Strain‐Activated Copper Catalyst for pH‐Universal Hydrogen Evolution Reaction
Developing low‐cost and high‐activity pH‐universal hydrogen evolution reaction (HER) catalysts is very crucial to the industrialization of water electrolysis. However, the high price, low yield, and poor stability of current HER catalysts make them difficult to meet practical requirements. Herein, a...
Saved in:
Published in | Advanced functional materials Vol. 32; no. 18 |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc
01.05.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Developing low‐cost and high‐activity pH‐universal hydrogen evolution reaction (HER) catalysts is very crucial to the industrialization of water electrolysis. However, the high price, low yield, and poor stability of current HER catalysts make them difficult to meet practical requirements. Herein, a plasma spraying technique is employed to prepare self‐supported Cu catalysts with tensile strain for the first time. The tensile strain upshifts the d‐band of Cu, improves the water dissociation and H* adsorption, eventually improves the intrinsic HER catalytic activity. As such, Cu electrode achieves overpotentials of 182 mV in 0.5 m H2SO4, 261 mV in 1 M PBS, and 121 mV in 1 M KOH at 10 mA cm–2. In addition, Cu electrode also performs well at high current densities, the overpotentials at 1 A cm–2 are much lower than those of Pt foil in acid, neutral, and alkaline solutions.
The Cu electrode prepared by plasma spraying exhibits an excellent pH‐universal HER catalytic activity, superb long‐term stability, and marvelous corrosion resistance. The superb HER activity is attributed to self‐supported porous structure, abundant active sites, tensile strain enhanced intrinsic catalytic activity, and small charge transfer resistance. |
---|---|
AbstractList | Developing low‐cost and high‐activity pH‐universal hydrogen evolution reaction (HER) catalysts is very crucial to the industrialization of water electrolysis. However, the high price, low yield, and poor stability of current HER catalysts make them difficult to meet practical requirements. Herein, a plasma spraying technique is employed to prepare self‐supported Cu catalysts with tensile strain for the first time. The tensile strain upshifts the d‐band of Cu, improves the water dissociation and H* adsorption, eventually improves the intrinsic HER catalytic activity. As such, Cu electrode achieves overpotentials of 182 mV in 0.5 m H2SO4, 261 mV in 1 M PBS, and 121 mV in 1 M KOH at 10 mA cm–2. In addition, Cu electrode also performs well at high current densities, the overpotentials at 1 A cm–2 are much lower than those of Pt foil in acid, neutral, and alkaline solutions.
The Cu electrode prepared by plasma spraying exhibits an excellent pH‐universal HER catalytic activity, superb long‐term stability, and marvelous corrosion resistance. The superb HER activity is attributed to self‐supported porous structure, abundant active sites, tensile strain enhanced intrinsic catalytic activity, and small charge transfer resistance. Developing low‐cost and high‐activity pH‐universal hydrogen evolution reaction (HER) catalysts is very crucial to the industrialization of water electrolysis. However, the high price, low yield, and poor stability of current HER catalysts make them difficult to meet practical requirements. Herein, a plasma spraying technique is employed to prepare self‐supported Cu catalysts with tensile strain for the first time. The tensile strain upshifts the d‐band of Cu, improves the water dissociation and H* adsorption, eventually improves the intrinsic HER catalytic activity. As such, Cu electrode achieves overpotentials of 182 mV in 0.5 m H2SO4, 261 mV in 1 M PBS, and 121 mV in 1 M KOH at 10 mA cm–2. In addition, Cu electrode also performs well at high current densities, the overpotentials at 1 A cm–2 are much lower than those of Pt foil in acid, neutral, and alkaline solutions. Developing low‐cost and high‐activity pH‐universal hydrogen evolution reaction (HER) catalysts is very crucial to the industrialization of water electrolysis. However, the high price, low yield, and poor stability of current HER catalysts make them difficult to meet practical requirements. Herein, a plasma spraying technique is employed to prepare self‐supported Cu catalysts with tensile strain for the first time. The tensile strain upshifts the d‐band of Cu, improves the water dissociation and H * adsorption, eventually improves the intrinsic HER catalytic activity. As such, Cu electrode achieves overpotentials of 182 mV in 0.5 m H 2 SO 4 , 261 mV in 1 M PBS, and 121 mV in 1 M KOH at 10 mA cm –2 . In addition, Cu electrode also performs well at high current densities, the overpotentials at 1 A cm –2 are much lower than those of Pt foil in acid, neutral, and alkaline solutions. |
Author | Kang, Wen‐Jing Feng, Yi Li, Zhe Cheng, Chuan‐Qi Shi, Zi‐Zheng Du, Xi‐Wen Dong, Cun‐Ku Ye, Fu‐Xing Shen, Gu‐Rong Yang, Wen‐Qi Yang, Jing Liu, Hui Yin, Peng‐Fei |
Author_xml | – sequence: 1 givenname: Wen‐Jing surname: Kang fullname: Kang, Wen‐Jing organization: Tianjin University – sequence: 2 givenname: Yi surname: Feng fullname: Feng, Yi organization: Tianjin University – sequence: 3 givenname: Zhe surname: Li fullname: Li, Zhe email: zhli@tju.edu.cn, lizheyxmail@163.com organization: Tianjin University – sequence: 4 givenname: Wen‐Qi surname: Yang fullname: Yang, Wen‐Qi organization: Tianjin University – sequence: 5 givenname: Chuan‐Qi surname: Cheng fullname: Cheng, Chuan‐Qi organization: Tianjin University – sequence: 6 givenname: Zi‐Zheng surname: Shi fullname: Shi, Zi‐Zheng organization: Tianjin University – sequence: 7 givenname: Peng‐Fei surname: Yin fullname: Yin, Peng‐Fei organization: Tianjin University – sequence: 8 givenname: Gu‐Rong surname: Shen fullname: Shen, Gu‐Rong organization: Tianjin University – sequence: 9 givenname: Jing surname: Yang fullname: Yang, Jing organization: Tianjin University – sequence: 10 givenname: Cun‐Ku surname: Dong fullname: Dong, Cun‐Ku organization: Tianjin University – sequence: 11 givenname: Hui surname: Liu fullname: Liu, Hui email: hui_liu@tju.edu.cn organization: Tianjin University – sequence: 12 givenname: Fu‐Xing surname: Ye fullname: Ye, Fu‐Xing email: yefx@tju.edu.cn organization: Tianjin University – sequence: 13 givenname: Xi‐Wen orcidid: 0000-0002-2811-147X surname: Du fullname: Du, Xi‐Wen email: xwdu@tju.edu.cn organization: Tianjin University |
BookMark | eNqFkM1Kw0AUhQepYFvdug64Tp2fZCazLLG1QkX8KbgbJpOJpKSZODOtZOcj-Iw-iQmVCoIIF-5ZnO9ezhmBQW1qDcA5ghMEIb6UebGZYIgRwoSyIzBEFNGQQJwMDho9n4CRc2sIEWMkGoL7R29lWX--f0yVL3fS6zxITdNoG6TSy6p1PiiMDZpFZ1nV5U5bJ6tg0ebWvOg6mO1MtfWlqYMHLVUvTsFxISunz773GKzms6d0ES7vrm_S6TJUJCEsVExGBYsRJFk3hGcJi2lGcgIzIjnBWHY5Yk45iwvEScEShhSNIpXlNMo4JWNwsb_bWPO61c6LtdnaunspMI0TFMMYo8412buUNc5ZXYjGlhtpW4Gg6GsTfW3iUFsHRL8AVXrZB-uLqv7G-B57Kyvd_vNETK_mtz_sF7uehSc |
CitedBy_id | crossref_primary_10_1016_j_electacta_2024_144695 crossref_primary_10_1016_j_mssp_2022_107106 crossref_primary_10_1002_adfm_202201081 crossref_primary_10_1007_s12598_022_02227_3 crossref_primary_10_1002_smll_202400783 crossref_primary_10_1007_s12613_023_2695_5 crossref_primary_10_1002_cssc_202300348 crossref_primary_10_1002_sstr_202200404 crossref_primary_10_1016_j_ces_2023_119026 crossref_primary_10_1016_j_jcis_2024_12_078 crossref_primary_10_1002_aelm_202300869 crossref_primary_10_1021_acs_cgd_4c00472 crossref_primary_10_1002_smll_202311509 crossref_primary_10_1002_sstr_202200133 crossref_primary_10_1002_adfm_202404055 crossref_primary_10_1016_j_apcatb_2022_122305 crossref_primary_10_1016_j_jcis_2024_11_239 crossref_primary_10_1016_j_jallcom_2024_174250 crossref_primary_10_1039_D3CC04054B crossref_primary_10_1002_adfm_202301925 crossref_primary_10_1039_D4MA00321G crossref_primary_10_1039_D5TA00506J crossref_primary_10_1002_adfm_202211576 crossref_primary_10_1016_j_cej_2022_138540 crossref_primary_10_1039_D3CC01593A crossref_primary_10_1002_ange_202208642 crossref_primary_10_1002_cctc_202401332 crossref_primary_10_1002_anie_202208642 crossref_primary_10_1002_smll_202206781 crossref_primary_10_1016_j_jallcom_2024_175255 crossref_primary_10_1016_j_microc_2024_112174 crossref_primary_10_1016_j_actamat_2025_120961 crossref_primary_10_1002_adma_202407102 crossref_primary_10_1002_smll_202203588 crossref_primary_10_1016_j_apsusc_2023_156896 crossref_primary_10_1016_j_jallcom_2022_167931 crossref_primary_10_1021_acsaem_3c01611 crossref_primary_10_1021_acssuschemeng_2c04034 crossref_primary_10_1039_D3TA06856K crossref_primary_10_1016_j_compositesb_2023_110600 crossref_primary_10_1039_D2EE03323B crossref_primary_10_3390_solar3010008 crossref_primary_10_1016_j_jallcom_2023_170479 crossref_primary_10_1016_j_jpowsour_2025_236658 crossref_primary_10_1016_j_apcatb_2024_124027 crossref_primary_10_1016_j_cej_2024_149486 crossref_primary_10_1002_aenm_202300499 crossref_primary_10_1021_acscatal_3c03821 crossref_primary_10_1038_s41563_024_02098_2 crossref_primary_10_1002_chem_202301252 crossref_primary_10_1007_s11243_024_00594_7 crossref_primary_10_1002_adfm_202208760 crossref_primary_10_1016_j_diamond_2024_111720 crossref_primary_10_1002_smll_202306178 crossref_primary_10_1021_acssuschemeng_2c07658 crossref_primary_10_1016_j_cej_2023_145639 crossref_primary_10_1021_acsaem_4c00229 crossref_primary_10_1038_s41467_024_50535_2 crossref_primary_10_1016_j_cej_2023_142448 crossref_primary_10_1002_sstr_202300194 crossref_primary_10_1016_j_ijhydene_2024_10_139 crossref_primary_10_1016_j_ijhydene_2024_09_119 crossref_primary_10_1021_acsami_2c18799 crossref_primary_10_1007_s12209_025_00425_5 crossref_primary_10_1039_D4QI00085D crossref_primary_10_3390_nano13162303 crossref_primary_10_1016_j_actamat_2023_119522 crossref_primary_10_1002_smll_202301640 crossref_primary_10_1021_acscatal_3c02406 crossref_primary_10_1016_j_apcatb_2024_123882 crossref_primary_10_1016_j_mtchem_2023_101567 crossref_primary_10_1016_j_ijhydene_2024_03_107 crossref_primary_10_1016_j_ijhydene_2024_04_180 |
Cites_doi | 10.1038/s41929-019-0365-9 10.1088/0022-3727/37/9/R02 10.1103/PhysRevB.54.11169 10.1103/PhysRevLett.77.3865 10.1016/j.checat.2021.11.003 10.1021/acscatal.8b01715 10.1103/PhysRevB.50.17953 10.1002/aenm.201901333 10.1021/jacs.9b12005 10.1016/j.matdes.2016.08.090 10.1002/adma.201806326 10.1038/natrevmats.2017.59 10.1016/j.cpc.2021.108033 10.1021/acsenergylett.9b02374 10.1002/adma.201908521 10.1038/s41929-018-0054-0 10.1021/jacs.7b08521 10.1002/adfm.201503784 10.1021/acscatal.5b00556 10.1016/j.electacta.2017.09.008 10.1002/anie.201403842 10.1039/C3CS60468C 10.1021/acsnano.9b08904 10.1021/acssuschemeng.8b02155 10.1002/adfm.201910107 10.1039/C4CS00448E 10.1021/acsenergylett.9b00191 10.1002/adma.202104791 10.1016/j.vacuum.2019.108834 10.1039/D0QI01060J 10.1126/science.1103197 10.1039/D0EE01856B 10.1002/adfm.201803291 10.1039/C8CC02510J 10.1126/science.aat8051 |
ContentType | Journal Article |
Copyright | 2022 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2022 Wiley‐VCH GmbH |
DBID | AAYXX CITATION 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1002/adfm.202112367 |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | Materials Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1616-3028 |
EndPage | n/a |
ExternalDocumentID | 10_1002_adfm_202112367 ADFM202112367 |
Genre | article |
GrantInformation_xml | – fundername: New Materials R&D Center of Shanghang Country – fundername: Natural Science Foundation of China funderid: 51871160; 51671141; 51471115 |
GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OC 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WFSAM WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ~IA ~WT .Y3 31~ AANHP AASGY AAYXX ACBWZ ACRPL ACYXJ ADMLS ADNMO AEYWJ AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION EJD FEDTE HF~ HVGLF LW6 7SP 7SR 7U5 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 L7M |
ID | FETCH-LOGICAL-c3837-c7a4f75103b03b39b8756b3d30b3a9322a112596975f193f7871c644cbd64b963 |
IEDL.DBID | DR2 |
ISSN | 1616-301X |
IngestDate | Fri Jul 25 03:11:56 EDT 2025 Thu Apr 24 23:09:03 EDT 2025 Tue Jul 01 00:30:25 EDT 2025 Wed Jan 22 16:25:51 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 18 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3837-c7a4f75103b03b39b8756b3d30b3a9322a112596975f193f7871c644cbd64b963 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-2811-147X |
PQID | 2658150521 |
PQPubID | 2045204 |
PageCount | 8 |
ParticipantIDs | proquest_journals_2658150521 crossref_primary_10_1002_adfm_202112367 crossref_citationtrail_10_1002_adfm_202112367 wiley_primary_10_1002_adfm_202112367_ADFM202112367 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-05-01 |
PublicationDateYYYYMMDD | 2022-05-01 |
PublicationDate_xml | – month: 05 year: 2022 text: 2022-05-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | Advanced functional materials |
PublicationYear | 2022 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2021; 8 2019; 9 2018; 28 2019; 4 2015; 5 2017; 2 2018; 140 2015; 19 2021; 267 2020; 142 2019; 2 2019; 168 2020; 14 2020; 13 2017; 252 2020; 32 2021; 1 2004; 305 1996; 54 2014; 43 2019; 363 1996; 77 2018; 6 2020; 5 2015; 25 2018; 8 2021; 33 2020; 30 2021 2018; 1 2004; 37 2015; 44 2016; 111 2018; 54 1994; 50 2014; 53 e_1_2_8_28_1 e_1_2_8_29_1 e_1_2_8_24_1 e_1_2_8_25_1 e_1_2_8_26_1 e_1_2_8_27_1 Wang S. Y. (e_1_2_8_9_1) 2021 e_1_2_8_3_1 e_1_2_8_2_1 e_1_2_8_5_1 e_1_2_8_4_1 e_1_2_8_7_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_20_1 e_1_2_8_21_1 e_1_2_8_22_1 e_1_2_8_23_1 e_1_2_8_1_1 e_1_2_8_17_1 e_1_2_8_18_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_15_1 e_1_2_8_16_1 e_1_2_8_37_1 Jiang Y. (e_1_2_8_30_1) 2015; 19 e_1_2_8_32_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_12_1 e_1_2_8_33_1 |
References_xml | – volume: 252 start-page: 516 year: 2017 publication-title: Z. F. Chen, Electrochim. Acta – volume: 54 start-page: 6388 year: 2018 publication-title: Chem. Commun. – volume: 5 start-page: 192 year: 2020 publication-title: ACS Energy Lett. – volume: 44 start-page: 5148 year: 2015 publication-title: Chem. Soc. Rev. – volume: 2 start-page: 1107 year: 2019 publication-title: Nat. Catal. – volume: 140 start-page: 610 year: 2018 publication-title: J. Am. Chem. Soc. – volume: 5 start-page: 4115 year: 2015 publication-title: ACS Catal. – volume: 8 start-page: 234 year: 2021 publication-title: Inorg. Chem. Front. – volume: 1 start-page: 1493 year: 2021 publication-title: Chem Catalysis – volume: 142 start-page: 7765 year: 2020 publication-title: J. Am. Chem. Soc. – volume: 8 start-page: 6707 year: 2018 publication-title: ACS Catal. – volume: 305 start-page: 972 year: 2004 publication-title: Science – volume: 77 start-page: 3865 year: 1996 publication-title: Phys. Rev. Lett. – volume: 2 year: 2017 publication-title: Nat. Rev. Mater. – volume: 37 start-page: R86 year: 2004 publication-title: J. Phys. D: Appl. Phys. – volume: 50 year: 1994 publication-title: Phys. Rev. B – volume: 9 year: 2019 publication-title: Adv. Energy Mater. – volume: 4 start-page: 980 year: 2019 publication-title: ACS Energy Lett. – volume: 19 start-page: 168 year: 2015 publication-title: Mater. Res. Innov. – volume: 33 year: 2021 publication-title: Adv. Mater. – volume: 30 year: 2020 publication-title: Adv. Funct. Mater. – volume: 168 year: 2019 publication-title: Vacuum – volume: 1 start-page: 263 year: 2018 publication-title: Nat. Catal. – volume: 54 year: 1996 publication-title: Phys. Rev. B – volume: 267 year: 2021 publication-title: Comput. Phys. Commun. – volume: 6 year: 2018 publication-title: ACS Sustainable Chem. Eng. – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 43 start-page: 6555 year: 2014 publication-title: Chem. Soc. Rev. – volume: 363 start-page: 870 year: 2019 publication-title: Science – volume: 28 year: 2018 publication-title: Adv. Funct. Mater. – volume: 25 start-page: 6814 year: 2015 publication-title: Adv. Funct. Mater. – volume: 53 start-page: 9577 year: 2014 publication-title: Angew. Chem., Int. Ed. – volume: 111 start-page: 192 year: 2016 publication-title: Mater. Des. – volume: 13 start-page: 3185 year: 2020 publication-title: Energy Environ. Sci. – year: 2021 publication-title: Angew. Chem., Int. Ed. – volume: 14 start-page: 4141 year: 2020 publication-title: ACS Nano – ident: e_1_2_8_22_1 doi: 10.1038/s41929-019-0365-9 – ident: e_1_2_8_28_1 doi: 10.1088/0022-3727/37/9/R02 – ident: e_1_2_8_34_1 doi: 10.1103/PhysRevB.54.11169 – ident: e_1_2_8_36_1 doi: 10.1103/PhysRevLett.77.3865 – ident: e_1_2_8_10_1 doi: 10.1016/j.checat.2021.11.003 – ident: e_1_2_8_25_1 doi: 10.1021/acscatal.8b01715 – ident: e_1_2_8_35_1 doi: 10.1103/PhysRevB.50.17953 – ident: e_1_2_8_5_1 doi: 10.1002/aenm.201901333 – ident: e_1_2_8_11_1 doi: 10.1021/jacs.9b12005 – ident: e_1_2_8_27_1 doi: 10.1016/j.matdes.2016.08.090 – ident: e_1_2_8_26_1 doi: 10.1002/adma.201806326 – ident: e_1_2_8_19_1 doi: 10.1038/natrevmats.2017.59 – ident: e_1_2_8_37_1 doi: 10.1016/j.cpc.2021.108033 – start-page: 202115636 year: 2021 ident: e_1_2_8_9_1 publication-title: Angew. Chem., Int. Ed. – ident: e_1_2_8_12_1 doi: 10.1021/acsenergylett.9b02374 – ident: e_1_2_8_32_1 doi: 10.1002/adma.201908521 – ident: e_1_2_8_20_1 doi: 10.1038/s41929-018-0054-0 – ident: e_1_2_8_17_1 doi: 10.1021/jacs.7b08521 – ident: e_1_2_8_18_1 doi: 10.1002/adfm.201503784 – ident: e_1_2_8_6_1 doi: 10.1021/acscatal.5b00556 – ident: e_1_2_8_15_1 doi: 10.1016/j.electacta.2017.09.008 – ident: e_1_2_8_13_1 doi: 10.1002/anie.201403842 – ident: e_1_2_8_2_1 doi: 10.1039/C3CS60468C – ident: e_1_2_8_4_1 doi: 10.1021/acsnano.9b08904 – ident: e_1_2_8_14_1 doi: 10.1021/acssuschemeng.8b02155 – ident: e_1_2_8_23_1 doi: 10.1002/adfm.201910107 – ident: e_1_2_8_3_1 doi: 10.1039/C4CS00448E – ident: e_1_2_8_21_1 doi: 10.1021/acsenergylett.9b00191 – ident: e_1_2_8_8_1 doi: 10.1002/adma.202104791 – ident: e_1_2_8_29_1 doi: 10.1016/j.vacuum.2019.108834 – ident: e_1_2_8_7_1 doi: 10.1039/D0QI01060J – volume: 19 start-page: 168 year: 2015 ident: e_1_2_8_30_1 publication-title: Mater. Res. Innov. – ident: e_1_2_8_1_1 doi: 10.1126/science.1103197 – ident: e_1_2_8_31_1 doi: 10.1039/D0EE01856B – ident: e_1_2_8_33_1 doi: 10.1002/adfm.201803291 – ident: e_1_2_8_16_1 doi: 10.1039/C8CC02510J – ident: e_1_2_8_24_1 doi: 10.1126/science.aat8051 |
SSID | ssj0017734 |
Score | 2.6260748 |
Snippet | Developing low‐cost and high‐activity pH‐universal hydrogen evolution reaction (HER) catalysts is very crucial to the industrialization of water electrolysis.... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Catalysts Catalytic activity Copper copper catalysts Electrodes Electrolysis Foils hydrogen evolution reaction Hydrogen evolution reactions Materials science Plasma spraying Sulfuric acid Tensile strain |
Title | Strain‐Activated Copper Catalyst for pH‐Universal Hydrogen Evolution Reaction |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202112367 https://www.proquest.com/docview/2658150521 |
Volume | 32 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA5SL3rwLVZr2YPgadvuo0n3uPTBIlawtdDbkkyyF6Ut7VaoJ3-Cv9Ff4mRfbQURFPaybBLymEm-yc58Q8gNgMSDOQITgCnTFZFrcnA8UyKaE5oBHVIH2QcajNy7cXO8EcWf8kMUF25aM5L9Wis4F4v6mjSUy0hHkqMBo0nIcBPWDlsaFQ0K_iiLsfS3MrW0g5c1zlkbG3Z9u_r2qbSGmpuANTlxeoeE531NHU2ea8tY1ODtG43jfwZzRA4yOGr4qfwckx01OSH7GySFp-RxmKSR-Hz_8CHJhaak0Z7OZmputPXdz2oRG4h8jVmARTI_D2wyWMn5FKXT6L5m0m0MVBpFcUZGve5TOzCzRAwmaAPWBMbdiGnuPYGP4wk0cqhwpNMQDkcAaHPsd9OjHmtGCAgj3AQsQKAFQlJXoIqfk9JkOlEXxKDc5dKVDuUt_E6lZzNPSAU0AtFoMSgTM1-IEDKWcj3KlzDlV7ZDPVVhMVVlcluUn6X8HD-WrOTrGmZ6ughtBGCWzuVnlYmdLNAvrYR-p9cv3i7_UumK7Nk6hiLxmqyQUjxfqmtENrGokl2_078fVhMp_gLqG_LT |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3JTvMwEB6xHIAD2w-irD6AOAUaJ3XIgUPVUoVVYpN6C_HYuYDaqi2gcuIReBVehUfgSRhnY5EQ0i9xQMolijOKPTP2Z2fmG4B1REULc4wWoqctV8auFaHjW4rQnDQM6JgGyJ6I4NI9aFaaQ_Cc58Kk_BDFgZvxjGS-Ng5uDqS331lDIxWbVHLawRgWsiyu8lAP7mnX1tvdr5OKNzhv7F3UAisrLGCh2ZBZ6EVu7BkuOUmX40sC7UI6yilLJyJAwyOSWfGF71ViAjgxGbWNBBxQKuFKMlmSOwyjpoy4oeuvnxWMVbbnpT-yhW1CyuxmzhNZ5tufv_fzOvgObj9C5GSNa0zBSz46aWjL9dZtX27hwxfiyD81fNMwmSFuVk1dZAaGdGsWJj7wMP6D0_OkUsbr41MVk3JvWrFau9PRXVYzx1uDXp8RuGedgJpkoSwkMhiobpsckO3dZQ7MznSaKDIHl7_Sp3kYabVbegGYiNxIucoR0Q49F8rnni-VRhGjLO94WAIr13yIGRG76eVNmFJI89CoJixUU4LNon0npSD5tuVybkhhNhX1Qk4Y0zblCu0S8MQifpASVuuN4-Ju8X9eWoOx4OL4KDzaPzlcgnFuUkaSINFlGOl3b_UKAbm-XE1ch8HVbxvbG5RjS0Y |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NTttAEB7xIyF6oPyqaQPsgaonQ7x21vGBQ5QQJQWiFoqUm_HOri-gxEpCUTjxCH0UXoVX4Ek66z8IEqpUKQckXyyvR96dmd1v1zPfAOwhKlqYI7QQPW25MnKtEB3fUoTmpGFAxzRAtivaF-73XrU3Bw95LkzKD1EcuBnPSOZr4-Cxig6eSUNDFZlMctrAGBKyLKzyWE9uadM2Ouw0ScNfOW8d_Wq0rayugIVmP2ahF7qRZ6jkJF2OLwmzC-kopyKdkPAMD0lm1Re-V40I30Rk0zYSbkCphCvJYknuPCy6ouKbYhHNs4Kwyva89D-2sE1Emd3LaSIr_GD6e6eXwWds-xIhJ0tc6yM85oOTRrZc7d-M5T7eveKNfE-jtworGd5m9dRB1mBO99fhwwsWxg34eZ7UyXi6_1PHpNibVqwxiGM9ZA1zuDUZjRlBexa3qUkWyEIi2xM1HJD7saPfmfuyM52miWzCxUz6tAUL_UFffwImQjdUrnJEWKPnQvnc86XSKCKUlZqHJbByxQeY0bCbXl4HKYE0D4xqgkI1JfhWtI9TApI3W5ZzOwqyiWgUcEKYtilWaJeAJwbxDylBvdk6Le4-_89Lu7D0o9kKTjrd4y-wzE2-SBIhWoaF8fBGbxOKG8udxHEYXM7a1v4COoBJ9Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Strain%E2%80%90Activated+Copper+Catalyst+for+pH%E2%80%90Universal+Hydrogen+Evolution+Reaction&rft.jtitle=Advanced+functional+materials&rft.au=Wen%E2%80%90Jing+Kang&rft.au=Feng%2C+Yi&rft.au=Li%2C+Zhe&rft.au=Wen%E2%80%90Qi+Yang&rft.date=2022-05-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=32&rft.issue=18&rft_id=info:doi/10.1002%2Fadfm.202112367&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon |