On the Philosophy of Unsupervised Learning

Unsupervised learning algorithms are widely used for many important statistical tasks with numerous applications in science and industry. Yet despite their prevalence, they have attracted remarkably little philosophical scrutiny to date. This stands in stark contrast to supervised and reinforcement...

Full description

Saved in:
Bibliographic Details
Published inPhilosophy & technology Vol. 36; no. 2; p. 28
Main Author Watson, David S.
Format Journal Article
LanguageEnglish
Published Dordrecht Springer Netherlands 01.06.2023
Springer
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN2210-5433
2210-5441
DOI10.1007/s13347-023-00635-6

Cover

Abstract Unsupervised learning algorithms are widely used for many important statistical tasks with numerous applications in science and industry. Yet despite their prevalence, they have attracted remarkably little philosophical scrutiny to date. This stands in stark contrast to supervised and reinforcement learning algorithms, which have been widely studied and critically evaluated, often with an emphasis on ethical concerns. In this article, I analyze three canonical unsupervised learning problems: clustering, abstraction, and generative modeling. I argue that these methods raise unique epistemological and ontological questions, providing data-driven tools for discovering natural kinds and distinguishing essence from contingency. This analysis goes some way toward filling the lacuna in contemporary philosophical discourse on unsupervised learning, as well as bringing conceptual unity to a heterogeneous field more often described by what it is not (i.e., supervised or reinforcement learning) than by what it is . I submit that unsupervised learning is not just a legitimate subject of philosophical inquiry but perhaps the most fundamental branch of all AI. However, an uncritical overreliance on unsupervised methods poses major epistemic and ethical risks. I conclude by advocating for a pragmatic, error-statistical approach that embraces the opportunities and mitigates the challenges posed by this powerful class of algorithms.
AbstractList Unsupervised learning algorithms are widely used for many important statistical tasks with numerous applications in science and industry. Yet despite their prevalence, they have attracted remarkably little philosophical scrutiny to date. This stands in stark contrast to supervised and reinforcement learning algorithms, which have been widely studied and critically evaluated, often with an emphasis on ethical concerns. In this article, I analyze three canonical unsupervised learning problems: clustering, abstraction, and generative modeling. I argue that these methods raise unique epistemological and ontological questions, providing data-driven tools for discovering natural kinds and distinguishing essence from contingency. This analysis goes some way toward filling the lacuna in contemporary philosophical discourse on unsupervised learning, as well as bringing conceptual unity to a heterogeneous field more often described by what it is not (i.e., supervised or reinforcement learning) than by what it is. I submit that unsupervised learning is not just a legitimate subject of philosophical inquiry but perhaps the most fundamental branch of all AI. However, an uncritical overreliance on unsupervised methods poses major epistemic and ethical risks. I conclude by advocating for a pragmatic, error-statistical approach that embraces the opportunities and mitigates the challenges posed by this powerful class of algorithms.
Unsupervised learning algorithms are widely used for many important statistical tasks with numerous applications in science and industry. Yet despite their prevalence, they have attracted remarkably little philosophical scrutiny to date. This stands in stark contrast to supervised and reinforcement learning algorithms, which have been widely studied and critically evaluated, often with an emphasis on ethical concerns. In this article, I analyze three canonical unsupervised learning problems: clustering, abstraction, and generative modeling. I argue that these methods raise unique epistemological and ontological questions, providing data-driven tools for discovering natural kinds and distinguishing essence from contingency. This analysis goes some way toward filling the lacuna in contemporary philosophical discourse on unsupervised learning, as well as bringing conceptual unity to a heterogeneous field more often described by what it is not (i.e., supervised or reinforcement learning) than by what it is . I submit that unsupervised learning is not just a legitimate subject of philosophical inquiry but perhaps the most fundamental branch of all AI. However, an uncritical overreliance on unsupervised methods poses major epistemic and ethical risks. I conclude by advocating for a pragmatic, error-statistical approach that embraces the opportunities and mitigates the challenges posed by this powerful class of algorithms.
ArticleNumber 28
Audience Academic
Author Watson, David S.
Author_xml – sequence: 1
  givenname: David S.
  orcidid: 0000-0001-9632-2159
  surname: Watson
  fullname: Watson, David S.
  email: david.watson@kcl.ac.uk
  organization: Department of Informatics, King’s College London
BookMark eNp9kctKAzEUhoNUsNa-gKsBd0JqbpPJLEvxBgVd2HVIZ5JpyjSpyVTo2xsdsSilySIhfN8fzjmXYOC80wBcYzTBCBV3EVPKCogIhQhxmkN-BoaEYARzxvDg907pBRjHuEZp5ZhTUgzB7YvLupXOXle29dFvV_vMm2zh4m6rw4eNus7mWgVnXXMFzo1qox7_nCOweLh_mz3B-cvj82w6hxUVlEPDiS4MMwVimAhV1mhJeC4KVgvEa6JoRYwpOa1FTvmypKKsi1oLUgqDCUlFjMBNn7sN_n2nYyfXfhdc-lISkUJZCssPVKNaLa0zvguq2thYyWnBeM5QmaNEwSNUo50Oqk1dNDY9_-EnR_i0a72x1VFB9EIVfIxBG1nZTnXWuyTaVmIkv2Yk-xnJVJ78npHkSSX_1G2wGxX2pyXaSzHBrtHh0JwT1if2b6CD
CitedBy_id crossref_primary_10_1007_s00146_024_02128_2
crossref_primary_10_1007_s11023_024_09699_5
crossref_primary_10_1007_s11229_024_04741_6
crossref_primary_10_2478_bsrj_2024_0020
crossref_primary_10_1007_s13347_024_00705_3
crossref_primary_10_1007_s41469_023_00155_9
crossref_primary_10_1021_acsaem_3c02642
crossref_primary_10_1002_widm_1511
crossref_primary_10_1002_widm_1547
crossref_primary_10_3390_app14020775
crossref_primary_10_1038_s41598_024_60319_9
crossref_primary_10_3390_wevj15020039
crossref_primary_10_1016_j_resconrec_2023_107375
Cites_doi 10.1002/sam.11348
10.1145/3236009
10.1186/gb-2002-3-7-research0036
10.7551/mitpress/5876.001.0001
10.1007/s11229-022-03798-5
10.1109/TIT.1982.1056489
10.1086/525643
10.1109/CVPR.2019.00453
10.1017/can.2021.17
10.1007/BF00485230
10.1093/mind/LIX.236.433
10.1007/s11229-022-03485-5
10.1038/s41588-019-0379-x
10.1007/s11229-020-02806-w
10.7208/chicago/9780226511993.001.0001
10.1007/s11229-020-02950-3
10.1007/s11023-020-09539-2
10.1111/1467-9868.00293
10.1007/s11229-020-02629-9
10.1016/j.patrec.2015.04.009
10.1177/2053951716679679
10.1093/acprof:oso/9780199552078.001.0001
10.1086/651316
10.1137/17M112717X
10.1109/TKDE.2021.3130191
10.1093/bioinformatics/btr597
10.1093/bjps/axz049
10.1007/s11229-021-03233-1
10.1007/s11229-022-03466-8
10.1007/s13347-021-00459-2
10.1093/qje/qju022
10.1023/A:1010933404324
10.1007/s41237-016-0008-2
10.1038/s42256-019-0138-9
10.1109/MSP.2017.2765202
10.1093/acprof:oso/9780198716808.003.0005
10.1080/01621459.2015.1062383
10.1073/pnas.1900654116
10.1007/s13347-019-00382-7
10.1093/acprof:oso/9780199580828.001.0001
10.1007/s11229-010-9821-4
10.1038/s41598-020-58766-1
10.7208/chicago/9780226507194.001.0001
10.1016/j.cviu.2017.03.007
10.1017/9781107286184
10.1093/bjps/48.3.391
10.1007/s11229-018-01949-1
10.1007/s11229-015-0810-5
10.1177/2053951719897945
10.1111/nous.12140
10.1093/bjps/axx039
10.1093/bjps/45.1.1
10.1007/s13347-019-00372-9
10.2139/ssrn.3662302
10.1086/701072
10.2307/2027085
10.1007/978-0-387-84858-7
10.1198/106186005X59243
10.1007/s11229-020-02915-6
10.1111/mila.12281
10.1109/ACCESS.2018.2870052
10.1086/392874
10.2307/2183991
10.1023/A:1023949509487
10.1093/bjps/axu040
10.1007/s11229-022-03739-2
10.1093/bjps/48.1.21
10.1007/s11023-008-9113-7
10.7551/mitpress/11964.001.0001
10.1007/s11229-019-02390-8
10.1609/aaai.v33i01.33012678
10.7208/chicago/9780226416502.001.0001
10.1093/bjps/axz035
10.1007/s10838-009-9091-3
10.1214/aos/1013203451
10.1086/392740
10.1007/978-1-4419-6646-9_2
10.2307/jj.6380610.6
10.1109/JPROC.2021.3058954
10.1201/9780429184185
10.1090/jams/852
10.1038/s42256-020-00266-y
10.1007/s11229-016-1053-9
ContentType Journal Article
Copyright The Author(s) 2023
COPYRIGHT 2023 Springer
The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2023
– notice: COPYRIGHT 2023 Springer
– notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
0-V
3V.
7WY
7WZ
7X5
7XB
87Z
88J
8A3
8FE
8FG
8FK
8FL
AABKS
ABSDQ
ABUWG
AFKRA
ALSLI
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
HCIFZ
HEHIP
JQ2
K60
K6~
K7-
L.-
M0C
M2R
M2S
P62
PGAAH
PHGZM
PHGZT
PKEHL
POGQB
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PRQQA
PYYUZ
Q9U
DOI 10.1007/s13347-023-00635-6
DatabaseName SpringerOpen Free (Free internet resource, activated by CARLI)
CrossRef
ProQuest Social Sciences Premium Collection【Remote access available】
ProQuest Central (Corporate)
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
Entrepreneurship Database
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Social Science Database (Alumni Edition)
Entrepreneurship Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
Philosophy Collection
Philosophy Database
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Social Science Premium Collection
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One Community College
ProQuest Central
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
SciTech Premium Collection
Sociology Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
ABI/INFORM Global
Social Science Database
Sociology Database (ProQuest)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest One Religion & Philosophy
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest Sociology & Social Sciences Collection
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Social Sciences
ABI/INFORM Collection China
ProQuest Central Basic
DatabaseTitle CrossRef
ProQuest Business Collection (Alumni Edition)
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
SciTech Premium Collection
Sociology & Social Sciences Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest One Religion & Philosophy
Philosophy Collection
ProQuest One Applied & Life Sciences
ProQuest Central (New)
ProQuest Sociology
ProQuest Entrepreneurship
Advanced Technologies & Aerospace Collection
Business Premium Collection
Social Science Premium Collection
ABI/INFORM Global
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
Sociology Collection
ProQuest Business Collection
ProQuest Social Science Journals
ProQuest Social Sciences Premium Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Social Science Journals (Alumni Edition)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Central Korea
ProQuest Sociology Collection
ABI/INFORM Complete (Alumni Edition)
ProQuest One Social Sciences
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Entrepreneurship (Alumni Edition)
ABI/INFORM China
ProQuest SciTech Collection
ProQuest One Business (Alumni)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
Philosophy Database
DatabaseTitleList
ProQuest Business Collection (Alumni Edition)

CrossRef
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Education
Philosophy
EISSN 2210-5441
ExternalDocumentID A746540950
10_1007_s13347_023_00635_6
GroupedDBID -5C
-5G
-BR
-EM
-W8
-~C
.4S
.DC
.VR
0-V
06D
0R~
0VY
199
203
2J2
2JN
2KG
2KM
2LR
2VQ
30V
3V.
4.4
406
408
5VS
7WY
7X5
8FL
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AABKS
AACDK
AAHNG
AAHSB
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABDBF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMQK
ABNWP
ABQBU
ABQSL
ABSDQ
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACCUX
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACPIV
ACSNA
ACUHS
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALSLI
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARALO
ARAPS
ARCSS
ARMRJ
ASOEW
ASPBG
AVWKF
AXYYD
AYQZM
AZFZN
AZQEC
B-.
B0M
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
C6C
C9D
CCPQU
CSCUP
DDRTE
DNIVK
DO4
DPUIP
DWQXO
EAD
EAP
EAS
EBLON
EBS
EDJ
EDO
EIOEI
EJD
EMF
EMG
EMH
EMK
ESBYG
ESO
EST
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GROUPED_ABI_INFORM_COMPLETE
H13
HCIFZ
HEHIP
HF~
HG6
HMJXF
HRMNR
HVGLF
HZ~
IAO
IEA
IER
IGS
IKXTQ
IOF
ITC
IWAJR
IXD
J-C
J0Z
JBSCW
JZLTJ
K60
K6~
K7-
KOV
LLZTM
M0C
M2R
M2S
M4Y
MA-
N2Q
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9J
P9Q
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
Q2X
QOS
R89
R9I
RIG
ROL
RPD
RSV
S16
S1Z
S27
S3B
SAP
SHS
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
XH6
YLTOR
Z45
Z81
Z83
ZMTXR
~8M
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
AEIIB
PMFND
7XB
8FE
8FG
8FK
ABRTQ
JQ2
L.-
P62
PGAAH
PKEHL
POGQB
PQEST
PQGLB
PQUKI
PRINS
PRQQA
Q9U
ID FETCH-LOGICAL-c3836-f62e7f4f704128a9d0b265874d806d2a3c2ff963d8536b9389d7de8298f122023
IEDL.DBID U2A
ISSN 2210-5433
IngestDate Fri Jul 25 05:25:04 EDT 2025
Tue Jun 17 22:11:39 EDT 2025
Fri Jun 13 00:12:29 EDT 2025
Tue Jun 10 21:09:16 EDT 2025
Thu Apr 24 23:01:39 EDT 2025
Tue Jul 01 03:55:15 EDT 2025
Fri Feb 21 02:43:26 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Generative modeling
Metaphysics
Epistemology
Clustering
Abstraction
Machine learning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3836-f62e7f4f704128a9d0b265874d806d2a3c2ff963d8536b9389d7de8298f122023
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9632-2159
OpenAccessLink https://link.springer.com/10.1007/s13347-023-00635-6
PQID 2804145875
PQPubID 75937
ParticipantIDs proquest_journals_2804145875
gale_infotracmisc_A746540950
gale_infotracgeneralonefile_A746540950
gale_infotracacademiconefile_A746540950
crossref_citationtrail_10_1007_s13347_023_00635_6
crossref_primary_10_1007_s13347_023_00635_6
springer_journals_10_1007_s13347_023_00635_6
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20230600
2023-06-00
20230601
PublicationDateYYYYMMDD 2023-06-01
PublicationDate_xml – month: 6
  year: 2023
  text: 20230600
PublicationDecade 2020
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
PublicationTitle Philosophy & technology
PublicationTitleAbbrev Philos. Technol
PublicationYear 2023
Publisher Springer Netherlands
Springer
Springer Nature B.V
Publisher_xml – name: Springer Netherlands
– name: Springer
– name: Springer Nature B.V
References Ben-David, S. & Ackerman, M. (2008). Measures of clustering quality: A working set of axioms for clustering. In Advances in Neural Information Processing Systems.
Zednik, C. (2019). Solving the black box problem: A normative framework for explainable artificial intelligence. Philosophy & Technology, 34, 265–288.
GuidottiRMonrealeARuggieriSTuriniFGiannottiFPedreschiDA survey of methods for explaining black box modelsACM Computing Surveys2018515142
JolliffeITPrincipal component analysis2002New YorkSpringer
SchölkopfBLocatelloFBauerSKeNRKalchbrennerNGoyalABengioYToward causal representation learningProceedings of the IEEE20211095612634
GabrielIArtificial intelligence, values, and alignmentMinds and Machines2020303411437
Higgins, I., Matthey, L., Pal, A., Burgess, C., Glorot, X., Botvinick, M., … Lechner, A. (2017). beta-VAE: Learning basic visual concepts with a constrained variational framework. International Conference on Learning Representations.
CreswellAWhiteTDumoulinVArulkumaranKSenguptaBBharathAAGenerative adversarial networks: An overviewIEEE Signal Processing Magazine20183515365
Mittelstadt, B. D., Allo, P., Taddeo, M., Wachter, S., & Floridi, L. (2016). The ethics of algorithms: Mapping the debate. Big Data & Society.
KieseppäIAAkaike information criterion, curve-fitting, and the philosophical problem of simplicityThe British Journal for the Philosophy of Science19974812148
LloydSLeast squares quantization in PCMIEEE Transactions on Information Theory1982282129137
Mayo-WilsonCZollmanKJSThe computational philosophy: Simulation as a core philosophical methodSynthese2021199136473673
MartinARKanaiMKamataniYOkadaYNealeBMDalyMJClinical use of current polygenic risk scores may exacerbate health disparitiesNature Genetics2019514584591
Floridi, L. (2008). The method of levels of abstraction. Minds and Machines, 18(3), 303–329.
Stadler, T., Oprisanu, B., & Troncoso, C. (2022). Synthetic data - Anonymisation groundhog day. In 31st USENIX Security Symposium, 1451–1468.
FriedmanJHGreedy function approximation: A gradient boosting machineThe Annals of Statistics200129511891232
AdadiABerradaMPeeking inside the black-box: A survey on explainable artificial intelligence (XAI)IEEE Access201865213852160
Choi, Y., Vergari, A., & Van den Broeck, G. (2020). Probabilistic circuits: A unifying framework for tractable probabilistic models. Technical Report, University of California, Los Angeles.
PotochnikAIdealization and the aims of science2017University of Chicago Press
Harman, G., & Kulkarni, S. (2007). Reliable reasoning: Induction and statistical learning theory. Cambridge, MA: The MIT Press.
Cohen-Addad, V., Kanade, V., & Mallmann-Trenn, F. (2018). Clustering redemption: Beyond the impossibility of Kleinberg’s axioms. Advances in Neural Information Processing Systems (Vol. 31).
BlockNJFodorJAWhat psychological states are notThe Philosophical Review1972812159181
Bird, A., & Tobin, E. (2022). Natural kinds. In E. N. Zalta (Ed.), The Stanford Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford University.
Hastie, T., Tibshirani, R., & Friedman, J. (2009). The elements of statistical learning: Data mining, inference, and prediction. New York: Springer.
Gui, J., Sun, Z., Wen, Y., Tao, D., & Ye, J. (2021). A review on generative adversarial networks: Algorithms, theory, and applications. IEEE Transactions on Knowledge and Data Engineering, 35(4), 3313–3332.
KolodnerJCase-based reasoning1993San Mateo, CAMorgan Kaufmann
Wikipedia. (2022). K-means clustering. In Wikipedia, The Free Encyclopedia. Retrieved September 7, 2022 from. https://en.wikipedia.org/w/index.php?title=K-means_clustering&oldid=1100754774.
Bickle, J. (2020). Multiple realizability. In E. N. Zalta (Ed.), The Stanford Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford University.
FisherACaffoBSchwartzBZipunnikovVFast, exact bootstrap principal component analysis for p > 1 millionJournal of the American Statistical Association2016111514846860
von KügelgenJSharmaYGreseleLBrendelWSchölkopfBBesserveMLocatelloFSelf-supervised learning with data augmentations provably isolates content from styleAdvances in Neural Information Processing Systems2021341645116467
TibshiraniRWaltherGHastieTEstimating the number of clusters in a data set via the gap statisticJournal of the Royal Statistical Society: Series B2001632411423
MurdochWJSinghCKumbierKAbbasi-AslRYuBDefinitions, methods, and applications in interpretable machine learningProceedings of the National Academy of Sciences2019116442207122080
StuartMTFehigeYBrownJRThe Routledge companion to thought experiments2018LondonRoutledge
Tsamados, A., Aggarwal, N., Cowls, J., Morley, J., Roberts, H., Taddeo, M., & Floridi, L. (2021). The ethics of algorithms: Key problems and solutions. AI & SOCIETY.
BandyopadhyayPSBoikRJThe curve fitting problem: A Bayesian rejoinderPhilosophy of Science199966S3S390S402
MontiSTamayoPMesirovJGolubTConsensus clustering: A resampling-based method for class discovery and visualization of gene expression microarray dataMachine Learning2003521–291118
HennigCWhat are the true clusters?Pattern Recognition Letters2015645362
DennettDReal patternsThe Journal of Philosophy19918812751
ForsterMSoberEHow to tell when simpler, more unified, or less ad hoc theories will provide more accurate predictionsThe British Journal for the Philosophy of Science1994451135
FeffermanCMitterSNarayananHTesting the manifold hypothesisJournal of the American Mathematical Society20162949831049
MayoDStatistical inference as severe testing: How to get beyond the statistics wars2018New YorkCambridge University Press
WoodwardJThe problem of variable choiceSynthese2016193410471072
Sullivan, E. (2020). Understanding from machine learning models. The British Journal for the Philosophy of Science, 73(1), 109–133.
CookVJNewsonMChomsky’s universal grammar (Third Edit)2007OxfordBlackwell
John, C. R., Watson, D., Russ, D., Goldmann, K., Ehrenstein, M., Pitzalis, C., … Barnes, M. (2020). M3C: Monte Carlo reference-based consensus clustering. Scientific Reports, 10(1), 1816.
BucknerCUnderstanding adversarial examples requires a theory of artefacts for deep learningNature Machine Intelligence2020212731736
KinneyDDiachronic trends in the topic distributions of formal epistemology abstractsSynthese2022200110
BreimanLRandom ForestsMachine Learning2001451133
de RuiterAThe distinct wrong of deepfakesPhilos. Technol.202134413111332
WeslakeBExplanatory depthPhilosophy of Science2010772273294
ClarkeCHow to define levels of explanation and evaluate their indispensabilitySynthese2017194622112231
Kleinberg, J. (2002). An impossibility theorem for clustering. Advances in Neural Information Processing Systems 15, 463–470. Cambridge, MA, USA: MIT Press.
WilliamsonTModal logic as metaphysics2013Oxford University Press
DeVitoSA gruesome problem for the curve-fitting solutionThe British Journal for the Philosophy of Science1997483391396
FodorJASpecial sciences (or: The disunity of science as a working hypothesis)Synthese197428297115
SterkenburgTFGrünwaldPDThe no-free-lunch theorems of supervised learningSynthese20211993997910015
KimIRamdasASinghAWassermanLClassification accuracy as a proxy for two-sample testingThe Annals of Statistics2021491411434
PutnamHCapitanWHMerrillDDPsychological predicatesArt, mind, and religion1967University of Pittsburgh Press3748
ChalupkaKEberhardtFPeronaPCausal feature learning: An overviewBehaviormetrika2017441137164
ChettyRHendrenNKlinePSaezEWhere is the land of opportunity? The geography of intergenerational mobility in the United StatesThe Quarterly Journal of Economics2014129415531623
StutzDHermansALeibeBSuperpixels: An evaluation of the state-of-the-artComputer Vision and Image Understanding2018166127
TibshiraniRWaltherGCluster validation by prediction strengthJournal of Computational and Graphical Statistics2005143511528
Levin, J. (2021). Functionalism. In E. N. Zalta (Ed.), The Stanford Encyclopedia of Philosophy ({W}inter 2). Metaphysics Research Lab, Stanford University.
Williamson, T. (2016). Knowing by imagining (A. Kind & P. Kung, Eds.). Knowledge Through Imagination, pp. 113–123.
EllisBScientific essentialism2001Cambridge University Press
Pfau, D., & Vinyals, O. (2016). Connecting generative adversarial networks and actor-critic methods. Advances in Neural Information Processing Systems, 29.
Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., and Bengio, Y. (2014). Generative adversarial nets. In Advances in Neural Information Processing Systems (vol. 27).
ShimizuSHoyerPOHyvärinenAKerminenAA linear non-Gaussian acyclic model for causal discoveryJournal of Machine Learning Research200677220032030
Zimmermann, A., & Lee-Stronach, C. (2021). Proceed with caution. Canadian Journal of Philosophy, 52(1), 6–25.
StrevensMDepth: An account of scientific explanation2008Cambridge, MAHarvard University Press
Bommasani, R., Hudson, D., Adeli, E., Altman, R., Arora, S., von Arx, S., …, & Wang, W. (2022). On the opportunities and risks of foundation models. arXiv preprint, 2108.07258.
LaCroixTUsing logic to evolve more logic: Composing logical operators via self-assemblyThe British Journal for the Philosophy of Science2020732407437
SchurzGHume’s problem solved: The optimality of meta-induction2019The MIT Press
Karras, T., Laine, S., & Aila, T. (2019). A style-based generator architecture for generative adversarial networks. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
Watson, D., Blesch, K., Kapar, J., & Wright, M. (2023). Adversarial random forests for density estimation and generative modeling. In Proceedings of the 26th International Conference on Artificial Intelligence and Statistics. Valencia, Spain.
Robertson, T.I. & Atkins, P. (2020). Essential vs. accidental properties. In E. N. Zalta (Ed.), The Stanford Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford University.
SpanosACurve fitting, the reliability of inductive inference, and the error-statistical approachPhilosophy of Science200774
T Williamson (635_CR115) 2013
J Woodward (635_CR117) 2016; 193
L Breiman (635_CR12) 2001; 45
S Kripke (635_CR64) 1980
SA Mulaik (635_CR80) 2001; 68
DJ Stekhoven (635_CR97) 2012; 28
F Tang (635_CR103) 2017; 10
VJ Cook (635_CR22) 2007
A de Ruiter (635_CR28) 2021; 34
635_CR68
JA Barrett (635_CR5) 2019; 70
R Gorwa (635_CR44) 2020; 7
I Gabriel (635_CR41) 2020; 30
D Dennett (635_CR29) 1991; 88
C Rudin (635_CR90) 2021; 16
635_CR61
635_CR62
T LaCroix (635_CR66) 2020; 73
D Mayo (635_CR74) 2018
B Schölkopf (635_CR91) 2021; 109
AR Martin (635_CR72) 2019; 51
M Forster (635_CR38) 1994; 45
I Goodfellow (635_CR43) 2016
A Criminisi (635_CR27) 2012
J von Kügelgen (635_CR108) 2021; 34
J Wang (635_CR109) 2019
C Buckner (635_CR13) 2018; 195
A Clark (635_CR18) 2017; 51
C Fefferman (635_CR33) 2016; 29
635_CR51
635_CR53
635_CR55
JA Hartigan (635_CR48) 1975
J Hohwy (635_CR52) 2020; 35
635_CR2
635_CR1
B Ellis (635_CR32) 2001
635_CR85
635_CR88
J Pääkkönen (635_CR84) 2021; 199
635_CR89
D Mayo (635_CR73) 1996
C Buckner (635_CR14) 2020; 2
S Leonelli (635_CR67) 2016
635_CR70
M Krishnan (635_CR65) 2020; 33
S Monti (635_CR79) 2003; 52
M Strevens (635_CR99) 2008
A Adadi (635_CR3) 2018; 6
R Tibshirani (635_CR104) 2005; 14
R Tibshirani (635_CR105) 2001; 63
R Guidotti (635_CR46) 2018; 51
LR Franklin-Hall (635_CR39) 2014; 67
A Correia (635_CR24) 2020; 33
A Creswell (635_CR26) 2018; 35
B Skyrms (635_CR94) 2010
A Potochnik (635_CR86) 2017
635_CR76
635_CR78
I Kim (635_CR57) 2021; 49
R Millière (635_CR77) 2022; 200
635_CR116
635_CR118
635_CR119
A Spanos (635_CR95) 2007; 74
635_CR25
S Lloyd (635_CR69) 1982; 28
NJ Block (635_CR10) 1972; 81
C Malaterre (635_CR71) 2021; 199
D Corfield (635_CR23) 2009; 40
JH Friedman (635_CR40) 2001; 29
G Schurz (635_CR92) 2019
635_CR21
D Stutz (635_CR101) 2018; 166
K Chalupka (635_CR15) 2017; 44
J Kolodner (635_CR63) 1993
635_CR106
635_CR8
635_CR9
635_CR6
635_CR7
C Clarke (635_CR19) 2017; 194
D Kinney (635_CR59) 2022; 200
C Öhman (635_CR83) 2022; 200
PS Bandyopadhyay (635_CR4) 1999; 66
WJ Murdoch (635_CR81) 2019; 116
D Watson (635_CR111) 2021; 198
(635_CR100) 2018
635_CR17
635_CR112
635_CR114
IA Kieseppä (635_CR56) 1997; 48
635_CR96
A Turing (635_CR107) 1950; LIX
635_CR11
A Fisher (635_CR34) 2016; 111
C Mayo-Wilson (635_CR75) 2021; 199
S Shimizu (635_CR93) 2006; 7
C Hennig (635_CR50) 2015; 64
M Noichl (635_CR82) 2021; 198
635_CR47
635_CR49
R Chetty (635_CR16) 2014; 129
D Kinney (635_CR60) 2020
H Putnam (635_CR87) 1967
635_CR102
D Watson (635_CR110) 2022; 200
635_CR42
635_CR45
IT Jolliffe (635_CR54) 2002
S DeVito (635_CR30) 1997; 48
635_CR36
TF Sterkenburg (635_CR98) 2021; 199
D Kinney (635_CR58) 2018; 86
B Weslake (635_CR113) 2010; 77
V Cohen-Addad (635_CR20) 2019; 48
JA Fodor (635_CR37) 1974; 28
L Floridi (635_CR35) 2012; 184
635_CR31
References_xml – reference: PotochnikAIdealization and the aims of science2017University of Chicago Press
– reference: BucknerCEmpiricism without magic: Transformational abstraction in deep convolutional neural networksSynthese201819553395372
– reference: KinneyDDiachronic trends in the topic distributions of formal epistemology abstractsSynthese2022200110
– reference: ShimizuSHoyerPOHyvärinenAKerminenAA linear non-Gaussian acyclic model for causal discoveryJournal of Machine Learning Research200677220032030
– reference: GorwaRBinnsRKatzenbachCAlgorithmic content moderation: Technical and political challenges in the automation of platform governanceBig Data & Society2020712053951719897945
– reference: TibshiraniRWaltherGCluster validation by prediction strengthJournal of Computational and Graphical Statistics2005143511528
– reference: KinneyDOn the explanatory depth and pragmatic value of coarse-grained, probabilistic, causal explanationsPhilosophy of Science2018861145167
– reference: MillièreRDeep learning and synthetic mediaSynthese20222004231
– reference: Cohen-AddadVKleinPNMathieuCLocal search yields approximation schemes for k-means and k-median in Euclidean and minor-free metricsSIAM Journal on Computing2019482644667
– reference: Watson, D., Blesch, K., Kapar, J., & Wright, M. (2023). Adversarial random forests for density estimation and generative modeling. In Proceedings of the 26th International Conference on Artificial Intelligence and Statistics. Valencia, Spain.
– reference: Bommasani, R., Hudson, D., Adeli, E., Altman, R., Arora, S., von Arx, S., …, & Wang, W. (2022). On the opportunities and risks of foundation models. arXiv preprint, 2108.07258.
– reference: Abboud, A., Cohen-Addad, V., & Houdrouge, H. (2019). Subquadratic high-dimensional hierarchical clustering. Advances in Neural Information Processing Systems (Vol. 32).
– reference: MayoDStatistical inference as severe testing: How to get beyond the statistics wars2018New YorkCambridge University Press
– reference: PääkkönenJYlikoskiPHumanistic interpretation and machine learningSynthese2021199114611497
– reference: CookVJNewsonMChomsky’s universal grammar (Third Edit)2007OxfordBlackwell
– reference: SchurzGHume’s problem solved: The optimality of meta-induction2019The MIT Press
– reference: NoichlMModeling the structure of recent philosophySynthese2021198650895100
– reference: HohwyJNew directions in predictive processingMind & Language2020352209223
– reference: Floridi, L. (2008). The method of levels of abstraction. Minds and Machines, 18(3), 303–329.
– reference: WoodwardJThe problem of variable choiceSynthese2016193410471072
– reference: Gui, J., Sun, Z., Wen, Y., Tao, D., & Ye, J. (2021). A review on generative adversarial networks: Algorithms, theory, and applications. IEEE Transactions on Knowledge and Data Engineering, 35(4), 3313–3332.
– reference: Cohen-Addad, V., Kanade, V., & Mallmann-Trenn, F. (2018). Clustering redemption: Beyond the impossibility of Kleinberg’s axioms. Advances in Neural Information Processing Systems (Vol. 31).
– reference: ClarkeCHow to define levels of explanation and evaluate their indispensabilitySynthese2017194622112231
– reference: Higgins, I., Matthey, L., Pal, A., Burgess, C., Glorot, X., Botvinick, M., … Lechner, A. (2017). beta-VAE: Learning basic visual concepts with a constrained variational framework. International Conference on Learning Representations.
– reference: WatsonDFloridiLThe explanation game: A formal framework for interpretable machine learningSynthese20211981092119242
– reference: StekhovenDJBühlmannPMissForest—Non-parametric missing value imputation for mixed-type dataBioinformatics2012281112118
– reference: Ben-David, S. & Ackerman, M. (2008). Measures of clustering quality: A working set of axioms for clustering. In Advances in Neural Information Processing Systems.
– reference: ForsterMSoberEHow to tell when simpler, more unified, or less ad hoc theories will provide more accurate predictionsThe British Journal for the Philosophy of Science1994451135
– reference: SterkenburgTFGrünwaldPDThe no-free-lunch theorems of supervised learningSynthese20211993997910015
– reference: ChalupkaKEberhardtFPeronaPCausal feature learning: An overviewBehaviormetrika2017441137164
– reference: WeslakeBExplanatory depthPhilosophy of Science2010772273294
– reference: StuartMTFehigeYBrownJRThe Routledge companion to thought experiments2018LondonRoutledge
– reference: StrevensMDepth: An account of scientific explanation2008Cambridge, MAHarvard University Press
– reference: Mayo-WilsonCZollmanKJSThe computational philosophy: Simulation as a core philosophical methodSynthese2021199136473673
– reference: StutzDHermansALeibeBSuperpixels: An evaluation of the state-of-the-artComputer Vision and Image Understanding2018166127
– reference: FeffermanCMitterSNarayananHTesting the manifold hypothesisJournal of the American Mathematical Society20162949831049
– reference: GuidottiRMonrealeARuggieriSTuriniFGiannottiFPedreschiDA survey of methods for explaining black box modelsACM Computing Surveys2018515142
– reference: SpanosACurve fitting, the reliability of inductive inference, and the error-statistical approachPhilosophy of Science200774510461066
– reference: Franklin-HallLRHigh-level explanation and the interventionist’s ‘variables problem’The British Journal for the Philosophy of Science2014672553577
– reference: LloydSLeast squares quantization in PCMIEEE Transactions on Information Theory1982282129137
– reference: Bird, A., & Tobin, E. (2022). Natural kinds. In E. N. Zalta (Ed.), The Stanford Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford University.
– reference: HennigCWhat are the true clusters?Pattern Recognition Letters2015645362
– reference: KieseppäIAAkaike information criterion, curve-fitting, and the philosophical problem of simplicityThe British Journal for the Philosophy of Science19974812148
– reference: MulaikSAThe curve-fitting problem: An objectivist viewPhilosophy of Science2001682218241
– reference: Ravuri, S., & Vinyals, O. (2019). Classification accuracy score for conditional generative models. Advances in Neural Information Processing Systems, 32.
– reference: John, C. R., Watson, D., Russ, D., Goldmann, K., Ehrenstein, M., Pitzalis, C., … Barnes, M. (2020). M3C: Monte Carlo reference-based consensus clustering. Scientific Reports, 10(1), 1816.
– reference: Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., and Bengio, Y. (2014). Generative adversarial nets. In Advances in Neural Information Processing Systems (vol. 27).
– reference: FloridiLSemantic information and the network theory of accountSynthese20121843431454
– reference: FriedmanJHGreedy function approximation: A gradient boosting machineThe Annals of Statistics200129511891232
– reference: ClarkABusting out: Predictive brains, embodied minds, and the puzzle of the evidentiary veilNoûs2017514727753
– reference: MalaterreCLareauFPulizzottoDSt-OngeJEight journals over eight decades: A computational topic-modeling approach to contemporary philosophy of scienceSynthese2021199128832923
– reference: BreimanLRandom ForestsMachine Learning2001451133
– reference: von KügelgenJSharmaYGreseleLBrendelWSchölkopfBBesserveMLocatelloFSelf-supervised learning with data augmentations provably isolates content from styleAdvances in Neural Information Processing Systems2021341645116467
– reference: KinneyDWatsonDJaegerMNielsenTDCausal feature learning for utility-maximizing agentsInternational Conference on Probabilistic Graphical Models2020Skørping, DenmarkPMLR257268
– reference: TibshiraniRWaltherGHastieTEstimating the number of clusters in a data set via the gap statisticJournal of the Royal Statistical Society: Series B2001632411423
– reference: MontiSTamayoPMesirovJGolubTConsensus clustering: A resampling-based method for class discovery and visualization of gene expression microarray dataMachine Learning2003521–291118
– reference: SchölkopfBLocatelloFBauerSKeNRKalchbrennerNGoyalABengioYToward causal representation learningProceedings of the IEEE20211095612634
– reference: Williamson, T. (2016). Knowing by imagining (A. Kind & P. Kung, Eds.). Knowledge Through Imagination, pp. 113–123.
– reference: Bickle, J. (2020). Multiple realizability. In E. N. Zalta (Ed.), The Stanford Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford University.
– reference: KolodnerJCase-based reasoning1993San Mateo, CAMorgan Kaufmann
– reference: MurdochWJSinghCKumbierKAbbasi-AslRYuBDefinitions, methods, and applications in interpretable machine learningProceedings of the National Academy of Sciences2019116442207122080
– reference: GabrielIArtificial intelligence, values, and alignmentMinds and Machines2020303411437
– reference: EllisBScientific essentialism2001Cambridge University Press
– reference: RudinCChenCChenZHuangHSemenovaLZhongCInterpretable machine learning: Fundamental principles and 10 grand challengesStat. Surv.202116185
– reference: CorreiaAPeharzRde CamposCPJoints in random forestsAdvances in Neural Information Processing Systems2020331140411415
– reference: TangFIshwaranHRandom forest missing data algorithmsStatistical Analysis and Data Mining2017106363377
– reference: de RuiterAThe distinct wrong of deepfakesPhilos. Technol.202134413111332
– reference: Zimmermann, A., & Lee-Stronach, C. (2021). Proceed with caution. Canadian Journal of Philosophy, 52(1), 6–25.
– reference: Hastie, T., Tibshirani, R., & Friedman, J. (2009). The elements of statistical learning: Data mining, inference, and prediction. New York: Springer.
– reference: DennettDReal patternsThe Journal of Philosophy19918812751
– reference: LaCroixTUsing logic to evolve more logic: Composing logical operators via self-assemblyThe British Journal for the Philosophy of Science2020732407437
– reference: Mittelstadt, B. D., Allo, P., Taddeo, M., Wachter, S., & Floridi, L. (2016). The ethics of algorithms: Mapping the debate. Big Data & Society.
– reference: Sullivan, E. (2020). Understanding from machine learning models. The British Journal for the Philosophy of Science, 73(1), 109–133.
– reference: FisherACaffoBSchwartzBZipunnikovVFast, exact bootstrap principal component analysis for p > 1 millionJournal of the American Statistical Association2016111514846860
– reference: FodorJASpecial sciences (or: The disunity of science as a working hypothesis)Synthese197428297115
– reference: Wikipedia. (2022). K-means clustering. In Wikipedia, The Free Encyclopedia. Retrieved September 7, 2022 from. https://en.wikipedia.org/w/index.php?title=K-means_clustering&oldid=1100754774.
– reference: BlockNJFodorJAWhat psychological states are notThe Philosophical Review1972812159181
– reference: CriminisiAShottonJKonukogluEDecision forests: A unified framework for classification, regression, density estimation, manifold, learning and semi-supervised learning2012Now Publishers
– reference: Tsamados, A., Aggarwal, N., Cowls, J., Morley, J., Roberts, H., Taddeo, M., & Floridi, L. (2021). The ethics of algorithms: Key problems and solutions. AI & SOCIETY.
– reference: LeonelliSData-centric biology: A philosophical study2016ChicagoUniversity of Chicago Press
– reference: Kleinbaum, D.G., & Klein, M. (2012). Kaplan-Meier survival curves and the log-rank test. In: Survival analysis. Statistics for Biology and Health. New York: Springer.
– reference: Zednik, C. (2019). Solving the black box problem: A normative framework for explainable artificial intelligence. Philosophy & Technology, 34, 265–288.
– reference: AdadiABerradaMPeeking inside the black-box: A survey on explainable artificial intelligence (XAI)IEEE Access201865213852160
– reference: Levin, J. (2021). Functionalism. In E. N. Zalta (Ed.), The Stanford Encyclopedia of Philosophy ({W}inter 2). Metaphysics Research Lab, Stanford University.
– reference: WangJTepfenhartWFormal methods in computer science2019Boca Raton, FLChapman and Hall/CRC
– reference: Robertson, T.I. & Atkins, P. (2020). Essential vs. accidental properties. In E. N. Zalta (Ed.), The Stanford Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford University.
– reference: TuringAComputing machinery and intelligenceMind1950LIX236433460
– reference: Choi, Y., Vergari, A., & Van den Broeck, G. (2020). Probabilistic circuits: A unifying framework for tractable probabilistic models. Technical Report, University of California, Los Angeles.
– reference: KripkeSNaming and necessity1980Cambridge, MAHarvard University Press
– reference: BandyopadhyayPSBoikRJThe curve fitting problem: A Bayesian rejoinderPhilosophy of Science199966S3S390S402
– reference: JolliffeITPrincipal component analysis2002New YorkSpringer
– reference: Stadler, T., Oprisanu, B., & Troncoso, C. (2022). Synthetic data - Anonymisation groundhog day. In 31st USENIX Security Symposium, 1451–1468.
– reference: ChettyRHendrenNKlinePSaezEWhere is the land of opportunity? The geography of intergenerational mobility in the United StatesThe Quarterly Journal of Economics2014129415531623
– reference: BucknerCUnderstanding adversarial examples requires a theory of artefacts for deep learningNature Machine Intelligence2020212731736
– reference: DeVitoSA gruesome problem for the curve-fitting solutionThe British Journal for the Philosophy of Science1997483391396
– reference: Karras, T., Laine, S., & Aila, T. (2019). A style-based generator architecture for generative adversarial networks. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
– reference: KrishnanMAgainst interpretability: A critical examination of the interpretability problem in machine learningPhilosophy & Technology2020333487502
– reference: MartinARKanaiMKamataniYOkadaYNealeBMDalyMJClinical use of current polygenic risk scores may exacerbate health disparitiesNature Genetics2019514584591
– reference: Lundberg, S. M., Erion, G., Chen, H., DeGrave, A., Prutkin, J. M., Nair, B., … Lee, S.-I. (2020). From local explanations to global understanding with explainable AI for trees. Nature Machine Intelligence, 2(1), 56–67.
– reference: Harman, G., & Kulkarni, S. (2007). Reliable reasoning: Induction and statistical learning theory. Cambridge, MA: The MIT Press.
– reference: Beckers, S., Eberhardt, F., & Halpern, J. Y. (2019). Approximate causal abstraction. Proceedings of the Conference on Uncertainty in Artificial Intelligence, 210.
– reference: MayoDError and the growth of experimental knowledge1996ChicagoUniversity of Chicago Press
– reference: Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Efficient estimation of word representations in vector space. International Conference on Learning Representations.
– reference: KimIRamdasASinghAWassermanLClassification accuracy as a proxy for two-sample testingThe Annals of Statistics2021491411434
– reference: SkyrmsBSignals: Evolution, learning, and information2010OxfordOxford University Press
– reference: HartiganJAClustering algorithms1975New YorkWiley
– reference: Kleinberg, J. (2002). An impossibility theorem for clustering. Advances in Neural Information Processing Systems 15, 463–470. Cambridge, MA, USA: MIT Press.
– reference: PutnamHCapitanWHMerrillDDPsychological predicatesArt, mind, and religion1967University of Pittsburgh Press3748
– reference: BarrettJASkyrmsBMohseniASelf-assembling networksThe British Journal for the Philosophy of Science2019701301325
– reference: Crabbé, J., & van der Schaar, M. (2022). Label-free explainability for unsupervised models. Proceedings of the 34th International Conference on Machine Learning.
– reference: Dudoit, S., & Fridlyand, J. (2002). A prediction-based resampling method for estimating the number of clusters in a dataset. Genome Biology, 3(7).
– reference: GoodfellowIBengioYCourvilleADeep learning2016MIT Press
– reference: Pfau, D., & Vinyals, O. (2016). Connecting generative adversarial networks and actor-critic methods. Advances in Neural Information Processing Systems, 29.
– reference: WilliamsonTModal logic as metaphysics2013Oxford University Press
– reference: CorfieldDSchölkopfBVapnikVFalsificationism and statistical learning theory: Comparing the Popper and Vapnik-Chervonenkis dimensionsJournal for General Philosophy of Science20094015158
– reference: CreswellAWhiteTDumoulinVArulkumaranKSenguptaBBharathAAGenerative adversarial networks: An overviewIEEE Signal Processing Magazine20183515365
– reference: Ackerman, M. & Ben-David, S. (2009). Clusterability: A theoretical analysis. In Proceedings of the 12th International Conference on Artificial Intelligence and Statistics.
– reference: ÖhmanCThe identification game: Deepfakes and the epistemic limits of identitySynthese20222004319
– reference: WatsonDConceptual challenges for interpretable machine learningSynthese202220026598
– volume: 10
  start-page: 363
  issue: 6
  year: 2017
  ident: 635_CR103
  publication-title: Statistical Analysis and Data Mining
  doi: 10.1002/sam.11348
– volume: 51
  start-page: 1
  issue: 5
  year: 2018
  ident: 635_CR46
  publication-title: ACM Computing Surveys
  doi: 10.1145/3236009
– volume: 33
  start-page: 11404
  year: 2020
  ident: 635_CR24
  publication-title: Advances in Neural Information Processing Systems
– ident: 635_CR31
  doi: 10.1186/gb-2002-3-7-research0036
– ident: 635_CR47
  doi: 10.7551/mitpress/5876.001.0001
– ident: 635_CR76
– volume: 200
  start-page: 319
  issue: 4
  year: 2022
  ident: 635_CR83
  publication-title: Synthese
  doi: 10.1007/s11229-022-03798-5
– volume: 28
  start-page: 129
  issue: 2
  year: 1982
  ident: 635_CR69
  publication-title: IEEE Transactions on Information Theory
  doi: 10.1109/TIT.1982.1056489
– volume: 74
  start-page: 1046
  issue: 5
  year: 2007
  ident: 635_CR95
  publication-title: Philosophy of Science
  doi: 10.1086/525643
– ident: 635_CR55
  doi: 10.1109/CVPR.2019.00453
– ident: 635_CR119
  doi: 10.1017/can.2021.17
– ident: 635_CR62
– volume-title: Case-based reasoning
  year: 1993
  ident: 635_CR63
– ident: 635_CR85
– volume: 28
  start-page: 97
  issue: 2
  year: 1974
  ident: 635_CR37
  publication-title: Synthese
  doi: 10.1007/BF00485230
– volume-title: Depth: An account of scientific explanation
  year: 2008
  ident: 635_CR99
– volume: LIX
  start-page: 433
  issue: 236
  year: 1950
  ident: 635_CR107
  publication-title: Mind
  doi: 10.1093/mind/LIX.236.433
– volume: 200
  start-page: 65
  issue: 2
  year: 2022
  ident: 635_CR110
  publication-title: Synthese
  doi: 10.1007/s11229-022-03485-5
– volume: 51
  start-page: 584
  issue: 4
  year: 2019
  ident: 635_CR72
  publication-title: Nature Genetics
  doi: 10.1038/s41588-019-0379-x
– volume: 199
  start-page: 1461
  issue: 1
  year: 2021
  ident: 635_CR84
  publication-title: Synthese
  doi: 10.1007/s11229-020-02806-w
– volume-title: Error and the growth of experimental knowledge
  year: 1996
  ident: 635_CR73
  doi: 10.7208/chicago/9780226511993.001.0001
– volume: 199
  start-page: 3647
  issue: 1
  year: 2021
  ident: 635_CR75
  publication-title: Synthese
  doi: 10.1007/s11229-020-02950-3
– volume: 30
  start-page: 411
  issue: 3
  year: 2020
  ident: 635_CR41
  publication-title: Minds and Machines
  doi: 10.1007/s11023-020-09539-2
– volume: 63
  start-page: 411
  issue: 2
  year: 2001
  ident: 635_CR105
  publication-title: Journal of the Royal Statistical Society: Series B
  doi: 10.1111/1467-9868.00293
– volume-title: Naming and necessity
  year: 1980
  ident: 635_CR64
– volume: 49
  start-page: 411
  issue: 1
  year: 2021
  ident: 635_CR57
  publication-title: The Annals of Statistics
– ident: 635_CR21
– volume: 198
  start-page: 9211
  issue: 10
  year: 2021
  ident: 635_CR111
  publication-title: Synthese
  doi: 10.1007/s11229-020-02629-9
– ident: 635_CR88
– ident: 635_CR8
– start-page: 257
  volume-title: International Conference on Probabilistic Graphical Models
  year: 2020
  ident: 635_CR60
– volume: 64
  start-page: 53
  year: 2015
  ident: 635_CR50
  publication-title: Pattern Recognition Letters
  doi: 10.1016/j.patrec.2015.04.009
– ident: 635_CR78
  doi: 10.1177/2053951716679679
– volume-title: Modal logic as metaphysics
  year: 2013
  ident: 635_CR115
  doi: 10.1093/acprof:oso/9780199552078.001.0001
– volume: 77
  start-page: 273
  issue: 2
  year: 2010
  ident: 635_CR113
  publication-title: Philosophy of Science
  doi: 10.1086/651316
– ident: 635_CR42
– volume-title: Deep learning
  year: 2016
  ident: 635_CR43
– volume: 7
  start-page: 2003
  issue: 72
  year: 2006
  ident: 635_CR93
  publication-title: Journal of Machine Learning Research
– volume-title: The Routledge companion to thought experiments
  year: 2018
  ident: 635_CR100
– volume: 48
  start-page: 644
  issue: 2
  year: 2019
  ident: 635_CR20
  publication-title: SIAM Journal on Computing
  doi: 10.1137/17M112717X
– ident: 635_CR45
  doi: 10.1109/TKDE.2021.3130191
– ident: 635_CR17
– ident: 635_CR51
– volume: 28
  start-page: 112
  issue: 1
  year: 2012
  ident: 635_CR97
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btr597
– ident: 635_CR68
– volume: 73
  start-page: 407
  issue: 2
  year: 2020
  ident: 635_CR66
  publication-title: The British Journal for the Philosophy of Science
  doi: 10.1093/bjps/axz049
– volume: 199
  start-page: 9979
  issue: 3
  year: 2021
  ident: 635_CR98
  publication-title: Synthese
  doi: 10.1007/s11229-021-03233-1
– volume: 200
  start-page: 10
  issue: 1
  year: 2022
  ident: 635_CR59
  publication-title: Synthese
  doi: 10.1007/s11229-022-03466-8
– volume: 34
  start-page: 1311
  issue: 4
  year: 2021
  ident: 635_CR28
  publication-title: Philos. Technol.
  doi: 10.1007/s13347-021-00459-2
– volume: 129
  start-page: 1553
  issue: 4
  year: 2014
  ident: 635_CR16
  publication-title: The Quarterly Journal of Economics
  doi: 10.1093/qje/qju022
– volume: 45
  start-page: 1
  issue: 1
  year: 2001
  ident: 635_CR12
  publication-title: Machine Learning
  doi: 10.1023/A:1010933404324
– volume: 44
  start-page: 137
  issue: 1
  year: 2017
  ident: 635_CR15
  publication-title: Behaviormetrika
  doi: 10.1007/s41237-016-0008-2
– ident: 635_CR70
  doi: 10.1038/s42256-019-0138-9
– volume: 35
  start-page: 53
  issue: 1
  year: 2018
  ident: 635_CR26
  publication-title: IEEE Signal Processing Magazine
  doi: 10.1109/MSP.2017.2765202
– volume-title: Decision forests: A unified framework for classification, regression, density estimation, manifold, learning and semi-supervised learning
  year: 2012
  ident: 635_CR27
– ident: 635_CR114
– ident: 635_CR116
  doi: 10.1093/acprof:oso/9780198716808.003.0005
– volume: 111
  start-page: 846
  issue: 514
  year: 2016
  ident: 635_CR34
  publication-title: Journal of the American Statistical Association
  doi: 10.1080/01621459.2015.1062383
– volume: 116
  start-page: 22071
  issue: 44
  year: 2019
  ident: 635_CR81
  publication-title: Proceedings of the National Academy of Sciences
  doi: 10.1073/pnas.1900654116
– ident: 635_CR118
  doi: 10.1007/s13347-019-00382-7
– volume-title: Principal component analysis
  year: 2002
  ident: 635_CR54
– volume-title: Signals: Evolution, learning, and information
  year: 2010
  ident: 635_CR94
  doi: 10.1093/acprof:oso/9780199580828.001.0001
– volume: 184
  start-page: 431
  issue: 3
  year: 2012
  ident: 635_CR35
  publication-title: Synthese
  doi: 10.1007/s11229-010-9821-4
– ident: 635_CR53
  doi: 10.1038/s41598-020-58766-1
– ident: 635_CR96
– volume-title: Idealization and the aims of science
  year: 2017
  ident: 635_CR86
  doi: 10.7208/chicago/9780226507194.001.0001
– volume: 166
  start-page: 1
  year: 2018
  ident: 635_CR101
  publication-title: Computer Vision and Image Understanding
  doi: 10.1016/j.cviu.2017.03.007
– volume-title: Statistical inference as severe testing: How to get beyond the statistics wars
  year: 2018
  ident: 635_CR74
  doi: 10.1017/9781107286184
– volume: 48
  start-page: 391
  issue: 3
  year: 1997
  ident: 635_CR30
  publication-title: The British Journal for the Philosophy of Science
  doi: 10.1093/bjps/48.3.391
– volume: 195
  start-page: 5339
  year: 2018
  ident: 635_CR13
  publication-title: Synthese
  doi: 10.1007/s11229-018-01949-1
– volume: 193
  start-page: 1047
  issue: 4
  year: 2016
  ident: 635_CR117
  publication-title: Synthese
  doi: 10.1007/s11229-015-0810-5
– volume: 7
  start-page: 205395171989794
  issue: 1
  year: 2020
  ident: 635_CR44
  publication-title: Big Data & Society
  doi: 10.1177/2053951719897945
– volume: 51
  start-page: 727
  issue: 4
  year: 2017
  ident: 635_CR18
  publication-title: Noûs
  doi: 10.1111/nous.12140
– volume: 70
  start-page: 301
  issue: 1
  year: 2019
  ident: 635_CR5
  publication-title: The British Journal for the Philosophy of Science
  doi: 10.1093/bjps/axx039
– ident: 635_CR11
– volume: 45
  start-page: 1
  issue: 1
  year: 1994
  ident: 635_CR38
  publication-title: The British Journal for the Philosophy of Science
  doi: 10.1093/bjps/45.1.1
– volume: 33
  start-page: 487
  issue: 3
  year: 2020
  ident: 635_CR65
  publication-title: Philosophy & Technology
  doi: 10.1007/s13347-019-00372-9
– ident: 635_CR106
  doi: 10.2139/ssrn.3662302
– volume-title: Scientific essentialism
  year: 2001
  ident: 635_CR32
– ident: 635_CR9
– ident: 635_CR89
– ident: 635_CR1
– volume: 34
  start-page: 16451
  year: 2021
  ident: 635_CR108
  publication-title: Advances in Neural Information Processing Systems
– volume: 86
  start-page: 145
  issue: 1
  year: 2018
  ident: 635_CR58
  publication-title: Philosophy of Science
  doi: 10.1086/701072
– volume: 88
  start-page: 27
  issue: 1
  year: 1991
  ident: 635_CR29
  publication-title: The Journal of Philosophy
  doi: 10.2307/2027085
– ident: 635_CR49
  doi: 10.1007/978-0-387-84858-7
– ident: 635_CR112
– volume: 16
  start-page: 1
  year: 2021
  ident: 635_CR90
  publication-title: Stat. Surv.
– volume: 14
  start-page: 511
  issue: 3
  year: 2005
  ident: 635_CR104
  publication-title: Journal of Computational and Graphical Statistics
  doi: 10.1198/106186005X59243
– volume: 199
  start-page: 2883
  issue: 1
  year: 2021
  ident: 635_CR71
  publication-title: Synthese
  doi: 10.1007/s11229-020-02915-6
– volume: 35
  start-page: 209
  issue: 2
  year: 2020
  ident: 635_CR52
  publication-title: Mind & Language
  doi: 10.1111/mila.12281
– ident: 635_CR25
– volume: 6
  start-page: 52138
  year: 2018
  ident: 635_CR3
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2870052
– volume: 68
  start-page: 218
  issue: 2
  year: 2001
  ident: 635_CR80
  publication-title: Philosophy of Science
  doi: 10.1086/392874
– volume-title: Chomsky’s universal grammar (Third Edit)
  year: 2007
  ident: 635_CR22
– volume: 81
  start-page: 159
  issue: 2
  year: 1972
  ident: 635_CR10
  publication-title: The Philosophical Review
  doi: 10.2307/2183991
– volume: 52
  start-page: 91
  issue: 1–2
  year: 2003
  ident: 635_CR79
  publication-title: Machine Learning
  doi: 10.1023/A:1023949509487
– volume: 67
  start-page: 553
  issue: 2
  year: 2014
  ident: 635_CR39
  publication-title: The British Journal for the Philosophy of Science
  doi: 10.1093/bjps/axu040
– volume: 200
  start-page: 231
  issue: 4
  year: 2022
  ident: 635_CR77
  publication-title: Synthese
  doi: 10.1007/s11229-022-03739-2
– ident: 635_CR7
– volume: 48
  start-page: 21
  issue: 1
  year: 1997
  ident: 635_CR56
  publication-title: The British Journal for the Philosophy of Science
  doi: 10.1093/bjps/48.1.21
– ident: 635_CR36
  doi: 10.1007/s11023-008-9113-7
– volume-title: Clustering algorithms
  year: 1975
  ident: 635_CR48
– volume-title: Hume’s problem solved: The optimality of meta-induction
  year: 2019
  ident: 635_CR92
  doi: 10.7551/mitpress/11964.001.0001
– volume: 198
  start-page: 5089
  issue: 6
  year: 2021
  ident: 635_CR82
  publication-title: Synthese
  doi: 10.1007/s11229-019-02390-8
– ident: 635_CR6
  doi: 10.1609/aaai.v33i01.33012678
– volume-title: Data-centric biology: A philosophical study
  year: 2016
  ident: 635_CR67
  doi: 10.7208/chicago/9780226416502.001.0001
– ident: 635_CR102
  doi: 10.1093/bjps/axz035
– volume: 40
  start-page: 51
  issue: 1
  year: 2009
  ident: 635_CR23
  publication-title: Journal for General Philosophy of Science
  doi: 10.1007/s10838-009-9091-3
– volume: 29
  start-page: 1189
  issue: 5
  year: 2001
  ident: 635_CR40
  publication-title: The Annals of Statistics
  doi: 10.1214/aos/1013203451
– volume: 66
  start-page: S390
  issue: S3
  year: 1999
  ident: 635_CR4
  publication-title: Philosophy of Science
  doi: 10.1086/392740
– ident: 635_CR61
  doi: 10.1007/978-1-4419-6646-9_2
– start-page: 37
  volume-title: Art, mind, and religion
  year: 1967
  ident: 635_CR87
  doi: 10.2307/jj.6380610.6
– volume: 109
  start-page: 612
  issue: 5
  year: 2021
  ident: 635_CR91
  publication-title: Proceedings of the IEEE
  doi: 10.1109/JPROC.2021.3058954
– volume-title: Formal methods in computer science
  year: 2019
  ident: 635_CR109
  doi: 10.1201/9780429184185
– volume: 29
  start-page: 983
  issue: 4
  year: 2016
  ident: 635_CR33
  publication-title: Journal of the American Mathematical Society
  doi: 10.1090/jams/852
– volume: 2
  start-page: 731
  issue: 12
  year: 2020
  ident: 635_CR14
  publication-title: Nature Machine Intelligence
  doi: 10.1038/s42256-020-00266-y
– volume: 194
  start-page: 2211
  issue: 6
  year: 2017
  ident: 635_CR19
  publication-title: Synthese
  doi: 10.1007/s11229-016-1053-9
– ident: 635_CR2
SSID ssj0000516327
Score 2.2570896
Snippet Unsupervised learning algorithms are widely used for many important statistical tasks with numerous applications in science and industry. Yet despite their...
SourceID proquest
gale
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 28
SubjectTerms Algorithms
Analysis
Clustering
Contingency
Data mining
Education
Epistemology
Ethics
Machine learning
Philosophy
Philosophy of Technology
Research Article
Unsupervised learning
SummonAdditionalLinks – databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV07T8MwED7xWGBAPEWhoAwIJMCicZzYmRBCFMQADFRisxI_WFBaaBn499ylTkt5rfHlZJ3vfA_b3wEcOFkfFyVMea-Y8JjuYApmWOnT3EnvUjR2um1xl930xO1T-hQKbsNwrbLZE-uN2vYN1cjPOAHliBTD6_PBK6OuUXS6GlpozMNijJ6G9Fx1ryc1FlS4LKm7tnLMbFgqkiS8mxm_nksSIRk6LUaOOmXZjG_6vkP_OCqtPVB3FVZC6BhdjNd6DeZctQ7LXwAF12HpoelM8LEBx_dVhOFdNP0W9X3Uq4bvA9oghs5GAV31eRN63avHyxsWWiMwgyllxnzGUZLCS4LLUkVuOyXHWEIKqzqZ5UViuPdoWxa9cVbmGJVYaZ3iufIxp47pW7BQ9Su3DVHsY5N7JVxOz0zjuJCiNKUquEe2MrEtiBuhaBNww6l9xYueIh6TIDVy1bUgddaCk8k_gzFqxr_URyRrTSaFnE0RXgbg_AicSl9IAn3DWLDTgsMZyucxNPdvhO0ZQrQZMzvcLKsONjvUUw1rwWmz1NPhv-e_8z-3XVjitZJR6aYNC6O3d7eHkcyo3K_V9RMYQulm
  priority: 102
  providerName: ProQuest
Title On the Philosophy of Unsupervised Learning
URI https://link.springer.com/article/10.1007/s13347-023-00635-6
https://www.proquest.com/docview/2804145875
Volume 36
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED90vuiD6FSsztEHUVADa5om6eMc20RBRRzoU-hHshfpxLkH_3svXbo5nYJPheR6hEsud5fkfgdwrEV5XRQSaYwkzGC4gyFYRlITxVoYHaGy29cWt_xqwK6foieXFDauXrtXV5LlTj1PdgtDJgjaGGLtakT4KqxFGLtbdRzQ9uxkBZcZD8tarRTjGRKxMHTZMsvZLFik7_vyjwvS0u70tmDTOYx-ezrD27Cii7qttezeZdRh4wukYB3W76vaBB87cHZX-Ojg-fM2f2T8QTGevNotYqxz3-GrDndh0Os-dq6IK45AMgwqOTGcoiyZERYwSyZx3kopehOC5bLFc5qEGTUGtStHe8zTGP2SXORa0liagNqa6XtQK0aF3gc_MEEWG8l0bBNNgyARLM1SmVCDbEWYexBUAlKZQw63BSxe1Bzz2ApVIVdVClVxD85n_7xOcTP-pD61cldWqZBzlrjcAByfhadSbWFh39AbbHlwskA5nIJzLyNsLBCi1mSL3dUUK6e1Y0UtGBNDIUYeXFTTPu_-ffwH_yM_hHVaLkB7mNOA2vvbRB-hb_OeNmFV9vpNWGv3n2-6-L3s3t4_YGuHd5rlMv8EFAvu8A
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB6h5QA9IKBUXZ45tCBRLDaOEycHhHhqeXSLECtxM4kfXFB2YUGIP8VvZCYPli0tN66xM7LG87Q93wD8sLK4LgpY7FzMhMN0B1MwzTIXJlY6G6Ky02uLTtTuiuPL8HIMnutaGHpWWdvEwlCbnqYz8k1OQDkixPB6u3_LqGsU3a7WLTRKsTixT4-Ysg22jvZxf39yfnhwsddmVVcBpjEbi5iLOC5COElIU3GamFbG0Q1LYeJWZHgaaO4ciqVBRxZlCTp0I42NeRI7n_MC6ABN_rigitYGjO8edM7OX091UMSjoOgTyzGXYqEIgqpSp6zXCwIhGdJgFBqELBrxhn_7hHeXs4XPO5yGqSpY9XZK6ZqBMZvPwpc3EIazMHlW90J4-grrf3IPA0pv-M3rOa-bDx76ZJIG1ngVnuv1HHQ_hW3foJH3cvsdPN_5OnGxsAkVtvp-KkWmszjlDsnKwDTBr5midIVUTg0zbtQQY5kYqZCqKhipoib8ev2nX-J0fDh7jXitSImRsk6rWgRcH8FhqR1JMHMYfbaasDoy87oEA__XxMWRiailenS43lZVWYmBGsp0EzbqrR4O_3_98x9TW4GJ9sXvU3V61DlZgEleCBwdHC1C4_7uwS5hHHWfLVfC68HVZ-vLC3CiJXQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB5VRULhgPpCBErZAwWJ1mrW9q69B4QqSkgJansgUm_urh-9VJvQtEL9a_11ndlHQ6D0luvaO7LG87Q93wC886q6LhJMh6CZDJjuYApmWRGSzKvgE1R2em1xlA5G8vtpcroEt20tDD2rbG1iZajd2NIZ-R4noByZYHi9F5pnEScH_c-TX4w6SNFNa9tOoxaRob_5jenb9NPhAe71Nuf9rz-_DFjTYYBZzMxSFlKOC5JBEeqUzjPXKzi6ZCWd7qWO58LyEFBEHTq1tMjQuTvlvOaZDjHnFegBmv8nSqiMEj_d_3Z_voPCnoqqYyzHrIolUoimZqeu3BNCKoYUGAUJCUvn_OLf3uGfa9rK-_VX4HkTtkb7tZytwpIv1-DZH2CGa9A5absi3KzDx-MywtAymn2LxiEaldPrCRmnqXdRg-x6vgGjhTDtBSyX49K_hCgOsc2Clj6jEtc4zpUsbKFzHpCsEq4LccsUYxvMcmqdcWFmaMvESINUTcVIk3Zh5_6fSY3Y8ejsD8RrQ-qMlG3eVCXg-ggYy-wrApzDOLTXhfdzM89rWPCHJm7OTUR9tfPD7baaxl5MzUy6u7DbbvVs-P_rf_U4tbfwFLXE_Dg8Gr6GDq_kjU6QNmH56vLav8GA6qrYqiQ3grNFq8odapEoRA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+Philosophy+of+Unsupervised+Learning&rft.jtitle=Philosophy+%26+technology&rft.au=Watson%2C+David+S&rft.date=2023-06-01&rft.pub=Springer&rft.issn=2210-5433&rft.volume=36&rft.issue=2&rft_id=info:doi/10.1007%2Fs13347-023-00635-6&rft.externalDocID=A746540950
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2210-5433&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2210-5433&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2210-5433&client=summon