7 tricks for 7 T CEST: Improving the reproducibility of multipool evaluation provides insights into the effects of age and the early stages of Parkinson's disease

The objective of the current study was to optimize the postprocessing pipeline of 7 T chemical exchange saturation transfer (CEST) imaging for reproducibility and to prove this optimization for the detection of age differences and differences between patients with Parkinson's disease versus nor...

Full description

Saved in:
Bibliographic Details
Published inNMR in biomedicine Vol. 36; no. 6; pp. e4717 - n/a
Main Authors Mennecke, Angelika, Khakzar, Katrin M., German, Alexander, Herz, Kai, Fabian, Moritz S., Liebert, Andrzej, Blümcke, Ingmar, Kasper, Burkhard S., Nagel, Armin M., Laun, Frederik B., Schmidt, Manuel, Winkler, Jürgen, Dörfler, Arnd, Zaiss, Moritz
Format Journal Article
LanguageEnglish
Published England Wiley Subscription Services, Inc 01.06.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The objective of the current study was to optimize the postprocessing pipeline of 7 T chemical exchange saturation transfer (CEST) imaging for reproducibility and to prove this optimization for the detection of age differences and differences between patients with Parkinson's disease versus normal subjects. The following 7 T CEST MRI experiments were analyzed: repeated measurements of a healthy subject, subjects of two age cohorts (14 older, seven younger subjects), and measurements of 12 patients with Parkinson's disease. A slab‐selective, B1+‐homogeneous parallel transmit protocol was used. The postprocessing, consisting of motion correction, smoothing, B0‐correction, normalization, denoising, B1+‐correction and Lorentzian fitting, was optimized regarding the intrasubject and intersubject coefficient of variation (CoV) of the amplitudes of the amide pool and the aliphatic relayed nuclear Overhauser effect (rNOE) pool within the brain. Seven “tricks” for postprocessing accomplished an improvement of the mean voxel CoV of the amide pool and the aliphatic rNOE pool amplitudes of less than 5% and 3%, respectively. These postprocessing steps are: motion correction with interpolation of the motion of low‐signal offsets (1) using the amide pool frequency offset image as reference (2), normalization of the Z‐spectrum using the outermost saturated measurements (3), B0 correction of the Z‐spectrum with moderate spline smoothing (4), denoising using principal component analysis preserving the 11 highest intensity components (5), B1+ correction using a linear fit (6) and Lorentzian fitting using the five‐pool fit model (7). With the optimized postprocessing pipeline, a significant age effect in the amide pool can be detected. Additionally, for the first time, an aliphatic rNOE contrast between subjects with Parkinson's disease and age‐matched healthy controls in the substantia nigra is detected. We propose an optimized postprocessing pipeline for CEST multipool evaluation. It is shown that by the use of these seven “tricks”, the reproducibility and, thus, the statistical power of a CEST measurement, can be greatly improved and subtle changes can be detected. The presented postprocessing pipeline provides increased homogeneity and reproducibility. The mean voxel CoV is decreased to less than 5% for amide and to less than 3% for aliphatic rNOE contrast. Healthy aging‐related changes and altered aliphatic rNOE pools in the substantia nigra of patients in the early stages of Parkinson's disease are detected.
AbstractList The objective of the current study was to optimize the postprocessing pipeline of 7 T chemical exchange saturation transfer (CEST) imaging for reproducibility and to prove this optimization for the detection of age differences and differences between patients with Parkinson's disease versus normal subjects. The following 7 T CEST MRI experiments were analyzed: repeated measurements of a healthy subject, subjects of two age cohorts (14 older, seven younger subjects), and measurements of 12 patients with Parkinson's disease. A slab-selective, B 1 + -homogeneous parallel transmit protocol was used. The postprocessing, consisting of motion correction, smoothing, B 0 -correction, normalization, denoising, B 1 + -correction and Lorentzian fitting, was optimized regarding the intrasubject and intersubject coefficient of variation (CoV) of the amplitudes of the amide pool and the aliphatic relayed nuclear Overhauser effect (rNOE) pool within the brain. Seven "tricks" for postprocessing accomplished an improvement of the mean voxel CoV of the amide pool and the aliphatic rNOE pool amplitudes of less than 5% and 3%, respectively. These postprocessing steps are: motion correction with interpolation of the motion of low-signal offsets (1) using the amide pool frequency offset image as reference (2), normalization of the Z-spectrum using the outermost saturated measurements (3), B 0 correction of the Z-spectrum with moderate spline smoothing (4), denoising using principal component analysis preserving the 11 highest intensity components (5), B 1 + correction using a linear fit (6) and Lorentzian fitting using the five-pool fit model (7). With the optimized postprocessing pipeline, a significant age effect in the amide pool can be detected. Additionally, for the first time, an aliphatic rNOE contrast between subjects with Parkinson's disease and age-matched healthy controls in the substantia nigra is detected. We propose an optimized postprocessing pipeline for CEST multipool evaluation. It is shown that by the use of these seven "tricks", the reproducibility and, thus, the statistical power of a CEST measurement, can be greatly improved and subtle changes can be detected.The objective of the current study was to optimize the postprocessing pipeline of 7 T chemical exchange saturation transfer (CEST) imaging for reproducibility and to prove this optimization for the detection of age differences and differences between patients with Parkinson's disease versus normal subjects. The following 7 T CEST MRI experiments were analyzed: repeated measurements of a healthy subject, subjects of two age cohorts (14 older, seven younger subjects), and measurements of 12 patients with Parkinson's disease. A slab-selective, B 1 + -homogeneous parallel transmit protocol was used. The postprocessing, consisting of motion correction, smoothing, B 0 -correction, normalization, denoising, B 1 + -correction and Lorentzian fitting, was optimized regarding the intrasubject and intersubject coefficient of variation (CoV) of the amplitudes of the amide pool and the aliphatic relayed nuclear Overhauser effect (rNOE) pool within the brain. Seven "tricks" for postprocessing accomplished an improvement of the mean voxel CoV of the amide pool and the aliphatic rNOE pool amplitudes of less than 5% and 3%, respectively. These postprocessing steps are: motion correction with interpolation of the motion of low-signal offsets (1) using the amide pool frequency offset image as reference (2), normalization of the Z-spectrum using the outermost saturated measurements (3), B 0 correction of the Z-spectrum with moderate spline smoothing (4), denoising using principal component analysis preserving the 11 highest intensity components (5), B 1 + correction using a linear fit (6) and Lorentzian fitting using the five-pool fit model (7). With the optimized postprocessing pipeline, a significant age effect in the amide pool can be detected. Additionally, for the first time, an aliphatic rNOE contrast between subjects with Parkinson's disease and age-matched healthy controls in the substantia nigra is detected. We propose an optimized postprocessing pipeline for CEST multipool evaluation. It is shown that by the use of these seven "tricks", the reproducibility and, thus, the statistical power of a CEST measurement, can be greatly improved and subtle changes can be detected.
The objective of the current study was to optimize the postprocessing pipeline of 7 T chemical exchange saturation transfer (CEST) imaging for reproducibility and to prove this optimization for the detection of age differences and differences between patients with Parkinson's disease versus normal subjects. The following 7 T CEST MRI experiments were analyzed: repeated measurements of a healthy subject, subjects of two age cohorts (14 older, seven younger subjects), and measurements of 12 patients with Parkinson's disease. A slab‐selective, B1+‐homogeneous parallel transmit protocol was used. The postprocessing, consisting of motion correction, smoothing, B0‐correction, normalization, denoising, B1+‐correction and Lorentzian fitting, was optimized regarding the intrasubject and intersubject coefficient of variation (CoV) of the amplitudes of the amide pool and the aliphatic relayed nuclear Overhauser effect (rNOE) pool within the brain. Seven “tricks” for postprocessing accomplished an improvement of the mean voxel CoV of the amide pool and the aliphatic rNOE pool amplitudes of less than 5% and 3%, respectively. These postprocessing steps are: motion correction with interpolation of the motion of low‐signal offsets (1) using the amide pool frequency offset image as reference (2), normalization of the Z‐spectrum using the outermost saturated measurements (3), B0 correction of the Z‐spectrum with moderate spline smoothing (4), denoising using principal component analysis preserving the 11 highest intensity components (5), B1+ correction using a linear fit (6) and Lorentzian fitting using the five‐pool fit model (7). With the optimized postprocessing pipeline, a significant age effect in the amide pool can be detected. Additionally, for the first time, an aliphatic rNOE contrast between subjects with Parkinson's disease and age‐matched healthy controls in the substantia nigra is detected. We propose an optimized postprocessing pipeline for CEST multipool evaluation. It is shown that by the use of these seven “tricks”, the reproducibility and, thus, the statistical power of a CEST measurement, can be greatly improved and subtle changes can be detected.
The objective of the current study was to optimize the postprocessing pipeline of 7 T chemical exchange saturation transfer (CEST) imaging for reproducibility and to prove this optimization for the detection of age differences and differences between patients with Parkinson's disease versus normal subjects. The following 7 T CEST MRI experiments were analyzed: repeated measurements of a healthy subject, subjects of two age cohorts (14 older, seven younger subjects), and measurements of 12 patients with Parkinson's disease. A slab‐selective, ‐homogeneous parallel transmit protocol was used. The postprocessing, consisting of motion correction, smoothing, ‐correction, normalization, denoising, ‐correction and Lorentzian fitting, was optimized regarding the intrasubject and intersubject coefficient of variation (CoV) of the amplitudes of the amide pool and the aliphatic relayed nuclear Overhauser effect (rNOE) pool within the brain. Seven “tricks” for postprocessing accomplished an improvement of the mean voxel CoV of the amide pool and the aliphatic rNOE pool amplitudes of less than 5% and 3%, respectively. These postprocessing steps are: motion correction with interpolation of the motion of low‐signal offsets (1) using the amide pool frequency offset image as reference (2), normalization of the Z‐spectrum using the outermost saturated measurements (3), correction of the Z‐spectrum with moderate spline smoothing (4), denoising using principal component analysis preserving the 11 highest intensity components (5), correction using a linear fit (6) and Lorentzian fitting using the five‐pool fit model (7). With the optimized postprocessing pipeline, a significant age effect in the amide pool can be detected. Additionally, for the first time, an aliphatic rNOE contrast between subjects with Parkinson's disease and age‐matched healthy controls in the substantia nigra is detected. We propose an optimized postprocessing pipeline for CEST multipool evaluation. It is shown that by the use of these seven “tricks”, the reproducibility and, thus, the statistical power of a CEST measurement, can be greatly improved and subtle changes can be detected.
The objective of the current study was to optimize the postprocessing pipeline of 7 T chemical exchange saturation transfer (CEST) imaging for reproducibility and to prove this optimization for the detection of age differences and differences between patients with Parkinson's disease versus normal subjects. The following 7 T CEST MRI experiments were analyzed: repeated measurements of a healthy subject, subjects of two age cohorts (14 older, seven younger subjects), and measurements of 12 patients with Parkinson's disease. A slab‐selective, B1+‐homogeneous parallel transmit protocol was used. The postprocessing, consisting of motion correction, smoothing, B0‐correction, normalization, denoising, B1+‐correction and Lorentzian fitting, was optimized regarding the intrasubject and intersubject coefficient of variation (CoV) of the amplitudes of the amide pool and the aliphatic relayed nuclear Overhauser effect (rNOE) pool within the brain. Seven “tricks” for postprocessing accomplished an improvement of the mean voxel CoV of the amide pool and the aliphatic rNOE pool amplitudes of less than 5% and 3%, respectively. These postprocessing steps are: motion correction with interpolation of the motion of low‐signal offsets (1) using the amide pool frequency offset image as reference (2), normalization of the Z‐spectrum using the outermost saturated measurements (3), B0 correction of the Z‐spectrum with moderate spline smoothing (4), denoising using principal component analysis preserving the 11 highest intensity components (5), B1+ correction using a linear fit (6) and Lorentzian fitting using the five‐pool fit model (7). With the optimized postprocessing pipeline, a significant age effect in the amide pool can be detected. Additionally, for the first time, an aliphatic rNOE contrast between subjects with Parkinson's disease and age‐matched healthy controls in the substantia nigra is detected. We propose an optimized postprocessing pipeline for CEST multipool evaluation. It is shown that by the use of these seven “tricks”, the reproducibility and, thus, the statistical power of a CEST measurement, can be greatly improved and subtle changes can be detected. The presented postprocessing pipeline provides increased homogeneity and reproducibility. The mean voxel CoV is decreased to less than 5% for amide and to less than 3% for aliphatic rNOE contrast. Healthy aging‐related changes and altered aliphatic rNOE pools in the substantia nigra of patients in the early stages of Parkinson's disease are detected.
Author German, Alexander
Nagel, Armin M.
Schmidt, Manuel
Khakzar, Katrin M.
Mennecke, Angelika
Zaiss, Moritz
Kasper, Burkhard S.
Fabian, Moritz S.
Winkler, Jürgen
Liebert, Andrzej
Laun, Frederik B.
Blümcke, Ingmar
Herz, Kai
Dörfler, Arnd
Author_xml – sequence: 1
  givenname: Angelika
  orcidid: 0000-0001-6795-5627
  surname: Mennecke
  fullname: Mennecke, Angelika
  email: angelika.mennecke@uk-erlangen.de
  organization: University Hospital Erlangen, Friedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU)
– sequence: 2
  givenname: Katrin M.
  surname: Khakzar
  fullname: Khakzar, Katrin M.
  organization: University Hospital Erlangen, Friedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU)
– sequence: 3
  givenname: Alexander
  surname: German
  fullname: German, Alexander
  organization: University Hospital Erlangen, Friedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU)
– sequence: 4
  givenname: Kai
  orcidid: 0000-0002-7286-1454
  surname: Herz
  fullname: Herz, Kai
  organization: University of Tuebingen
– sequence: 5
  givenname: Moritz S.
  orcidid: 0000-0001-5437-8576
  surname: Fabian
  fullname: Fabian, Moritz S.
  email: moritz.fabian@uk-erlangen.de
  organization: University Hospital Erlangen, Friedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU)
– sequence: 6
  givenname: Andrzej
  orcidid: 0000-0002-8450-3021
  surname: Liebert
  fullname: Liebert, Andrzej
  organization: University Hospital Erlangen, Friedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU)
– sequence: 7
  givenname: Ingmar
  surname: Blümcke
  fullname: Blümcke, Ingmar
  organization: University Hospital Erlangen, Friedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU)
– sequence: 8
  givenname: Burkhard S.
  surname: Kasper
  fullname: Kasper, Burkhard S.
  organization: University Hospital Erlangen, Friedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU)
– sequence: 9
  givenname: Armin M.
  orcidid: 0000-0003-0948-1421
  surname: Nagel
  fullname: Nagel, Armin M.
  organization: University Hospital Erlangen, Friedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU)
– sequence: 10
  givenname: Frederik B.
  orcidid: 0000-0002-9269-5609
  surname: Laun
  fullname: Laun, Frederik B.
  organization: University Hospital Erlangen, Friedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU)
– sequence: 11
  givenname: Manuel
  orcidid: 0000-0002-8560-2582
  surname: Schmidt
  fullname: Schmidt, Manuel
  organization: University Hospital Erlangen, Friedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU)
– sequence: 12
  givenname: Jürgen
  surname: Winkler
  fullname: Winkler, Jürgen
  organization: University Hospital Erlangen, Friedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU)
– sequence: 13
  givenname: Arnd
  surname: Dörfler
  fullname: Dörfler, Arnd
  organization: University Hospital Erlangen, Friedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU)
– sequence: 14
  givenname: Moritz
  orcidid: 0000-0001-9780-3616
  surname: Zaiss
  fullname: Zaiss, Moritz
  organization: University Hospital Erlangen, Friedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU)
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35194865$$D View this record in MEDLINE/PubMed
BookMark eNp1kV1vFCEUhompsdtq4i8wJF7ozax8zQLe6abVJvUjcb2eMMBsaRlYganZv9NfKrtbNWn0Cnh53vfAOSfgKMRgAXiO0RwjRN6EfpwzjvkjMMNIygYzSY7ADMmWNJQJdAxOcr5GCAlGyRNwTFssmVi0M3DHYUlO32Q4xAQ5XMHl2bfVW3gxblK8dWENy5WFydaTmbTrnXdlC-MAx8kXt4nRQ3ur_KSKiwHuPcZm6EJ266uy25S4j7DDYHUVqlWtLVTBHGSV_BbmUrX93VeVbqo5hlcZGpetyvYpeDwon-2z-_UUfD8_Wy0_NpdfPlws3102mgrKG8OoNKpvDTWsp1oLISQ1XHKJpGoZUS2lvO-l7pGlHEm20JpbztAgNBdC0VPw-pBbf_Fjsrl0o8vaeq-CjVPuyIIS3CJCcEVfPkCv45RCfV1HBF7UalTuqBf31NSP1nSb5EaVtt3v7v-tqFPMOdnhD4JRtxtsVwfb7QZb0fkDVLuyb3pJyvl_GZqD4afzdvvf4O7z-097_hcan7Ps
CitedBy_id crossref_primary_10_1002_nbm_5096
crossref_primary_10_1021_cbmi_3c00019
crossref_primary_10_1002_mrm_30233
crossref_primary_10_1002_nbm_4960
crossref_primary_10_1002_nbm_4697
crossref_primary_10_1371_journal_pone_0299961
crossref_primary_10_1002_mrm_30129
crossref_primary_10_1002_nbm_5310
crossref_primary_10_1002_mrm_29739
Cites_doi 10.1016/j.neuroimage.2021.117822
10.1002/mrm.28643
10.1016/j.neuroimage.2005.02.018
10.1002/mrm.28298
10.1109/TMI.2009.2035616
10.1002/nbm.3920
10.1007/s00330‐019‐06285‐7
10.1016/j.stem.2018.06.015
10.1002/mrm.28745
10.1016/j.neuroimage.2013.03.047
10.1007/s11307‐016‐0995‐0
10.1002/mrm.27762
10.1007/s00330‐014‐3241‐7
10.1007/s11307‐019‐01352‐3
10.1002/mrm.27655
10.1093/neuonc/noy073
10.1002/mrm.26802
10.1002/cmmi.240
10.1002/nbm.4697
10.1016/j.neuroimage.2021.117910
10.1002/mrm.28961
10.3233/jad‐132750
10.1016/j.neuroimage.2018.06.026
10.1016/j.jmr.2018.11.002
10.1002/jmri.26645
10.1002/nbm.3283
10.1016/j.nicl.2019.101833
10.3389/fneur.2019.01307
10.1016/j.neuroimage.2021.117986
10.1016/j.clinimag.2019.09.005
10.1002/mrm.28825
10.1016/j.arr.2020.101075
10.1002/mrm.27367
10.1002/nbm.3665
10.1016/j.neuroimage.2015.02.040
10.3389/fneur.2019.00789
10.1113/JP271081
10.1002/jmri.25838
10.1038/nm907
10.1002/nbm.3879
10.1002/mrm.27751
10.1002/mrm.27206
10.1002/mrm.26799
10.1002/mrm.28770
10.1002/mrm.27569
10.1002/nbm.4720
10.1002/jmri.25027
10.1016/S0896‐6273(03)00568‐3
10.1002/nbm.3054
10.1016/j.jmr.2011.05.001
10.1002/mrm.22884
10.1002/nbm.4133
10.1002/mrm.24784
10.1002/nbm.3716
ContentType Journal Article
Copyright 2022 The Authors. published by John Wiley & Sons Ltd.
2022 The Authors. NMR in Biomedicine published by John Wiley & Sons Ltd.
2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 The Authors. published by John Wiley & Sons Ltd.
– notice: 2022 The Authors. NMR in Biomedicine published by John Wiley & Sons Ltd.
– notice: 2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
8FD
FR3
K9.
P64
7X8
DOI 10.1002/nbm.4717
DatabaseName Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
ProQuest Health & Medical Complete (Alumni)
CrossRef

MEDLINE
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Chemistry
Physics
EISSN 1099-1492
EndPage n/a
ExternalDocumentID 35194865
10_1002_nbm_4717
NBM4717
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: German Research Foundation DFG
  funderid: ZA 814/5‐1
– fundername: Max‐Planck‐Society
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
123
1L6
1OB
1OC
1ZS
24P
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52V
52W
52X
53G
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AAHQN
AAIPD
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
DUUFO
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KBYEO
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M65
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P2Z
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RGB
RIWAO
RJQFR
ROL
RWI
RX1
SAMSI
SUPJJ
SV3
UB1
V2E
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WJL
WOHZO
WQJ
WRC
WUP
WVDHM
WXSBR
XG1
XPP
XV2
ZZTAW
~IA
~WT
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
FR3
K9.
P64
7X8
ID FETCH-LOGICAL-c3837-d439dab5d3d4b3cc88893d797909a542a5337bb9cb0e370946cc7e740f8c788a3
IEDL.DBID DR2
ISSN 0952-3480
1099-1492
IngestDate Thu Jul 10 23:10:57 EDT 2025
Fri Jul 25 09:59:21 EDT 2025
Wed Feb 19 02:23:24 EST 2025
Thu Apr 24 23:13:44 EDT 2025
Tue Jul 01 02:45:45 EDT 2025
Wed Jan 22 16:23:11 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords amide
7 T
Lorentzian fitting
rNOE
standardization
CEST
Parkinson
age
Language English
License Attribution
2022 The Authors. NMR in Biomedicine published by John Wiley & Sons Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3837-d439dab5d3d4b3cc88893d797909a542a5337bb9cb0e370946cc7e740f8c788a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-8560-2582
0000-0002-8450-3021
0000-0001-9780-3616
0000-0001-5437-8576
0000-0001-6795-5627
0000-0002-9269-5609
0000-0002-7286-1454
0000-0003-0948-1421
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fnbm.4717
PMID 35194865
PQID 2816542391
PQPubID 2029982
PageCount 16
ParticipantIDs proquest_miscellaneous_2632150221
proquest_journals_2816542391
pubmed_primary_35194865
crossref_primary_10_1002_nbm_4717
crossref_citationtrail_10_1002_nbm_4717
wiley_primary_10_1002_nbm_4717_NBM4717
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 2023
2023-06-00
20230601
PublicationDateYYYYMMDD 2023-06-01
PublicationDate_xml – month: 06
  year: 2023
  text: June 2023
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
PublicationTitle NMR in biomedicine
PublicationTitleAlternate NMR Biomed
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2021; 86
2019; 50
2020; 84
2019; 10
2019; 32
2020; 61
2014; 27
2008
2018; 80
2020; 59
2013; 70
2014; 24
2003; 39
2008; 3
2022; 87
2005; 26
2018; 23
2018; 20
2011; 211
2018; 47
2014; 42
2017; 30
2019; 82
2015; 28
2019; 81
2021; 234
2013; 77
2022
2020; 30
2010; 29
2020
2019; 21
2018; 179
2015; 112
2019; 23
2003; 9
2017; 78
2016; 43
2011; 66
2016; 594
2017; 19
2021; 232
2021; 231
2021; 85
2018; 31
2019; 298
e_1_2_10_23_1
e_1_2_10_46_1
e_1_2_10_21_1
e_1_2_10_44_1
e_1_2_10_42_1
e_1_2_10_40_1
e_1_2_10_2_1
e_1_2_10_4_1
e_1_2_10_18_1
e_1_2_10_53_1
e_1_2_10_6_1
e_1_2_10_16_1
e_1_2_10_39_1
e_1_2_10_55_1
e_1_2_10_8_1
e_1_2_10_14_1
e_1_2_10_37_1
e_1_2_10_57_1
e_1_2_10_58_1
e_1_2_10_13_1
e_1_2_10_34_1
e_1_2_10_11_1
e_1_2_10_32_1
e_1_2_10_30_1
e_1_2_10_51_1
e_1_2_10_61_1
e_1_2_10_29_1
e_1_2_10_27_1
e_1_2_10_25_1
e_1_2_10_48_1
e_1_2_10_24_1
e_1_2_10_45_1
e_1_2_10_22_1
e_1_2_10_43_1
e_1_2_10_20_1
e_1_2_10_41_1
e_1_2_10_52_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_54_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_38_1
e_1_2_10_56_1
e_1_2_10_7_1
e_1_2_10_15_1
e_1_2_10_36_1
e_1_2_10_12_1
e_1_2_10_35_1
e_1_2_10_9_1
e_1_2_10_59_1
e_1_2_10_10_1
e_1_2_10_33_1
e_1_2_10_31_1
e_1_2_10_50_1
e_1_2_10_60_1
e_1_2_10_28_1
e_1_2_10_49_1
e_1_2_10_26_1
e_1_2_10_47_1
References_xml – volume: 21
  start-page: 1064
  issue: 6
  year: 2019
  end-page: 1070
  article-title: Retrospective brain motion correction in glutamate chemical exchange saturation transfer (GluCEST) MRI
  publication-title: Mol Imaging Biol
– year: 2022
  article-title: Motion correction for 3D CEST imaging without direct water saturation artifacts
  publication-title: NMR Biomed
– volume: 30
  issue: 1
  year: 2017
  article-title: Aggregation‐induced changes in the chemical exchange saturation transfer (CEST) signals of proteins
  publication-title: NMR Biomed
– volume: 39
  start-page: 889
  issue: 6
  year: 2003
  end-page: 909
  article-title: Parkinson's disease: mechanisms and models
  publication-title: Neuron
– volume: 30
  issue: 7
  year: 2017
  article-title: Accuracy in the quantification of chemical exchange saturation transfer (CEST) and relayed nuclear Overhauser enhancement (rNOE) saturation transfer effects
  publication-title: NMR Biomed
– volume: 20
  start-page: 1661
  issue: 12
  year: 2018
  end-page: 1671
  article-title: Assessing the predictability of IDH mutation and MGMT methylation status in glioma patients using relaxation‐compensated multipool CEST MRI at 7.0 T
  publication-title: Neuro Oncol
– volume: 23
  start-page: 123
  issue: 1
  year: 2018
  end-page: 131
  article-title: Th17 Lymphocytes Induce Neuronal Cell Death in a Human iPSC‐Based Model of Parkinson's Disease
  publication-title: Cell Stem Cell
– volume: 43
  start-page: 756
  issue: 3
  year: 2016
  end-page: 761
  article-title: Selecting the reference image for registration of CEST series
  publication-title: J Magn Reson Imaging
– volume: 31
  issue: 4
  year: 2018
  article-title: Snapshot‐CEST: Optimizing spiral‐centric‐reordered gradient echo acquisition for fast and robust 3D CEST MRI at 9.4 T
  publication-title: NMR Biomed
– volume: 179
  start-page: 144
  year: 2018
  end-page: 155
  article-title: Chemical exchange saturation transfer MRI contrast in the human brain at 9.4 T
  publication-title: Neuroimage
– volume: 87
  start-page: 365
  issue: 1
  year: 2022
  end-page: 376
  article-title: Role of chemical exchange on the relayed nuclear Overhauser enhancement signal in saturation transfer MRI
  publication-title: Magn Reson Med
– volume: 78
  start-page: 871
  issue: 3
  year: 2017
  end-page: 880
  article-title: Improving the detection sensitivity of pH‐weighted amide proton transfer MRI in acute stroke patients using extrapolated semisolid magnetization transfer reference signals
  publication-title: Magn Reson Med
– volume: 86
  start-page: 346
  issue: 1
  year: 2021
  end-page: 362
  article-title: Whole‐brain quantitative CEST MRI at 7T using parallel transmission methods and correction
  publication-title: Magn Reson Med
– volume: 30
  start-page: 346
  issue: 1
  year: 2020
  end-page: 356
  article-title: Repeatability of amide proton transfer‐weighted signals in the brain according to clinical condition and anatomical location
  publication-title: Eur Radiol
– volume: 61
  year: 2020
  article-title: MRI‐based biomarkers of accelerated aging and dementia risk in midlife: how close are we?
  publication-title: Ageing Res Rev
– volume: 86
  start-page: 346
  issue: 1
  year: 2021
  end-page: 362
  article-title: Whole‐brain quantitative CEST MRI at 7T using parallel transmission methods and B1+ correction
  publication-title: Magn Reson Med
– year: 2022
  article-title: Linear projection‐based chemical exchange saturation transfer parameter estimation
  publication-title: NMR Biomed
– volume: 47
  start-page: 11
  issue: 1
  year: 2018
  end-page: 27
  article-title: Clinical applications of chemical exchange saturation transfer (CEST) MRI
  publication-title: J Magn Reson Imaging
– volume: 85
  start-page: 3140
  issue: 6
  year: 2021
  end-page: 3153
  article-title: Fast online‐customized (FOCUS) parallel transmission pulses: A combination of universal pulses and individual optimization
  publication-title: Magn Reson Med
– volume: 82
  start-page: 693
  issue: 2
  year: 2019
  end-page: 705
  article-title: Multiple interleaved mode saturation (MIMOSA) for B(1) (+) inhomogeneity mitigation in chemical exchange saturation transfer
  publication-title: Magn Reson Med
– volume: 80
  start-page: 1979
  issue: 5
  year: 2018
  end-page: 1988
  article-title: Robust motion correction in CEST imaging exploiting low‐rank approximation of the z‐spectrum
  publication-title: Magn Reson Med
– volume: 81
  start-page: 2412
  issue: 4
  year: 2019
  end-page: 2423
  article-title: 3D gradient echo snapshot CEST MRI with low power saturation for human studies at 3T
  publication-title: Magn Reson Med
– volume: 234
  year: 2021
  article-title: Brain tissues have single‐voxel signatures in multi‐spectral MRI
  publication-title: Neuroimage
– volume: 232
  year: 2021
  article-title: The traveling heads 2.0: Multicenter reproducibility of quantitative imaging methods at 7 Tesla
  publication-title: Neuroimage
– volume: 50
  start-page: 347
  issue: 2
  year: 2019
  end-page: 364
  article-title: APT‐weighted MRI: Techniques, current neuro applications, and challenging issues
  publication-title: J Magn Reson Imaging
– volume: 594
  start-page: 4471
  issue: 16
  year: 2016
  end-page: 4483
  article-title: The impact of age on cerebral perfusion, oxygenation and metabolism during exercise in humans
  publication-title: J Physiol
– volume: 86
  start-page: 1845
  issue: 4
  year: 2021
  end-page: 1858
  article-title: Pulseq‐CEST: Towards multi‐site multi‐vendor compatibility and reproducibility of CEST experiments using an open‐source sequence standard
  publication-title: Magn Reson Med
– volume: 70
  start-page: 320
  issue: 2
  year: 2013
  end-page: 327
  article-title: APT‐weighted and NOE‐weighted image contrasts in glioma with different RF saturation powers based on magnetization transfer ratio asymmetry analyses
  publication-title: Magn Reson Med
– volume: 23
  year: 2019
  article-title: Quantitative CEST imaging of amide proton transfer in acute ischaemic stroke
  publication-title: Neuroimage Clin
– volume: 84
  start-page: 2469
  issue: 5
  year: 2020
  end-page: 2483
  article-title: Whole brain snapshot CEST at 3T using 3D‐EPI: Aiming for speed, volume, and homogeneity
  publication-title: Magn Reson Med
– volume: 42
  start-page: S229
  issue: s3
  year: 2014
  end-page: S237
  article-title: Magnetization Transfer Imaging for in vivo Detection of Microstructural Tissue Changes in Aging and Dementia: A Short Literature Review
  publication-title: J Alzheimer's Dis
– volume: 10
  start-page: 1307
  year: 2019
  article-title: Amide proton transfer weighted imaging shows differences in multiple sclerosis lesions and white matter hyperintensities of presumed vascular origin
  publication-title: Front Neurol
– volume: 231
  year: 2021
  article-title: Estimating brain age from structural MRI and MEG data: Insights from dimensionality reduction techniques
  publication-title: Neuroimage
– volume: 28
  start-page: 529
  issue: 5
  year: 2015
  end-page: 537
  article-title: Correction of B1‐inhomogeneities for relaxation‐compensated CEST imaging at 7 T
  publication-title: NMR Biomed
– volume: 78
  start-page: 881
  issue: 3
  year: 2017
  end-page: 887
  article-title: Assignment of the molecular origins of CEST signals at 2 ppm in rat brain
  publication-title: Magn Reson Med
– volume: 81
  start-page: 3476
  issue: 6
  year: 2019
  end-page: 3487
  article-title: Chemical exchange saturation transfer imaging of phosphocreatine in the muscle
  publication-title: Magn Reson Med
– volume: 31
  issue: 6
  year: 2018
  article-title: Dual‐frequency irradiation CEST‐MRI of endogenous bulk mobile proteins
  publication-title: NMR Biomed
– volume: 81
  start-page: 573
  issue: 1
  year: 2019
  end-page: 582
  article-title: Assessment of frequency drift on CEST MRI and dynamic correction: application to gagCEST at 7 T
  publication-title: Magn Reson Med
– volume: 112
  start-page: 180
  year: 2015
  end-page: 188
  article-title: Relaxation‐compensated CEST‐MRI of the human brain at 7T: Unbiased insight into NOE and amide signal changes in human glioblastoma
  publication-title: Neuroimage
– volume: 82
  start-page: 622
  issue: 2
  year: 2019
  end-page: 632
  article-title: Relaxation‐compensated APT and rNOE CEST‐MRI of human brain tumors at 3 T
  publication-title: Magn Reson Med
– volume: 27
  start-page: 240
  issue: 3
  year: 2014
  end-page: 252
  article-title: InverseZ‐spectrum analysis for spillover‐, MT‐, andT1‐corrected steady‐state pulsed CEST‐MRI ‐ application to pH‐weighted MRI of acute stroke
  publication-title: NMR Biomed
– volume: 32
  issue: 11
  year: 2019
  article-title: Adaptive denoising for chemical exchange saturation transfer MR imaging
  publication-title: NMR Biomed
– volume: 66
  start-page: 1100
  issue: 4
  year: 2011
  end-page: 1108
  article-title: Optimizing pulsed‐chemical exchange saturation transfer imaging sequences
  publication-title: Magn Reson Med
– volume: 59
  start-page: 56
  issue: 1
  year: 2020
  end-page: 60
  article-title: Role of T1 mapping to evaluate brain aging in a healthy population
  publication-title: Clin Imaging
– volume: 86
  start-page: 893
  issue: 2
  year: 2021
  end-page: 906
  article-title: Whole‐brain amide CEST imaging at 3T with a steady‐state radial MRI acquisition
  publication-title: Magn Reson Med
– volume: 24
  start-page: 2631
  issue: 10
  year: 2014
  end-page: 2639
  article-title: Chemical exchange saturation transfer MR imaging of Parkinson's disease at 3 Tesla
  publication-title: Eur Radiol
– volume: 19
  start-page: 225
  issue: 2
  year: 2017
  end-page: 232
  article-title: Creatine CEST MRI for differentiating gliomas with different degrees of aggressiveness
  publication-title: Mol Imaging Biol
– volume: 77
  start-page: 114
  year: 2013
  end-page: 124
  article-title: Nuclear Overhauser enhancement (NOE) imaging in the human brain at 7T
  publication-title: Neuroimage
– volume: 26
  start-page: 839
  issue: 3
  year: 2005
  end-page: 851
  article-title: Unified segmentation
  publication-title: Neuroimage
– volume: 10
  start-page: 789
  year: 2019
  article-title: Ten years of brainAGE as a neuroimaging biomarker of brain aging: What insights have we gained?
  publication-title: Front Neurol
– volume: 211
  start-page: 149
  issue: 2
  year: 2011
  end-page: 155
  article-title: Quantitative separation of CEST effect from magnetization transfer and spillover effects by Lorentzian‐line‐fit analysis of z‐spectra
  publication-title: J Magn Reson
– year: 2020
– start-page: 1247
  year: 2008
– volume: 29
  start-page: 196
  issue: 1
  year: 2010
  end-page: 205
  article-title: elastix: a toolbox for intensity‐based medical image registration
  publication-title: IEEE Trans Med Imaging
– volume: 298
  start-page: 16
  year: 2019
  end-page: 22
  article-title: Possible artifacts in dynamic CEST MRI due to motion and field alterations
  publication-title: J Magn Reson
– volume: 9
  start-page: 1085
  issue: 8
  year: 2003
  end-page: 1090
  article-title: Using the amide proton signals of intracellular proteins and peptides to detect pH effects in MRI
  publication-title: Nat Med
– volume: 3
  start-page: 136
  issue: 4
  year: 2008
  end-page: 149
  article-title: Development and validation of a smoothing‐splines‐based correction method for improving the analysis of CEST‐MR images
  publication-title: Contrast Media Mol Imaging
– ident: e_1_2_10_50_1
  doi: 10.1016/j.neuroimage.2021.117822
– ident: e_1_2_10_14_1
  doi: 10.1002/mrm.28643
– ident: e_1_2_10_29_1
  doi: 10.1016/j.neuroimage.2005.02.018
– ident: e_1_2_10_12_1
  doi: 10.1002/mrm.28298
– ident: e_1_2_10_24_1
  doi: 10.1109/TMI.2009.2035616
– ident: e_1_2_10_60_1
– ident: e_1_2_10_35_1
  doi: 10.1002/nbm.3920
– ident: e_1_2_10_46_1
  doi: 10.1007/s00330‐019‐06285‐7
– ident: e_1_2_10_57_1
  doi: 10.1016/j.stem.2018.06.015
– ident: e_1_2_10_18_1
  doi: 10.1002/mrm.28745
– ident: e_1_2_10_59_1
  doi: 10.1016/j.neuroimage.2013.03.047
– ident: e_1_2_10_3_1
  doi: 10.1007/s11307‐016‐0995‐0
– ident: e_1_2_10_15_1
  doi: 10.1002/mrm.27762
– ident: e_1_2_10_61_1
  doi: 10.1007/s00330‐014‐3241‐7
– ident: e_1_2_10_38_1
  doi: 10.1007/s11307‐019‐01352‐3
– ident: e_1_2_10_58_1
  doi: 10.1002/mrm.27655
– ident: e_1_2_10_31_1
  doi: 10.1093/neuonc/noy073
– ident: e_1_2_10_34_1
  doi: 10.1002/mrm.26802
– ident: e_1_2_10_23_1
– ident: e_1_2_10_26_1
  doi: 10.1002/cmmi.240
– ident: e_1_2_10_43_1
  doi: 10.1002/nbm.4697
– ident: e_1_2_10_41_1
  doi: 10.1016/j.neuroimage.2021.117910
– ident: e_1_2_10_32_1
  doi: 10.1002/mrm.28961
– ident: e_1_2_10_48_1
  doi: 10.3233/jad‐132750
– ident: e_1_2_10_42_1
– ident: e_1_2_10_13_1
  doi: 10.1016/j.neuroimage.2018.06.026
– ident: e_1_2_10_21_1
  doi: 10.1016/j.jmr.2018.11.002
– ident: e_1_2_10_11_1
  doi: 10.1002/jmri.26645
– ident: e_1_2_10_28_1
  doi: 10.1002/nbm.3283
– ident: e_1_2_10_47_1
  doi: 10.1016/j.nicl.2019.101833
– ident: e_1_2_10_6_1
  doi: 10.3389/fneur.2019.01307
– ident: e_1_2_10_30_1
  doi: 10.1016/j.neuroimage.2021.117986
– ident: e_1_2_10_49_1
  doi: 10.1016/j.clinimag.2019.09.005
– ident: e_1_2_10_44_1
  doi: 10.1002/mrm.28825
– ident: e_1_2_10_52_1
  doi: 10.1016/j.arr.2020.101075
– ident: e_1_2_10_39_1
  doi: 10.1002/mrm.27367
– ident: e_1_2_10_40_1
– ident: e_1_2_10_55_1
  doi: 10.1002/nbm.3665
– ident: e_1_2_10_9_1
  doi: 10.1016/j.neuroimage.2015.02.040
– ident: e_1_2_10_51_1
  doi: 10.3389/fneur.2019.00789
– ident: e_1_2_10_54_1
  doi: 10.1113/JP271081
– ident: e_1_2_10_2_1
  doi: 10.1002/jmri.25838
– ident: e_1_2_10_25_1
  doi: 10.1038/nm907
– ident: e_1_2_10_16_1
  doi: 10.1002/nbm.3879
– ident: e_1_2_10_5_1
  doi: 10.1002/mrm.27751
– ident: e_1_2_10_20_1
  doi: 10.1002/mrm.27206
– ident: e_1_2_10_53_1
  doi: 10.1002/mrm.26799
– ident: e_1_2_10_33_1
  doi: 10.1002/mrm.28770
– ident: e_1_2_10_36_1
  doi: 10.1002/mrm.27569
– ident: e_1_2_10_37_1
  doi: 10.1002/nbm.4720
– ident: e_1_2_10_22_1
  doi: 10.1002/jmri.25027
– ident: e_1_2_10_56_1
  doi: 10.1016/S0896‐6273(03)00568‐3
– ident: e_1_2_10_10_1
  doi: 10.1002/nbm.3054
– ident: e_1_2_10_17_1
– ident: e_1_2_10_8_1
  doi: 10.1016/j.jmr.2011.05.001
– ident: e_1_2_10_19_1
  doi: 10.1002/mrm.22884
– ident: e_1_2_10_27_1
  doi: 10.1002/nbm.4133
– ident: e_1_2_10_4_1
  doi: 10.1002/mrm.24784
– ident: e_1_2_10_7_1
  doi: 10.1002/nbm.3716
– ident: e_1_2_10_45_1
  doi: 10.1002/mrm.28745
SSID ssj0008432
Score 2.4765499
Snippet The objective of the current study was to optimize the postprocessing pipeline of 7 T chemical exchange saturation transfer (CEST) imaging for reproducibility...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e4717
SubjectTerms 7 T
age
Age differences
Age factors
Aliphatic compounds
amide
Amides
Amplitudes
Biological products
Brain
CEST
Coefficient of variation
Humans
Interpolation
Lorentzian fitting
Magnetic Resonance Imaging - methods
Movement disorders
Neurodegenerative diseases
Neuroimaging
Noise reduction
Optimization
Overhauser effect
Parkinson
Parkinson Disease - diagnostic imaging
Parkinson's disease
Principal components analysis
Reproducibility
Reproducibility of Results
rNOE
Smoothing
standardization
Substantia nigra
Title 7 tricks for 7 T CEST: Improving the reproducibility of multipool evaluation provides insights into the effects of age and the early stages of Parkinson's disease
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fnbm.4717
https://www.ncbi.nlm.nih.gov/pubmed/35194865
https://www.proquest.com/docview/2816542391
https://www.proquest.com/docview/2632150221
Volume 36
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagEtALj4XCQqmMhOgp29R27JgbrFpVSFsh2EqVOER-bVW1JBXZPdCf01_KjJ2klIeEOCWKx3Gi8eMbe-YbQl4XRSG19DmeMJaZWFibWRZ0VhiAc54xywMGJ88O5cGR-HBcHHdelRgLk_ghhg03HBlxvsYBbmy78xNpqP06gZkVA8nRVQvx0Kdr5qhSxNxkACBYxkWZ97yzOdvpK95ciX6DlzfRalxu9h-QL_2HJi-Ts8lqaSfu8hcOx__7k4fkfodC6bvUbR6RW6EekXvTPvnbiNyddWfuI3InOom69jG5UhT5_M9aCkiXKjqn073P87d02JiggCYp0mQii2xyu_1OmwVNXotNc06vycVpFwPY0tO6xR0CvFk28RWdkwlWhemOmtqnx0jGTAHOnoRYhhHbMXhtu6XdQdMTcrS_N58eZF2Oh8yhbZx5AETe2MJzLyx3Dgxyzb3SSufaFIIZgKPKWu1sHrgCW1Q6p4IS-aJ0YL0bvkHW6qYOzwiVAsCSsnLXF0YEKayWTrtceOWtCbkZk-1e35XrCNAxD8d5laibWQWKqFARY_JqkLxIpB9_kNnsu0zVDfu2YiUGhzGud-EVQzGoDk9hTB2aFchIDjALoBPIPE1dbWgEsyWKUhZj8iZ2mL-2Xh2-n-H1-b8KviDrDOBZcnLbJGvLb6vwEuDU0m6R20x83IrD5wdxhh1K
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIigXHguUhQJGQvSUbeo4dgInWFot0N0DbKUeKkV-LUJtE0R2D_Bz-KXMxElKeUiIU6J4HCcaPz57Zr4BeJqmqcyli8nCmEViYUxkuM-jVCOcc5ybxFNw8nQmJ4fi7VF6tAYvuliYwA_RH7jRyGjmaxrgdCC98xNrqDkb4dSqLsFlSuhNxPmv359zR2WiyU6GEIJHicjijnk25jtdzYtr0W8A8yJebRac_Rtw3H1q8DM5Ga2WZmS__cLi-J__chOut0CUvQw95xas-XIAG-Mu_9sArk5bs_sArjR-ora-Dd8VI0r_k5oh2GWKzdl478P8OevPJhgCSkZMmUQkGzxvv7JqwYLjYlWdsnN-cdaGAdbsU1nTIQHdLKvmFa2fCVXFGY_p0oXHxMfMENF-9E0ZBW038WvbNWttTXfgcH9vPp5EbZqHyNL2OHKIiZw2qUucMIm1uCfPE6dylce5TgXXiEiVMbk1sU8UbkeltcorES8yixt4ndyF9bIq_T1gUiBeUkbuulQLL4XJpc1tLJxyRvtYD2G7U3hhWw50SsVxWgT2Zl6gIgpSxBCe9JKfA-_HH2S2uj5TtCO_LnhG8WE8yXfxFX0xqo4MMbr01QplZIJIC9ETymyGvtY3QgkTRSbTITxresxfWy9mr6Z0vf-vgo9hYzKfHhQHb2bvHsA1jmgt-Lxtwfryy8o_RHS1NI-aUfQDc9ogjw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELagiMIFwfJaKGAkRE-hqZ8xN1i6Ko9dVWIr9Rb5tQhRkopsD_wdfikzdhKoAIlTongcH8aPbzwz3xDyTEqpjAolehirQqydKxyLppAW4FxgzPGIycmLpTo8Fu9O5EkfVYm5MJkfYrxww5WR9mtc4Gdhvfcbaaj7-gJ2Vn2ZXEFfH4ZzMXE07sKVSMXJAEGwgouqHIhnS7Y39Lx4FP2BLy_C1XTezG-SGz1QpK-yZm-RS7GZkGuzoT7bhGwverf4hFxNcZy-u01-aIqU-186CmCUarqis4OPq5d0vDugAPgoMlki0WuOjP1O2zXNgYVte0p_8X_TPk2vo5-bDo14fNm06Rd9HAh2hR2J2ibkz8iXTAFxfoqpDZOqU37Zbkd7X9Adcjw_WM0Oi74MQ-HRfC0CYJZgnQw8CMe9B5vZ8KCNNqWxUjALiFE7Z7wrI9dgLirvddSiXFceDGzL75Ktpm3ifUKVADyjndoP0oqohDPKG1-KoIOzsbRTsjtopPY9RzmWyjitM7syq0F3NepuSp6OkmeZl-MvMjuDUut-ZXY1qzB_i3GzD78Ym0F16CixTWzPQUZxQEKAbkDmXp4M4yBY0FBUSk7J8zQ7_jl6vXy9wOeD_xV8QraP3szrD2-X7x-S61jWPoek7ZCtzbfz-AjAz8Y9TrP8J_u2_y8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=7+tricks+for+7+T+CEST%3A+Improving+the+reproducibility+of+multipool+evaluation+provides+insights+into+the+effects+of+age+and+the+early+stages+of+Parkinson%27s+disease&rft.jtitle=NMR+in+biomedicine&rft.au=Mennecke%2C+Angelika&rft.au=Khakzar%2C+Katrin+M&rft.au=German%2C+Alexander&rft.au=Herz%2C+Kai&rft.date=2023-06-01&rft.eissn=1099-1492&rft.volume=36&rft.issue=6&rft.spage=e4717&rft_id=info:doi/10.1002%2Fnbm.4717&rft_id=info%3Apmid%2F35194865&rft.externalDocID=35194865
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0952-3480&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0952-3480&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0952-3480&client=summon