Water‐Triggered Spontaneously Solidified Adhesive: From Instant and Strong Underwater Adhesion to In Situ Signal Transmission

Developing conductive underwater glue for fast sealing and in situ monitoring is critical for ocean exploration yet remains a challenge. The fluidity of glue is a double‐edged sword that is favorable for molecule spreading and formation of interlocking bonding network yet also leads to leakage of co...

Full description

Saved in:
Bibliographic Details
Published inAdvanced functional materials Vol. 32; no. 44
Main Authors Zheng, Si Yu, Zhou, Jiahui, Wang, Shuaibing, Wang, Yan‐Jie, Liu, Shanqiu, Du, Guangyan, Zhang, Dong, Fu, Jimin, Lin, Ji, Wu, Zi Liang, Zheng, Qiang, Yang, Jintao
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 01.10.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Developing conductive underwater glue for fast sealing and in situ monitoring is critical for ocean exploration yet remains a challenge. The fluidity of glue is a double‐edged sword that is favorable for molecule spreading and formation of interlocking bonding network yet also leads to leakage of conductive ions. Herein, a polymeric glue possessing good conductivity and exhibiting rapid, strong, and long‐lasting underwater adhesion on diverse substrates at various harsh environments and extreme temperatures is developed. For molecular design, the nitrogen heterocyclic motif that prevails in biomolecular recognition is encoded with water‐resistant benzene block in one pendant group to serve as underwater binding sites; ionic liquids (ILs) of [EMIM][BF4] is employed as the solvent for fast water exchange that triggers rapid adhesion. Simultaneously, the polymer‐IL interaction is regulated, with the assistance of the theoretical calculations, to retain sufficient ILs within the adhesive for sensing. Finally, the glue is applied for underwater sealing and in situ monitoring various physical signals, while the fluorescent property is utilized for underwater labeling. This study should provide a new design strategy for the next‐generation of multifunctional underwater adhesives and promote their applications. S. Y. Zheng, J. Zhou, S. Wang, Y.‐J. Wang, S. Liu, G. Du, D. Zhang, J. Fu, J. Lin, Z. L. Wu, Q. Zheng, J. Yang A polymeric glue simultaneously exhibiting rapid, strong, and long‐lasting adhesion on diverse substrates against various harsh environments and extreme temperatures, along with functions of underwater sensing and fluorescent labeling is developed. The comprehensive adhesion efficiency of the adhesive outperforms most existing underwater adhesives and should provide a new strategy for the molecular design of the next‐generation underwater adhesives.
AbstractList Developing conductive underwater glue for fast sealing and in situ monitoring is critical for ocean exploration yet remains a challenge. The fluidity of glue is a double‐edged sword that is favorable for molecule spreading and formation of interlocking bonding network yet also leads to leakage of conductive ions. Herein, a polymeric glue possessing good conductivity and exhibiting rapid, strong, and long‐lasting underwater adhesion on diverse substrates at various harsh environments and extreme temperatures is developed. For molecular design, the nitrogen heterocyclic motif that prevails in biomolecular recognition is encoded with water‐resistant benzene block in one pendant group to serve as underwater binding sites; ionic liquids (ILs) of [EMIM][BF4] is employed as the solvent for fast water exchange that triggers rapid adhesion. Simultaneously, the polymer‐IL interaction is regulated, with the assistance of the theoretical calculations, to retain sufficient ILs within the adhesive for sensing. Finally, the glue is applied for underwater sealing and in situ monitoring various physical signals, while the fluorescent property is utilized for underwater labeling. This study should provide a new design strategy for the next‐generation of multifunctional underwater adhesives and promote their applications.
Developing conductive underwater glue for fast sealing and in situ monitoring is critical for ocean exploration yet remains a challenge. The fluidity of glue is a double‐edged sword that is favorable for molecule spreading and formation of interlocking bonding network yet also leads to leakage of conductive ions. Herein, a polymeric glue possessing good conductivity and exhibiting rapid, strong, and long‐lasting underwater adhesion on diverse substrates at various harsh environments and extreme temperatures is developed. For molecular design, the nitrogen heterocyclic motif that prevails in biomolecular recognition is encoded with water‐resistant benzene block in one pendant group to serve as underwater binding sites; ionic liquids (ILs) of [EMIM][BF4] is employed as the solvent for fast water exchange that triggers rapid adhesion. Simultaneously, the polymer‐IL interaction is regulated, with the assistance of the theoretical calculations, to retain sufficient ILs within the adhesive for sensing. Finally, the glue is applied for underwater sealing and in situ monitoring various physical signals, while the fluorescent property is utilized for underwater labeling. This study should provide a new design strategy for the next‐generation of multifunctional underwater adhesives and promote their applications. S. Y. Zheng, J. Zhou, S. Wang, Y.‐J. Wang, S. Liu, G. Du, D. Zhang, J. Fu, J. Lin, Z. L. Wu, Q. Zheng, J. Yang A polymeric glue simultaneously exhibiting rapid, strong, and long‐lasting adhesion on diverse substrates against various harsh environments and extreme temperatures, along with functions of underwater sensing and fluorescent labeling is developed. The comprehensive adhesion efficiency of the adhesive outperforms most existing underwater adhesives and should provide a new strategy for the molecular design of the next‐generation underwater adhesives.
Author Zhou, Jiahui
Fu, Jimin
Zhang, Dong
Zheng, Si Yu
Liu, Shanqiu
Zheng, Qiang
Wang, Yan‐Jie
Yang, Jintao
Du, Guangyan
Wu, Zi Liang
Wang, Shuaibing
Lin, Ji
Author_xml – sequence: 1
  givenname: Si Yu
  orcidid: 0000-0001-7602-6731
  surname: Zheng
  fullname: Zheng, Si Yu
  email: zhengsiyu@zjut.edu.cn
  organization: Zhejiang University of Technology
– sequence: 2
  givenname: Jiahui
  surname: Zhou
  fullname: Zhou, Jiahui
  organization: Zhejiang University of Technology
– sequence: 3
  givenname: Shuaibing
  orcidid: 0000-0001-7936-3581
  surname: Wang
  fullname: Wang, Shuaibing
  organization: Zhejiang University of Technology
– sequence: 4
  givenname: Yan‐Jie
  surname: Wang
  fullname: Wang, Yan‐Jie
  organization: Tiangong University
– sequence: 5
  givenname: Shanqiu
  surname: Liu
  fullname: Liu, Shanqiu
  organization: Zhejiang University of Technology
– sequence: 6
  givenname: Guangyan
  surname: Du
  fullname: Du, Guangyan
  organization: Zhejiang University of Technology
– sequence: 7
  givenname: Dong
  orcidid: 0000-0001-7002-7661
  surname: Zhang
  fullname: Zhang, Dong
  organization: The University of Akron
– sequence: 8
  givenname: Jimin
  surname: Fu
  fullname: Fu, Jimin
  email: jimin.fu@connect.polyu.hk
  organization: The Hong Kong Polytechnic University
– sequence: 9
  givenname: Ji
  surname: Lin
  fullname: Lin, Ji
  organization: Ningbo University
– sequence: 10
  givenname: Zi Liang
  orcidid: 0000-0002-1824-9563
  surname: Wu
  fullname: Wu, Zi Liang
  organization: Zhejiang University
– sequence: 11
  givenname: Qiang
  surname: Zheng
  fullname: Zheng, Qiang
  organization: Zhejiang University
– sequence: 12
  givenname: Jintao
  orcidid: 0000-0002-3133-1246
  surname: Yang
  fullname: Yang, Jintao
  email: yangjt@zjut.edu.cn
  organization: Zhejiang University of Technology
BookMark eNqFkMtKAzEUhoMoeN26DriemstkpuOuqNWC4qItuhvi5MwYmUlqklq60kfwGX0SUyoVBHGTEzjf93P499G2sQYQOqakRwlhp1LVXY8RxogQRb6F9mhGs4QT1t_e_OnDLtr3_pkQmuc83UNv9zKA-3z_mDjdNOBA4fHMmiAN2Llvl3hsW610reNioJ7A61c4w0NnOzwyPmIBSxOd4Kxp8NQocItV4jdsDQ42kniswzw-jZEtnjhpfKf9an2IdmrZejj6ngdoOrycnF8nN3dXo_PBTVLxPs8TLgR7FJDLNGUFEyKVMgVecNWHWhGRUyILQmtJWfYIVcaIqlOoqrQSMqOKCn6ATta5M2df5uBD-WznLl7jS5azIgZkPItUuqYqZ713UJeVDjLEO4OTui0pKVdVl6uqy03VUev90mZOd9It_xaKtbDQLSz_ocvBxfD2x_0CqzaWaw
CitedBy_id crossref_primary_10_1016_j_nantod_2024_102282
crossref_primary_10_1088_2631_7990_ad9fbb
crossref_primary_10_1002_adfm_202303272
crossref_primary_10_1021_polymscitech_4c00022
crossref_primary_10_1021_acsami_3c07112
crossref_primary_10_1021_acs_langmuir_4c03488
crossref_primary_10_1021_acsmacrolett_4c00260
crossref_primary_10_1007_s11431_024_2638_x
crossref_primary_10_1002_adfm_202307402
crossref_primary_10_1021_acsapm_3c02376
crossref_primary_10_1039_D4PY00857J
crossref_primary_10_1039_D3MH00301A
crossref_primary_10_1016_j_cej_2024_155710
crossref_primary_10_1002_adfm_202306814
crossref_primary_10_1016_j_cej_2023_145185
crossref_primary_10_1016_j_ijbiomac_2023_127146
crossref_primary_10_1021_acsapm_3c03145
crossref_primary_10_1016_j_cej_2023_143793
crossref_primary_10_1007_s10118_024_3141_5
crossref_primary_10_1039_D4TC04784B
crossref_primary_10_1021_acsami_4c10826
crossref_primary_10_1002_advs_202407501
crossref_primary_10_1021_acs_biomac_3c00379
crossref_primary_10_1002_adma_202313495
crossref_primary_10_1126_sciadv_adg4031
crossref_primary_10_1021_acssuschemeng_4c00100
crossref_primary_10_1039_D4MH01292E
crossref_primary_10_1016_j_nantod_2023_102105
crossref_primary_10_1021_acsapm_4c01343
crossref_primary_10_1039_D3MH01220D
crossref_primary_10_1021_acsami_3c11117
crossref_primary_10_1016_j_seppur_2024_129848
crossref_primary_10_1002_aenm_202303991
crossref_primary_10_1021_acsapm_2c01202
crossref_primary_10_1038_s41428_023_00769_6
crossref_primary_10_1021_acsapm_3c01393
Cites_doi 10.1021/jacs.0c00520
10.1038/s41467-019-13171-9
10.1039/D1MH00533B
10.1021/acs.macromol.6b01626
10.1021/acs.chemmater.1c03386
10.1002/adfm.201907064
10.1021/jacs.0c10786
10.1021/ja5097094
10.1002/adma.202004579
10.1002/advs.202105742
10.1016/j.corsci.2017.04.021
10.1021/acs.chemmater.1c02781
10.1038/s41586-019-1710-5
10.1038/nmat4401
10.1039/D1TA00433F
10.1002/adfm.202112741
10.1016/j.progpolymsci.2021.101388
10.1002/adfm.202009334
10.1021/acs.macromol.1c02361
10.1002/adfm.202107226
10.1002/adma.201800671
10.1134/S107036321410020X
10.1126/sciadv.1700053
10.1021/jacs.9b02677
10.1002/adfm.202106446
10.1016/j.cej.2021.134012
10.1002/adfm.202200757
10.1002/advs.202100201
10.1002/adfm.202111465
10.1021/acsnano.0c02396
10.1002/adma.202100962
10.1039/D1MH00998B
10.1021/acsnano.0c09577
10.1021/acs.chemmater.2c00074
10.1021/acs.chemmater.8b03860
10.1002/adfm.201901693
10.1002/adfm.202104296
10.1016/j.cej.2022.135607
10.1002/adma.202102983
10.1002/adma.202008479
10.1038/s41551-021-00769-y
10.1039/D1MH00461A
10.1002/adfm.201900450
10.1039/C9MH01148J
10.1021/acsnano.1c08193
10.1155/2013/946739
10.1039/D0TA07390C
10.1002/adfm.202105464
10.1021/acsnano.1c10946
10.1039/D0MH00176G
10.1002/adfm.201703132
10.1002/anie.202100984
10.1039/D0MH00361A
10.1039/C9CS00285E
10.1002/adma.201906886
10.1039/C8TB02629G
10.1002/adfm.202109144
10.1016/j.tetlet.2016.06.016
10.1038/200242a0
10.1038/s41467-017-02387-2
10.1002/adma.201801884
10.1039/D0MH01344G
10.1038/s41467-022-29427-w
10.1021/acs.chemmater.1c03007
10.1039/C8MH01421C
10.1002/adma.202105306
10.1038/s41563-020-00814-2
10.1002/adma.201905761
10.1039/D1MH00725D
10.1038/nmat4539
ContentType Journal Article
Copyright 2022 Wiley‐VCH GmbH
Copyright_xml – notice: 2022 Wiley‐VCH GmbH
DBID AAYXX
CITATION
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/adfm.202205597
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList CrossRef

Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1616-3028
EndPage n/a
ExternalDocumentID 10_1002_adfm_202205597
ADFM202205597
Genre article
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OC
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMLS
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
.Y3
31~
AAHHS
AANHP
AASGY
AAYXX
ACBWZ
ACCFJ
ACRPL
ACYXJ
ADNMO
ADZOD
AEEZP
AEQDE
AGQPQ
AIWBW
AJBDE
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
HF~
HVGLF
LW6
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
ID FETCH-LOGICAL-c3837-3552b5e7a44292554aa4e393d8efd05710a901fa126bec620df4ecc4c5a61d153
IEDL.DBID DR2
ISSN 1616-301X
IngestDate Sun Jul 13 05:39:28 EDT 2025
Tue Jul 01 00:30:32 EDT 2025
Thu Apr 24 23:01:28 EDT 2025
Sun Jul 06 04:45:28 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 44
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3837-3552b5e7a44292554aa4e393d8efd05710a901fa126bec620df4ecc4c5a61d153
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7602-6731
0000-0001-7936-3581
0000-0002-3133-1246
0000-0001-7002-7661
0000-0002-1824-9563
PQID 2729710636
PQPubID 2045204
PageCount 10
ParticipantIDs proquest_journals_2729710636
crossref_citationtrail_10_1002_adfm_202205597
crossref_primary_10_1002_adfm_202205597
wiley_primary_10_1002_adfm_202205597_ADFM202205597
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-10-01
PublicationDateYYYYMMDD 2022-10-01
PublicationDate_xml – month: 10
  year: 2022
  text: 2022-10-01
  day: 01
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Advanced functional materials
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2021; 9
2019; 7
2021; 8
2022; 431
2015; 14
2017; 8
2021; 5
2021; 20
2017; 3
2019; 6
2019; 31
2019; 30
2020; 142
2017; 27
2019; 10
2020; 14
2020; 32
2022; 438
2014; 84
2019; 141
2016; 15
2014; 136
2016; 57
2020; 8
2020; 7
2021; 15
2021; 31
2021; 33
2020; 30
2013; 2013
1963; 200
2021; 116
2022; 9
2022; 34
2020; 49
2022; 13
2019; 575
2019; 29
2018; 30
2022; 32
2022; 55
2021; 60
2016; 49
2017; 124
2022; 16
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_68_1
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_66_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_64_1
Trojer M. A. (e_1_2_8_59_1) 2013; 2013
e_1_2_8_62_1
e_1_2_8_1_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
e_1_2_8_70_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_51_1
e_1_2_8_30_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_69_1
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_67_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_65_1
e_1_2_8_63_1
e_1_2_8_40_1
e_1_2_8_61_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_58_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_56_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_52_1
e_1_2_8_50_1
References_xml – volume: 27
  year: 2017
  publication-title: Adv. Funct. Mater.
– volume: 14
  start-page: 8359
  year: 2020
  publication-title: ACS Nano
– volume: 32
  year: 2022
  publication-title: Adv. Funct. Mater.
– volume: 136
  year: 2014
  publication-title: J. Am. Chem. Soc.
– volume: 7
  start-page: 24
  year: 2019
  publication-title: J. Mater. Chem. B
– volume: 7
  start-page: 2063
  year: 2020
  publication-title: Mater. Horiz.
– volume: 49
  start-page: 433
  year: 2020
  publication-title: Chem. Soc. Rev.
– volume: 15
  start-page: 1785
  year: 2021
  publication-title: ACS Nano
– volume: 57
  start-page: 3053
  year: 2016
  publication-title: Tetrahedron Lett.
– volume: 33
  start-page: 8418
  year: 2021
  publication-title: Chem. Mater.
– volume: 49
  start-page: 6310
  year: 2016
  publication-title: Macromolecules
– volume: 14
  start-page: 1210
  year: 2015
  publication-title: Nat. Mater.
– volume: 8
  start-page: 2761
  year: 2021
  publication-title: Mater. Horiz.
– volume: 6
  start-page: 285
  year: 2019
  publication-title: Mater. Horiz.
– volume: 200
  start-page: 242
  year: 1963
  publication-title: Nature
– volume: 33
  year: 2021
  publication-title: Adv. Mater.
– volume: 30
  year: 2020
  publication-title: Adv. Funct. Mater.
– volume: 29
  year: 2019
  publication-title: Adv. Funct. Mater.
– volume: 9
  start-page: 9706
  year: 2021
  publication-title: J. Mater. Chem. A
– volume: 7
  start-page: 1872
  year: 2020
  publication-title: Mater. Horiz.
– volume: 15
  start-page: 407
  year: 2016
  publication-title: Nat. Mater.
– volume: 7
  start-page: 2651
  year: 2020
  publication-title: Mater. Horiz.
– volume: 13
  start-page: 1892
  year: 2022
  publication-title: Nat. Commun.
– volume: 3
  year: 2017
  publication-title: Sci. Adv.
– volume: 33
  start-page: 8822
  year: 2021
  publication-title: Chem. Mater.
– volume: 34
  start-page: 3736
  year: 2022
  publication-title: Chem. Mater.
– volume: 84
  start-page: 1979
  year: 2014
  publication-title: Russ. J. Gen. Chem.
– volume: 8
  year: 2021
  publication-title: Adv. Sci.
– volume: 7
  start-page: 282
  year: 2020
  publication-title: Mater. Horiz.
– volume: 8
  start-page: 2057
  year: 2021
  publication-title: Mater. Horiz.
– volume: 438
  year: 2022
  publication-title: Chem. Eng. J.
– volume: 2013
  year: 2013
  publication-title: J. Chem.
– volume: 16
  start-page: 5303
  year: 2022
  publication-title: ACS Nano
– volume: 124
  start-page: 25
  year: 2017
  publication-title: Corros. Sci.
– volume: 31
  start-page: 179
  year: 2019
  publication-title: Chem. Mater.
– volume: 15
  year: 2021
  publication-title: ACS Nano
– volume: 60
  start-page: 8948
  year: 2021
  publication-title: Angew. Chem., Int. Ed.
– volume: 8
  start-page: 2218
  year: 2017
  publication-title: Nat. Commun.
– volume: 9
  year: 2022
  publication-title: Adv. Sci.
– volume: 575
  start-page: 169
  year: 2019
  publication-title: Nature
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 5
  start-page: 1131
  year: 2021
  publication-title: Nat. Biomed. Eng.
– volume: 8
  start-page: 2520
  year: 2021
  publication-title: Mater. Horiz.
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 31
  year: 2021
  publication-title: Adv. Funct. Mater.
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 30
  year: 2019
  publication-title: Adv. Funct. Mater.
– volume: 116
  year: 2021
  publication-title: Prog. Polym. Sci.
– volume: 8
  start-page: 2199
  year: 2021
  publication-title: Mater. Horiz.
– volume: 34
  start-page: 1065
  year: 2022
  publication-title: Chem. Mater.
– volume: 142
  start-page: 5371
  year: 2020
  publication-title: J. Am. Chem. Soc.
– volume: 431
  year: 2022
  publication-title: Chem. Eng. J.
– volume: 55
  start-page: 2003
  year: 2022
  publication-title: Macromolecules
– volume: 142
  year: 2020
  publication-title: J. Am. Chem. Soc.
– volume: 8
  year: 2020
  publication-title: J. Mater. Chem. A
– volume: 10
  start-page: 5127
  year: 2019
  publication-title: Nat. Commun.
– volume: 20
  start-page: 229
  year: 2021
  publication-title: Nat. Mater.
– volume: 141
  start-page: 8058
  year: 2019
  publication-title: J. Am. Chem. Soc.
– ident: e_1_2_8_63_1
  doi: 10.1021/jacs.0c00520
– ident: e_1_2_8_20_1
  doi: 10.1038/s41467-019-13171-9
– ident: e_1_2_8_43_1
  doi: 10.1039/D1MH00533B
– ident: e_1_2_8_58_1
  doi: 10.1021/acs.macromol.6b01626
– ident: e_1_2_8_11_1
  doi: 10.1021/acs.chemmater.1c03386
– ident: e_1_2_8_21_1
  doi: 10.1002/adfm.201907064
– ident: e_1_2_8_62_1
  doi: 10.1021/jacs.0c10786
– ident: e_1_2_8_56_1
  doi: 10.1021/ja5097094
– ident: e_1_2_8_69_1
  doi: 10.1002/adma.202004579
– ident: e_1_2_8_30_1
  doi: 10.1002/advs.202105742
– ident: e_1_2_8_61_1
  doi: 10.1016/j.corsci.2017.04.021
– ident: e_1_2_8_53_1
  doi: 10.1021/acs.chemmater.1c02781
– ident: e_1_2_8_17_1
  doi: 10.1038/s41586-019-1710-5
– ident: e_1_2_8_57_1
  doi: 10.1038/nmat4401
– ident: e_1_2_8_33_1
  doi: 10.1039/D1TA00433F
– ident: e_1_2_8_51_1
  doi: 10.1002/adfm.202112741
– ident: e_1_2_8_1_1
  doi: 10.1016/j.progpolymsci.2021.101388
– ident: e_1_2_8_19_1
  doi: 10.1002/adfm.202009334
– ident: e_1_2_8_52_1
  doi: 10.1021/acs.macromol.1c02361
– ident: e_1_2_8_7_1
  doi: 10.1002/adfm.202107226
– ident: e_1_2_8_45_1
  doi: 10.1002/adma.201800671
– ident: e_1_2_8_60_1
  doi: 10.1134/S107036321410020X
– ident: e_1_2_8_42_1
  doi: 10.1126/sciadv.1700053
– ident: e_1_2_8_64_1
  doi: 10.1021/jacs.9b02677
– ident: e_1_2_8_6_1
  doi: 10.1002/adfm.202106446
– ident: e_1_2_8_29_1
  doi: 10.1016/j.cej.2021.134012
– ident: e_1_2_8_65_1
  doi: 10.1002/adfm.202200757
– ident: e_1_2_8_22_1
  doi: 10.1002/advs.202100201
– ident: e_1_2_8_25_1
  doi: 10.1002/adfm.202111465
– ident: e_1_2_8_35_1
  doi: 10.1021/acsnano.0c02396
– ident: e_1_2_8_9_1
  doi: 10.1002/adma.202100962
– ident: e_1_2_8_27_1
  doi: 10.1039/D1MH00998B
– ident: e_1_2_8_31_1
  doi: 10.1021/acsnano.0c09577
– ident: e_1_2_8_13_1
  doi: 10.1021/acs.chemmater.2c00074
– ident: e_1_2_8_32_1
  doi: 10.1021/acs.chemmater.8b03860
– ident: e_1_2_8_55_1
  doi: 10.1002/adfm.201901693
– ident: e_1_2_8_50_1
  doi: 10.1002/adfm.202104296
– ident: e_1_2_8_54_1
  doi: 10.1016/j.cej.2022.135607
– ident: e_1_2_8_2_1
  doi: 10.1002/adma.202102983
– ident: e_1_2_8_8_1
  doi: 10.1002/adma.202008479
– ident: e_1_2_8_34_1
  doi: 10.1038/s41551-021-00769-y
– ident: e_1_2_8_68_1
  doi: 10.1039/D1MH00461A
– ident: e_1_2_8_4_1
  doi: 10.1002/adfm.201900450
– ident: e_1_2_8_38_1
  doi: 10.1039/C9MH01148J
– ident: e_1_2_8_12_1
  doi: 10.1021/acsnano.1c08193
– volume: 2013
  start-page: 946739
  year: 2013
  ident: e_1_2_8_59_1
  publication-title: J. Chem.
  doi: 10.1155/2013/946739
– ident: e_1_2_8_16_1
  doi: 10.1039/D0TA07390C
– ident: e_1_2_8_46_1
  doi: 10.1002/adfm.202105464
– ident: e_1_2_8_49_1
  doi: 10.1021/acsnano.1c10946
– ident: e_1_2_8_23_1
  doi: 10.1039/D0MH00176G
– ident: e_1_2_8_18_1
  doi: 10.1002/adfm.201703132
– ident: e_1_2_8_10_1
  doi: 10.1002/anie.202100984
– ident: e_1_2_8_14_1
  doi: 10.1039/D0MH00361A
– ident: e_1_2_8_3_1
  doi: 10.1039/C9CS00285E
– ident: e_1_2_8_36_1
  doi: 10.1002/adma.201906886
– ident: e_1_2_8_15_1
  doi: 10.1039/C8TB02629G
– ident: e_1_2_8_41_1
  doi: 10.1002/adfm.202109144
– ident: e_1_2_8_66_1
  doi: 10.1016/j.tetlet.2016.06.016
– ident: e_1_2_8_70_1
  doi: 10.1038/200242a0
– ident: e_1_2_8_67_1
  doi: 10.1038/s41467-017-02387-2
– ident: e_1_2_8_5_1
  doi: 10.1002/adma.201801884
– ident: e_1_2_8_24_1
  doi: 10.1039/D0MH01344G
– ident: e_1_2_8_37_1
  doi: 10.1038/s41467-022-29427-w
– ident: e_1_2_8_39_1
  doi: 10.1021/acs.chemmater.1c03007
– ident: e_1_2_8_47_1
  doi: 10.1039/C8MH01421C
– ident: e_1_2_8_28_1
  doi: 10.1002/adma.202105306
– ident: e_1_2_8_26_1
  doi: 10.1038/s41563-020-00814-2
– ident: e_1_2_8_40_1
  doi: 10.1002/adma.201905761
– ident: e_1_2_8_48_1
  doi: 10.1039/D1MH00725D
– ident: e_1_2_8_44_1
  doi: 10.1038/nmat4539
SSID ssj0017734
Score 2.5825326
Snippet Developing conductive underwater glue for fast sealing and in situ monitoring is critical for ocean exploration yet remains a challenge. The fluidity of glue...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Adhesive strength
Benzene
Binding sites
bioinspired adhesives
coacervates
Fluorescence
Ionic liquids
Materials science
Sealing
Signal monitoring
Signal transmission
Substrates
Underwater
underwater adhesion
underwater signal transmission
Title Water‐Triggered Spontaneously Solidified Adhesive: From Instant and Strong Underwater Adhesion to In Situ Signal Transmission
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202205597
https://www.proquest.com/docview/2729710636
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3PT8IwFMcboxc9-NuIIunBxNOUlm5s3ohI0IgH0cht6dYOibgRGDF60T_Bv9G_xPe2McDEmOhl2bK26dbX9tPt9fsIOZRVxqWW3GCOtg3hVBxDmooZgXKATgXjAcP9zq1rq3knLjtmZ2YXf6oPkX9ww56RjNfYwaU3OpmKhkoV4E5y3CgKUAyDMDpsIRXd5PpRrFpNfytbDB28WGei2ljmJ_PZ52elKWrOAmsy4zTWiJzUNXU0eTwex96x__pNxvE_D7NOVjMcpbXUfjbIgg43ycqMSOEWebsHHB1-vn_cwkK-i6E9aXsQhQCVOhqP-i-0HfV7qhcAy9KaetDoD39KG8PoiV4k7BlTGUIe_ObepUmcpWcsMUschTSOICVt9-IxHLpYn2QGBQvE29vkrnF-e9Y0srANho_LXQMIhnumrkqBobAAV6QUuuJUlK0DBXjIyhIgJJCMW2BAFi-rQIAhCd-UFlMwAu-QxTAK9S6hpmMDvtlMcuUJ7qOOMVNAjNoRtvAZKxBj0myun2maY2iNvpuqMXMXX6ybv9gCOcrTD1I1jx9TFidW4Ga9euRyWIlA9a2KVSA8ac5fSnFr9UYrv9r7S6Z9soznqf9gkSzGw7E-AA6KvRJZqtVbV-1SYvNfcSMCAw
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NTttAEB4hegAObaFFBCjsgaonQ3azduxKPUQNUQKEQxNEbu7Gu06jpjZKHCF6KY_Aq_RV-gh9Emb8B1RClSpx6MWS7dnV_s3Ot7uz3wDsqToXyihhcc-4lvRqnqVsza1Qe4hOJRchp_vO3VOnfSaPBvZgAX4Wd2Eyfohyw400I52vScFpQ_rgjjVU6ZCuktNNUUTFuV_lsbm6xFXb7EOniV38VojWYf9j28oDC1gBLcgstLFiaJu6khSsCQ2qUtLUvJp2TagRwPCqQjMZKi4crKIjqjqUWFUZ2MrhmlOgCJz1n1EYcaLrb34qGat4vZ4dZDucXMr4oOCJrIqDh-V9aAfvwO19iJzauNYL-FW0Tuba8nV_ngz3g-9_EEf-V833Ep7niJs1MhVZhQUTrcHKPR7GV_DjHBH39Pf1TX86Ho0oeinrXcQR4mYTz2eTK9aLJ2M9DhGus4b-Ysjl_z1rTeNvrJPC64SpCNPQscKIpaGkLinHXDiOWBKjJOuNkzk-RlSeFCSgktHv13D2JC2wDotRHJkNYLbnIkJ1uRJ6KEVAVM1cIyg2nnRlwHkFrGKc-EFO207RQyZ-RjgtfOpIv-zICrwr5S8ywpJHJbeLYefnE9fMF7jYwuI7NacCIh0_f8nFbzRb3fJt818S7cJSu9898U86p8dbsEzfM3fJbVhMpnPzBmFfMtxJFY3B56cemreWdF1w
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NTttAEB4hKlXtoX-0IkDLHoo4GbKbtWNX4hA1WKT8CDWg5uZuvOs0IthR4gjRC32EPkpfhVfgSTrjP6ASqoTEgYsl27PW_szsfOud_Qbgo2pyoYwSFveMa0mv4VnK1tyKtIfoVHIRcTrvvH_g7BzLLz27Nwd_yrMwOT9E9cONLCObr8nAxzravCYNVTqik-R0UBRBcRFWuWvOz3DRNt3qtHGE14Twt48-71hFXgErpPWYhS5W9G3TVJJyNaE_VUqahtfQrok04hdeV-glI8WFgy10RF1HElsqQ1s5XHPKE4GT_hPp1D1KFtH-WhFW8WYz38d2OEWU8V5JE1kXm7fre9sNXmPbmwg5c3H-S7gsOyePbDnZmKX9jfDnP7yRj6n3XsGLAm-zVm4gr2HOxG_g-Q0WxgW4-IZ4e3L16_fRZDgYUO5S1h0nMaJmk8ymo3PWTUZDPYwQrLOW_mEo4P8T8yfJKetk4DplKsYytKkwYFkiqTP6YiGcxCxNUJJ1h-kMLwOqTwYR0MTo9Vs4fpAeeAfzcRKbRWC25yI-dbkSui9FSETNXCMkNp50Zch5DaxSTYKwIG2n3CGjIKebFgENZFANZA3WK_lxTldyp-RKqXVBMW1NA4FLLay-03BqIDL1-c9Xglbb36_ulu5TaBWeHrb9YK9zsLsMz-hxHiu5AvPpZGbeI-ZL-x8yM2Pw_aE18y__wFwf
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Water%E2%80%90Triggered+Spontaneously+Solidified+Adhesive%3A+From+Instant+and+Strong+Underwater+Adhesion+to+In+Situ+Signal+Transmission&rft.jtitle=Advanced+functional+materials&rft.au=Zheng%2C+Si+Yu&rft.au=Zhou%2C+Jiahui&rft.au=Wang%2C+Shuaibing&rft.au=Wang%2C+Yan%E2%80%90Jie&rft.date=2022-10-01&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=32&rft.issue=44&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadfm.202205597&rft.externalDBID=10.1002%252Fadfm.202205597&rft.externalDocID=ADFM202205597
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon