Linear projection‐based chemical exchange saturation transfer parameter estimation

Isolated evaluation of multiparametric in vivo chemical exchange saturation transfer (CEST) MRI often requires complex computational processing for both correction of B0 and B1 inhomogeneity and contrast generation. For that, sufficiently densely sampled Z‐spectra need to be acquired. The list of ac...

Full description

Saved in:
Bibliographic Details
Published inNMR in biomedicine Vol. 36; no. 6; pp. e4697 - n/a
Main Authors Glang, Felix, Fabian, Moritz S., German, Alexander, Khakzar, Katrin M., Mennecke, Angelika, Liebert, Andrzej, Herz, Kai, Liebig, Patrick, Kasper, Burkhard S., Schmidt, Manuel, Zuazua, Enrique, Nagel, Armin M., Laun, Frederik B., Dörfler, Arnd, Scheffler, Klaus, Zaiss, Moritz
Format Journal Article
LanguageEnglish
Published England Wiley Subscription Services, Inc 01.06.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Isolated evaluation of multiparametric in vivo chemical exchange saturation transfer (CEST) MRI often requires complex computational processing for both correction of B0 and B1 inhomogeneity and contrast generation. For that, sufficiently densely sampled Z‐spectra need to be acquired. The list of acquired frequency offsets largely determines the total CEST acquisition time, while potentially representing redundant information. In this work, a linear projection‐based multiparametric CEST evaluation method is introduced that offers fast B0 and B1 inhomogeneity correction, contrast generation and feature selection for CEST data, enabling reduction of the overall measurement time. To that end, CEST data acquired at 7 T in six healthy subjects and in one brain tumor patient were conventionally evaluated by interpolation‐based inhomogeneity correction and Lorentzian curve fitting. Linear regression was used to obtain coefficient vectors that directly map uncorrected data to corrected Lorentzian target parameters. L1‐regularization was applied to find subsets of the originally acquired CEST measurements that still allow for such a linear projection mapping. The linear projection method allows fast and interpretable mapping from acquired raw data to contrast parameters of interest, generalizing from healthy subject training data to unseen healthy test data and to the tumor patient dataset. The L1‐regularization method shows that a fraction of the acquired CEST measurements is sufficient to preserve tissue contrasts, offering up to a 2.8‐fold reduction of scan time. Similar observations as for the 7‐T data can be made for data from a clinical 3‐T scanner. Being a fast and interpretable computation step, the proposed method is complementary to neural networks that have recently been employed for similar purposes. The scan time acceleration offered by the L1‐regularization (“CEST‐LASSO”) constitutes a step towards better applicability of multiparametric CEST protocols in a clinical context. A data‐driven evaluation approach for multiparametric in vivo CEST MRI is proposed that allows mapping of uncorrected Z‐spectra to target contrasts (APT, NOE, MT, amine) by a simple, fast, and interpretable linear projection. Applying L1‐regularization–based feature selection (CEST‐LASSO) shows that a fraction of the originally acquired CEST measurements is sufficient to preserve tissue contrasts, offering up to a 2.8‐fold reduction of scan time. This represents a step towards better applicability of multiparametric CEST protocols in a clinical context.
AbstractList Isolated evaluation of multiparametric in vivo chemical exchange saturation transfer (CEST) MRI often requires complex computational processing for both correction of B0 and B1 inhomogeneity and contrast generation. For that, sufficiently densely sampled Z‐spectra need to be acquired. The list of acquired frequency offsets largely determines the total CEST acquisition time, while potentially representing redundant information. In this work, a linear projection‐based multiparametric CEST evaluation method is introduced that offers fast B0 and B1 inhomogeneity correction, contrast generation and feature selection for CEST data, enabling reduction of the overall measurement time. To that end, CEST data acquired at 7 T in six healthy subjects and in one brain tumor patient were conventionally evaluated by interpolation‐based inhomogeneity correction and Lorentzian curve fitting. Linear regression was used to obtain coefficient vectors that directly map uncorrected data to corrected Lorentzian target parameters. L1‐regularization was applied to find subsets of the originally acquired CEST measurements that still allow for such a linear projection mapping. The linear projection method allows fast and interpretable mapping from acquired raw data to contrast parameters of interest, generalizing from healthy subject training data to unseen healthy test data and to the tumor patient dataset. The L1‐regularization method shows that a fraction of the acquired CEST measurements is sufficient to preserve tissue contrasts, offering up to a 2.8‐fold reduction of scan time. Similar observations as for the 7‐T data can be made for data from a clinical 3‐T scanner. Being a fast and interpretable computation step, the proposed method is complementary to neural networks that have recently been employed for similar purposes. The scan time acceleration offered by the L1‐regularization (“CEST‐LASSO”) constitutes a step towards better applicability of multiparametric CEST protocols in a clinical context. A data‐driven evaluation approach for multiparametric in vivo CEST MRI is proposed that allows mapping of uncorrected Z‐spectra to target contrasts (APT, NOE, MT, amine) by a simple, fast, and interpretable linear projection. Applying L1‐regularization–based feature selection (CEST‐LASSO) shows that a fraction of the originally acquired CEST measurements is sufficient to preserve tissue contrasts, offering up to a 2.8‐fold reduction of scan time. This represents a step towards better applicability of multiparametric CEST protocols in a clinical context.
Isolated evaluation of multiparametric in vivo chemical exchange saturation transfer (CEST) MRI often requires complex computational processing for both correction of B and B inhomogeneity and contrast generation. For that, sufficiently densely sampled Z-spectra need to be acquired. The list of acquired frequency offsets largely determines the total CEST acquisition time, while potentially representing redundant information. In this work, a linear projection-based multiparametric CEST evaluation method is introduced that offers fast B and B inhomogeneity correction, contrast generation and feature selection for CEST data, enabling reduction of the overall measurement time. To that end, CEST data acquired at 7 T in six healthy subjects and in one brain tumor patient were conventionally evaluated by interpolation-based inhomogeneity correction and Lorentzian curve fitting. Linear regression was used to obtain coefficient vectors that directly map uncorrected data to corrected Lorentzian target parameters. L1-regularization was applied to find subsets of the originally acquired CEST measurements that still allow for such a linear projection mapping. The linear projection method allows fast and interpretable mapping from acquired raw data to contrast parameters of interest, generalizing from healthy subject training data to unseen healthy test data and to the tumor patient dataset. The L1-regularization method shows that a fraction of the acquired CEST measurements is sufficient to preserve tissue contrasts, offering up to a 2.8-fold reduction of scan time. Similar observations as for the 7-T data can be made for data from a clinical 3-T scanner. Being a fast and interpretable computation step, the proposed method is complementary to neural networks that have recently been employed for similar purposes. The scan time acceleration offered by the L1-regularization ("CEST-LASSO") constitutes a step towards better applicability of multiparametric CEST protocols in a clinical context.
Isolated evaluation of multiparametric in vivo chemical exchange saturation transfer (CEST) MRI often requires complex computational processing for both correction of B 0 and B 1 inhomogeneity and contrast generation. For that, sufficiently densely sampled Z‐spectra need to be acquired. The list of acquired frequency offsets largely determines the total CEST acquisition time, while potentially representing redundant information. In this work, a linear projection‐based multiparametric CEST evaluation method is introduced that offers fast B 0 and B 1 inhomogeneity correction, contrast generation and feature selection for CEST data, enabling reduction of the overall measurement time. To that end, CEST data acquired at 7 T in six healthy subjects and in one brain tumor patient were conventionally evaluated by interpolation‐based inhomogeneity correction and Lorentzian curve fitting. Linear regression was used to obtain coefficient vectors that directly map uncorrected data to corrected Lorentzian target parameters. L1‐regularization was applied to find subsets of the originally acquired CEST measurements that still allow for such a linear projection mapping. The linear projection method allows fast and interpretable mapping from acquired raw data to contrast parameters of interest, generalizing from healthy subject training data to unseen healthy test data and to the tumor patient dataset. The L1‐regularization method shows that a fraction of the acquired CEST measurements is sufficient to preserve tissue contrasts, offering up to a 2.8‐fold reduction of scan time. Similar observations as for the 7‐T data can be made for data from a clinical 3‐T scanner. Being a fast and interpretable computation step, the proposed method is complementary to neural networks that have recently been employed for similar purposes. The scan time acceleration offered by the L1‐regularization (“CEST‐LASSO”) constitutes a step towards better applicability of multiparametric CEST protocols in a clinical context.
Isolated evaluation of multiparametric in vivo chemical exchange saturation transfer (CEST) MRI often requires complex computational processing for both correction of B0 and B1 inhomogeneity and contrast generation. For that, sufficiently densely sampled Z‐spectra need to be acquired. The list of acquired frequency offsets largely determines the total CEST acquisition time, while potentially representing redundant information. In this work, a linear projection‐based multiparametric CEST evaluation method is introduced that offers fast B0 and B1 inhomogeneity correction, contrast generation and feature selection for CEST data, enabling reduction of the overall measurement time. To that end, CEST data acquired at 7 T in six healthy subjects and in one brain tumor patient were conventionally evaluated by interpolation‐based inhomogeneity correction and Lorentzian curve fitting. Linear regression was used to obtain coefficient vectors that directly map uncorrected data to corrected Lorentzian target parameters. L1‐regularization was applied to find subsets of the originally acquired CEST measurements that still allow for such a linear projection mapping. The linear projection method allows fast and interpretable mapping from acquired raw data to contrast parameters of interest, generalizing from healthy subject training data to unseen healthy test data and to the tumor patient dataset. The L1‐regularization method shows that a fraction of the acquired CEST measurements is sufficient to preserve tissue contrasts, offering up to a 2.8‐fold reduction of scan time. Similar observations as for the 7‐T data can be made for data from a clinical 3‐T scanner. Being a fast and interpretable computation step, the proposed method is complementary to neural networks that have recently been employed for similar purposes. The scan time acceleration offered by the L1‐regularization (“CEST‐LASSO”) constitutes a step towards better applicability of multiparametric CEST protocols in a clinical context.
Isolated evaluation of multiparametric in vivo chemical exchange saturation transfer (CEST) MRI often requires complex computational processing for both correction of B0 and B1 inhomogeneity and contrast generation. For that, sufficiently densely sampled Z-spectra need to be acquired. The list of acquired frequency offsets largely determines the total CEST acquisition time, while potentially representing redundant information. In this work, a linear projection-based multiparametric CEST evaluation method is introduced that offers fast B0 and B1 inhomogeneity correction, contrast generation and feature selection for CEST data, enabling reduction of the overall measurement time. To that end, CEST data acquired at 7 T in six healthy subjects and in one brain tumor patient were conventionally evaluated by interpolation-based inhomogeneity correction and Lorentzian curve fitting. Linear regression was used to obtain coefficient vectors that directly map uncorrected data to corrected Lorentzian target parameters. L1-regularization was applied to find subsets of the originally acquired CEST measurements that still allow for such a linear projection mapping. The linear projection method allows fast and interpretable mapping from acquired raw data to contrast parameters of interest, generalizing from healthy subject training data to unseen healthy test data and to the tumor patient dataset. The L1-regularization method shows that a fraction of the acquired CEST measurements is sufficient to preserve tissue contrasts, offering up to a 2.8-fold reduction of scan time. Similar observations as for the 7-T data can be made for data from a clinical 3-T scanner. Being a fast and interpretable computation step, the proposed method is complementary to neural networks that have recently been employed for similar purposes. The scan time acceleration offered by the L1-regularization ("CEST-LASSO") constitutes a step towards better applicability of multiparametric CEST protocols in a clinical context.Isolated evaluation of multiparametric in vivo chemical exchange saturation transfer (CEST) MRI often requires complex computational processing for both correction of B0 and B1 inhomogeneity and contrast generation. For that, sufficiently densely sampled Z-spectra need to be acquired. The list of acquired frequency offsets largely determines the total CEST acquisition time, while potentially representing redundant information. In this work, a linear projection-based multiparametric CEST evaluation method is introduced that offers fast B0 and B1 inhomogeneity correction, contrast generation and feature selection for CEST data, enabling reduction of the overall measurement time. To that end, CEST data acquired at 7 T in six healthy subjects and in one brain tumor patient were conventionally evaluated by interpolation-based inhomogeneity correction and Lorentzian curve fitting. Linear regression was used to obtain coefficient vectors that directly map uncorrected data to corrected Lorentzian target parameters. L1-regularization was applied to find subsets of the originally acquired CEST measurements that still allow for such a linear projection mapping. The linear projection method allows fast and interpretable mapping from acquired raw data to contrast parameters of interest, generalizing from healthy subject training data to unseen healthy test data and to the tumor patient dataset. The L1-regularization method shows that a fraction of the acquired CEST measurements is sufficient to preserve tissue contrasts, offering up to a 2.8-fold reduction of scan time. Similar observations as for the 7-T data can be made for data from a clinical 3-T scanner. Being a fast and interpretable computation step, the proposed method is complementary to neural networks that have recently been employed for similar purposes. The scan time acceleration offered by the L1-regularization ("CEST-LASSO") constitutes a step towards better applicability of multiparametric CEST protocols in a clinical context.
Author German, Alexander
Zuazua, Enrique
Scheffler, Klaus
Nagel, Armin M.
Schmidt, Manuel
Khakzar, Katrin M.
Mennecke, Angelika
Zaiss, Moritz
Kasper, Burkhard S.
Fabian, Moritz S.
Liebert, Andrzej
Liebig, Patrick
Laun, Frederik B.
Herz, Kai
Dörfler, Arnd
Glang, Felix
Author_xml – sequence: 1
  givenname: Felix
  orcidid: 0000-0003-3506-4947
  surname: Glang
  fullname: Glang, Felix
  email: felix.glang@tuebingen.mpg.de
  organization: Max Planck Institute for Biological Cybernetics
– sequence: 2
  givenname: Moritz S.
  surname: Fabian
  fullname: Fabian, Moritz S.
  organization: University Hospital Erlangen, Friedrich‐Alexander Universität Erlangen‐Nürnberg
– sequence: 3
  givenname: Alexander
  orcidid: 0000-0002-8708-6809
  surname: German
  fullname: German, Alexander
  organization: University Hospital Erlangen, Friedrich‐Alexander Universität Erlangen‐Nürnberg
– sequence: 4
  givenname: Katrin M.
  surname: Khakzar
  fullname: Khakzar, Katrin M.
  organization: University Hospital Erlangen, Friedrich‐Alexander Universität Erlangen‐Nürnberg
– sequence: 5
  givenname: Angelika
  orcidid: 0000-0001-6795-5627
  surname: Mennecke
  fullname: Mennecke, Angelika
  organization: University Hospital Erlangen, Friedrich‐Alexander Universität Erlangen‐Nürnberg
– sequence: 6
  givenname: Andrzej
  orcidid: 0000-0002-8450-3021
  surname: Liebert
  fullname: Liebert, Andrzej
  organization: University Hospital Erlangen, Friedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU)
– sequence: 7
  givenname: Kai
  orcidid: 0000-0002-7286-1454
  surname: Herz
  fullname: Herz, Kai
  organization: Eberhard Karls University Tübingen
– sequence: 8
  givenname: Patrick
  orcidid: 0000-0001-7342-3715
  surname: Liebig
  fullname: Liebig, Patrick
  organization: Siemens Healthcare GmbH
– sequence: 9
  givenname: Burkhard S.
  surname: Kasper
  fullname: Kasper, Burkhard S.
  organization: University Clinic of Friedrich Alexander University Erlangen‐Nürnberg
– sequence: 10
  givenname: Manuel
  surname: Schmidt
  fullname: Schmidt, Manuel
  organization: University Hospital Erlangen, Friedrich‐Alexander Universität Erlangen‐Nürnberg
– sequence: 11
  givenname: Enrique
  orcidid: 0000-0002-1377-0958
  surname: Zuazua
  fullname: Zuazua, Enrique
  organization: Friedrich‐Alexander‐Universität Erlangen
– sequence: 12
  givenname: Armin M.
  orcidid: 0000-0003-0948-1421
  surname: Nagel
  fullname: Nagel, Armin M.
  organization: University Hospital Erlangen, Friedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU)
– sequence: 13
  givenname: Frederik B.
  surname: Laun
  fullname: Laun, Frederik B.
  organization: University Hospital Erlangen, Friedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU)
– sequence: 14
  givenname: Arnd
  surname: Dörfler
  fullname: Dörfler, Arnd
  organization: University Hospital Erlangen, Friedrich‐Alexander Universität Erlangen‐Nürnberg
– sequence: 15
  givenname: Klaus
  orcidid: 0000-0001-6316-8773
  surname: Scheffler
  fullname: Scheffler, Klaus
  organization: Eberhard Karls University Tübingen
– sequence: 16
  givenname: Moritz
  orcidid: 0000-0001-9780-3616
  surname: Zaiss
  fullname: Zaiss, Moritz
  organization: University Hospital Erlangen, Friedrich‐Alexander Universität Erlangen‐Nürnberg
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35067998$$D View this record in MEDLINE/PubMed
BookMark eNp1kc9O3DAQxi0EgoVW6hNUkXrpJcvEdhL7SFH_SVu4wNma2BPIKnGonajl1kfoM_ZJ6t0FKlVwGo_8m5lv5jtm-370xNibApYFAD_1zbCUla732KIArfNCar7PFqBLngup4Igdx7gGACUFP2RHooSq1lot2NWq84QhuwvjmuzUjf7Pr98NRnKZvaWhs9hn9NPeor-hLOI0B9xA2RTQx5ZSIQYcaEovilM3bH9fsYMW-0ivH-IJu_708er8S766_Pz1_GyVW6FEnWsEJcpaKMJSoQZbCmldymrXCOGKimsibAkQSqrIulY2vIDSaeLOVShO2Ptd36T--5zmm6GLlvoePY1zNLziXNZC6iqh7_5D1-McfFJnuCqqUoKqZaLePlBzM5AzdyFtFO7N470SsNwBNowxBmqN7abtzukgXW8KMBtDTDLEbAz5J_Gp4LHnM2i-Q390Pd2_yJmLD9-2_F-dDps7
CitedBy_id crossref_primary_10_1002_nbm_4717
crossref_primary_10_3390_jimaging10070166
crossref_primary_10_1002_jmri_28691
crossref_primary_10_1002_mrm_29889
crossref_primary_10_1002_nbm_5096
crossref_primary_10_1002_nbm_5294
crossref_primary_10_1002_mrm_30112
crossref_primary_10_1177_02841851251319483
crossref_primary_10_1002_mrm_30269
crossref_primary_10_1002_nbm_4960
Cites_doi 10.1002/mrm.24315
10.1002/mrm.28745
10.1137/080716542
10.1007/s00330‐019‐06066‐2
10.1006/jmre.1998.1440
10.1111/j.1467‐9868.2005.00532.x
10.1038/nm.2615
10.1002/mrm.21391
10.1038/s41467‐020‐14874‐0
10.1016/j.jmr.2005.04.005
10.1002/mrm.10171
10.1002/mrm.27762
10.1002/mrm.27866
10.1002/mrm.28699
10.1002/mrm.24560
10.1016/j.neuroimage.2018.06.026
10.1016/j.neuroimage.2005.02.018
10.1002/nbm.4133
10.1214/09‐AOS776
10.1007/978-0-387-84858-7
10.1016/j.neuroimage.2017.04.045
10.1038/s41551‐021‐00809‐7
10.1007/978-3-030-28954-6_1
10.1002/nbm.3216
10.1002/mrm.24641
10.1002/mrm.28117
10.1002/nbm.4717
10.1002/1522‐2594(200011)44:5%3C799::AID‐MRM18%3E3.0.CO;2‐S
10.1002/nbm.3075
10.1002/mrm.27221
10.1002/jmri.26702
10.1002/mrm.27751
10.1002/mrm.27690
10.1038/nm907
10.1002/mrm.28289
10.1002/nbm.3879
10.1371/journal.pone.0121220
10.1038/s42256‐019‐0077‐5
10.1002/nbm.3665
10.1002/mrm.1910350106
10.1002/mrm.28380
10.1002/nbm.3021
10.1002/mrm.25795
10.1111/j.2517‐6161.1996.tb02080.x
10.1002/nbm.3283
10.1002/mrm.24812
10.1016/j.neuroimage.2015.02.040
10.1002/mrm.27569
10.1002/mrm.24567
ContentType Journal Article
Copyright 2022 The Authors. published by John Wiley & Sons Ltd.
2022 The Authors. NMR in Biomedicine published by John Wiley & Sons Ltd.
2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 The Authors. published by John Wiley & Sons Ltd.
– notice: 2022 The Authors. NMR in Biomedicine published by John Wiley & Sons Ltd.
– notice: 2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
8FD
FR3
K9.
P64
7X8
DOI 10.1002/nbm.4697
DatabaseName Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList
MEDLINE
CrossRef
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Chemistry
Physics
EISSN 1099-1492
EndPage n/a
ExternalDocumentID 35067998
10_1002_nbm_4697
NBM4697
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: ERC Advanced Grant “SpreadMRI”, No 834940
– fundername: Max‐Planck‐Gesellschaft
– fundername: FAU Emerging Fields Initiative (MIRACLE) Alexander von Humboldt Professorship
– fundername: German Research Foundation (DFG) (grant ZA 814/5‐1)
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
123
1L6
1OB
1OC
1ZS
24P
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52V
52W
52X
53G
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AAHQN
AAIPD
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
DUUFO
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KBYEO
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M65
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P2Z
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RGB
RIWAO
RJQFR
ROL
RWI
RX1
SAMSI
SUPJJ
SV3
UB1
V2E
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WJL
WOHZO
WQJ
WRC
WUP
WVDHM
WXSBR
XG1
XPP
XV2
ZZTAW
~IA
~WT
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
CGR
CUY
CVF
ECM
EIF
NPM
7QO
8FD
FR3
K9.
P64
7X8
ID FETCH-LOGICAL-c3837-9a0835738ea58a90c534cd8ea7db33d1629eeafe0a05e6ecdf4b2105d9e2dd6a3
IEDL.DBID DR2
ISSN 0952-3480
1099-1492
IngestDate Fri Jul 11 09:03:12 EDT 2025
Sat Jul 19 07:40:38 EDT 2025
Sat Aug 02 01:41:05 EDT 2025
Tue Jul 01 02:45:45 EDT 2025
Thu Apr 24 22:58:22 EDT 2025
Wed Jan 22 16:23:11 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords linear projection
CEST
APT
NOE
feature selection
LASSO
Language English
License Attribution
2022 The Authors. NMR in Biomedicine published by John Wiley & Sons Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3837-9a0835738ea58a90c534cd8ea7db33d1629eeafe0a05e6ecdf4b2105d9e2dd6a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-6316-8773
0000-0001-9780-3616
0000-0002-8450-3021
0000-0001-7342-3715
0000-0001-6795-5627
0000-0003-3506-4947
0000-0002-8708-6809
0000-0002-7286-1454
0000-0003-0948-1421
0000-0002-1377-0958
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fnbm.4697
PMID 35067998
PQID 2816540874
PQPubID 2029982
PageCount 17
ParticipantIDs proquest_miscellaneous_2622473496
proquest_journals_2816540874
pubmed_primary_35067998
crossref_citationtrail_10_1002_nbm_4697
crossref_primary_10_1002_nbm_4697
wiley_primary_10_1002_nbm_4697_NBM4697
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 2023
2023-06-00
20230601
PublicationDateYYYYMMDD 2023-06-01
PublicationDate_xml – month: 06
  year: 2023
  text: June 2023
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
PublicationTitle NMR in biomedicine
PublicationTitleAlternate NMR Biomed
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2013; 26
2013; 69
2021; 86
2005; 175
2020; 84
2019; 1
2018; 168
2000; 44
2019; 12
2015; 10
2014; 27
2009
2008
2016; 75
2018; 80
2013; 70
2012; 18
2020; 11
1998; 133
1996; 58
2011; 39
2005; 26
1996; 35
2007; 58
2002; 47
2017; 30
2015; 28
2019; 82
2019; 81
2006; 68
2021
2018; 179
2015; 112
2003; 9
2019
2019; 29
2009; 2
2014; 71
2018; 31
e_1_2_10_23_1
e_1_2_10_46_1
e_1_2_10_21_1
e_1_2_10_44_1
e_1_2_10_42_1
e_1_2_10_40_1
e_1_2_10_2_1
e_1_2_10_4_1
e_1_2_10_18_1
e_1_2_10_53_1
e_1_2_10_6_1
e_1_2_10_16_1
e_1_2_10_39_1
e_1_2_10_8_1
e_1_2_10_14_1
e_1_2_10_37_1
e_1_2_10_13_1
e_1_2_10_34_1
e_1_2_10_11_1
e_1_2_10_32_1
e_1_2_10_30_1
e_1_2_10_51_1
e_1_2_10_29_1
e_1_2_10_27_1
e_1_2_10_25_1
e_1_2_10_48_1
e_1_2_10_24_1
e_1_2_10_45_1
e_1_2_10_22_1
e_1_2_10_43_1
e_1_2_10_20_1
e_1_2_10_41_1
e_1_2_10_52_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_38_1
e_1_2_10_7_1
e_1_2_10_15_1
Rencher AC (e_1_2_10_26_1) 2008
e_1_2_10_36_1
e_1_2_10_12_1
e_1_2_10_35_1
e_1_2_10_9_1
e_1_2_10_10_1
e_1_2_10_33_1
e_1_2_10_31_1
e_1_2_10_50_1
e_1_2_10_28_1
e_1_2_10_49_1
e_1_2_10_47_1
References_xml – volume: 28
  start-page: 1
  issue: 1
  year: 2015
  end-page: 8
  article-title: CEST signal at 2 ppm (CEST@2ppm) from Z‐spectral fitting correlates with creatine distribution in brain tumor
  publication-title: NMR Biomed
– year: 2009
– volume: 30
  issue: 1
  year: 2017
  article-title: Aggregation‐induced changes in the chemical exchange saturation transfer (CEST) signals of proteins
  publication-title: NMR Biomed
– volume: 44
  start-page: 799
  issue: 5
  year: 2000
  end-page: 802
  article-title: Determination of pH using water protons and chemical exchange dependent saturation transfer (CEST)
  publication-title: Magn Reson Med
– volume: 75
  start-page: 1630
  issue: 4
  year: 2016
  end-page: 1639
  article-title: Quantitative assessment of amide proton transfer (APT) and nuclear overhauser enhancement (NOE) imaging with extrapolated semisolid magnetization transfer reference (EMR) signals: II. Comparison of three EMR models and application to human brain glioma at 3 Tesla
  publication-title: Magn Reson Med
– volume: 31
  issue: 4
  year: 2018
  article-title: Snapshot‐CEST: Optimizing spiral‐centric‐reordered gradient echo acquisition for fast and robust 3D CEST MRI at 9.4 T
  publication-title: NMR Biomed
– volume: 179
  start-page: 144
  year: 2018
  end-page: 155
  article-title: Chemical exchange saturation transfer MRI contrast in the human brain at 9.4 T
  publication-title: Neuroimage
– volume: 71
  start-page: 164
  issue: 1
  year: 2014
  end-page: 172
  article-title: Method for high‐resolution imaging of creatine in vivo using chemical exchange saturation transfer
  publication-title: Magn Reson Med
– volume: 86
  start-page: 346
  issue: 1
  year: 2021
  end-page: 362
  article-title: Whole‐brain quantitative CEST MRI at 7T using parallel transmission methods and correction
  publication-title: Magn Reson Med
– volume: 35
  start-page: 30
  issue: 1
  year: 1996
  end-page: 42
  article-title: Proton exchange rates from amino acid side chains— implications for image contrast
  publication-title: Magn Reson Med
– volume: 84
  start-page: 1724
  issue: 4
  year: 2020
  end-page: 1733
  article-title: Accelerating GluCEST imaging using deep learning for B0 correction
  publication-title: Magn Reson Med
– volume: 168
  start-page: 222
  year: 2018
  end-page: 241
  article-title: Magnetization transfer contrast and chemical exchange saturation transfer MRI. Features and analysis of the field‐dependent saturation spectrum
  publication-title: Neuroimage
– volume: 2
  start-page: 183
  issue: 1
  year: 2009
  end-page: 202
  article-title: A Fast Iterative Shrinkage‐Thresholding Algorithm for Linear Inverse Problems
  publication-title: SIAM J Imaging Sci
– volume: 80
  start-page: 2449
  issue: 6
  year: 2018
  end-page: 2463
  article-title: Rapid and quantitative chemical exchange saturation transfer (CEST) imaging with magnetic resonance fingerprinting (MRF)
  publication-title: Magn Reson Med
– volume: 1
  start-page: 373
  issue: 8
  year: 2019
  end-page: 380
  article-title: Learning with known operators reduces maximum error bounds
  publication-title: Nat Mach Intell
– volume: 12
  start-page: 1268
  year: 2019
  end-page: 1277
  article-title: Early response assessment of glioma patients to definitive chemoradiotherapy using chemical exchange saturation transfer imaging at 7 T: response assessment to CRT with CEST
  publication-title: J Magn Reson Imaging
– volume: 26
  start-page: 1815
  issue: 12
  year: 2013
  end-page: 1822
  article-title: MR imaging of protein folding in vitro employing Nuclear‐Overhauser‐mediated saturation transfer
  publication-title: NMR Biomed
– volume: 70
  start-page: 1070
  issue: 4
  year: 2013
  end-page: 1081
  article-title: Quantitative characterization of nuclear overhauser enhancement and amide proton transfer effects in the human brain at 7 Tesla
  publication-title: Magn Reson Med
– volume: 68
  start-page: 49
  issue: 1
  year: 2006
  end-page: 67
  article-title: Model selection and estimation in regression with grouped variables
  publication-title: J R Stat Soc Series B Stat Methodology
– volume: 81
  start-page: 2412
  issue: 4
  year: 2019
  end-page: 2423
  article-title: 3D gradient echo snapshot CEST MRI with low power saturation for human studies at 3T
  publication-title: Magn Reson Med
– year: 2021
  article-title: Quantitative imaging of apoptosis following oncolytic virotherapy by magnetic resonance fingerprinting aided by deep learning
  publication-title: Nat Biomed Eng
– year: 2008
– volume: 39
  start-page: 1
  issue: 1
  year: 2011
  end-page: 47
  article-title: Support union recovery in high‐dimensional multivariate regression
  publication-title: Ann Statist
– volume: 70
  start-page: 547
  issue: 2
  year: 2013
  end-page: 555
  article-title: Time domain Removal of Irrelevant Magnetization (TRIM) in CEST Z‐spectra
  publication-title: Magn Reson Med
– volume: 82
  start-page: 693
  issue: 2
  year: 2019
  end-page: 705
  article-title: Multiple interleaved mode saturation (MIMOSA) for B1+ inhomogeneity mitigation in chemical exchange saturation transfer
  publication-title: Magn Reson Med
– year: 2019
– volume: 29
  start-page: 4957
  issue: 9
  year: 2019
  end-page: 4967
  article-title: Relaxation‐compensated amide proton transfer (APT) MRI signal intensity is associated with survival and progression in high‐grade glioma patients
  publication-title: Eur Radiol
– volume: 58
  start-page: 1182
  issue: 6
  year: 2007
  end-page: 1195
  article-title: Sparse MRI: The application of compressed sensing for rapid MR imaging
  publication-title: Magn Reson Med
– start-page: 1741
  issue: 5
  year: 2019
  end-page: 1752
  article-title: Whole‐brain snapshot CEST imaging at 7 T using 3D‐EPI
  publication-title: Magn Reson Med
– volume: 10
  issue: 3
  year: 2015
  article-title: Nuclear Overhauser enhancement imaging of glioblastoma at 7 Tesla: region specific correlation with apparent diffusion coefficient and histology
  publication-title: PLoS ONE
– volume: 133
  start-page: 36
  issue: 1
  year: 1998
  end-page: 45
  article-title: Detection of proton chemical exchange between metabolites and water in biological tissues
  publication-title: J Magn Reson
– start-page: 5
  year: 2019
  end-page: 22
– volume: 29
  start-page: 622
  year: 2019
  end-page: 632
  article-title: Relaxation‐compensated APT and rNOE CEST‐MRI of human brain tumors at 3 T
  publication-title: Magn Reson Med
– volume: 28
  start-page: 529
  issue: 5
  year: 2015
  end-page: 537
  article-title: Correction of B1‐inhomogeneities for relaxation‐compensated CEST imaging at 7 T
  publication-title: NMR Biomed
– volume: 84
  start-page: 3342
  issue: 6
  year: 2020
  end-page: 3350
  article-title: High‐sensitivity CEST mapping using a spatiotemporal correlation‐enhanced method
  publication-title: Magn Reson Med
– volume: 47
  start-page: 1202
  issue: 6
  year: 2002
  end-page: 1210
  article-title: Generalized autocalibrating partially parallel acquisitions (GRAPPA)
  publication-title: Magn Reson Med
– volume: 86
  start-page: 393
  issue: 1
  year: 2021
  end-page: 404
  article-title: Clinical routine acquisition protocol for 3D relaxation‐compensated APT and rNOE CEST‐MRI of the human brain at 3T
  publication-title: Magn Reson Med
– volume: 112
  start-page: 180
  year: 2015
  end-page: 188
  article-title: Relaxation‐compensated CEST‐MRI of the human brain at 7T: Unbiased insight into NOE and amide signal changes in human glioblastoma
  publication-title: Neuroimage
– volume: 69
  start-page: 760
  issue: 3
  year: 2013
  end-page: 770
  article-title: MR imaging of the amide‐proton transfer effect and the pH‐insensitive nuclear overhauser effect at 9.4 T
  publication-title: Magn Reson Med
– volume: 11
  start-page: 1
  issue: 1
  year: 2020
  end-page: 10
  article-title: In vivo imaging of phosphocreatine with artificial neural networks
  publication-title: Nat Commun
– volume: 70
  start-page: 1251
  issue: 5
  year: 2013
  end-page: 1262
  article-title: Optimal sampling schedule for chemical exchange saturation transfer
  publication-title: Magn Reson Med
– volume: 175
  start-page: 193
  issue: 2
  year: 2005
  end-page: 200
  article-title: Optimization of the irradiation power in chemical exchange dependent saturation transfer experiments
  publication-title: J Magn Reson
– issue: 11
  year: 2019
  article-title: Adaptive denoising for chemical exchange saturation transfer MR imaging
  publication-title: NMR Biomed
– volume: 27
  start-page: 406
  issue: 4
  year: 2014
  end-page: 416
  article-title: On the origins of chemical exchange saturation transfer (CEST) contrast in tumors at 9.4 T
  publication-title: NMR Biomed
– volume: 26
  start-page: 839
  issue: 3
  year: 2005
  end-page: 851
  article-title: Unified segmentation
  publication-title: Neuroimage
– volume: 9
  start-page: 1085
  issue: 8
  year: 2003
  end-page: 1090
  article-title: Using the amide proton signals of intracellular proteins and peptides to detect pH effects in MRI
  publication-title: Nat Med
– volume: 18
  start-page: 302
  issue: 2
  year: 2012
  end-page: 306
  article-title: Magnetic resonance imaging of glutamate
  publication-title: Nat Med
– volume: 58
  start-page: 267
  issue: 1
  year: 1996
  end-page: 288
  article-title: Regression shrinkage and selection via the lasso
  publication-title: J R Stat Soc B Methodol
– volume: 81
  start-page: 3901
  issue: 6
  year: 2019
  end-page: 3914
  article-title: DeepCEST: 9.4 T Chemical exchange saturation transfer MRI contrast predicted from 3 T data – a proof of concept study
  publication-title: Magn Reson Med
– volume: 84
  start-page: 450
  issue: 1
  year: 2020
  end-page: 466
  article-title: DeepCEST 3T: Robust MRI parameter determination and uncertainty quantification with neural networks—application to CEST imaging of the human brain at 3T
  publication-title: Magn Reson Med
– ident: e_1_2_10_18_1
  doi: 10.1002/mrm.24315
– ident: e_1_2_10_31_1
  doi: 10.1002/mrm.28745
– ident: e_1_2_10_27_1
  doi: 10.1137/080716542
– ident: e_1_2_10_38_1
  doi: 10.1007/s00330‐019‐06066‐2
– ident: e_1_2_10_16_1
  doi: 10.1006/jmre.1998.1440
– ident: e_1_2_10_28_1
  doi: 10.1111/j.1467‐9868.2005.00532.x
– ident: e_1_2_10_5_1
  doi: 10.1038/nm.2615
– ident: e_1_2_10_25_1
  doi: 10.1002/mrm.21391
– ident: e_1_2_10_21_1
  doi: 10.1038/s41467‐020‐14874‐0
– ident: e_1_2_10_49_1
  doi: 10.1016/j.jmr.2005.04.005
– ident: e_1_2_10_34_1
  doi: 10.1002/mrm.10171
– ident: e_1_2_10_32_1
  doi: 10.1002/mrm.27762
– ident: e_1_2_10_37_1
– ident: e_1_2_10_42_1
  doi: 10.1002/mrm.27866
– ident: e_1_2_10_41_1
  doi: 10.1002/mrm.28699
– ident: e_1_2_10_11_1
  doi: 10.1002/mrm.24560
– ident: e_1_2_10_51_1
  doi: 10.1016/j.neuroimage.2018.06.026
– ident: e_1_2_10_35_1
  doi: 10.1016/j.neuroimage.2005.02.018
– ident: e_1_2_10_23_1
  doi: 10.1002/nbm.4133
– ident: e_1_2_10_29_1
  doi: 10.1214/09‐AOS776
– volume-title: Linear Models in Statistics
  year: 2008
  ident: e_1_2_10_26_1
– ident: e_1_2_10_30_1
  doi: 10.1007/978-0-387-84858-7
– ident: e_1_2_10_50_1
  doi: 10.1016/j.neuroimage.2017.04.045
– ident: e_1_2_10_46_1
  doi: 10.1038/s41551‐021‐00809‐7
– ident: e_1_2_10_52_1
  doi: 10.1007/978-3-030-28954-6_1
– ident: e_1_2_10_8_1
  doi: 10.1002/nbm.3216
– ident: e_1_2_10_4_1
  doi: 10.1002/mrm.24641
– ident: e_1_2_10_19_1
  doi: 10.1002/mrm.28117
– ident: e_1_2_10_36_1
  doi: 10.1002/nbm.4717
– ident: e_1_2_10_3_1
  doi: 10.1002/1522‐2594(200011)44:5%3C799::AID‐MRM18%3E3.0.CO;2‐S
– ident: e_1_2_10_17_1
  doi: 10.1002/nbm.3075
– ident: e_1_2_10_45_1
  doi: 10.1002/mrm.27221
– ident: e_1_2_10_10_1
  doi: 10.1002/jmri.26702
– ident: e_1_2_10_13_1
  doi: 10.1002/mrm.27751
– ident: e_1_2_10_20_1
  doi: 10.1002/mrm.27690
– ident: e_1_2_10_2_1
  doi: 10.1038/nm907
– ident: e_1_2_10_40_1
– ident: e_1_2_10_22_1
  doi: 10.1002/mrm.28289
– ident: e_1_2_10_33_1
  doi: 10.1002/nbm.3879
– ident: e_1_2_10_9_1
  doi: 10.1371/journal.pone.0121220
– ident: e_1_2_10_53_1
  doi: 10.1038/s42256‐019‐0077‐5
– ident: e_1_2_10_7_1
  doi: 10.1002/nbm.3665
– ident: e_1_2_10_48_1
  doi: 10.1002/mrm.1910350106
– ident: e_1_2_10_39_1
  doi: 10.1002/mrm.28380
– ident: e_1_2_10_6_1
  doi: 10.1002/nbm.3021
– ident: e_1_2_10_44_1
  doi: 10.1002/mrm.25795
– ident: e_1_2_10_24_1
  doi: 10.1111/j.2517‐6161.1996.tb02080.x
– ident: e_1_2_10_15_1
  doi: 10.1002/nbm.3283
– ident: e_1_2_10_47_1
  doi: 10.1002/mrm.24812
– ident: e_1_2_10_12_1
  doi: 10.1016/j.neuroimage.2015.02.040
– ident: e_1_2_10_14_1
  doi: 10.1002/mrm.27569
– ident: e_1_2_10_43_1
  doi: 10.1002/mrm.24567
SSID ssj0008432
Score 2.4644775
Snippet Isolated evaluation of multiparametric in vivo chemical exchange saturation transfer (CEST) MRI often requires complex computational processing for both...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e4697
SubjectTerms APT
Biological products
Brain - diagnostic imaging
Brain Neoplasms - diagnostic imaging
Brain tumors
CEST
Computational neuroscience
Curve fitting
Data acquisition
feature selection
Humans
In vivo methods and tests
Inhomogeneity
Interpolation
LASSO
linear projection
Mapping
Multiparametric Magnetic Resonance Imaging - methods
Neural networks
Neural Networks, Computer
NOE
Parameter estimation
Reduction
Regularization
Regularization methods
Time measurement
Tumors
Title Linear projection‐based chemical exchange saturation transfer parameter estimation
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fnbm.4697
https://www.ncbi.nlm.nih.gov/pubmed/35067998
https://www.proquest.com/docview/2816540874
https://www.proquest.com/docview/2622473496
Volume 36
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS9xAEB-sYNsXba9fp1eJUNqn3O1tNtnk0YoihRMRBcGHsB-TF-0p3h0Un_wT_Bv9S5zJJlevtiB9CiGz-djZyf5md-Y3AF-qYVphak1stDexQnJYrcpEXMjceCdMkWnORh4dZPsn6sdpetpEVXIuTOCHmC-4sWXU_2s2cGMng0ekofZnn3w7TiTnUC3GQ0e_maNyVdcmIwAh40TlouWdFXLQNlyciZ7Ay0W0Wk83e2tw1r5oiDI578-mtu9u_uBw_L8veQOrDQqNtsOweQtLOO7Aq522-FsHXo6aPfcOrNRBom7yDo7JcSXDiJrVG9Lo_e0dT4M-cg3vQIS_QipxNGHG0Frt0bQGx0gNDYeCkSYj5vYISZPv4WRv93hnP26qMsSOvdm4MIzadJKjSXNTCJcmynk6094miR9mskA0FQojUszQ-UpZ8itTX6D0PjPJB1geX47xE0RDJxOrCfJ5pv3SWWEILmk0Qrqhrix24VurodI1lOVcOeOiDGTLsqSuK7nrurA1l7wKNB1_kem1Si4bQ52UMud0LpFrRbeYX6bO5n0TM8bLGclkhHM0M-t34WMYHPOHJCmvxBV5F77WKv7n08uD7yM-rj9XcANec2n7EJbWg-Xp9Qw_EwCa2k14IdXhZj3gHwBHhgTJ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEB6lRW25FJoWSEnBlSp6crpZP9YWJyitAm1yqFKpByRrH-NLIa2aREKc-An8Rn4JM147UKBSxcmyPOvHzq73m9mZbwD2yn5SYmJ0qJXTYYxksJo4FWEuM-2s0HmqOBt5OEoH5_GHi-SiBa-bXBjPD7FwuPHMqP7XPMHZIX3wG2uo-dwj404twQMu6M3E-e_OfnFHZXFVnYwghAyjOBMN86yQB03L22vRXwDzNl6tFpzjR_CxeVUfZ3LZm89Mz379g8XxP7_lMazXQDR440fOBrRw0oa1w6b-WxtWh_W2extWqjhRO92EMdmuNDeC2oFDSv3x7TuvhC6wNfVAgF98NnEwZdLQSvPBrMLHSA01R4ORMgOm9_B5k1twfnw0PhyEdWGG0LJBG-aagZuKMtRJpnNhkyi2js6UM1Hk-qnMEXWJQosEU7SujA2ZlonLUTqX6ugJLE-uJvgMgr6VkVGE-hwzf6k014SYFGohbV-VBjuw36iosDVrORfP-FR4vmVZUNcV3HUd2F1IXnumjn_IdBstF_VcnRYy44wukamYbrG4TJ3NWyd6gldzkkkJ6igm1-_AUz86Fg-JEnbG5VkHXlU6vvPpxejtkI_b9xV8CWuD8fC0OH0_OnkOD7nSvY9S68Ly7GaOO4SHZuZFNe5_AlufCA4
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9tAEB7RIKAXBOkrEIqRED2ZbNZrr32EQESBRDkEiZu13h2f2oBIIvXIT-A39pcw45dAFKkny_KsV5rZxze7M98AHOb9MMcwM77RzvgKyWHNVCT8RMbGWWGSSHM28mgcXdyoy9vwtoqq5FyYkh-iOXDjmVGs1zzB713ee0Eamv0-Jt9Of4BVvuvjcC6pJs0qHKuiOBkhCOkHKhY18ayQvbrl663oDb58DVeL_Wa4BZsVUPROSstuwwrO2rAxqOuztWF9VF2Lt2GtiOO0808wJd-Sxq5XHbCQ0v8-PvFO5TxbUQN4-KfM9vXmTOpZWMZbFPgVqaHhaC1Stsf0G2Ve42e4GZ5PBxd-VTjBt-xw-olhYKWDGE0Ym0TYMFDW0Zt2WRC4fiQTRJOjMCLECK3LVUauX-gSlM5FJvgCrdndDL-B17cyyDShMsfMXDpKDCEajUZI29d5hh34UeswtRWrOBe3-JWWfMgyJW2nrO0OHDSS9yWTxj9kurUZ0mouzVMZc8aViLWiXzSfSdl8tWFmeLckmYigiGby-w58Lc3XdBKEfFiWxB04Kuz5bu_p-HTEz53_FdyH9cnZML3-Ob7ahY9ciL4MIutCa_GwxD2CK4vsezEunwGszuan
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Linear+projection-based+chemical+exchange+saturation+transfer+parameter+estimation&rft.jtitle=NMR+in+biomedicine&rft.au=Glang%2C+Felix&rft.au=Fabian%2C+Moritz+S&rft.au=German%2C+Alexander&rft.au=Khakzar%2C+Katrin+M&rft.date=2023-06-01&rft.issn=1099-1492&rft.eissn=1099-1492&rft.volume=36&rft.issue=6&rft.spage=e4697&rft_id=info:doi/10.1002%2Fnbm.4697&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0952-3480&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0952-3480&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0952-3480&client=summon