume: 23 start-page: 123 issue: 1 year: 2018 end-page: 131 article-title: Th17 Lymphocytes Induce Neuronal Cell Death in a Human iPSC‐Based Model of Parkinson's Disease publication-title: Cell Stem Cell – volume: 43 start-page: 756 issue: 3 year: 2016 end-page: 761 article-title: Selecting the reference image for registration of CEST series publication-title: J Magn Reson Imaging – volume: 31 issue: 4 year: 2018 article-title: Snapshot‐CEST: Optimizing spiral‐centric‐reordered gradient echo acquisition for fast and robust 3D CEST MRI at 9.4 T publication-title: NMR Biomed – volume: 179 start-page: 144 year: 2018 end-page: 155 article-title: Chemical exchange saturation transfer MRI contrast in the human brain at 9.4 T publication-title: Neuroimage – volume: 87 start-page: 365 issue: 1 year: 2022 end-page: 376 article-title: Role of chemical exchange on the relayed nuclear Overhauser enhancement signal in saturation transfer MRI publication-title: Magn Reson Med – volume: 78 start-page: 871 issue: 3 year: 2017 end-page: 880 article-title: Improving the detection sensitivity of pH‐weighted amide proton transfer MRI in acute stroke patients using extrapolated semisolid magnetization transfer reference signals publication-title: Magn Reson Med – volume: 86 start-page: 346 issue: 1 year: 2021 end-page: 362 article-title: Whole‐brain quantitative CEST MRI at 7T using parallel transmission methods and correction publication-title: Magn Reson Med – volume: 30 start-page: 346 issue: 1 year: 2020 end-page: 356 article-title: Repeatability of amide proton transfer‐weighted signals in the brain according to clinical condition and anatomical location publication-title: Eur Radiol – volume: 61 year: 2020 article-title: MRI‐based biomarkers of accelerated aging and dementia risk in midlife: how close are we? publication-title: Ageing Res Rev – volume: 86 start-page: 346 issue: 1 year: 2021 end-page: 362 article-title: Whole‐brain quantitative CEST MRI at 7T using parallel transmission methods and B1+ correction publication-title: Magn Reson Med – year: 2022 article-title: Linear projection‐based chemical exchange saturation transfer parameter estimation publication-title: NMR Biomed – volume: 47 start-page: 11 issue: 1 year: 2018 end-page: 27 article-title: Clinical applications of chemical exchange saturation transfer (CEST) MRI publication-title: J Magn Reson Imaging – volume: 85 start-page: 3140 issue: 6 year: 2021 end-page: 3153 article-title: Fast online‐customized (FOCUS) parallel transmission pulses: A combination of universal pulses and individual optimization publication-title: Magn Reson Med – volume: 82 start-page: 693 issue: 2 year: 2019 end-page: 705 article-title: Multiple interleaved mode saturation (MIMOSA) for B(1) (+) inhomogeneity mitigation in chemical exchange saturation transfer publication-title: Magn Reson Med – volume: 80 start-page: 1979 issue: 5 year: 2018 end-page: 1988 article-title: Robust motion correction in CEST imaging exploiting low‐rank approximation of the z‐spectrum publication-title: Magn Reson Med – volume: 81 start-page: 2412 issue: 4 year: 2019 end-page: 2423 article-title: 3D gradient echo snapshot CEST MRI with low power saturation for human studies at 3T publication-title: Magn Reson Med – volume: 234 year: 2021 article-title: Brain tissues have single‐voxel signatures in multi‐spectral MRI publication-title: Neuroimage – volume: 232 year: 2021 article-title: The traveling heads 2.0: Multicenter reproducibility of quantitative imaging methods at 7 Tesla publication-title: Neuroimage – volume: 50 start-page: 347 issue: 2 year: 2019 end-page: 364 article-title: APT‐weighted MRI: Techniques, current neuro applications, and challenging issues publication-title: J Magn Reson Imaging – volume: 594 start-page: 4471 issue: 16 year: 2016 end-page: 4483 article-title: The impact of age on cerebral perfusion, oxygenation and metabolism during exercise in humans publication-title: J Physiol – volume: 86 start-page: 1845 issue: 4 year: 2021 end-page: 1858 article-title: Pulseq‐CEST: Towards multi‐site multi‐vendor compatibility and reproducibility of CEST experiments using an open‐source sequence standard publication-title: Magn Reson Med – volume: 70 start-page: 320 issue: 2 year: 2013 end-page: 327 article-title: APT‐weighted and NOE‐weighted image contrasts in glioma with different RF saturation powers based on magnetization transfer ratio asymmetry analyses publication-title: Magn Reson Med – volume: 23 year: 2019 article-title: Quantitative CEST imaging of amide proton transfer in acute ischaemic stroke publication-title: Neuroimage Clin – volume: 84 start-page: 2469 issue: 5 year: 2020 end-page: 2483 article-title: Whole brain snapshot CEST at 3T using 3D‐EPI: Aiming for speed, volume, and homogeneity publication-title: Magn Reson Med – volume: 42 start-page: S229 issue: s3 year: 2014 end-page: S237 article-title: Magnetization Transfer Imaging for in vivo Detection of Microstructural Tissue Changes in Aging and Dementia: A Short Literature Review publication-title: J Alzheimer's Dis – volume: 10 start-page: 1307 year: 2019 article-title: Amide proton transfer weighted imaging shows differences in multiple sclerosis lesions and white matter hyperintensities of presumed vascular origin publication-title: Front Neurol – volume: 231 year: 2021 article-title: Estimating brain age from structural MRI and MEG data: Insights from dimensionality reduction techniques publication-title: Neuroimage – volume: 28 start-page: 529 issue: 5 year: 2015 end-page: 537 article-title: Correction of B1‐inhomogeneities for relaxation‐compensated CEST imaging at 7 T publication-title: NMR Biomed – volume: 78 start-page: 881 issue: 3 year: 2017 end-page: 887 article-title: Assignment of the molecular origins of CEST signals at 2 ppm in rat brain publication-title: Magn Reson Med – volume: 81 start-page: 3476 issue: 6 year: 2019 end-page: 3487 article-title: Chemical exchange saturation transfer imaging of phosphocreatine in the muscle publication-title: Magn Reson Med – volume: 31 issue: 6 year: 2018 article-title: Dual‐frequency irradiation CEST‐MRI of endogenous bulk mobile proteins publication-title: NMR Biomed – volume: 81 start-page: 573 issue: 1 year: 2019 end-page: 582 article-title: Assessment of frequency drift on CEST MRI and dynamic correction: application to gagCEST at 7 T publication-title: Magn Reson Med – volume: 112 start-page: 180 year: 2015 end-page: 188 article-title: Relaxation‐compensated CEST‐MRI of the human brain at 7T: Unbiased insight into NOE and amide signal changes in human glioblastoma publication-title: Neuroimage – volume: 82 start-page: 622 issue: 2 year: 2019 end-page: 632 article-title: Relaxation‐compensated APT and rNOE CEST‐MRI of human brain tumors at 3 T publication-title: Magn Reson Med – volume: 27 start-page: 240 issue: 3 year: 2014 end-page: 252 article-title: InverseZ‐spectrum analysis for spillover‐, MT‐, andT1‐corrected steady‐state pulsed CEST‐MRI ‐ application to pH‐weighted MRI of acute stroke publication-title: NMR Biomed – volume: 32 issue: 11 year: 2019 article-title: Adaptive denoising for chemical exchange saturation transfer MR imaging publication-title: NMR Biomed – volume: 66 start-page: 1100 issue: 4 year: 2011 end-page: 1108 article-title: Optimizing pulsed‐chemical exchange saturation transfer imaging sequences publication-title: Magn Reson Med – volume: 59 start-page: 56 issue: 1 year: 2020 end-page: 60 article-title: Role of T1 mapping to evaluate brain aging in a healthy population publication-title: Clin Imaging – volume: 86 start-page: 893 issue: 2 year: 2021 end-page: 906 article-title: Whole‐brain amide CEST imaging at 3T with a steady‐state radial MRI acquisition publication-title: Magn Reson Med – volume: 24 start-page: 2631 issue: 10 year: 2014 end-page: 2639 article-title: Chemical exchange saturation transfer MR imaging of Parkinson's disease at 3 Tesla publication-title: Eur Radiol – volume: 19 start-page: 225 issue: 2 year: 2017 end-page: 232 article-title: Creatine CEST MRI for differentiating gliomas with different degrees of aggressiveness publication-title: Mol Imaging Biol – volume: 77 start-page: 114 year: 2013 end-page: 124 article-title: Nuclear Overhauser enhancement (NOE) imaging in the human brain at 7T publication-title: Neuroimage – volume: 26 start-page: 839 issue: 3 year: 2005 end-page: 851 article-title: Unified segmentation publication-title: Neuroimage – volume: 10 start-page: 789 year: 2019 article-title: Ten years of brainAGE as a neuroimaging biomarker of brain aging: What insights have we gained? publication-title: Front Neurol – volume: 211 start-page: 149 issue: 2 year: 2011 end-page: 155 article-title: Quantitative separation of CEST effect from magnetization transfer and spillover effects by Lorentzian‐line‐fit analysis of z‐spectra publication-title: J Magn Reson – year: 2020 – start-page: 1247 year: 2008 – volume: 29 start-page: 196 issue: 1 year: 2010 end-page: 205 article-title: elastix: a toolbox for intensity‐based medical image registration publication-title: IEEE Trans Med Imaging – volume: 298 start-page: 16 year: 2019 end-page: 22 article-title: Possible artifacts in dynamic CEST MRI due to motion and field alterations publication-title: J Magn Reson – volume: 9 start-page: 1085 issue: 8 year: 2003 end-page: 1090 article-title: Using the amide proton signals of intracellular proteins and peptides to detect pH effects in MRI publication-title: Nat Med – volume: 3 start-page: 136 issue: 4 year: 2008 end-page: 149 article-title: Development and validation of a smoothing‐splines‐based correction method for improving the analysis of CEST‐MR images publication-title: Contrast Media Mol Imaging – ident: e_1_2_10_50_1 doi: 10.1016/j.neuroimage.2021.117822 – ident: e_1_2_10_14_1 doi: 10.1002/mrm.28643 – ident: e_1_2_10_29_1 doi: 10.1016/j.neuroimage.2005.02.018 – ident: e_1_2_10_12_1 doi: 10.1002/mrm.28298 – ident: e_1_2_10_24_1 doi: 10.1109/TMI.2009.2035616 – ident: e_1_2_10_60_1 – ident: e_1_2_10_35_1 doi: 10.1002/nbm.3920 – ident: e_1_2_10_46_1 doi: 10.1007/s00330‐019‐06285‐7 – ident: e_1_2_10_57_1 doi: 10.1016/j.stem.2018.06.015 – ident: e_1_2_10_18_1 doi: 10.1002/mrm.28745 – ident: e_1_2_10_59_1 doi: 10.1016/j.neuroimage.2013.03.047 – ident: e_1_2_10_3_1 doi: 10.1007/s11307‐016‐0995‐0 – ident: e_1_2_10_15_1 doi: 10.1002/mrm.27762 – ident: e_1_2_10_61_1 doi: 10.1007/s00330‐014‐3241‐7 – ident: e_1_2_10_38_1 doi: 10.1007/s11307‐019‐01352‐3 – ident: e_1_2_10_58_1 doi: 10.1002/mrm.27655 – ident: e_1_2_10_31_1 doi: 10.1093/neuonc/noy073 – ident: e_1_2_10_34_1 doi: 10.1002/mrm.26802 – ident: e_1_2_10_23_1 – ident: e_1_2_10_26_1 doi: 10.1002/cmmi.240 – ident: e_1_2_10_43_1 doi: 10.1002/nbm.4697 – ident: e_1_2_10_41_1 doi: 10.1016/j.neuroimage.2021.117910 – ident: e_1_2_10_32_1 doi: 10.1002/mrm.28961 – ident: e_1_2_10_48_1 doi: 10.3233/jad‐132750 – ident: e_1_2_10_42_1 – ident: e_1_2_10_13_1 doi: 10.1016/j.neuroimage.2018.06.026 – ident: e_1_2_10_21_1 doi: 10.1016/j.jmr.2018.11.002 – ident: e_1_2_10_11_1 doi: 10.1002/jmri.26645 – ident: e_1_2_10_28_1 doi: 10.1002/nbm.3283 – ident: e_1_2_10_47_1 doi: 10.1016/j.nicl.2019.101833 – ident: e_1_2_10_6_1 doi: 10.3389/fneur.2019.01307 – ident: e_1_2_10_30_1 doi: 10.1016/j.neuroimage.2021.117986 – ident: e_1_2_10_49_1 doi: 10.1016/j.clinimag.2019.09.005 – ident: e_1_2_10_44_1 doi: 10.1002/mrm.28825 – ident: e_1_2_10_52_1 doi: 10.1016/j.arr.2020.101075 – ident: e_1_2_10_39_1 doi: 10.1002/mrm.27367 – ident: e_1_2_10_40_1 – ident: e_1_2_10_55_1 doi: 10.1002/nbm.3665 – ident: e_1_2_10_9_1 doi: 10.1016/j.neuroimage.2015.02.040 – ident: e_1_2_10_51_1 doi: 10.3389/fneur.2019.00789 – ident: e_1_2_10_54_1 doi: 10.1113/JP271081 – ident: e_1_2_10_2_1 doi: 10.1002/jmri.25838 – ident: e_1_2_10_25_1 doi: 10.1038/nm907 – ident: e_1_2_10_16_1 doi: 10.1002/nbm.3879 – ident: e_1_2_10_5_1 doi: 10.1002/mrm.27751 – ident: e_1_2_10_20_1 doi: 10.1002/mrm.27206 – ident: e_1_2_10_53_1 doi: 10.1002/mrm.26799 – ident: e_1_2_10_33_1 doi: 10.1002/mrm.28770 – ident: e_1_2_10_36_1 doi: 10.1002/mrm.27569 – ident: e_1_2_10_37_1 doi: 10.1002/nbm.4720 – ident: e_1_2_10_22_1 doi: 10.1002/jmri.25027 – ident: e_1_2_10_56_1 doi: 10.1016/S0896‐6273(03)00568‐3 – ident: e_1_2_10_10_1 doi: 10.1002/nbm.3054 – ident: e_1_2_10_17_1 – ident: e_1_2_10_8_1 doi: 10.1016/j.jmr.2011.05.001 – ident: e_1_2_10_19_1 doi: 10.1002/mrm.22884 – ident: e_1_2_10_27_1 doi: 10.1002/nbm.4133 – ident: e_1_2_10_4_1 doi: 10.1002/mrm.24784 – ident: e_1_2_10_7_1 doi: 10.1002/nbm.3716 – ident: e_1_2_10_45_1 doi: 10.1002/mrm.28745 |
SSID | ssj0008432 |
Score | 2.4765499 |
Snippet | The objective of the current study was to optimize the postprocessing pipeline of 7 T chemical exchange saturation transfer (CEST) imaging for reproducibility... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e4717 |
SubjectTerms | 7 T age Age differences Age factors Aliphatic compounds amide Amides Amplitudes Biological products Brain CEST Coefficient of variation Humans Interpolation Lorentzian fitting Magnetic Resonance Imaging - methods Movement disorders Neurodegenerative diseases Neuroimaging Noise reduction Optimization Overhauser effect Parkinson Parkinson Disease - diagnostic imaging Parkinson's disease Principal components analysis Reproducibility Reproducibility of Results rNOE Smoothing standardization Substantia nigra |
Title | 7 tricks for 7 T CEST: Improving the reproducibility of multipool evaluation provides insights into the effects of age and the early stages of Parkinson's disease |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fnbm.4717 https://www.ncbi.nlm.nih.gov/pubmed/35194865 https://www.proquest.com/docview/2816542391 https://www.proquest.com/docview/2632150221 |
Volume | 36 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagEtALj4XCQqmMhOgp29R27JgbrFpVSFsh2EqVOER-bVW1JBXZPdCf01_KjJ2klIeEOCWKx3Gi8eMbe-YbQl4XRSG19DmeMJaZWFibWRZ0VhiAc54xywMGJ88O5cGR-HBcHHdelRgLk_ghhg03HBlxvsYBbmy78xNpqP06gZkVA8nRVQvx0Kdr5qhSxNxkACBYxkWZ97yzOdvpK95ciX6DlzfRalxu9h-QL_2HJi-Ts8lqaSfu8hcOx__7k4fkfodC6bvUbR6RW6EekXvTPvnbiNyddWfuI3InOom69jG5UhT5_M9aCkiXKjqn073P87d02JiggCYp0mQii2xyu_1OmwVNXotNc06vycVpFwPY0tO6xR0CvFk28RWdkwlWhemOmtqnx0jGTAHOnoRYhhHbMXhtu6XdQdMTcrS_N58eZF2Oh8yhbZx5AETe2MJzLyx3Dgxyzb3SSufaFIIZgKPKWu1sHrgCW1Q6p4IS-aJ0YL0bvkHW6qYOzwiVAsCSsnLXF0YEKayWTrtceOWtCbkZk-1e35XrCNAxD8d5laibWQWKqFARY_JqkLxIpB9_kNnsu0zVDfu2YiUGhzGud-EVQzGoDk9hTB2aFchIDjALoBPIPE1dbWgEsyWKUhZj8iZ2mL-2Xh2-n-H1-b8KviDrDOBZcnLbJGvLb6vwEuDU0m6R20x83IrD5wdxhh1K |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIigXHguUhQJGQvSUbeo4dgInWFot0N0DbKUeKkV-LUJtE0R2D_Bz-KXMxElKeUiIU6J4HCcaPz57Zr4BeJqmqcyli8nCmEViYUxkuM-jVCOcc5ybxFNw8nQmJ4fi7VF6tAYvuliYwA_RH7jRyGjmaxrgdCC98xNrqDkb4dSqLsFlSuhNxPmv359zR2WiyU6GEIJHicjijnk25jtdzYtr0W8A8yJebRac_Rtw3H1q8DM5Ga2WZmS__cLi-J__chOut0CUvQw95xas-XIAG-Mu_9sArk5bs_sArjR-ora-Dd8VI0r_k5oh2GWKzdl478P8OevPJhgCSkZMmUQkGzxvv7JqwYLjYlWdsnN-cdaGAdbsU1nTIQHdLKvmFa2fCVXFGY_p0oXHxMfMENF-9E0ZBW038WvbNWttTXfgcH9vPp5EbZqHyNL2OHKIiZw2qUucMIm1uCfPE6dylce5TgXXiEiVMbk1sU8UbkeltcorES8yixt4ndyF9bIq_T1gUiBeUkbuulQLL4XJpc1tLJxyRvtYD2G7U3hhWw50SsVxWgT2Zl6gIgpSxBCe9JKfA-_HH2S2uj5TtCO_LnhG8WE8yXfxFX0xqo4MMbr01QplZIJIC9ETymyGvtY3QgkTRSbTITxresxfWy9mr6Z0vf-vgo9hYzKfHhQHb2bvHsA1jmgt-Lxtwfryy8o_RHS1NI-aUfQDc9ogjw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELagiMIFwfJaKGAkRE-hqZ8xN1i6Ko9dVWIr9Rb5tQhRkopsD_wdfikzdhKoAIlTongcH8aPbzwz3xDyTEqpjAolehirQqydKxyLppAW4FxgzPGIycmLpTo8Fu9O5EkfVYm5MJkfYrxww5WR9mtc4Gdhvfcbaaj7-gJ2Vn2ZXEFfH4ZzMXE07sKVSMXJAEGwgouqHIhnS7Y39Lx4FP2BLy_C1XTezG-SGz1QpK-yZm-RS7GZkGuzoT7bhGwverf4hFxNcZy-u01-aIqU-186CmCUarqis4OPq5d0vDugAPgoMlki0WuOjP1O2zXNgYVte0p_8X_TPk2vo5-bDo14fNm06Rd9HAh2hR2J2ibkz8iXTAFxfoqpDZOqU37Zbkd7X9Adcjw_WM0Oi74MQ-HRfC0CYJZgnQw8CMe9B5vZ8KCNNqWxUjALiFE7Z7wrI9dgLirvddSiXFceDGzL75Ktpm3ifUKVADyjndoP0oqohDPKG1-KoIOzsbRTsjtopPY9RzmWyjitM7syq0F3NepuSp6OkmeZl-MvMjuDUut-ZXY1qzB_i3GzD78Ym0F16CixTWzPQUZxQEKAbkDmXp4M4yBY0FBUSk7J8zQ7_jl6vXy9wOeD_xV8QraP3szrD2-X7x-S61jWPoek7ZCtzbfz-AjAz8Y9TrP8J_u2_y8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=7+tricks+for+7+T+CEST%3A+Improving+the+reproducibility+of+multipool+evaluation+provides+insights+into+the+effects+of+age+and+the+early+stages+of+Parkinson%27s+disease&rft.jtitle=NMR+in+biomedicine&rft.au=Mennecke%2C+Angelika&rft.au=Khakzar%2C+Katrin+M&rft.au=German%2C+Alexander&rft.au=Herz%2C+Kai&rft.date=2023-06-01&rft.eissn=1099-1492&rft.volume=36&rft.issue=6&rft.spage=e4717&rft_id=info:doi/10.1002%2Fnbm.4717&rft_id=info%3Apmid%2F35194865&rft.externalDocID=35194865 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0952-3480&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0952-3480&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0952-3480&client=summon |