Strategic Defect Engineering of Metal–Organic Frameworks for Optimizing the Fabrication of Single‐Atom Catalysts
Single‐atom catalysts (SACs) have garnered enormous interest due to their remarkable catalysis activity. However, the exploitation of universal synthesis strategy and regulation of coordination environment of SACs remain a great challenge. Herein, a versatile synthetic strategy is demonstrated to ge...
Saved in:
Published in | Advanced functional materials Vol. 31; no. 41 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc
01.10.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Single‐atom catalysts (SACs) have garnered enormous interest due to their remarkable catalysis activity. However, the exploitation of universal synthesis strategy and regulation of coordination environment of SACs remain a great challenge. Herein, a versatile synthetic strategy is demonstrated to generate a series of transition metal SACs (M SAs/NC, M = Co, Cu, Mn; NC represents the nitrogen‐doped carbon) through defect engineering of metal‐organic frameworks (MOFs). The interatomic distance between metal sites can be increased by deliberately introducing structural defects within the MOF framework, which inhibits metal aggregation and consequently results in an approximately 70% increase in single metal atom yield. Additionally, the coordination structures of metal sites can also be facilely tuned. The optimized Co SAs/NC‐800 exhibits superior activity and excellent reusability for the selective hydrogenation of nitroarenes, surpassing several state‐of‐art non‐noble‐metal catalysts. This study provides a new avenue for the universal fabrication of transition metal SACs.
A general metal–organic framework defect engineering strategy is proposed to increase the yield of single‐atom catalysts. This strategy enlarges the distance between metal active sites, effectively hindering the aggregation of metal atoms and affording a 70% improved yield of metal single atoms. The optimized Co SAs/NC‐800 exhibits superior activity and reusability in nitroarene hydrogenation. |
---|---|
AbstractList | Single‐atom catalysts (SACs) have garnered enormous interest due to their remarkable catalysis activity. However, the exploitation of universal synthesis strategy and regulation of coordination environment of SACs remain a great challenge. Herein, a versatile synthetic strategy is demonstrated to generate a series of transition metal SACs (M SAs/NC, M = Co, Cu, Mn; NC represents the nitrogen‐doped carbon) through defect engineering of metal‐organic frameworks (MOFs). The interatomic distance between metal sites can be increased by deliberately introducing structural defects within the MOF framework, which inhibits metal aggregation and consequently results in an approximately 70% increase in single metal atom yield. Additionally, the coordination structures of metal sites can also be facilely tuned. The optimized Co SAs/NC‐800 exhibits superior activity and excellent reusability for the selective hydrogenation of nitroarenes, surpassing several state‐of‐art non‐noble‐metal catalysts. This study provides a new avenue for the universal fabrication of transition metal SACs. Single‐atom catalysts (SACs) have garnered enormous interest due to their remarkable catalysis activity. However, the exploitation of universal synthesis strategy and regulation of coordination environment of SACs remain a great challenge. Herein, a versatile synthetic strategy is demonstrated to generate a series of transition metal SACs (M SAs/NC, M = Co, Cu, Mn; NC represents the nitrogen‐doped carbon) through defect engineering of metal‐organic frameworks (MOFs). The interatomic distance between metal sites can be increased by deliberately introducing structural defects within the MOF framework, which inhibits metal aggregation and consequently results in an approximately 70% increase in single metal atom yield. Additionally, the coordination structures of metal sites can also be facilely tuned. The optimized Co SAs/NC‐800 exhibits superior activity and excellent reusability for the selective hydrogenation of nitroarenes, surpassing several state‐of‐art non‐noble‐metal catalysts. This study provides a new avenue for the universal fabrication of transition metal SACs. A general metal–organic framework defect engineering strategy is proposed to increase the yield of single‐atom catalysts. This strategy enlarges the distance between metal active sites, effectively hindering the aggregation of metal atoms and affording a 70% improved yield of metal single atoms. The optimized Co SAs/NC‐800 exhibits superior activity and reusability in nitroarene hydrogenation. |
Author | He, Jie Li, Zhi‐Gang Chang, Ze Fu, Zi‐Xuan Liu, Ming Shen, Zhurui Yin, Jia‐Cheng Zhang, Jijie Li, Na Li, Wei Bu, Xian‐He Zhong, Ming |
Author_xml | – sequence: 1 givenname: Jie surname: He fullname: He, Jie organization: Nankai University – sequence: 2 givenname: Na surname: Li fullname: Li, Na email: lina@nankai.edu.cn organization: Nankai University – sequence: 3 givenname: Zhi‐Gang surname: Li fullname: Li, Zhi‐Gang organization: Nankai University – sequence: 4 givenname: Ming surname: Zhong fullname: Zhong, Ming organization: Nankai University – sequence: 5 givenname: Zi‐Xuan surname: Fu fullname: Fu, Zi‐Xuan organization: Nankai University – sequence: 6 givenname: Ming surname: Liu fullname: Liu, Ming organization: Nankai University – sequence: 7 givenname: Jia‐Cheng surname: Yin fullname: Yin, Jia‐Cheng organization: Nankai University – sequence: 8 givenname: Zhurui surname: Shen fullname: Shen, Zhurui organization: Nankai University – sequence: 9 givenname: Wei surname: Li fullname: Li, Wei organization: Nankai University – sequence: 10 givenname: Jijie surname: Zhang fullname: Zhang, Jijie organization: Nankai University – sequence: 11 givenname: Ze surname: Chang fullname: Chang, Ze organization: Nankai University – sequence: 12 givenname: Xian‐He orcidid: 0000-0002-2646-7974 surname: Bu fullname: Bu, Xian‐He email: buxh@nankai.edu.cn organization: Nankai University |
BookMark | eNqFkM1Kw0AUhQdRsK1uXQdct85Pk0mXpT8qtHRRBXdhMrkTpyaZOjOl1FUfQfAN-ySmVioI4upeLuc7h3ua6LQyFSB0RXCHYExvRKbKDsWUYBb2-AlqkIhEbYZpfHrcydM5ajq3wJhwzroN5OfeCg-5lsEQFEgfjKpcVwBWV3lgVDAFL4rd9mNmc1HVqrEVJayNfXGBMjaYLb0u9dte7J8hGIvUaim8NtUentf3Anbb9743ZTAQtdXGeXeBzpQoHFx-zxZ6HI8eBnftyez2ftCftCWLGW9nLMVdiVUMivJQSaY4paGCNOpmIctSpjIsZdRjOJOMqZALzuJQsDSCMAVCWAtdH3yX1ryuwPlkYVa2qiMTGvJeRBmu6RbqHFTSGucsqGRpdSnsJiE42Teb7JtNjs3WQPcXILX_-rnuUhd_Y70DttYFbP4JSfrD8fSH_QSW25Pe |
CitedBy_id | crossref_primary_10_1021_acs_chemmater_4c01137 crossref_primary_10_1016_j_xcrp_2023_101301 crossref_primary_10_1002_adma_202109203 crossref_primary_10_1007_s11426_021_1195_3 crossref_primary_10_1039_D2QI01451C crossref_primary_10_1016_j_cej_2024_150976 crossref_primary_10_1002_anie_202421218 crossref_primary_10_1007_s12274_022_4196_7 crossref_primary_10_1016_j_ccr_2022_214855 crossref_primary_10_1002_advs_202201520 crossref_primary_10_1016_j_jssc_2023_123899 crossref_primary_10_1021_acs_jpcc_2c09112 crossref_primary_10_1016_j_apcatb_2022_121890 crossref_primary_10_1016_j_mtener_2024_101542 crossref_primary_10_20517_energymater_2024_41 crossref_primary_10_1002_cctc_202401902 crossref_primary_10_1016_j_ccr_2021_214209 crossref_primary_10_1039_D2EE01037B crossref_primary_10_1021_acsami_2c16265 crossref_primary_10_1016_j_seppur_2024_126523 crossref_primary_10_1016_j_surfin_2024_105066 crossref_primary_10_1016_j_ijhydene_2024_01_267 crossref_primary_10_1002_smll_202301675 crossref_primary_10_1016_j_ccr_2023_215159 crossref_primary_10_1038_s41467_025_56575_6 crossref_primary_10_1002_advs_202206166 crossref_primary_10_1016_j_ccr_2022_214603 crossref_primary_10_1016_j_jechem_2023_02_042 crossref_primary_10_1039_D4EE04511D crossref_primary_10_1038_s41467_023_43040_5 crossref_primary_10_1016_j_cej_2022_139870 crossref_primary_10_1039_D2IM00063F crossref_primary_10_1016_j_fuel_2023_129439 crossref_primary_10_1016_j_seppur_2024_127681 crossref_primary_10_1002_ange_202413826 crossref_primary_10_1002_cctc_202301560 crossref_primary_10_1016_j_snb_2022_132566 crossref_primary_10_1002_cctc_202301641 crossref_primary_10_1039_D2TA08735A crossref_primary_10_1021_acs_inorgchem_3c01106 crossref_primary_10_1039_D2GC02147A crossref_primary_10_1016_j_ensm_2023_103159 crossref_primary_10_1002_smtd_202300430 crossref_primary_10_1002_adfm_202109218 crossref_primary_10_1021_jacs_4c04951 crossref_primary_10_1007_s12274_023_6312_8 crossref_primary_10_1002_smll_202207507 crossref_primary_10_1021_acsami_1c21663 crossref_primary_10_1007_s12274_022_4940_3 crossref_primary_10_1021_acscatal_4c06065 crossref_primary_10_1039_D4CS01031K crossref_primary_10_1016_j_cej_2022_139446 crossref_primary_10_3390_molecules28176274 crossref_primary_10_1021_jacs_2c12590 crossref_primary_10_1039_D1CS00421B crossref_primary_10_1039_D1TA08582D crossref_primary_10_1021_acsomega_3c00259 crossref_primary_10_1038_s41467_022_28367_9 crossref_primary_10_1039_D1TA08287F crossref_primary_10_1021_acs_iecr_1c04027 crossref_primary_10_1039_D4TA02110J crossref_primary_10_1016_j_jallcom_2023_173183 crossref_primary_10_1002_celc_202300103 crossref_primary_10_12677_jocr_2024_124050 crossref_primary_10_3390_molecules27175426 crossref_primary_10_1002_ange_202421218 crossref_primary_10_1002_smsc_202200042 crossref_primary_10_1016_j_cej_2023_142920 crossref_primary_10_1021_acsaem_2c01709 crossref_primary_10_1002_smll_202400410 crossref_primary_10_1002_anie_202413826 crossref_primary_10_1016_j_ccr_2023_215493 crossref_primary_10_1016_j_cej_2022_139131 crossref_primary_10_1002_adfm_202309223 crossref_primary_10_1002_adfm_202210101 crossref_primary_10_1016_j_cej_2022_136186 crossref_primary_10_1016_j_ijft_2023_100479 crossref_primary_10_1039_D2CC01941H crossref_primary_10_1016_j_gce_2023_07_004 crossref_primary_10_1016_j_apcatb_2023_122779 crossref_primary_10_1002_cey2_664 crossref_primary_10_1016_j_jcis_2024_02_067 crossref_primary_10_1002_cctc_202301146 crossref_primary_10_1039_D4CE00171K crossref_primary_10_1039_D4NA00433G crossref_primary_10_1016_j_apcatb_2024_123762 crossref_primary_10_1016_j_seppur_2022_120556 |
Cites_doi | 10.1002/anie.201902229 10.1021/ja404514r 10.1002/smtd.201800471 10.1021/ic301923x 10.1038/nchem.1095 10.1021/acsnano.0c06610 10.1002/anie.201907074 10.1016/j.isci.2019.04.032 10.1002/anie.201900499 10.1021/acs.chemrev.0c00094 10.1021/acs.chemrev.9b00818 10.1093/nsr/nwy054 10.1039/C9TA12230C 10.1126/science.aac6368 10.1021/jacs.7b09314 10.1021/acsenergylett.6b00686 10.1021/acscatal.0c01242 10.1016/j.ccr.2018.05.016 10.1021/acscatal.0c01459 10.1016/j.chempr.2018.12.011 10.1021/acs.chemrev.9b00757 10.1021/jacs.8b05992 10.1038/s41929-019-0282-y 10.1002/adma.201900617 10.1021/ic300825s 10.1038/s41570-018-0010-1 10.1038/s41467-019-13051-2 10.1002/anie.202004125 10.1002/anie.202010093 10.1007/s11244-013-0027-0 10.1002/anie.201505461 10.1002/smll.201903410 10.1038/s41929-017-0008-y 10.1126/science.aaw7515 10.1002/adma.201900509 10.1021/jacs.8b03012 10.1126/science.aaf5251 10.1002/anie.201914565 10.1126/science.1253150 10.1007/s12274-020-2977-4 10.1021/jacs.7b06514 10.1021/jacs.0c08607 10.1038/s41467-019-12459-0 10.1126/science.1067208 10.1038/ncomms10667 10.1038/s41467-019-09421-5 10.1021/jacs.0c02229 10.1021/ja204818q 10.1021/acs.chemrev.9b00230 10.1021/jacs.6b03263 10.1002/smtd.201900540 10.1016/j.joule.2018.06.019 10.1039/D0NR06006B 10.1039/D0SC04058D 10.1002/aenm.202001561 10.1021/acs.chemrev.0c00576 10.1002/asia.202000331 10.1021/acs.accounts.9b00039 10.1002/anie.202003842 10.1021/acs.accounts.8b00297 10.1002/adma.201801649 |
ContentType | Journal Article |
Copyright | 2021 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2021 Wiley‐VCH GmbH |
DBID | AAYXX CITATION 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1002/adfm.202103597 |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | CrossRef Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1616-3028 |
EndPage | n/a |
ExternalDocumentID | 10_1002_adfm_202103597 ADFM202103597 |
Genre | article |
GrantInformation_xml | – fundername: Natural Science Fund of Tianjin funderid: 19JCZDJC37200; 19JCQNJC02600 – fundername: China Postdoctoral Science Foundation funderid: 2019M651008 – fundername: NSFC funderid: 22035003; 21905142 – fundername: Program of Introducing Talents of Discipline to Universities funderid: B18030 |
GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OC 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WFSAM WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ~IA ~WT .Y3 31~ AANHP AASGY AAYXX ACBWZ ACRPL ACYXJ ADMLS ADNMO AEYWJ AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION EJD FEDTE HF~ HVGLF LW6 7SP 7SR 7U5 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 L7M |
ID | FETCH-LOGICAL-c3837-d3b04c0f8ef275fc3f7225feb64d53db3fd0cc6930dc33f57a7385a3b6e5be113 |
IEDL.DBID | DR2 |
ISSN | 1616-301X |
IngestDate | Fri Jul 25 06:13:55 EDT 2025 Tue Jul 01 04:12:34 EDT 2025 Thu Apr 24 23:12:24 EDT 2025 Wed Jan 22 16:27:32 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 41 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3837-d3b04c0f8ef275fc3f7225feb64d53db3fd0cc6930dc33f57a7385a3b6e5be113 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-2646-7974 |
PQID | 2579623069 |
PQPubID | 2045204 |
PageCount | 9 |
ParticipantIDs | proquest_journals_2579623069 crossref_primary_10_1002_adfm_202103597 crossref_citationtrail_10_1002_adfm_202103597 wiley_primary_10_1002_adfm_202103597_ADFM202103597 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-10-01 |
PublicationDateYYYYMMDD | 2021-10-01 |
PublicationDate_xml | – month: 10 year: 2021 text: 2021-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | Advanced functional materials |
PublicationYear | 2021 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2002 2018 2020 2019; 295 375 10 58 2018; 140 2019; 31 2020 2019 2020 2019; 13 10 120 10 2019; 2 2016 2019; 7 3 2019; 10 2020 2020; 120 4 2019; 15 2019; 58 2020 2019 2020 2018; 142 5 120 30 2020; 59 2020 2020 2021; 120 120 12 2020; 12 2013 2015 2013; 135 54 56 2011; 133 2015; 350 2011 2018 2018 2020 2018 2018; 3 2 2 14 51 140 2019 2019 2017 2021 2020 2019; 52 6 139 60 15 31 2017 2020; 2 10 2012 2012; 51 51 2019 2020; 364 142 2016; 352 2019 2020; 58 8 2016; 138 2020 2020; 59 12 2020 2018 2020; 7 140 59 2014; 344 2018 2018; 5 1 e_1_2_7_1_6 e_1_2_7_5_2 e_1_2_7_1_5 e_1_2_7_5_1 e_1_2_7_1_4 e_1_2_7_1_3 e_1_2_7_3_1 e_1_2_7_9_2 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_15_6 e_1_2_7_15_5 e_1_2_7_19_1 e_1_2_7_15_4 e_1_2_7_17_2 e_1_2_7_15_3 e_1_2_7_17_1 e_1_2_7_15_2 e_1_2_7_1_2 e_1_2_7_15_1 e_1_2_7_1_1 e_1_2_7_13_1 e_1_2_7_11_1 e_1_2_7_26_1 e_1_2_7_28_1 e_1_2_7_25_1 e_1_2_7_23_1 e_1_2_7_21_1 e_1_2_7_6_1 e_1_2_7_2_3 e_1_2_7_4_1 e_1_2_7_2_2 e_1_2_7_8_2 e_1_2_7_8_1 e_1_2_7_16_4 e_1_2_7_18_2 e_1_2_7_16_3 e_1_2_7_18_1 e_1_2_7_14_4 e_1_2_7_16_2 e_1_2_7_14_3 e_1_2_7_16_1 e_1_2_7_2_1 e_1_2_7_14_2 e_1_2_7_14_1 e_1_2_7_12_2 e_1_2_7_12_1 e_1_2_7_10_1 e_1_2_7_27_1 e_1_2_7_27_2 e_1_2_7_27_3 e_1_2_7_29_1 e_1_2_7_29_2 e_1_2_7_29_3 e_1_2_7_29_4 e_1_2_7_24_2 e_1_2_7_22_3 e_1_2_7_24_1 e_1_2_7_22_2 e_1_2_7_22_1 e_1_2_7_20_2 e_1_2_7_20_1 |
References_xml | – volume: 140 start-page: 954 year: 2018 publication-title: J. Am. Chem. Soc. – volume: 295 375 10 58 start-page: 469 558 8717 year: 2002 2018 2020 2019 publication-title: Science Coord. Chem. Rev. ACS Catal. Angew. Chem., Int. Ed. – volume: 2 10 start-page: 504 year: 2017 2020 publication-title: ACS Energy Lett. Adv. Energy Mater. – volume: 7 140 59 year: 2020 2018 2020 publication-title: Angew. Chem., Int. Ed. J. Am. Chem. Soc. Angew. Chem., Int. Ed. – volume: 10 start-page: 5048 year: 2019 publication-title: Nat. Commun. – volume: 59 start-page: 9171 year: 2020 publication-title: Angew. Chem., Int. Ed. – volume: 3 2 2 14 51 140 start-page: 634 65 1242 2129 6661 year: 2011 2018 2018 2020 2018 2018 publication-title: Nat. Chem. Nat. Rev. Chem. Joule ACS Nano Acc. Chem. Res. J. Am. Chem. Soc. – volume: 52 6 139 60 15 31 start-page: 1598 1819 year: 2019 2019 2017 2021 2020 2019 publication-title: Acc. Chem. Res. Small J. Am. Chem. Soc. Angew. Chem., Int. Ed. Chem. ‐ Asian J. Adv. Mater. – volume: 135 54 56 start-page: 770 year: 2013 2015 2013 publication-title: J. Am. Chem. Soc. Angew. Chem., Int. Ed. Top. Catal. – volume: 15 start-page: 282 year: 2019 publication-title: iScience – volume: 7 3 year: 2016 2019 publication-title: Nat. Commun. Small Methods – volume: 5 1 start-page: 628 63 year: 2018 2018 publication-title: Natl. Sci. Rev. Nat. Catal. – volume: 344 start-page: 616 year: 2014 publication-title: Science – volume: 2 start-page: 590 year: 2019 publication-title: Nat. Catal. – volume: 138 start-page: 6636 year: 2016 publication-title: J. Am. Chem. Soc. – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 120 120 12 start-page: 683 210 year: 2020 2020 2021 publication-title: Chem. Rev. Chem. Rev. Chem. Sci. – volume: 58 start-page: 6595 year: 2019 publication-title: Angew. Chem., Int. Ed. – volume: 142 5 120 30 start-page: 8431 786 year: 2020 2019 2020 2018 publication-title: J. Am. Chem. Soc. Chem Chem. Rev. Adv. Mater. – volume: 13 10 120 10 start-page: 3082 4500 1428 year: 2020 2019 2020 2019 publication-title: Nano Res. Nat. Commun. Chem. Rev. Nat. Commun. – volume: 364 142 start-page: 1091 year: 2019 2020 publication-title: Science J. Am. Chem. Soc. – volume: 51 51 start-page: 6443 year: 2012 2012 publication-title: Inorg. Chem. Inorg. Chem. – volume: 133 year: 2011 publication-title: J. Am. Chem. Soc. – volume: 58 8 start-page: 4464 year: 2019 2020 publication-title: Angew. Chem., Int. Ed. J. Mater. Chem. A – volume: 350 start-page: 189 year: 2015 publication-title: Science – volume: 352 start-page: 797 year: 2016 publication-title: Science – volume: 120 4 year: 2020 2020 publication-title: Chem. Rev. Small Methods – volume: 12 start-page: 6579 year: 2020 publication-title: ACS Catal. – volume: 59 12 start-page: 6827 year: 2020 2020 publication-title: Angew. Chem., Int. Ed. Nanoscale – ident: e_1_2_7_14_4 doi: 10.1002/anie.201902229 – ident: e_1_2_7_22_1 doi: 10.1021/ja404514r – ident: e_1_2_7_17_2 doi: 10.1002/smtd.201800471 – ident: e_1_2_7_20_2 doi: 10.1021/ic301923x – ident: e_1_2_7_1_1 doi: 10.1038/nchem.1095 – ident: e_1_2_7_1_4 doi: 10.1021/acsnano.0c06610 – ident: e_1_2_7_24_1 doi: 10.1002/anie.201907074 – ident: e_1_2_7_26_1 doi: 10.1016/j.isci.2019.04.032 – ident: e_1_2_7_28_1 doi: 10.1002/anie.201900499 – ident: e_1_2_7_29_3 doi: 10.1021/acs.chemrev.0c00094 – ident: e_1_2_7_2_1 doi: 10.1021/acs.chemrev.9b00818 – ident: e_1_2_7_9_1 doi: 10.1093/nsr/nwy054 – ident: e_1_2_7_24_2 doi: 10.1039/C9TA12230C – ident: e_1_2_7_4_1 doi: 10.1126/science.aac6368 – ident: e_1_2_7_10_1 doi: 10.1021/jacs.7b09314 – ident: e_1_2_7_18_1 doi: 10.1021/acsenergylett.6b00686 – ident: e_1_2_7_14_3 doi: 10.1021/acscatal.0c01242 – ident: e_1_2_7_14_2 doi: 10.1016/j.ccr.2018.05.016 – ident: e_1_2_7_13_1 doi: 10.1021/acscatal.0c01459 – ident: e_1_2_7_16_2 doi: 10.1016/j.chempr.2018.12.011 – ident: e_1_2_7_16_3 doi: 10.1021/acs.chemrev.9b00757 – ident: e_1_2_7_27_2 doi: 10.1021/jacs.8b05992 – ident: e_1_2_7_3_1 doi: 10.1038/s41929-019-0282-y – ident: e_1_2_7_15_6 doi: 10.1002/adma.201900617 – ident: e_1_2_7_20_1 doi: 10.1021/ic300825s – ident: e_1_2_7_1_2 doi: 10.1038/s41570-018-0010-1 – ident: e_1_2_7_19_1 doi: 10.1038/s41467-019-13051-2 – ident: e_1_2_7_27_3 doi: 10.1002/anie.202004125 – ident: e_1_2_7_15_4 doi: 10.1002/anie.202010093 – ident: e_1_2_7_22_3 doi: 10.1007/s11244-013-0027-0 – ident: e_1_2_7_22_2 doi: 10.1002/anie.201505461 – ident: e_1_2_7_15_2 doi: 10.1002/smll.201903410 – ident: e_1_2_7_9_2 doi: 10.1038/s41929-017-0008-y – ident: e_1_2_7_5_1 doi: 10.1126/science.aaw7515 – ident: e_1_2_7_7_1 doi: 10.1002/adma.201900509 – ident: e_1_2_7_1_6 doi: 10.1021/jacs.8b03012 – ident: e_1_2_7_11_1 doi: 10.1126/science.aaf5251 – ident: e_1_2_7_8_1 doi: 10.1002/anie.201914565 – ident: e_1_2_7_6_1 doi: 10.1126/science.1253150 – ident: e_1_2_7_29_1 doi: 10.1007/s12274-020-2977-4 – ident: e_1_2_7_15_3 doi: 10.1021/jacs.7b06514 – ident: e_1_2_7_5_2 doi: 10.1021/jacs.0c08607 – ident: e_1_2_7_29_2 doi: 10.1038/s41467-019-12459-0 – ident: e_1_2_7_14_1 doi: 10.1126/science.1067208 – ident: e_1_2_7_17_1 doi: 10.1038/ncomms10667 – ident: e_1_2_7_27_1 doi: 10.1002/anie.202004125 – ident: e_1_2_7_29_4 doi: 10.1038/s41467-019-09421-5 – ident: e_1_2_7_16_1 doi: 10.1021/jacs.0c02229 – ident: e_1_2_7_21_1 doi: 10.1021/ja204818q – ident: e_1_2_7_2_2 doi: 10.1021/acs.chemrev.9b00230 – ident: e_1_2_7_23_1 doi: 10.1021/jacs.6b03263 – ident: e_1_2_7_12_2 doi: 10.1002/smtd.201900540 – ident: e_1_2_7_1_3 doi: 10.1016/j.joule.2018.06.019 – ident: e_1_2_7_8_2 doi: 10.1039/D0NR06006B – ident: e_1_2_7_2_3 doi: 10.1039/D0SC04058D – ident: e_1_2_7_18_2 doi: 10.1002/aenm.202001561 – ident: e_1_2_7_12_1 doi: 10.1021/acs.chemrev.0c00576 – ident: e_1_2_7_15_5 doi: 10.1002/asia.202000331 – ident: e_1_2_7_15_1 doi: 10.1021/acs.accounts.9b00039 – ident: e_1_2_7_25_1 doi: 10.1002/anie.202003842 – ident: e_1_2_7_1_5 doi: 10.1021/acs.accounts.8b00297 – ident: e_1_2_7_16_4 doi: 10.1002/adma.201801649 |
SSID | ssj0017734 |
Score | 2.6174414 |
Snippet | Single‐atom catalysts (SACs) have garnered enormous interest due to their remarkable catalysis activity. However, the exploitation of universal synthesis... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Catalysis Coordination Copper defect engineering hydrogenation Interatomic distance Manganese Materials science Metal-organic frameworks Single atom catalysts Strategy Transition metals |
Title | Strategic Defect Engineering of Metal–Organic Frameworks for Optimizing the Fabrication of Single‐Atom Catalysts |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202103597 https://www.proquest.com/docview/2579623069 |
Volume | 31 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF6kJz34FqtV9iB4StvsZpP2WFpDEaqgFnoL2c0uiH1Ikx7sqT9B8B_2lzjTPFoFEfSWx2xIdnZmv93MfEPIlRLoAjW3GFNNy4kE-EHpgeExrZVgusEiTE7u3bndvnM7EIONLP6UH6LYcEPLWPlrNPBQxrU1aWgYGcwkhyULB1AMThgDthAVPRT8Ubbnpb-VXRsDvOxBztpYZ7Wvzb_OSmuouQlYVzOOv0fC_F3TQJOX6iyRVTX_RuP4n4_ZJ7sZHKWtdPwckC09PiQ7GySFRyTJCWwV7WgM_qAbt-nE0J4GAL9cfKRpnYr6ebxXTAER03twSqPnOQoD2KR-KKfZPiE2foTrQ71cvLeSyYi2cTPpLU7iY9L3b57aXSur1WApXONaEZd1R9VNQxvmCaO48cBTGC1d0D-PJDdRXSmsuxgpzo3wQqTRCbl0tZDatvkJKY0nY31KKEgAag2VAjCC5bAbjsOMFFo7Aiw6FGVi5boKVEZkjvU0hkFKwcwC7M2g6M0yuS7kX1MKjx8lK7nqg8yU44Bhti4u1JplwlY6_OUpQavj94qzs780OifbeJwGDVZIKZnO9AWAn0Rergb4J4Ce_ks |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED7xGICBN6JQwAMSU6Cx46aMVUtUoC0StBJbFDu2hIAWtekAEz8BiX_YX4Ivr7ZICAnGOOcosX3nz5e77wCOJUcTqJhFqTy3nJAbOyhco3hUKcmpqtAQk5Nb7XKj61zd8yyaEHNhEn6I3OGGmhHba1RwdEifTVhDg1BjKrk5szCDiudhEct6x6eq25xBynbd5Mdy2cYQL_s-420s0bPZ_rP70gRsTkPWeM_x1kBkb5uEmjyejiJxKt--ETn-63PWYTVFpKSaLKENmFO9TViZ4incgijjsJWkrjD-g0zdJn1NWspg-PH7Z5LZKYmXhXwNiQHF5MbYpeeHNxQ2eJN4gRikrkLsfGfan9T4_aMa9Z9JDf1Jr8NouA1d76JTa1hpuQZL4jHXCpkoObKkK0pTl2vJtGuMhVaibJYACwXTYUlKLL0YSsY0dwNk0gmYKCsulG2zHVjo9XtqF4iRMMA1kNLgEayIXXEcqgVXyuFGqQNeACubLF-mXOZYUuPJT1iYqY-j6eejWYCTXP4lYfH4UbKYzb2favPQp5iwi2e18wLQeBJ_eYpfrXut_GrvL52OYKnRaTX95mX7eh-WsT2JISzCQjQYqQODhSJxGK_2L2BmAnU |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB2xSAgO7Iiy-oDEKSWx46QcK0rEVkBApd6i2LElRGkRCQc49ROQ-EO-BE-ztEVCSHCMM44Se2b87My8AdiTHF2gYhal8tByY278oPCN4VGlJKeqRmNMTm5eeict96zN2yNZ_Bk_RHnghpYx8Ndo4E-xPhiShkaxxkxys2VhBhRPwrTr2TXU68ZNSSDl-H72X9lzMMLLaRe0jTY9GO8_viwNseYoYh0sOcECRMXLZpEmD9WXVFTl2zcex_98zSLM53iU1DMFWoIJ1V2GuRGWwhVICwZbSRoKoz_IyG3S06SpDIL_7H9keZ2SBEXAV0IMJCZXxis93r-hsEGbJIjEc35QiJ1vTXtHffbf62nvkRzhadJrkiar0AqO745OrLxYgyVxk2vFTNiutHVNaepzLZn2javQSnhGAVgsmI5tKbHwYiwZ09yPkEcnYsJTXCjHYWsw1e111ToQI2FgaySlQSNYD7vmulQLrpTLjUlHvAJWMVehzJnMsaBGJ8w4mGmIoxmWo1mB_VL-KePw-FFyq5j6MLflJKSYros7tcMK0MEc_vKUsN4ImuXVxl867cLMdSMIL04vzzdhFpuzAMItmEqfX9S2AUKp2Bno-hdzzwEt |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Strategic+Defect+Engineering+of+Metal%E2%80%93Organic+Frameworks+for+Optimizing+the+Fabrication+of+Single%E2%80%90Atom+Catalysts&rft.jtitle=Advanced+functional+materials&rft.au=He%2C+Jie&rft.au=Li%2C+Na&rft.au=Li%2C+Zhi%E2%80%90Gang&rft.au=Zhong%2C+Ming&rft.date=2021-10-01&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=31&rft.issue=41&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadfm.202103597&rft.externalDBID=10.1002%252Fadfm.202103597&rft.externalDocID=ADFM202103597 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon |