Strain‐Activated Copper Catalyst for pH‐Universal Hydrogen Evolution Reaction

Developing low‐cost and high‐activity pH‐universal hydrogen evolution reaction (HER) catalysts is very crucial to the industrialization of water electrolysis. However, the high price, low yield, and poor stability of current HER catalysts make them difficult to meet practical requirements. Herein, a...

Full description

Saved in:
Bibliographic Details
Published inAdvanced functional materials Vol. 32; no. 18
Main Authors Kang, Wen‐Jing, Feng, Yi, Li, Zhe, Yang, Wen‐Qi, Cheng, Chuan‐Qi, Shi, Zi‐Zheng, Yin, Peng‐Fei, Shen, Gu‐Rong, Yang, Jing, Dong, Cun‐Ku, Liu, Hui, Ye, Fu‐Xing, Du, Xi‐Wen
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 01.05.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Developing low‐cost and high‐activity pH‐universal hydrogen evolution reaction (HER) catalysts is very crucial to the industrialization of water electrolysis. However, the high price, low yield, and poor stability of current HER catalysts make them difficult to meet practical requirements. Herein, a plasma spraying technique is employed to prepare self‐supported Cu catalysts with tensile strain for the first time. The tensile strain upshifts the d‐band of Cu, improves the water dissociation and H* adsorption, eventually improves the intrinsic HER catalytic activity. As such, Cu electrode achieves overpotentials of 182 mV in 0.5 m H2SO4, 261 mV in 1 M PBS, and 121 mV in 1 M KOH at 10 mA cm–2. In addition, Cu electrode also performs well at high current densities, the overpotentials at 1 A cm–2 are much lower than those of Pt foil in acid, neutral, and alkaline solutions. The Cu electrode prepared by plasma spraying exhibits an excellent pH‐universal HER catalytic activity, superb long‐term stability, and marvelous corrosion resistance. The superb HER activity is attributed to self‐supported porous structure, abundant active sites, tensile strain enhanced intrinsic catalytic activity, and small charge transfer resistance.
AbstractList Developing low‐cost and high‐activity pH‐universal hydrogen evolution reaction (HER) catalysts is very crucial to the industrialization of water electrolysis. However, the high price, low yield, and poor stability of current HER catalysts make them difficult to meet practical requirements. Herein, a plasma spraying technique is employed to prepare self‐supported Cu catalysts with tensile strain for the first time. The tensile strain upshifts the d‐band of Cu, improves the water dissociation and H* adsorption, eventually improves the intrinsic HER catalytic activity. As such, Cu electrode achieves overpotentials of 182 mV in 0.5 m H2SO4, 261 mV in 1 M PBS, and 121 mV in 1 M KOH at 10 mA cm–2. In addition, Cu electrode also performs well at high current densities, the overpotentials at 1 A cm–2 are much lower than those of Pt foil in acid, neutral, and alkaline solutions. The Cu electrode prepared by plasma spraying exhibits an excellent pH‐universal HER catalytic activity, superb long‐term stability, and marvelous corrosion resistance. The superb HER activity is attributed to self‐supported porous structure, abundant active sites, tensile strain enhanced intrinsic catalytic activity, and small charge transfer resistance.
Developing low‐cost and high‐activity pH‐universal hydrogen evolution reaction (HER) catalysts is very crucial to the industrialization of water electrolysis. However, the high price, low yield, and poor stability of current HER catalysts make them difficult to meet practical requirements. Herein, a plasma spraying technique is employed to prepare self‐supported Cu catalysts with tensile strain for the first time. The tensile strain upshifts the d‐band of Cu, improves the water dissociation and H* adsorption, eventually improves the intrinsic HER catalytic activity. As such, Cu electrode achieves overpotentials of 182 mV in 0.5 m H2SO4, 261 mV in 1 M PBS, and 121 mV in 1 M KOH at 10 mA cm–2. In addition, Cu electrode also performs well at high current densities, the overpotentials at 1 A cm–2 are much lower than those of Pt foil in acid, neutral, and alkaline solutions.
Developing low‐cost and high‐activity pH‐universal hydrogen evolution reaction (HER) catalysts is very crucial to the industrialization of water electrolysis. However, the high price, low yield, and poor stability of current HER catalysts make them difficult to meet practical requirements. Herein, a plasma spraying technique is employed to prepare self‐supported Cu catalysts with tensile strain for the first time. The tensile strain upshifts the d‐band of Cu, improves the water dissociation and H * adsorption, eventually improves the intrinsic HER catalytic activity. As such, Cu electrode achieves overpotentials of 182 mV in 0.5  m  H 2 SO 4 , 261 mV in 1 M PBS, and 121 mV in 1 M KOH at 10 mA cm –2 . In addition, Cu electrode also performs well at high current densities, the overpotentials at 1 A cm –2 are much lower than those of Pt foil in acid, neutral, and alkaline solutions.
Author Kang, Wen‐Jing
Feng, Yi
Li, Zhe
Cheng, Chuan‐Qi
Shi, Zi‐Zheng
Du, Xi‐Wen
Dong, Cun‐Ku
Ye, Fu‐Xing
Shen, Gu‐Rong
Yang, Wen‐Qi
Yang, Jing
Liu, Hui
Yin, Peng‐Fei
Author_xml – sequence: 1
  givenname: Wen‐Jing
  surname: Kang
  fullname: Kang, Wen‐Jing
  organization: Tianjin University
– sequence: 2
  givenname: Yi
  surname: Feng
  fullname: Feng, Yi
  organization: Tianjin University
– sequence: 3
  givenname: Zhe
  surname: Li
  fullname: Li, Zhe
  email: zhli@tju.edu.cn, lizheyxmail@163.com
  organization: Tianjin University
– sequence: 4
  givenname: Wen‐Qi
  surname: Yang
  fullname: Yang, Wen‐Qi
  organization: Tianjin University
– sequence: 5
  givenname: Chuan‐Qi
  surname: Cheng
  fullname: Cheng, Chuan‐Qi
  organization: Tianjin University
– sequence: 6
  givenname: Zi‐Zheng
  surname: Shi
  fullname: Shi, Zi‐Zheng
  organization: Tianjin University
– sequence: 7
  givenname: Peng‐Fei
  surname: Yin
  fullname: Yin, Peng‐Fei
  organization: Tianjin University
– sequence: 8
  givenname: Gu‐Rong
  surname: Shen
  fullname: Shen, Gu‐Rong
  organization: Tianjin University
– sequence: 9
  givenname: Jing
  surname: Yang
  fullname: Yang, Jing
  organization: Tianjin University
– sequence: 10
  givenname: Cun‐Ku
  surname: Dong
  fullname: Dong, Cun‐Ku
  organization: Tianjin University
– sequence: 11
  givenname: Hui
  surname: Liu
  fullname: Liu, Hui
  email: hui_liu@tju.edu.cn
  organization: Tianjin University
– sequence: 12
  givenname: Fu‐Xing
  surname: Ye
  fullname: Ye, Fu‐Xing
  email: yefx@tju.edu.cn
  organization: Tianjin University
– sequence: 13
  givenname: Xi‐Wen
  orcidid: 0000-0002-2811-147X
  surname: Du
  fullname: Du, Xi‐Wen
  email: xwdu@tju.edu.cn
  organization: Tianjin University
BookMark eNqFkM1Kw0AUhQepYFvdug64Tp2fZCazLLG1QkX8KbgbJpOJpKSZODOtZOcj-Iw-iQmVCoIIF-5ZnO9ezhmBQW1qDcA5ghMEIb6UebGZYIgRwoSyIzBEFNGQQJwMDho9n4CRc2sIEWMkGoL7R29lWX--f0yVL3fS6zxITdNoG6TSy6p1PiiMDZpFZ1nV5U5bJ6tg0ebWvOg6mO1MtfWlqYMHLVUvTsFxISunz773GKzms6d0ES7vrm_S6TJUJCEsVExGBYsRJFk3hGcJi2lGcgIzIjnBWHY5Yk45iwvEScEShhSNIpXlNMo4JWNwsb_bWPO61c6LtdnaunspMI0TFMMYo8412buUNc5ZXYjGlhtpW4Gg6GsTfW3iUFsHRL8AVXrZB-uLqv7G-B57Kyvd_vNETK_mtz_sF7uehSc
CitedBy_id crossref_primary_10_1016_j_electacta_2024_144695
crossref_primary_10_1016_j_mssp_2022_107106
crossref_primary_10_1002_adfm_202201081
crossref_primary_10_1007_s12598_022_02227_3
crossref_primary_10_1002_smll_202400783
crossref_primary_10_1007_s12613_023_2695_5
crossref_primary_10_1002_cssc_202300348
crossref_primary_10_1002_sstr_202200404
crossref_primary_10_1016_j_ces_2023_119026
crossref_primary_10_1016_j_jcis_2024_12_078
crossref_primary_10_1002_aelm_202300869
crossref_primary_10_1021_acs_cgd_4c00472
crossref_primary_10_1002_smll_202311509
crossref_primary_10_1002_sstr_202200133
crossref_primary_10_1002_adfm_202404055
crossref_primary_10_1016_j_apcatb_2022_122305
crossref_primary_10_1016_j_jcis_2024_11_239
crossref_primary_10_1016_j_jallcom_2024_174250
crossref_primary_10_1039_D3CC04054B
crossref_primary_10_1002_adfm_202301925
crossref_primary_10_1039_D4MA00321G
crossref_primary_10_1039_D5TA00506J
crossref_primary_10_1002_adfm_202211576
crossref_primary_10_1016_j_cej_2022_138540
crossref_primary_10_1039_D3CC01593A
crossref_primary_10_1002_ange_202208642
crossref_primary_10_1002_cctc_202401332
crossref_primary_10_1002_anie_202208642
crossref_primary_10_1002_smll_202206781
crossref_primary_10_1016_j_jallcom_2024_175255
crossref_primary_10_1016_j_microc_2024_112174
crossref_primary_10_1016_j_actamat_2025_120961
crossref_primary_10_1002_adma_202407102
crossref_primary_10_1002_smll_202203588
crossref_primary_10_1016_j_apsusc_2023_156896
crossref_primary_10_1016_j_jallcom_2022_167931
crossref_primary_10_1021_acsaem_3c01611
crossref_primary_10_1021_acssuschemeng_2c04034
crossref_primary_10_1039_D3TA06856K
crossref_primary_10_1016_j_compositesb_2023_110600
crossref_primary_10_1039_D2EE03323B
crossref_primary_10_3390_solar3010008
crossref_primary_10_1016_j_jallcom_2023_170479
crossref_primary_10_1016_j_jpowsour_2025_236658
crossref_primary_10_1016_j_apcatb_2024_124027
crossref_primary_10_1016_j_cej_2024_149486
crossref_primary_10_1002_aenm_202300499
crossref_primary_10_1021_acscatal_3c03821
crossref_primary_10_1038_s41563_024_02098_2
crossref_primary_10_1002_chem_202301252
crossref_primary_10_1007_s11243_024_00594_7
crossref_primary_10_1002_adfm_202208760
crossref_primary_10_1016_j_diamond_2024_111720
crossref_primary_10_1002_smll_202306178
crossref_primary_10_1021_acssuschemeng_2c07658
crossref_primary_10_1016_j_cej_2023_145639
crossref_primary_10_1021_acsaem_4c00229
crossref_primary_10_1038_s41467_024_50535_2
crossref_primary_10_1016_j_cej_2023_142448
crossref_primary_10_1002_sstr_202300194
crossref_primary_10_1016_j_ijhydene_2024_10_139
crossref_primary_10_1016_j_ijhydene_2024_09_119
crossref_primary_10_1021_acsami_2c18799
crossref_primary_10_1007_s12209_025_00425_5
crossref_primary_10_1039_D4QI00085D
crossref_primary_10_3390_nano13162303
crossref_primary_10_1016_j_actamat_2023_119522
crossref_primary_10_1002_smll_202301640
crossref_primary_10_1021_acscatal_3c02406
crossref_primary_10_1016_j_apcatb_2024_123882
crossref_primary_10_1016_j_mtchem_2023_101567
crossref_primary_10_1016_j_ijhydene_2024_03_107
crossref_primary_10_1016_j_ijhydene_2024_04_180
Cites_doi 10.1038/s41929-019-0365-9
10.1088/0022-3727/37/9/R02
10.1103/PhysRevB.54.11169
10.1103/PhysRevLett.77.3865
10.1016/j.checat.2021.11.003
10.1021/acscatal.8b01715
10.1103/PhysRevB.50.17953
10.1002/aenm.201901333
10.1021/jacs.9b12005
10.1016/j.matdes.2016.08.090
10.1002/adma.201806326
10.1038/natrevmats.2017.59
10.1016/j.cpc.2021.108033
10.1021/acsenergylett.9b02374
10.1002/adma.201908521
10.1038/s41929-018-0054-0
10.1021/jacs.7b08521
10.1002/adfm.201503784
10.1021/acscatal.5b00556
10.1016/j.electacta.2017.09.008
10.1002/anie.201403842
10.1039/C3CS60468C
10.1021/acsnano.9b08904
10.1021/acssuschemeng.8b02155
10.1002/adfm.201910107
10.1039/C4CS00448E
10.1021/acsenergylett.9b00191
10.1002/adma.202104791
10.1016/j.vacuum.2019.108834
10.1039/D0QI01060J
10.1126/science.1103197
10.1039/D0EE01856B
10.1002/adfm.201803291
10.1039/C8CC02510J
10.1126/science.aat8051
ContentType Journal Article
Copyright 2022 Wiley‐VCH GmbH
Copyright_xml – notice: 2022 Wiley‐VCH GmbH
DBID AAYXX
CITATION
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/adfm.202112367
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList
Materials Research Database
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1616-3028
EndPage n/a
ExternalDocumentID 10_1002_adfm_202112367
ADFM202112367
Genre article
GrantInformation_xml – fundername: New Materials R&D Center of Shanghang Country
– fundername: Natural Science Foundation of China
  funderid: 51871160; 51671141; 51471115
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OC
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
.Y3
31~
AANHP
AASGY
AAYXX
ACBWZ
ACRPL
ACYXJ
ADMLS
ADNMO
AEYWJ
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
HF~
HVGLF
LW6
7SP
7SR
7U5
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
L7M
ID FETCH-LOGICAL-c3837-c7a4f75103b03b39b8756b3d30b3a9322a112596975f193f7871c644cbd64b963
IEDL.DBID DR2
ISSN 1616-301X
IngestDate Fri Jul 25 03:11:56 EDT 2025
Thu Apr 24 23:09:03 EDT 2025
Tue Jul 01 00:30:25 EDT 2025
Wed Jan 22 16:25:51 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 18
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3837-c7a4f75103b03b39b8756b3d30b3a9322a112596975f193f7871c644cbd64b963
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2811-147X
PQID 2658150521
PQPubID 2045204
PageCount 8
ParticipantIDs proquest_journals_2658150521
crossref_primary_10_1002_adfm_202112367
crossref_citationtrail_10_1002_adfm_202112367
wiley_primary_10_1002_adfm_202112367_ADFM202112367
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-05-01
PublicationDateYYYYMMDD 2022-05-01
PublicationDate_xml – month: 05
  year: 2022
  text: 2022-05-01
  day: 01
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Advanced functional materials
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2021; 8
2019; 9
2018; 28
2019; 4
2015; 5
2017; 2
2018; 140
2015; 19
2021; 267
2020; 142
2019; 2
2019; 168
2020; 14
2020; 13
2017; 252
2020; 32
2021; 1
2004; 305
1996; 54
2014; 43
2019; 363
1996; 77
2018; 6
2020; 5
2015; 25
2018; 8
2021; 33
2020; 30
2021
2018; 1
2004; 37
2015; 44
2016; 111
2018; 54
1994; 50
2014; 53
e_1_2_8_28_1
e_1_2_8_29_1
e_1_2_8_24_1
e_1_2_8_25_1
e_1_2_8_26_1
e_1_2_8_27_1
Wang S. Y. (e_1_2_8_9_1) 2021
e_1_2_8_3_1
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_4_1
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_21_1
e_1_2_8_22_1
e_1_2_8_23_1
e_1_2_8_1_1
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_15_1
e_1_2_8_16_1
e_1_2_8_37_1
Jiang Y. (e_1_2_8_30_1) 2015; 19
e_1_2_8_32_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_12_1
e_1_2_8_33_1
References_xml – volume: 252
  start-page: 516
  year: 2017
  publication-title: Z. F. Chen, Electrochim. Acta
– volume: 54
  start-page: 6388
  year: 2018
  publication-title: Chem. Commun.
– volume: 5
  start-page: 192
  year: 2020
  publication-title: ACS Energy Lett.
– volume: 44
  start-page: 5148
  year: 2015
  publication-title: Chem. Soc. Rev.
– volume: 2
  start-page: 1107
  year: 2019
  publication-title: Nat. Catal.
– volume: 140
  start-page: 610
  year: 2018
  publication-title: J. Am. Chem. Soc.
– volume: 5
  start-page: 4115
  year: 2015
  publication-title: ACS Catal.
– volume: 8
  start-page: 234
  year: 2021
  publication-title: Inorg. Chem. Front.
– volume: 1
  start-page: 1493
  year: 2021
  publication-title: Chem Catalysis
– volume: 142
  start-page: 7765
  year: 2020
  publication-title: J. Am. Chem. Soc.
– volume: 8
  start-page: 6707
  year: 2018
  publication-title: ACS Catal.
– volume: 305
  start-page: 972
  year: 2004
  publication-title: Science
– volume: 77
  start-page: 3865
  year: 1996
  publication-title: Phys. Rev. Lett.
– volume: 2
  year: 2017
  publication-title: Nat. Rev. Mater.
– volume: 37
  start-page: R86
  year: 2004
  publication-title: J. Phys. D: Appl. Phys.
– volume: 50
  year: 1994
  publication-title: Phys. Rev. B
– volume: 9
  year: 2019
  publication-title: Adv. Energy Mater.
– volume: 4
  start-page: 980
  year: 2019
  publication-title: ACS Energy Lett.
– volume: 19
  start-page: 168
  year: 2015
  publication-title: Mater. Res. Innov.
– volume: 33
  year: 2021
  publication-title: Adv. Mater.
– volume: 30
  year: 2020
  publication-title: Adv. Funct. Mater.
– volume: 168
  year: 2019
  publication-title: Vacuum
– volume: 1
  start-page: 263
  year: 2018
  publication-title: Nat. Catal.
– volume: 54
  year: 1996
  publication-title: Phys. Rev. B
– volume: 267
  year: 2021
  publication-title: Comput. Phys. Commun.
– volume: 6
  year: 2018
  publication-title: ACS Sustainable Chem. Eng.
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 43
  start-page: 6555
  year: 2014
  publication-title: Chem. Soc. Rev.
– volume: 363
  start-page: 870
  year: 2019
  publication-title: Science
– volume: 28
  year: 2018
  publication-title: Adv. Funct. Mater.
– volume: 25
  start-page: 6814
  year: 2015
  publication-title: Adv. Funct. Mater.
– volume: 53
  start-page: 9577
  year: 2014
  publication-title: Angew. Chem., Int. Ed.
– volume: 111
  start-page: 192
  year: 2016
  publication-title: Mater. Des.
– volume: 13
  start-page: 3185
  year: 2020
  publication-title: Energy Environ. Sci.
– year: 2021
  publication-title: Angew. Chem., Int. Ed.
– volume: 14
  start-page: 4141
  year: 2020
  publication-title: ACS Nano
– ident: e_1_2_8_22_1
  doi: 10.1038/s41929-019-0365-9
– ident: e_1_2_8_28_1
  doi: 10.1088/0022-3727/37/9/R02
– ident: e_1_2_8_34_1
  doi: 10.1103/PhysRevB.54.11169
– ident: e_1_2_8_36_1
  doi: 10.1103/PhysRevLett.77.3865
– ident: e_1_2_8_10_1
  doi: 10.1016/j.checat.2021.11.003
– ident: e_1_2_8_25_1
  doi: 10.1021/acscatal.8b01715
– ident: e_1_2_8_35_1
  doi: 10.1103/PhysRevB.50.17953
– ident: e_1_2_8_5_1
  doi: 10.1002/aenm.201901333
– ident: e_1_2_8_11_1
  doi: 10.1021/jacs.9b12005
– ident: e_1_2_8_27_1
  doi: 10.1016/j.matdes.2016.08.090
– ident: e_1_2_8_26_1
  doi: 10.1002/adma.201806326
– ident: e_1_2_8_19_1
  doi: 10.1038/natrevmats.2017.59
– ident: e_1_2_8_37_1
  doi: 10.1016/j.cpc.2021.108033
– start-page: 202115636
  year: 2021
  ident: e_1_2_8_9_1
  publication-title: Angew. Chem., Int. Ed.
– ident: e_1_2_8_12_1
  doi: 10.1021/acsenergylett.9b02374
– ident: e_1_2_8_32_1
  doi: 10.1002/adma.201908521
– ident: e_1_2_8_20_1
  doi: 10.1038/s41929-018-0054-0
– ident: e_1_2_8_17_1
  doi: 10.1021/jacs.7b08521
– ident: e_1_2_8_18_1
  doi: 10.1002/adfm.201503784
– ident: e_1_2_8_6_1
  doi: 10.1021/acscatal.5b00556
– ident: e_1_2_8_15_1
  doi: 10.1016/j.electacta.2017.09.008
– ident: e_1_2_8_13_1
  doi: 10.1002/anie.201403842
– ident: e_1_2_8_2_1
  doi: 10.1039/C3CS60468C
– ident: e_1_2_8_4_1
  doi: 10.1021/acsnano.9b08904
– ident: e_1_2_8_14_1
  doi: 10.1021/acssuschemeng.8b02155
– ident: e_1_2_8_23_1
  doi: 10.1002/adfm.201910107
– ident: e_1_2_8_3_1
  doi: 10.1039/C4CS00448E
– ident: e_1_2_8_21_1
  doi: 10.1021/acsenergylett.9b00191
– ident: e_1_2_8_8_1
  doi: 10.1002/adma.202104791
– ident: e_1_2_8_29_1
  doi: 10.1016/j.vacuum.2019.108834
– ident: e_1_2_8_7_1
  doi: 10.1039/D0QI01060J
– volume: 19
  start-page: 168
  year: 2015
  ident: e_1_2_8_30_1
  publication-title: Mater. Res. Innov.
– ident: e_1_2_8_1_1
  doi: 10.1126/science.1103197
– ident: e_1_2_8_31_1
  doi: 10.1039/D0EE01856B
– ident: e_1_2_8_33_1
  doi: 10.1002/adfm.201803291
– ident: e_1_2_8_16_1
  doi: 10.1039/C8CC02510J
– ident: e_1_2_8_24_1
  doi: 10.1126/science.aat8051
SSID ssj0017734
Score 2.6260748
Snippet Developing low‐cost and high‐activity pH‐universal hydrogen evolution reaction (HER) catalysts is very crucial to the industrialization of water electrolysis....
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Catalysts
Catalytic activity
Copper
copper catalysts
Electrodes
Electrolysis
Foils
hydrogen evolution reaction
Hydrogen evolution reactions
Materials science
Plasma spraying
Sulfuric acid
Tensile strain
Title Strain‐Activated Copper Catalyst for pH‐Universal Hydrogen Evolution Reaction
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202112367
https://www.proquest.com/docview/2658150521
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA5SL3rwLVZr2YPgadvuo0n3uPTBIlawtdDbkkyyF6Ut7VaoJ3-Cv9Ff4mRfbQURFPaybBLymEm-yc58Q8gNgMSDOQITgCnTFZFrcnA8UyKaE5oBHVIH2QcajNy7cXO8EcWf8kMUF25aM5L9Wis4F4v6mjSUy0hHkqMBo0nIcBPWDlsaFQ0K_iiLsfS3MrW0g5c1zlkbG3Z9u_r2qbSGmpuANTlxeoeE531NHU2ea8tY1ODtG43jfwZzRA4yOGr4qfwckx01OSH7GySFp-RxmKSR-Hz_8CHJhaak0Z7OZmputPXdz2oRG4h8jVmARTI_D2wyWMn5FKXT6L5m0m0MVBpFcUZGve5TOzCzRAwmaAPWBMbdiGnuPYGP4wk0cqhwpNMQDkcAaHPsd9OjHmtGCAgj3AQsQKAFQlJXoIqfk9JkOlEXxKDc5dKVDuUt_E6lZzNPSAU0AtFoMSgTM1-IEDKWcj3KlzDlV7ZDPVVhMVVlcluUn6X8HD-WrOTrGmZ6ughtBGCWzuVnlYmdLNAvrYR-p9cv3i7_UumK7Nk6hiLxmqyQUjxfqmtENrGokl2_078fVhMp_gLqG_LT
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3JTvMwEB6xHIAD2w-irD6AOAUaJ3XIgUPVUoVVYpN6C_HYuYDaqi2gcuIReBVehUfgSRhnY5EQ0i9xQMolijOKPTP2Z2fmG4B1REULc4wWoqctV8auFaHjW4rQnDQM6JgGyJ6I4NI9aFaaQ_Cc58Kk_BDFgZvxjGS-Ng5uDqS331lDIxWbVHLawRgWsiyu8lAP7mnX1tvdr5OKNzhv7F3UAisrLGCh2ZBZ6EVu7BkuOUmX40sC7UI6yilLJyJAwyOSWfGF71ViAjgxGbWNBBxQKuFKMlmSOwyjpoy4oeuvnxWMVbbnpT-yhW1CyuxmzhNZ5tufv_fzOvgObj9C5GSNa0zBSz46aWjL9dZtX27hwxfiyD81fNMwmSFuVk1dZAaGdGsWJj7wMP6D0_OkUsbr41MVk3JvWrFau9PRXVYzx1uDXp8RuGedgJpkoSwkMhiobpsckO3dZQ7MznSaKDIHl7_Sp3kYabVbegGYiNxIucoR0Q49F8rnni-VRhGjLO94WAIr13yIGRG76eVNmFJI89CoJixUU4LNon0npSD5tuVybkhhNhX1Qk4Y0zblCu0S8MQifpASVuuN4-Ju8X9eWoOx4OL4KDzaPzlcgnFuUkaSINFlGOl3b_UKAbm-XE1ch8HVbxvbG5RjS0Y
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NTttAEB7xIyF6oPyqaQPsgaonQ7x21vGBQ5QQJQWiFoqUm_HOri-gxEpCUTjxCH0UXoVX4Ek66z8IEqpUKQckXyyvR96dmd1v1zPfAOwhKlqYI7QQPW25MnKtEB3fUoTmpGFAxzRAtivaF-73XrU3Bw95LkzKD1EcuBnPSOZr4-Cxig6eSUNDFZlMctrAGBKyLKzyWE9uadM2Ouw0ScNfOW8d_Wq0rayugIVmP2ahF7qRZ6jkJF2OLwmzC-kopyKdkPAMD0lm1Re-V40I30Rk0zYSbkCphCvJYknuPCy6ouKbYhHNs4Kwyva89D-2sE1Emd3LaSIr_GD6e6eXwWds-xIhJ0tc6yM85oOTRrZc7d-M5T7eveKNfE-jtworGd5m9dRB1mBO99fhwwsWxg34eZ7UyXi6_1PHpNibVqwxiGM9ZA1zuDUZjRlBexa3qUkWyEIi2xM1HJD7saPfmfuyM52miWzCxUz6tAUL_UFffwImQjdUrnJEWKPnQvnc86XSKCKUlZqHJbByxQeY0bCbXl4HKYE0D4xqgkI1JfhWtI9TApI3W5ZzOwqyiWgUcEKYtilWaJeAJwbxDylBvdk6Le4-_89Lu7D0o9kKTjrd4y-wzE2-SBIhWoaF8fBGbxOKG8udxHEYXM7a1v4COoBJ9Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Strain%E2%80%90Activated+Copper+Catalyst+for+pH%E2%80%90Universal+Hydrogen+Evolution+Reaction&rft.jtitle=Advanced+functional+materials&rft.au=Wen%E2%80%90Jing+Kang&rft.au=Feng%2C+Yi&rft.au=Li%2C+Zhe&rft.au=Wen%E2%80%90Qi+Yang&rft.date=2022-05-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=32&rft.issue=18&rft_id=info:doi/10.1002%2Fadfm.202112367&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon