Strategic Defect Engineering of Metal–Organic Frameworks for Optimizing the Fabrication of Single‐Atom Catalysts

Single‐atom catalysts (SACs) have garnered enormous interest due to their remarkable catalysis activity. However, the exploitation of universal synthesis strategy and regulation of coordination environment of SACs remain a great challenge. Herein, a versatile synthetic strategy is demonstrated to ge...

Full description

Saved in:
Bibliographic Details
Published inAdvanced functional materials Vol. 31; no. 41
Main Authors He, Jie, Li, Na, Li, Zhi‐Gang, Zhong, Ming, Fu, Zi‐Xuan, Liu, Ming, Yin, Jia‐Cheng, Shen, Zhurui, Li, Wei, Zhang, Jijie, Chang, Ze, Bu, Xian‐He
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 01.10.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Single‐atom catalysts (SACs) have garnered enormous interest due to their remarkable catalysis activity. However, the exploitation of universal synthesis strategy and regulation of coordination environment of SACs remain a great challenge. Herein, a versatile synthetic strategy is demonstrated to generate a series of transition metal SACs (M SAs/NC, M = Co, Cu, Mn; NC represents the nitrogen‐doped carbon) through defect engineering of metal‐organic frameworks (MOFs). The interatomic distance between metal sites can be increased by deliberately introducing structural defects within the MOF framework, which inhibits metal aggregation and consequently results in an approximately 70% increase in single metal atom yield. Additionally, the coordination structures of metal sites can also be facilely tuned. The optimized Co SAs/NC‐800 exhibits superior activity and excellent reusability for the selective hydrogenation of nitroarenes, surpassing several state‐of‐art non‐noble‐metal catalysts. This study provides a new avenue for the universal fabrication of transition metal SACs. A general metal–organic framework defect engineering strategy is proposed to increase the yield of single‐atom catalysts. This strategy enlarges the distance between metal active sites, effectively hindering the aggregation of metal atoms and affording a 70% improved yield of metal single atoms. The optimized Co SAs/NC‐800 exhibits superior activity and reusability in nitroarene hydrogenation.
AbstractList Single‐atom catalysts (SACs) have garnered enormous interest due to their remarkable catalysis activity. However, the exploitation of universal synthesis strategy and regulation of coordination environment of SACs remain a great challenge. Herein, a versatile synthetic strategy is demonstrated to generate a series of transition metal SACs (M SAs/NC, M = Co, Cu, Mn; NC represents the nitrogen‐doped carbon) through defect engineering of metal‐organic frameworks (MOFs). The interatomic distance between metal sites can be increased by deliberately introducing structural defects within the MOF framework, which inhibits metal aggregation and consequently results in an approximately 70% increase in single metal atom yield. Additionally, the coordination structures of metal sites can also be facilely tuned. The optimized Co SAs/NC‐800 exhibits superior activity and excellent reusability for the selective hydrogenation of nitroarenes, surpassing several state‐of‐art non‐noble‐metal catalysts. This study provides a new avenue for the universal fabrication of transition metal SACs.
Single‐atom catalysts (SACs) have garnered enormous interest due to their remarkable catalysis activity. However, the exploitation of universal synthesis strategy and regulation of coordination environment of SACs remain a great challenge. Herein, a versatile synthetic strategy is demonstrated to generate a series of transition metal SACs (M SAs/NC, M = Co, Cu, Mn; NC represents the nitrogen‐doped carbon) through defect engineering of metal‐organic frameworks (MOFs). The interatomic distance between metal sites can be increased by deliberately introducing structural defects within the MOF framework, which inhibits metal aggregation and consequently results in an approximately 70% increase in single metal atom yield. Additionally, the coordination structures of metal sites can also be facilely tuned. The optimized Co SAs/NC‐800 exhibits superior activity and excellent reusability for the selective hydrogenation of nitroarenes, surpassing several state‐of‐art non‐noble‐metal catalysts. This study provides a new avenue for the universal fabrication of transition metal SACs. A general metal–organic framework defect engineering strategy is proposed to increase the yield of single‐atom catalysts. This strategy enlarges the distance between metal active sites, effectively hindering the aggregation of metal atoms and affording a 70% improved yield of metal single atoms. The optimized Co SAs/NC‐800 exhibits superior activity and reusability in nitroarene hydrogenation.
Author He, Jie
Li, Zhi‐Gang
Chang, Ze
Fu, Zi‐Xuan
Liu, Ming
Shen, Zhurui
Yin, Jia‐Cheng
Zhang, Jijie
Li, Na
Li, Wei
Bu, Xian‐He
Zhong, Ming
Author_xml – sequence: 1
  givenname: Jie
  surname: He
  fullname: He, Jie
  organization: Nankai University
– sequence: 2
  givenname: Na
  surname: Li
  fullname: Li, Na
  email: lina@nankai.edu.cn
  organization: Nankai University
– sequence: 3
  givenname: Zhi‐Gang
  surname: Li
  fullname: Li, Zhi‐Gang
  organization: Nankai University
– sequence: 4
  givenname: Ming
  surname: Zhong
  fullname: Zhong, Ming
  organization: Nankai University
– sequence: 5
  givenname: Zi‐Xuan
  surname: Fu
  fullname: Fu, Zi‐Xuan
  organization: Nankai University
– sequence: 6
  givenname: Ming
  surname: Liu
  fullname: Liu, Ming
  organization: Nankai University
– sequence: 7
  givenname: Jia‐Cheng
  surname: Yin
  fullname: Yin, Jia‐Cheng
  organization: Nankai University
– sequence: 8
  givenname: Zhurui
  surname: Shen
  fullname: Shen, Zhurui
  organization: Nankai University
– sequence: 9
  givenname: Wei
  surname: Li
  fullname: Li, Wei
  organization: Nankai University
– sequence: 10
  givenname: Jijie
  surname: Zhang
  fullname: Zhang, Jijie
  organization: Nankai University
– sequence: 11
  givenname: Ze
  surname: Chang
  fullname: Chang, Ze
  organization: Nankai University
– sequence: 12
  givenname: Xian‐He
  orcidid: 0000-0002-2646-7974
  surname: Bu
  fullname: Bu, Xian‐He
  email: buxh@nankai.edu.cn
  organization: Nankai University
BookMark eNqFkM1Kw0AUhQdRsK1uXQdct85Pk0mXpT8qtHRRBXdhMrkTpyaZOjOl1FUfQfAN-ySmVioI4upeLuc7h3ua6LQyFSB0RXCHYExvRKbKDsWUYBb2-AlqkIhEbYZpfHrcydM5ajq3wJhwzroN5OfeCg-5lsEQFEgfjKpcVwBWV3lgVDAFL4rd9mNmc1HVqrEVJayNfXGBMjaYLb0u9dte7J8hGIvUaim8NtUentf3Anbb9743ZTAQtdXGeXeBzpQoHFx-zxZ6HI8eBnftyez2ftCftCWLGW9nLMVdiVUMivJQSaY4paGCNOpmIctSpjIsZdRjOJOMqZALzuJQsDSCMAVCWAtdH3yX1ryuwPlkYVa2qiMTGvJeRBmu6RbqHFTSGucsqGRpdSnsJiE42Teb7JtNjs3WQPcXILX_-rnuUhd_Y70DttYFbP4JSfrD8fSH_QSW25Pe
CitedBy_id crossref_primary_10_1021_acs_chemmater_4c01137
crossref_primary_10_1016_j_xcrp_2023_101301
crossref_primary_10_1002_adma_202109203
crossref_primary_10_1007_s11426_021_1195_3
crossref_primary_10_1039_D2QI01451C
crossref_primary_10_1016_j_cej_2024_150976
crossref_primary_10_1002_anie_202421218
crossref_primary_10_1007_s12274_022_4196_7
crossref_primary_10_1016_j_ccr_2022_214855
crossref_primary_10_1002_advs_202201520
crossref_primary_10_1016_j_jssc_2023_123899
crossref_primary_10_1021_acs_jpcc_2c09112
crossref_primary_10_1016_j_apcatb_2022_121890
crossref_primary_10_1016_j_mtener_2024_101542
crossref_primary_10_20517_energymater_2024_41
crossref_primary_10_1002_cctc_202401902
crossref_primary_10_1016_j_ccr_2021_214209
crossref_primary_10_1039_D2EE01037B
crossref_primary_10_1021_acsami_2c16265
crossref_primary_10_1016_j_seppur_2024_126523
crossref_primary_10_1016_j_surfin_2024_105066
crossref_primary_10_1016_j_ijhydene_2024_01_267
crossref_primary_10_1002_smll_202301675
crossref_primary_10_1016_j_ccr_2023_215159
crossref_primary_10_1038_s41467_025_56575_6
crossref_primary_10_1002_advs_202206166
crossref_primary_10_1016_j_ccr_2022_214603
crossref_primary_10_1016_j_jechem_2023_02_042
crossref_primary_10_1039_D4EE04511D
crossref_primary_10_1038_s41467_023_43040_5
crossref_primary_10_1016_j_cej_2022_139870
crossref_primary_10_1039_D2IM00063F
crossref_primary_10_1016_j_fuel_2023_129439
crossref_primary_10_1016_j_seppur_2024_127681
crossref_primary_10_1002_ange_202413826
crossref_primary_10_1002_cctc_202301560
crossref_primary_10_1016_j_snb_2022_132566
crossref_primary_10_1002_cctc_202301641
crossref_primary_10_1039_D2TA08735A
crossref_primary_10_1021_acs_inorgchem_3c01106
crossref_primary_10_1039_D2GC02147A
crossref_primary_10_1016_j_ensm_2023_103159
crossref_primary_10_1002_smtd_202300430
crossref_primary_10_1002_adfm_202109218
crossref_primary_10_1021_jacs_4c04951
crossref_primary_10_1007_s12274_023_6312_8
crossref_primary_10_1002_smll_202207507
crossref_primary_10_1021_acsami_1c21663
crossref_primary_10_1007_s12274_022_4940_3
crossref_primary_10_1021_acscatal_4c06065
crossref_primary_10_1039_D4CS01031K
crossref_primary_10_1016_j_cej_2022_139446
crossref_primary_10_3390_molecules28176274
crossref_primary_10_1021_jacs_2c12590
crossref_primary_10_1039_D1CS00421B
crossref_primary_10_1039_D1TA08582D
crossref_primary_10_1021_acsomega_3c00259
crossref_primary_10_1038_s41467_022_28367_9
crossref_primary_10_1039_D1TA08287F
crossref_primary_10_1021_acs_iecr_1c04027
crossref_primary_10_1039_D4TA02110J
crossref_primary_10_1016_j_jallcom_2023_173183
crossref_primary_10_1002_celc_202300103
crossref_primary_10_12677_jocr_2024_124050
crossref_primary_10_3390_molecules27175426
crossref_primary_10_1002_ange_202421218
crossref_primary_10_1002_smsc_202200042
crossref_primary_10_1016_j_cej_2023_142920
crossref_primary_10_1021_acsaem_2c01709
crossref_primary_10_1002_smll_202400410
crossref_primary_10_1002_anie_202413826
crossref_primary_10_1016_j_ccr_2023_215493
crossref_primary_10_1016_j_cej_2022_139131
crossref_primary_10_1002_adfm_202309223
crossref_primary_10_1002_adfm_202210101
crossref_primary_10_1016_j_cej_2022_136186
crossref_primary_10_1016_j_ijft_2023_100479
crossref_primary_10_1039_D2CC01941H
crossref_primary_10_1016_j_gce_2023_07_004
crossref_primary_10_1016_j_apcatb_2023_122779
crossref_primary_10_1002_cey2_664
crossref_primary_10_1016_j_jcis_2024_02_067
crossref_primary_10_1002_cctc_202301146
crossref_primary_10_1039_D4CE00171K
crossref_primary_10_1039_D4NA00433G
crossref_primary_10_1016_j_apcatb_2024_123762
crossref_primary_10_1016_j_seppur_2022_120556
Cites_doi 10.1002/anie.201902229
10.1021/ja404514r
10.1002/smtd.201800471
10.1021/ic301923x
10.1038/nchem.1095
10.1021/acsnano.0c06610
10.1002/anie.201907074
10.1016/j.isci.2019.04.032
10.1002/anie.201900499
10.1021/acs.chemrev.0c00094
10.1021/acs.chemrev.9b00818
10.1093/nsr/nwy054
10.1039/C9TA12230C
10.1126/science.aac6368
10.1021/jacs.7b09314
10.1021/acsenergylett.6b00686
10.1021/acscatal.0c01242
10.1016/j.ccr.2018.05.016
10.1021/acscatal.0c01459
10.1016/j.chempr.2018.12.011
10.1021/acs.chemrev.9b00757
10.1021/jacs.8b05992
10.1038/s41929-019-0282-y
10.1002/adma.201900617
10.1021/ic300825s
10.1038/s41570-018-0010-1
10.1038/s41467-019-13051-2
10.1002/anie.202004125
10.1002/anie.202010093
10.1007/s11244-013-0027-0
10.1002/anie.201505461
10.1002/smll.201903410
10.1038/s41929-017-0008-y
10.1126/science.aaw7515
10.1002/adma.201900509
10.1021/jacs.8b03012
10.1126/science.aaf5251
10.1002/anie.201914565
10.1126/science.1253150
10.1007/s12274-020-2977-4
10.1021/jacs.7b06514
10.1021/jacs.0c08607
10.1038/s41467-019-12459-0
10.1126/science.1067208
10.1038/ncomms10667
10.1038/s41467-019-09421-5
10.1021/jacs.0c02229
10.1021/ja204818q
10.1021/acs.chemrev.9b00230
10.1021/jacs.6b03263
10.1002/smtd.201900540
10.1016/j.joule.2018.06.019
10.1039/D0NR06006B
10.1039/D0SC04058D
10.1002/aenm.202001561
10.1021/acs.chemrev.0c00576
10.1002/asia.202000331
10.1021/acs.accounts.9b00039
10.1002/anie.202003842
10.1021/acs.accounts.8b00297
10.1002/adma.201801649
ContentType Journal Article
Copyright 2021 Wiley‐VCH GmbH
Copyright_xml – notice: 2021 Wiley‐VCH GmbH
DBID AAYXX
CITATION
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/adfm.202103597
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList CrossRef
Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1616-3028
EndPage n/a
ExternalDocumentID 10_1002_adfm_202103597
ADFM202103597
Genre article
GrantInformation_xml – fundername: Natural Science Fund of Tianjin
  funderid: 19JCZDJC37200; 19JCQNJC02600
– fundername: China Postdoctoral Science Foundation
  funderid: 2019M651008
– fundername: NSFC
  funderid: 22035003; 21905142
– fundername: Program of Introducing Talents of Discipline to Universities
  funderid: B18030
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OC
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
.Y3
31~
AANHP
AASGY
AAYXX
ACBWZ
ACRPL
ACYXJ
ADMLS
ADNMO
AEYWJ
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
HF~
HVGLF
LW6
7SP
7SR
7U5
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
L7M
ID FETCH-LOGICAL-c3837-d3b04c0f8ef275fc3f7225feb64d53db3fd0cc6930dc33f57a7385a3b6e5be113
IEDL.DBID DR2
ISSN 1616-301X
IngestDate Fri Jul 25 06:13:55 EDT 2025
Tue Jul 01 04:12:34 EDT 2025
Thu Apr 24 23:12:24 EDT 2025
Wed Jan 22 16:27:32 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 41
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3837-d3b04c0f8ef275fc3f7225feb64d53db3fd0cc6930dc33f57a7385a3b6e5be113
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2646-7974
PQID 2579623069
PQPubID 2045204
PageCount 9
ParticipantIDs proquest_journals_2579623069
crossref_primary_10_1002_adfm_202103597
crossref_citationtrail_10_1002_adfm_202103597
wiley_primary_10_1002_adfm_202103597_ADFM202103597
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-10-01
PublicationDateYYYYMMDD 2021-10-01
PublicationDate_xml – month: 10
  year: 2021
  text: 2021-10-01
  day: 01
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Advanced functional materials
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2002 2018 2020 2019; 295 375 10 58
2018; 140
2019; 31
2020 2019 2020 2019; 13 10 120 10
2019; 2
2016 2019; 7 3
2019; 10
2020 2020; 120 4
2019; 15
2019; 58
2020 2019 2020 2018; 142 5 120 30
2020; 59
2020 2020 2021; 120 120 12
2020; 12
2013 2015 2013; 135 54 56
2011; 133
2015; 350
2011 2018 2018 2020 2018 2018; 3 2 2 14 51 140
2019 2019 2017 2021 2020 2019; 52 6 139 60 15 31
2017 2020; 2 10
2012 2012; 51 51
2019 2020; 364 142
2016; 352
2019 2020; 58 8
2016; 138
2020 2020; 59 12
2020 2018 2020; 7 140 59
2014; 344
2018 2018; 5 1
e_1_2_7_1_6
e_1_2_7_5_2
e_1_2_7_1_5
e_1_2_7_5_1
e_1_2_7_1_4
e_1_2_7_1_3
e_1_2_7_3_1
e_1_2_7_9_2
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_15_6
e_1_2_7_15_5
e_1_2_7_19_1
e_1_2_7_15_4
e_1_2_7_17_2
e_1_2_7_15_3
e_1_2_7_17_1
e_1_2_7_15_2
e_1_2_7_1_2
e_1_2_7_15_1
e_1_2_7_1_1
e_1_2_7_13_1
e_1_2_7_11_1
e_1_2_7_26_1
e_1_2_7_28_1
e_1_2_7_25_1
e_1_2_7_23_1
e_1_2_7_21_1
e_1_2_7_6_1
e_1_2_7_2_3
e_1_2_7_4_1
e_1_2_7_2_2
e_1_2_7_8_2
e_1_2_7_8_1
e_1_2_7_16_4
e_1_2_7_18_2
e_1_2_7_16_3
e_1_2_7_18_1
e_1_2_7_14_4
e_1_2_7_16_2
e_1_2_7_14_3
e_1_2_7_16_1
e_1_2_7_2_1
e_1_2_7_14_2
e_1_2_7_14_1
e_1_2_7_12_2
e_1_2_7_12_1
e_1_2_7_10_1
e_1_2_7_27_1
e_1_2_7_27_2
e_1_2_7_27_3
e_1_2_7_29_1
e_1_2_7_29_2
e_1_2_7_29_3
e_1_2_7_29_4
e_1_2_7_24_2
e_1_2_7_22_3
e_1_2_7_24_1
e_1_2_7_22_2
e_1_2_7_22_1
e_1_2_7_20_2
e_1_2_7_20_1
References_xml – volume: 140
  start-page: 954
  year: 2018
  publication-title: J. Am. Chem. Soc.
– volume: 295 375 10 58
  start-page: 469 558 8717
  year: 2002 2018 2020 2019
  publication-title: Science Coord. Chem. Rev. ACS Catal. Angew. Chem., Int. Ed.
– volume: 2 10
  start-page: 504
  year: 2017 2020
  publication-title: ACS Energy Lett. Adv. Energy Mater.
– volume: 7 140 59
  year: 2020 2018 2020
  publication-title: Angew. Chem., Int. Ed. J. Am. Chem. Soc. Angew. Chem., Int. Ed.
– volume: 10
  start-page: 5048
  year: 2019
  publication-title: Nat. Commun.
– volume: 59
  start-page: 9171
  year: 2020
  publication-title: Angew. Chem., Int. Ed.
– volume: 3 2 2 14 51 140
  start-page: 634 65 1242 2129 6661
  year: 2011 2018 2018 2020 2018 2018
  publication-title: Nat. Chem. Nat. Rev. Chem. Joule ACS Nano Acc. Chem. Res. J. Am. Chem. Soc.
– volume: 52 6 139 60 15 31
  start-page: 1598 1819
  year: 2019 2019 2017 2021 2020 2019
  publication-title: Acc. Chem. Res. Small J. Am. Chem. Soc. Angew. Chem., Int. Ed. Chem. ‐ Asian J. Adv. Mater.
– volume: 135 54 56
  start-page: 770
  year: 2013 2015 2013
  publication-title: J. Am. Chem. Soc. Angew. Chem., Int. Ed. Top. Catal.
– volume: 15
  start-page: 282
  year: 2019
  publication-title: iScience
– volume: 7 3
  year: 2016 2019
  publication-title: Nat. Commun. Small Methods
– volume: 5 1
  start-page: 628 63
  year: 2018 2018
  publication-title: Natl. Sci. Rev. Nat. Catal.
– volume: 344
  start-page: 616
  year: 2014
  publication-title: Science
– volume: 2
  start-page: 590
  year: 2019
  publication-title: Nat. Catal.
– volume: 138
  start-page: 6636
  year: 2016
  publication-title: J. Am. Chem. Soc.
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 120 120 12
  start-page: 683 210
  year: 2020 2020 2021
  publication-title: Chem. Rev. Chem. Rev. Chem. Sci.
– volume: 58
  start-page: 6595
  year: 2019
  publication-title: Angew. Chem., Int. Ed.
– volume: 142 5 120 30
  start-page: 8431 786
  year: 2020 2019 2020 2018
  publication-title: J. Am. Chem. Soc. Chem Chem. Rev. Adv. Mater.
– volume: 13 10 120 10
  start-page: 3082 4500 1428
  year: 2020 2019 2020 2019
  publication-title: Nano Res. Nat. Commun. Chem. Rev. Nat. Commun.
– volume: 364 142
  start-page: 1091
  year: 2019 2020
  publication-title: Science J. Am. Chem. Soc.
– volume: 51 51
  start-page: 6443
  year: 2012 2012
  publication-title: Inorg. Chem. Inorg. Chem.
– volume: 133
  year: 2011
  publication-title: J. Am. Chem. Soc.
– volume: 58 8
  start-page: 4464
  year: 2019 2020
  publication-title: Angew. Chem., Int. Ed. J. Mater. Chem. A
– volume: 350
  start-page: 189
  year: 2015
  publication-title: Science
– volume: 352
  start-page: 797
  year: 2016
  publication-title: Science
– volume: 120 4
  year: 2020 2020
  publication-title: Chem. Rev. Small Methods
– volume: 12
  start-page: 6579
  year: 2020
  publication-title: ACS Catal.
– volume: 59 12
  start-page: 6827
  year: 2020 2020
  publication-title: Angew. Chem., Int. Ed. Nanoscale
– ident: e_1_2_7_14_4
  doi: 10.1002/anie.201902229
– ident: e_1_2_7_22_1
  doi: 10.1021/ja404514r
– ident: e_1_2_7_17_2
  doi: 10.1002/smtd.201800471
– ident: e_1_2_7_20_2
  doi: 10.1021/ic301923x
– ident: e_1_2_7_1_1
  doi: 10.1038/nchem.1095
– ident: e_1_2_7_1_4
  doi: 10.1021/acsnano.0c06610
– ident: e_1_2_7_24_1
  doi: 10.1002/anie.201907074
– ident: e_1_2_7_26_1
  doi: 10.1016/j.isci.2019.04.032
– ident: e_1_2_7_28_1
  doi: 10.1002/anie.201900499
– ident: e_1_2_7_29_3
  doi: 10.1021/acs.chemrev.0c00094
– ident: e_1_2_7_2_1
  doi: 10.1021/acs.chemrev.9b00818
– ident: e_1_2_7_9_1
  doi: 10.1093/nsr/nwy054
– ident: e_1_2_7_24_2
  doi: 10.1039/C9TA12230C
– ident: e_1_2_7_4_1
  doi: 10.1126/science.aac6368
– ident: e_1_2_7_10_1
  doi: 10.1021/jacs.7b09314
– ident: e_1_2_7_18_1
  doi: 10.1021/acsenergylett.6b00686
– ident: e_1_2_7_14_3
  doi: 10.1021/acscatal.0c01242
– ident: e_1_2_7_14_2
  doi: 10.1016/j.ccr.2018.05.016
– ident: e_1_2_7_13_1
  doi: 10.1021/acscatal.0c01459
– ident: e_1_2_7_16_2
  doi: 10.1016/j.chempr.2018.12.011
– ident: e_1_2_7_16_3
  doi: 10.1021/acs.chemrev.9b00757
– ident: e_1_2_7_27_2
  doi: 10.1021/jacs.8b05992
– ident: e_1_2_7_3_1
  doi: 10.1038/s41929-019-0282-y
– ident: e_1_2_7_15_6
  doi: 10.1002/adma.201900617
– ident: e_1_2_7_20_1
  doi: 10.1021/ic300825s
– ident: e_1_2_7_1_2
  doi: 10.1038/s41570-018-0010-1
– ident: e_1_2_7_19_1
  doi: 10.1038/s41467-019-13051-2
– ident: e_1_2_7_27_3
  doi: 10.1002/anie.202004125
– ident: e_1_2_7_15_4
  doi: 10.1002/anie.202010093
– ident: e_1_2_7_22_3
  doi: 10.1007/s11244-013-0027-0
– ident: e_1_2_7_22_2
  doi: 10.1002/anie.201505461
– ident: e_1_2_7_15_2
  doi: 10.1002/smll.201903410
– ident: e_1_2_7_9_2
  doi: 10.1038/s41929-017-0008-y
– ident: e_1_2_7_5_1
  doi: 10.1126/science.aaw7515
– ident: e_1_2_7_7_1
  doi: 10.1002/adma.201900509
– ident: e_1_2_7_1_6
  doi: 10.1021/jacs.8b03012
– ident: e_1_2_7_11_1
  doi: 10.1126/science.aaf5251
– ident: e_1_2_7_8_1
  doi: 10.1002/anie.201914565
– ident: e_1_2_7_6_1
  doi: 10.1126/science.1253150
– ident: e_1_2_7_29_1
  doi: 10.1007/s12274-020-2977-4
– ident: e_1_2_7_15_3
  doi: 10.1021/jacs.7b06514
– ident: e_1_2_7_5_2
  doi: 10.1021/jacs.0c08607
– ident: e_1_2_7_29_2
  doi: 10.1038/s41467-019-12459-0
– ident: e_1_2_7_14_1
  doi: 10.1126/science.1067208
– ident: e_1_2_7_17_1
  doi: 10.1038/ncomms10667
– ident: e_1_2_7_27_1
  doi: 10.1002/anie.202004125
– ident: e_1_2_7_29_4
  doi: 10.1038/s41467-019-09421-5
– ident: e_1_2_7_16_1
  doi: 10.1021/jacs.0c02229
– ident: e_1_2_7_21_1
  doi: 10.1021/ja204818q
– ident: e_1_2_7_2_2
  doi: 10.1021/acs.chemrev.9b00230
– ident: e_1_2_7_23_1
  doi: 10.1021/jacs.6b03263
– ident: e_1_2_7_12_2
  doi: 10.1002/smtd.201900540
– ident: e_1_2_7_1_3
  doi: 10.1016/j.joule.2018.06.019
– ident: e_1_2_7_8_2
  doi: 10.1039/D0NR06006B
– ident: e_1_2_7_2_3
  doi: 10.1039/D0SC04058D
– ident: e_1_2_7_18_2
  doi: 10.1002/aenm.202001561
– ident: e_1_2_7_12_1
  doi: 10.1021/acs.chemrev.0c00576
– ident: e_1_2_7_15_5
  doi: 10.1002/asia.202000331
– ident: e_1_2_7_15_1
  doi: 10.1021/acs.accounts.9b00039
– ident: e_1_2_7_25_1
  doi: 10.1002/anie.202003842
– ident: e_1_2_7_1_5
  doi: 10.1021/acs.accounts.8b00297
– ident: e_1_2_7_16_4
  doi: 10.1002/adma.201801649
SSID ssj0017734
Score 2.6174414
Snippet Single‐atom catalysts (SACs) have garnered enormous interest due to their remarkable catalysis activity. However, the exploitation of universal synthesis...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Catalysis
Coordination
Copper
defect engineering
hydrogenation
Interatomic distance
Manganese
Materials science
Metal-organic frameworks
Single atom catalysts
Strategy
Transition metals
Title Strategic Defect Engineering of Metal–Organic Frameworks for Optimizing the Fabrication of Single‐Atom Catalysts
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202103597
https://www.proquest.com/docview/2579623069
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF6kJz34FqtV9iB4StvsZpP2WFpDEaqgFnoL2c0uiH1Ikx7sqT9B8B_2lzjTPFoFEfSWx2xIdnZmv93MfEPIlRLoAjW3GFNNy4kE-EHpgeExrZVgusEiTE7u3bndvnM7EIONLP6UH6LYcEPLWPlrNPBQxrU1aWgYGcwkhyULB1AMThgDthAVPRT8Ubbnpb-VXRsDvOxBztpYZ7Wvzb_OSmuouQlYVzOOv0fC_F3TQJOX6iyRVTX_RuP4n4_ZJ7sZHKWtdPwckC09PiQ7GySFRyTJCWwV7WgM_qAbt-nE0J4GAL9cfKRpnYr6ebxXTAER03twSqPnOQoD2KR-KKfZPiE2foTrQ71cvLeSyYi2cTPpLU7iY9L3b57aXSur1WApXONaEZd1R9VNQxvmCaO48cBTGC1d0D-PJDdRXSmsuxgpzo3wQqTRCbl0tZDatvkJKY0nY31KKEgAag2VAjCC5bAbjsOMFFo7Aiw6FGVi5boKVEZkjvU0hkFKwcwC7M2g6M0yuS7kX1MKjx8lK7nqg8yU44Bhti4u1JplwlY6_OUpQavj94qzs780OifbeJwGDVZIKZnO9AWAn0Rergb4J4Ce_ks
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED7xGICBN6JQwAMSU6Cx46aMVUtUoC0StBJbFDu2hIAWtekAEz8BiX_YX4Ivr7ZICAnGOOcosX3nz5e77wCOJUcTqJhFqTy3nJAbOyhco3hUKcmpqtAQk5Nb7XKj61zd8yyaEHNhEn6I3OGGmhHba1RwdEifTVhDg1BjKrk5szCDiudhEct6x6eq25xBynbd5Mdy2cYQL_s-420s0bPZ_rP70gRsTkPWeM_x1kBkb5uEmjyejiJxKt--ETn-63PWYTVFpKSaLKENmFO9TViZ4incgijjsJWkrjD-g0zdJn1NWspg-PH7Z5LZKYmXhXwNiQHF5MbYpeeHNxQ2eJN4gRikrkLsfGfan9T4_aMa9Z9JDf1Jr8NouA1d76JTa1hpuQZL4jHXCpkoObKkK0pTl2vJtGuMhVaibJYACwXTYUlKLL0YSsY0dwNk0gmYKCsulG2zHVjo9XtqF4iRMMA1kNLgEayIXXEcqgVXyuFGqQNeACubLF-mXOZYUuPJT1iYqY-j6eejWYCTXP4lYfH4UbKYzb2favPQp5iwi2e18wLQeBJ_eYpfrXut_GrvL52OYKnRaTX95mX7eh-WsT2JISzCQjQYqQODhSJxGK_2L2BmAnU
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB2xSAgO7Iiy-oDEKSWx46QcK0rEVkBApd6i2LElRGkRCQc49ROQ-EO-BE-ztEVCSHCMM44Se2b87My8AdiTHF2gYhal8tByY278oPCN4VGlJKeqRmNMTm5eeict96zN2yNZ_Bk_RHnghpYx8Ndo4E-xPhiShkaxxkxys2VhBhRPwrTr2TXU68ZNSSDl-H72X9lzMMLLaRe0jTY9GO8_viwNseYoYh0sOcECRMXLZpEmD9WXVFTl2zcex_98zSLM53iU1DMFWoIJ1V2GuRGWwhVICwZbSRoKoz_IyG3S06SpDIL_7H9keZ2SBEXAV0IMJCZXxis93r-hsEGbJIjEc35QiJ1vTXtHffbf62nvkRzhadJrkiar0AqO745OrLxYgyVxk2vFTNiutHVNaepzLZn2javQSnhGAVgsmI5tKbHwYiwZ09yPkEcnYsJTXCjHYWsw1e111ToQI2FgaySlQSNYD7vmulQLrpTLjUlHvAJWMVehzJnMsaBGJ8w4mGmIoxmWo1mB_VL-KePw-FFyq5j6MLflJKSYros7tcMK0MEc_vKUsN4ImuXVxl867cLMdSMIL04vzzdhFpuzAMItmEqfX9S2AUKp2Bno-hdzzwEt
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Strategic+Defect+Engineering+of+Metal%E2%80%93Organic+Frameworks+for+Optimizing+the+Fabrication+of+Single%E2%80%90Atom+Catalysts&rft.jtitle=Advanced+functional+materials&rft.au=He%2C+Jie&rft.au=Li%2C+Na&rft.au=Li%2C+Zhi%E2%80%90Gang&rft.au=Zhong%2C+Ming&rft.date=2021-10-01&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=31&rft.issue=41&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadfm.202103597&rft.externalDBID=10.1002%252Fadfm.202103597&rft.externalDocID=ADFM202103597
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon