Water‐Triggered Spontaneously Solidified Adhesive: From Instant and Strong Underwater Adhesion to In Situ Signal Transmission
Developing conductive underwater glue for fast sealing and in situ monitoring is critical for ocean exploration yet remains a challenge. The fluidity of glue is a double‐edged sword that is favorable for molecule spreading and formation of interlocking bonding network yet also leads to leakage of co...
Saved in:
Published in | Advanced functional materials Vol. 32; no. 44 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc
01.10.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Developing conductive underwater glue for fast sealing and in situ monitoring is critical for ocean exploration yet remains a challenge. The fluidity of glue is a double‐edged sword that is favorable for molecule spreading and formation of interlocking bonding network yet also leads to leakage of conductive ions. Herein, a polymeric glue possessing good conductivity and exhibiting rapid, strong, and long‐lasting underwater adhesion on diverse substrates at various harsh environments and extreme temperatures is developed. For molecular design, the nitrogen heterocyclic motif that prevails in biomolecular recognition is encoded with water‐resistant benzene block in one pendant group to serve as underwater binding sites; ionic liquids (ILs) of [EMIM][BF4] is employed as the solvent for fast water exchange that triggers rapid adhesion. Simultaneously, the polymer‐IL interaction is regulated, with the assistance of the theoretical calculations, to retain sufficient ILs within the adhesive for sensing. Finally, the glue is applied for underwater sealing and in situ monitoring various physical signals, while the fluorescent property is utilized for underwater labeling. This study should provide a new design strategy for the next‐generation of multifunctional underwater adhesives and promote their applications.
S. Y. Zheng, J. Zhou, S. Wang, Y.‐J. Wang, S. Liu, G. Du, D. Zhang, J. Fu, J. Lin, Z. L. Wu, Q. Zheng, J. Yang
A polymeric glue simultaneously exhibiting rapid, strong, and long‐lasting adhesion on diverse substrates against various harsh environments and extreme temperatures, along with functions of underwater sensing and fluorescent labeling is developed. The comprehensive adhesion efficiency of the adhesive outperforms most existing underwater adhesives and should provide a new strategy for the molecular design of the next‐generation underwater adhesives. |
---|---|
AbstractList | Developing conductive underwater glue for fast sealing and in situ monitoring is critical for ocean exploration yet remains a challenge. The fluidity of glue is a double‐edged sword that is favorable for molecule spreading and formation of interlocking bonding network yet also leads to leakage of conductive ions. Herein, a polymeric glue possessing good conductivity and exhibiting rapid, strong, and long‐lasting underwater adhesion on diverse substrates at various harsh environments and extreme temperatures is developed. For molecular design, the nitrogen heterocyclic motif that prevails in biomolecular recognition is encoded with water‐resistant benzene block in one pendant group to serve as underwater binding sites; ionic liquids (ILs) of [EMIM][BF4] is employed as the solvent for fast water exchange that triggers rapid adhesion. Simultaneously, the polymer‐IL interaction is regulated, with the assistance of the theoretical calculations, to retain sufficient ILs within the adhesive for sensing. Finally, the glue is applied for underwater sealing and in situ monitoring various physical signals, while the fluorescent property is utilized for underwater labeling. This study should provide a new design strategy for the next‐generation of multifunctional underwater adhesives and promote their applications. Developing conductive underwater glue for fast sealing and in situ monitoring is critical for ocean exploration yet remains a challenge. The fluidity of glue is a double‐edged sword that is favorable for molecule spreading and formation of interlocking bonding network yet also leads to leakage of conductive ions. Herein, a polymeric glue possessing good conductivity and exhibiting rapid, strong, and long‐lasting underwater adhesion on diverse substrates at various harsh environments and extreme temperatures is developed. For molecular design, the nitrogen heterocyclic motif that prevails in biomolecular recognition is encoded with water‐resistant benzene block in one pendant group to serve as underwater binding sites; ionic liquids (ILs) of [EMIM][BF4] is employed as the solvent for fast water exchange that triggers rapid adhesion. Simultaneously, the polymer‐IL interaction is regulated, with the assistance of the theoretical calculations, to retain sufficient ILs within the adhesive for sensing. Finally, the glue is applied for underwater sealing and in situ monitoring various physical signals, while the fluorescent property is utilized for underwater labeling. This study should provide a new design strategy for the next‐generation of multifunctional underwater adhesives and promote their applications. S. Y. Zheng, J. Zhou, S. Wang, Y.‐J. Wang, S. Liu, G. Du, D. Zhang, J. Fu, J. Lin, Z. L. Wu, Q. Zheng, J. Yang A polymeric glue simultaneously exhibiting rapid, strong, and long‐lasting adhesion on diverse substrates against various harsh environments and extreme temperatures, along with functions of underwater sensing and fluorescent labeling is developed. The comprehensive adhesion efficiency of the adhesive outperforms most existing underwater adhesives and should provide a new strategy for the molecular design of the next‐generation underwater adhesives. |
Author | Zhou, Jiahui Fu, Jimin Zhang, Dong Zheng, Si Yu Liu, Shanqiu Zheng, Qiang Wang, Yan‐Jie Yang, Jintao Du, Guangyan Wu, Zi Liang Wang, Shuaibing Lin, Ji |
Author_xml | – sequence: 1 givenname: Si Yu orcidid: 0000-0001-7602-6731 surname: Zheng fullname: Zheng, Si Yu email: zhengsiyu@zjut.edu.cn organization: Zhejiang University of Technology – sequence: 2 givenname: Jiahui surname: Zhou fullname: Zhou, Jiahui organization: Zhejiang University of Technology – sequence: 3 givenname: Shuaibing orcidid: 0000-0001-7936-3581 surname: Wang fullname: Wang, Shuaibing organization: Zhejiang University of Technology – sequence: 4 givenname: Yan‐Jie surname: Wang fullname: Wang, Yan‐Jie organization: Tiangong University – sequence: 5 givenname: Shanqiu surname: Liu fullname: Liu, Shanqiu organization: Zhejiang University of Technology – sequence: 6 givenname: Guangyan surname: Du fullname: Du, Guangyan organization: Zhejiang University of Technology – sequence: 7 givenname: Dong orcidid: 0000-0001-7002-7661 surname: Zhang fullname: Zhang, Dong organization: The University of Akron – sequence: 8 givenname: Jimin surname: Fu fullname: Fu, Jimin email: jimin.fu@connect.polyu.hk organization: The Hong Kong Polytechnic University – sequence: 9 givenname: Ji surname: Lin fullname: Lin, Ji organization: Ningbo University – sequence: 10 givenname: Zi Liang orcidid: 0000-0002-1824-9563 surname: Wu fullname: Wu, Zi Liang organization: Zhejiang University – sequence: 11 givenname: Qiang surname: Zheng fullname: Zheng, Qiang organization: Zhejiang University – sequence: 12 givenname: Jintao orcidid: 0000-0002-3133-1246 surname: Yang fullname: Yang, Jintao email: yangjt@zjut.edu.cn organization: Zhejiang University of Technology |
BookMark | eNqFkMtKAzEUhoMoeN26DriemstkpuOuqNWC4qItuhvi5MwYmUlqklq60kfwGX0SUyoVBHGTEzjf93P499G2sQYQOqakRwlhp1LVXY8RxogQRb6F9mhGs4QT1t_e_OnDLtr3_pkQmuc83UNv9zKA-3z_mDjdNOBA4fHMmiAN2Llvl3hsW610reNioJ7A61c4w0NnOzwyPmIBSxOd4Kxp8NQocItV4jdsDQ42kniswzw-jZEtnjhpfKf9an2IdmrZejj6ngdoOrycnF8nN3dXo_PBTVLxPs8TLgR7FJDLNGUFEyKVMgVecNWHWhGRUyILQmtJWfYIVcaIqlOoqrQSMqOKCn6ATta5M2df5uBD-WznLl7jS5azIgZkPItUuqYqZ713UJeVDjLEO4OTui0pKVdVl6uqy03VUev90mZOd9It_xaKtbDQLSz_ocvBxfD2x_0CqzaWaw |
CitedBy_id | crossref_primary_10_1016_j_nantod_2024_102282 crossref_primary_10_1088_2631_7990_ad9fbb crossref_primary_10_1002_adfm_202303272 crossref_primary_10_1021_polymscitech_4c00022 crossref_primary_10_1021_acsami_3c07112 crossref_primary_10_1021_acs_langmuir_4c03488 crossref_primary_10_1021_acsmacrolett_4c00260 crossref_primary_10_1007_s11431_024_2638_x crossref_primary_10_1002_adfm_202307402 crossref_primary_10_1021_acsapm_3c02376 crossref_primary_10_1039_D4PY00857J crossref_primary_10_1039_D3MH00301A crossref_primary_10_1016_j_cej_2024_155710 crossref_primary_10_1002_adfm_202306814 crossref_primary_10_1016_j_cej_2023_145185 crossref_primary_10_1016_j_ijbiomac_2023_127146 crossref_primary_10_1021_acsapm_3c03145 crossref_primary_10_1016_j_cej_2023_143793 crossref_primary_10_1007_s10118_024_3141_5 crossref_primary_10_1039_D4TC04784B crossref_primary_10_1021_acsami_4c10826 crossref_primary_10_1002_advs_202407501 crossref_primary_10_1021_acs_biomac_3c00379 crossref_primary_10_1002_adma_202313495 crossref_primary_10_1126_sciadv_adg4031 crossref_primary_10_1021_acssuschemeng_4c00100 crossref_primary_10_1039_D4MH01292E crossref_primary_10_1016_j_nantod_2023_102105 crossref_primary_10_1021_acsapm_4c01343 crossref_primary_10_1039_D3MH01220D crossref_primary_10_1021_acsami_3c11117 crossref_primary_10_1016_j_seppur_2024_129848 crossref_primary_10_1002_aenm_202303991 crossref_primary_10_1021_acsapm_2c01202 crossref_primary_10_1038_s41428_023_00769_6 crossref_primary_10_1021_acsapm_3c01393 |
Cites_doi | 10.1021/jacs.0c00520 10.1038/s41467-019-13171-9 10.1039/D1MH00533B 10.1021/acs.macromol.6b01626 10.1021/acs.chemmater.1c03386 10.1002/adfm.201907064 10.1021/jacs.0c10786 10.1021/ja5097094 10.1002/adma.202004579 10.1002/advs.202105742 10.1016/j.corsci.2017.04.021 10.1021/acs.chemmater.1c02781 10.1038/s41586-019-1710-5 10.1038/nmat4401 10.1039/D1TA00433F 10.1002/adfm.202112741 10.1016/j.progpolymsci.2021.101388 10.1002/adfm.202009334 10.1021/acs.macromol.1c02361 10.1002/adfm.202107226 10.1002/adma.201800671 10.1134/S107036321410020X 10.1126/sciadv.1700053 10.1021/jacs.9b02677 10.1002/adfm.202106446 10.1016/j.cej.2021.134012 10.1002/adfm.202200757 10.1002/advs.202100201 10.1002/adfm.202111465 10.1021/acsnano.0c02396 10.1002/adma.202100962 10.1039/D1MH00998B 10.1021/acsnano.0c09577 10.1021/acs.chemmater.2c00074 10.1021/acs.chemmater.8b03860 10.1002/adfm.201901693 10.1002/adfm.202104296 10.1016/j.cej.2022.135607 10.1002/adma.202102983 10.1002/adma.202008479 10.1038/s41551-021-00769-y 10.1039/D1MH00461A 10.1002/adfm.201900450 10.1039/C9MH01148J 10.1021/acsnano.1c08193 10.1155/2013/946739 10.1039/D0TA07390C 10.1002/adfm.202105464 10.1021/acsnano.1c10946 10.1039/D0MH00176G 10.1002/adfm.201703132 10.1002/anie.202100984 10.1039/D0MH00361A 10.1039/C9CS00285E 10.1002/adma.201906886 10.1039/C8TB02629G 10.1002/adfm.202109144 10.1016/j.tetlet.2016.06.016 10.1038/200242a0 10.1038/s41467-017-02387-2 10.1002/adma.201801884 10.1039/D0MH01344G 10.1038/s41467-022-29427-w 10.1021/acs.chemmater.1c03007 10.1039/C8MH01421C 10.1002/adma.202105306 10.1038/s41563-020-00814-2 10.1002/adma.201905761 10.1039/D1MH00725D 10.1038/nmat4539 |
ContentType | Journal Article |
Copyright | 2022 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2022 Wiley‐VCH GmbH |
DBID | AAYXX CITATION 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1002/adfm.202205597 |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | CrossRef Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1616-3028 |
EndPage | n/a |
ExternalDocumentID | 10_1002_adfm_202205597 ADFM202205597 |
Genre | article |
GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OC 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHQN AAMMB AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADMLS ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFPM AFGKR AFWVQ AFZJQ AGHNM AGXDD AGYGG AHBTC AIDQK AIDYY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WFSAM WIH WIK WJL WOHZO WQJ WXSBR WYISQ XG1 XPP XV2 ~IA ~WT .Y3 31~ AAHHS AANHP AASGY AAYXX ACBWZ ACCFJ ACRPL ACYXJ ADNMO ADZOD AEEZP AEQDE AGQPQ AIWBW AJBDE ASPBG AVWKF AZFZN CITATION EJD FEDTE HF~ HVGLF LW6 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
ID | FETCH-LOGICAL-c3837-3552b5e7a44292554aa4e393d8efd05710a901fa126bec620df4ecc4c5a61d153 |
IEDL.DBID | DR2 |
ISSN | 1616-301X |
IngestDate | Sun Jul 13 05:39:28 EDT 2025 Tue Jul 01 00:30:32 EDT 2025 Thu Apr 24 23:01:28 EDT 2025 Sun Jul 06 04:45:28 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 44 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3837-3552b5e7a44292554aa4e393d8efd05710a901fa126bec620df4ecc4c5a61d153 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-7602-6731 0000-0001-7936-3581 0000-0002-3133-1246 0000-0001-7002-7661 0000-0002-1824-9563 |
PQID | 2729710636 |
PQPubID | 2045204 |
PageCount | 10 |
ParticipantIDs | proquest_journals_2729710636 crossref_citationtrail_10_1002_adfm_202205597 crossref_primary_10_1002_adfm_202205597 wiley_primary_10_1002_adfm_202205597_ADFM202205597 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-10-01 |
PublicationDateYYYYMMDD | 2022-10-01 |
PublicationDate_xml | – month: 10 year: 2022 text: 2022-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | Advanced functional materials |
PublicationYear | 2022 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2021; 9 2019; 7 2021; 8 2022; 431 2015; 14 2017; 8 2021; 5 2021; 20 2017; 3 2019; 6 2019; 31 2019; 30 2020; 142 2017; 27 2019; 10 2020; 14 2020; 32 2022; 438 2014; 84 2019; 141 2016; 15 2014; 136 2016; 57 2020; 8 2020; 7 2021; 15 2021; 31 2021; 33 2020; 30 2013; 2013 1963; 200 2021; 116 2022; 9 2022; 34 2020; 49 2022; 13 2019; 575 2019; 29 2018; 30 2022; 32 2022; 55 2021; 60 2016; 49 2017; 124 2022; 16 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_68_1 e_1_2_8_3_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_66_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_64_1 Trojer M. A. (e_1_2_8_59_1) 2013; 2013 e_1_2_8_62_1 e_1_2_8_1_1 e_1_2_8_41_1 e_1_2_8_60_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 e_1_2_8_70_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_51_1 e_1_2_8_30_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_48_1 e_1_2_8_69_1 e_1_2_8_2_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_67_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_65_1 e_1_2_8_63_1 e_1_2_8_40_1 e_1_2_8_61_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_58_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_56_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_54_1 e_1_2_8_52_1 e_1_2_8_50_1 |
References_xml | – volume: 27 year: 2017 publication-title: Adv. Funct. Mater. – volume: 14 start-page: 8359 year: 2020 publication-title: ACS Nano – volume: 32 year: 2022 publication-title: Adv. Funct. Mater. – volume: 136 year: 2014 publication-title: J. Am. Chem. Soc. – volume: 7 start-page: 24 year: 2019 publication-title: J. Mater. Chem. B – volume: 7 start-page: 2063 year: 2020 publication-title: Mater. Horiz. – volume: 49 start-page: 433 year: 2020 publication-title: Chem. Soc. Rev. – volume: 15 start-page: 1785 year: 2021 publication-title: ACS Nano – volume: 57 start-page: 3053 year: 2016 publication-title: Tetrahedron Lett. – volume: 33 start-page: 8418 year: 2021 publication-title: Chem. Mater. – volume: 49 start-page: 6310 year: 2016 publication-title: Macromolecules – volume: 14 start-page: 1210 year: 2015 publication-title: Nat. Mater. – volume: 8 start-page: 2761 year: 2021 publication-title: Mater. Horiz. – volume: 6 start-page: 285 year: 2019 publication-title: Mater. Horiz. – volume: 200 start-page: 242 year: 1963 publication-title: Nature – volume: 33 year: 2021 publication-title: Adv. Mater. – volume: 30 year: 2020 publication-title: Adv. Funct. Mater. – volume: 29 year: 2019 publication-title: Adv. Funct. Mater. – volume: 9 start-page: 9706 year: 2021 publication-title: J. Mater. Chem. A – volume: 7 start-page: 1872 year: 2020 publication-title: Mater. Horiz. – volume: 15 start-page: 407 year: 2016 publication-title: Nat. Mater. – volume: 7 start-page: 2651 year: 2020 publication-title: Mater. Horiz. – volume: 13 start-page: 1892 year: 2022 publication-title: Nat. Commun. – volume: 3 year: 2017 publication-title: Sci. Adv. – volume: 33 start-page: 8822 year: 2021 publication-title: Chem. Mater. – volume: 34 start-page: 3736 year: 2022 publication-title: Chem. Mater. – volume: 84 start-page: 1979 year: 2014 publication-title: Russ. J. Gen. Chem. – volume: 8 year: 2021 publication-title: Adv. Sci. – volume: 7 start-page: 282 year: 2020 publication-title: Mater. Horiz. – volume: 8 start-page: 2057 year: 2021 publication-title: Mater. Horiz. – volume: 438 year: 2022 publication-title: Chem. Eng. J. – volume: 2013 year: 2013 publication-title: J. Chem. – volume: 16 start-page: 5303 year: 2022 publication-title: ACS Nano – volume: 124 start-page: 25 year: 2017 publication-title: Corros. Sci. – volume: 31 start-page: 179 year: 2019 publication-title: Chem. Mater. – volume: 15 year: 2021 publication-title: ACS Nano – volume: 60 start-page: 8948 year: 2021 publication-title: Angew. Chem., Int. Ed. – volume: 8 start-page: 2218 year: 2017 publication-title: Nat. Commun. – volume: 9 year: 2022 publication-title: Adv. Sci. – volume: 575 start-page: 169 year: 2019 publication-title: Nature – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 5 start-page: 1131 year: 2021 publication-title: Nat. Biomed. Eng. – volume: 8 start-page: 2520 year: 2021 publication-title: Mater. Horiz. – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 31 year: 2021 publication-title: Adv. Funct. Mater. – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 30 year: 2019 publication-title: Adv. Funct. Mater. – volume: 116 year: 2021 publication-title: Prog. Polym. Sci. – volume: 8 start-page: 2199 year: 2021 publication-title: Mater. Horiz. – volume: 34 start-page: 1065 year: 2022 publication-title: Chem. Mater. – volume: 142 start-page: 5371 year: 2020 publication-title: J. Am. Chem. Soc. – volume: 431 year: 2022 publication-title: Chem. Eng. J. – volume: 55 start-page: 2003 year: 2022 publication-title: Macromolecules – volume: 142 year: 2020 publication-title: J. Am. Chem. Soc. – volume: 8 year: 2020 publication-title: J. Mater. Chem. A – volume: 10 start-page: 5127 year: 2019 publication-title: Nat. Commun. – volume: 20 start-page: 229 year: 2021 publication-title: Nat. Mater. – volume: 141 start-page: 8058 year: 2019 publication-title: J. Am. Chem. Soc. – ident: e_1_2_8_63_1 doi: 10.1021/jacs.0c00520 – ident: e_1_2_8_20_1 doi: 10.1038/s41467-019-13171-9 – ident: e_1_2_8_43_1 doi: 10.1039/D1MH00533B – ident: e_1_2_8_58_1 doi: 10.1021/acs.macromol.6b01626 – ident: e_1_2_8_11_1 doi: 10.1021/acs.chemmater.1c03386 – ident: e_1_2_8_21_1 doi: 10.1002/adfm.201907064 – ident: e_1_2_8_62_1 doi: 10.1021/jacs.0c10786 – ident: e_1_2_8_56_1 doi: 10.1021/ja5097094 – ident: e_1_2_8_69_1 doi: 10.1002/adma.202004579 – ident: e_1_2_8_30_1 doi: 10.1002/advs.202105742 – ident: e_1_2_8_61_1 doi: 10.1016/j.corsci.2017.04.021 – ident: e_1_2_8_53_1 doi: 10.1021/acs.chemmater.1c02781 – ident: e_1_2_8_17_1 doi: 10.1038/s41586-019-1710-5 – ident: e_1_2_8_57_1 doi: 10.1038/nmat4401 – ident: e_1_2_8_33_1 doi: 10.1039/D1TA00433F – ident: e_1_2_8_51_1 doi: 10.1002/adfm.202112741 – ident: e_1_2_8_1_1 doi: 10.1016/j.progpolymsci.2021.101388 – ident: e_1_2_8_19_1 doi: 10.1002/adfm.202009334 – ident: e_1_2_8_52_1 doi: 10.1021/acs.macromol.1c02361 – ident: e_1_2_8_7_1 doi: 10.1002/adfm.202107226 – ident: e_1_2_8_45_1 doi: 10.1002/adma.201800671 – ident: e_1_2_8_60_1 doi: 10.1134/S107036321410020X – ident: e_1_2_8_42_1 doi: 10.1126/sciadv.1700053 – ident: e_1_2_8_64_1 doi: 10.1021/jacs.9b02677 – ident: e_1_2_8_6_1 doi: 10.1002/adfm.202106446 – ident: e_1_2_8_29_1 doi: 10.1016/j.cej.2021.134012 – ident: e_1_2_8_65_1 doi: 10.1002/adfm.202200757 – ident: e_1_2_8_22_1 doi: 10.1002/advs.202100201 – ident: e_1_2_8_25_1 doi: 10.1002/adfm.202111465 – ident: e_1_2_8_35_1 doi: 10.1021/acsnano.0c02396 – ident: e_1_2_8_9_1 doi: 10.1002/adma.202100962 – ident: e_1_2_8_27_1 doi: 10.1039/D1MH00998B – ident: e_1_2_8_31_1 doi: 10.1021/acsnano.0c09577 – ident: e_1_2_8_13_1 doi: 10.1021/acs.chemmater.2c00074 – ident: e_1_2_8_32_1 doi: 10.1021/acs.chemmater.8b03860 – ident: e_1_2_8_55_1 doi: 10.1002/adfm.201901693 – ident: e_1_2_8_50_1 doi: 10.1002/adfm.202104296 – ident: e_1_2_8_54_1 doi: 10.1016/j.cej.2022.135607 – ident: e_1_2_8_2_1 doi: 10.1002/adma.202102983 – ident: e_1_2_8_8_1 doi: 10.1002/adma.202008479 – ident: e_1_2_8_34_1 doi: 10.1038/s41551-021-00769-y – ident: e_1_2_8_68_1 doi: 10.1039/D1MH00461A – ident: e_1_2_8_4_1 doi: 10.1002/adfm.201900450 – ident: e_1_2_8_38_1 doi: 10.1039/C9MH01148J – ident: e_1_2_8_12_1 doi: 10.1021/acsnano.1c08193 – volume: 2013 start-page: 946739 year: 2013 ident: e_1_2_8_59_1 publication-title: J. Chem. doi: 10.1155/2013/946739 – ident: e_1_2_8_16_1 doi: 10.1039/D0TA07390C – ident: e_1_2_8_46_1 doi: 10.1002/adfm.202105464 – ident: e_1_2_8_49_1 doi: 10.1021/acsnano.1c10946 – ident: e_1_2_8_23_1 doi: 10.1039/D0MH00176G – ident: e_1_2_8_18_1 doi: 10.1002/adfm.201703132 – ident: e_1_2_8_10_1 doi: 10.1002/anie.202100984 – ident: e_1_2_8_14_1 doi: 10.1039/D0MH00361A – ident: e_1_2_8_3_1 doi: 10.1039/C9CS00285E – ident: e_1_2_8_36_1 doi: 10.1002/adma.201906886 – ident: e_1_2_8_15_1 doi: 10.1039/C8TB02629G – ident: e_1_2_8_41_1 doi: 10.1002/adfm.202109144 – ident: e_1_2_8_66_1 doi: 10.1016/j.tetlet.2016.06.016 – ident: e_1_2_8_70_1 doi: 10.1038/200242a0 – ident: e_1_2_8_67_1 doi: 10.1038/s41467-017-02387-2 – ident: e_1_2_8_5_1 doi: 10.1002/adma.201801884 – ident: e_1_2_8_24_1 doi: 10.1039/D0MH01344G – ident: e_1_2_8_37_1 doi: 10.1038/s41467-022-29427-w – ident: e_1_2_8_39_1 doi: 10.1021/acs.chemmater.1c03007 – ident: e_1_2_8_47_1 doi: 10.1039/C8MH01421C – ident: e_1_2_8_28_1 doi: 10.1002/adma.202105306 – ident: e_1_2_8_26_1 doi: 10.1038/s41563-020-00814-2 – ident: e_1_2_8_40_1 doi: 10.1002/adma.201905761 – ident: e_1_2_8_48_1 doi: 10.1039/D1MH00725D – ident: e_1_2_8_44_1 doi: 10.1038/nmat4539 |
SSID | ssj0017734 |
Score | 2.5825326 |
Snippet | Developing conductive underwater glue for fast sealing and in situ monitoring is critical for ocean exploration yet remains a challenge. The fluidity of glue... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Adhesive strength Benzene Binding sites bioinspired adhesives coacervates Fluorescence Ionic liquids Materials science Sealing Signal monitoring Signal transmission Substrates Underwater underwater adhesion underwater signal transmission |
Title | Water‐Triggered Spontaneously Solidified Adhesive: From Instant and Strong Underwater Adhesion to In Situ Signal Transmission |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202205597 https://www.proquest.com/docview/2729710636 |
Volume | 32 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3PT8IwFMcboxc9-NuIIunBxNOUlm5s3ohI0IgH0cht6dYOibgRGDF60T_Bv9G_xPe2McDEmOhl2bK26dbX9tPt9fsIOZRVxqWW3GCOtg3hVBxDmooZgXKATgXjAcP9zq1rq3knLjtmZ2YXf6oPkX9ww56RjNfYwaU3OpmKhkoV4E5y3CgKUAyDMDpsIRXd5PpRrFpNfytbDB28WGei2ljmJ_PZ52elKWrOAmsy4zTWiJzUNXU0eTwex96x__pNxvE_D7NOVjMcpbXUfjbIgg43ycqMSOEWebsHHB1-vn_cwkK-i6E9aXsQhQCVOhqP-i-0HfV7qhcAy9KaetDoD39KG8PoiV4k7BlTGUIe_ObepUmcpWcsMUschTSOICVt9-IxHLpYn2QGBQvE29vkrnF-e9Y0srANho_LXQMIhnumrkqBobAAV6QUuuJUlK0DBXjIyhIgJJCMW2BAFi-rQIAhCd-UFlMwAu-QxTAK9S6hpmMDvtlMcuUJ7qOOMVNAjNoRtvAZKxBj0myun2maY2iNvpuqMXMXX6ybv9gCOcrTD1I1jx9TFidW4Ga9euRyWIlA9a2KVSA8ac5fSnFr9UYrv9r7S6Z9soznqf9gkSzGw7E-AA6KvRJZqtVbV-1SYvNfcSMCAw |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NTttAEB4hegAObaFFBCjsgaonQ3azduxKPUQNUQKEQxNEbu7Gu06jpjZKHCF6KY_Aq_RV-gh9Emb8B1RClSpx6MWS7dnV_s3Ot7uz3wDsqToXyihhcc-4lvRqnqVsza1Qe4hOJRchp_vO3VOnfSaPBvZgAX4Wd2Eyfohyw400I52vScFpQ_rgjjVU6ZCuktNNUUTFuV_lsbm6xFXb7EOniV38VojWYf9j28oDC1gBLcgstLFiaJu6khSsCQ2qUtLUvJp2TagRwPCqQjMZKi4crKIjqjqUWFUZ2MrhmlOgCJz1n1EYcaLrb34qGat4vZ4dZDucXMr4oOCJrIqDh-V9aAfvwO19iJzauNYL-FW0Tuba8nV_ngz3g-9_EEf-V833Ep7niJs1MhVZhQUTrcHKPR7GV_DjHBH39Pf1TX86Ho0oeinrXcQR4mYTz2eTK9aLJ2M9DhGus4b-Ysjl_z1rTeNvrJPC64SpCNPQscKIpaGkLinHXDiOWBKjJOuNkzk-RlSeFCSgktHv13D2JC2wDotRHJkNYLbnIkJ1uRJ6KEVAVM1cIyg2nnRlwHkFrGKc-EFO207RQyZ-RjgtfOpIv-zICrwr5S8ywpJHJbeLYefnE9fMF7jYwuI7NacCIh0_f8nFbzRb3fJt818S7cJSu9898U86p8dbsEzfM3fJbVhMpnPzBmFfMtxJFY3B56cemreWdF1w |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NTttAEB4hKlXtoX-0IkDLHoo4GbKbtWNX4hA1WKT8CDWg5uZuvOs0IthR4gjRC32EPkpfhVfgSTrjP6ASqoTEgYsl27PW_szsfOud_Qbgo2pyoYwSFveMa0mv4VnK1tyKtIfoVHIRcTrvvH_g7BzLLz27Nwd_yrMwOT9E9cONLCObr8nAxzravCYNVTqik-R0UBRBcRFWuWvOz3DRNt3qtHGE14Twt48-71hFXgErpPWYhS5W9G3TVJJyNaE_VUqahtfQrok04hdeV-glI8WFgy10RF1HElsqQ1s5XHPKE4GT_hPp1D1KFtH-WhFW8WYz38d2OEWU8V5JE1kXm7fre9sNXmPbmwg5c3H-S7gsOyePbDnZmKX9jfDnP7yRj6n3XsGLAm-zVm4gr2HOxG_g-Q0WxgW4-IZ4e3L16_fRZDgYUO5S1h0nMaJmk8ymo3PWTUZDPYwQrLOW_mEo4P8T8yfJKetk4DplKsYytKkwYFkiqTP6YiGcxCxNUJJ1h-kMLwOqTwYR0MTo9Vs4fpAeeAfzcRKbRWC25yI-dbkSui9FSETNXCMkNp50Zch5DaxSTYKwIG2n3CGjIKebFgENZFANZA3WK_lxTldyp-RKqXVBMW1NA4FLLay-03BqIDL1-c9Xglbb36_ulu5TaBWeHrb9YK9zsLsMz-hxHiu5AvPpZGbeI-ZL-x8yM2Pw_aE18y__wFwf |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Water%E2%80%90Triggered+Spontaneously+Solidified+Adhesive%3A+From+Instant+and+Strong+Underwater+Adhesion+to+In+Situ+Signal+Transmission&rft.jtitle=Advanced+functional+materials&rft.au=Zheng%2C+Si+Yu&rft.au=Zhou%2C+Jiahui&rft.au=Wang%2C+Shuaibing&rft.au=Wang%2C+Yan%E2%80%90Jie&rft.date=2022-10-01&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=32&rft.issue=44&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadfm.202205597&rft.externalDBID=10.1002%252Fadfm.202205597&rft.externalDocID=ADFM202205597 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon |