On the Philosophy of Unsupervised Learning
Unsupervised learning algorithms are widely used for many important statistical tasks with numerous applications in science and industry. Yet despite their prevalence, they have attracted remarkably little philosophical scrutiny to date. This stands in stark contrast to supervised and reinforcement...
Saved in:
Published in | Philosophy & technology Vol. 36; no. 2; p. 28 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Dordrecht
Springer Netherlands
01.06.2023
Springer Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 2210-5433 2210-5441 |
DOI | 10.1007/s13347-023-00635-6 |
Cover
Abstract | Unsupervised learning algorithms are widely used for many important statistical tasks with numerous applications in science and industry. Yet despite their prevalence, they have attracted remarkably little philosophical scrutiny to date. This stands in stark contrast to supervised and reinforcement learning algorithms, which have been widely studied and critically evaluated, often with an emphasis on ethical concerns. In this article, I analyze three canonical unsupervised learning problems: clustering, abstraction, and generative modeling. I argue that these methods raise unique epistemological and ontological questions, providing data-driven tools for discovering natural kinds and distinguishing essence from contingency. This analysis goes some way toward filling the lacuna in contemporary philosophical discourse on unsupervised learning, as well as bringing conceptual unity to a heterogeneous field more often described by what it is
not
(i.e., supervised or reinforcement learning) than by what it
is
. I submit that unsupervised learning is not just a legitimate subject of philosophical inquiry but perhaps the most fundamental branch of all AI. However, an uncritical overreliance on unsupervised methods poses major epistemic and ethical risks. I conclude by advocating for a pragmatic, error-statistical approach that embraces the opportunities and mitigates the challenges posed by this powerful class of algorithms. |
---|---|
AbstractList | Unsupervised learning algorithms are widely used for many important statistical tasks with numerous applications in science and industry. Yet despite their prevalence, they have attracted remarkably little philosophical scrutiny to date. This stands in stark contrast to supervised and reinforcement learning algorithms, which have been widely studied and critically evaluated, often with an emphasis on ethical concerns. In this article, I analyze three canonical unsupervised learning problems: clustering, abstraction, and generative modeling. I argue that these methods raise unique epistemological and ontological questions, providing data-driven tools for discovering natural kinds and distinguishing essence from contingency. This analysis goes some way toward filling the lacuna in contemporary philosophical discourse on unsupervised learning, as well as bringing conceptual unity to a heterogeneous field more often described by what it is not (i.e., supervised or reinforcement learning) than by what it is. I submit that unsupervised learning is not just a legitimate subject of philosophical inquiry but perhaps the most fundamental branch of all AI. However, an uncritical overreliance on unsupervised methods poses major epistemic and ethical risks. I conclude by advocating for a pragmatic, error-statistical approach that embraces the opportunities and mitigates the challenges posed by this powerful class of algorithms. Unsupervised learning algorithms are widely used for many important statistical tasks with numerous applications in science and industry. Yet despite their prevalence, they have attracted remarkably little philosophical scrutiny to date. This stands in stark contrast to supervised and reinforcement learning algorithms, which have been widely studied and critically evaluated, often with an emphasis on ethical concerns. In this article, I analyze three canonical unsupervised learning problems: clustering, abstraction, and generative modeling. I argue that these methods raise unique epistemological and ontological questions, providing data-driven tools for discovering natural kinds and distinguishing essence from contingency. This analysis goes some way toward filling the lacuna in contemporary philosophical discourse on unsupervised learning, as well as bringing conceptual unity to a heterogeneous field more often described by what it is not (i.e., supervised or reinforcement learning) than by what it is . I submit that unsupervised learning is not just a legitimate subject of philosophical inquiry but perhaps the most fundamental branch of all AI. However, an uncritical overreliance on unsupervised methods poses major epistemic and ethical risks. I conclude by advocating for a pragmatic, error-statistical approach that embraces the opportunities and mitigates the challenges posed by this powerful class of algorithms. |
ArticleNumber | 28 |
Audience | Academic |
Author | Watson, David S. |
Author_xml | – sequence: 1 givenname: David S. orcidid: 0000-0001-9632-2159 surname: Watson fullname: Watson, David S. email: david.watson@kcl.ac.uk organization: Department of Informatics, King’s College London |
BookMark | eNp9kctKAzEUhoNUsNa-gKsBd0JqbpPJLEvxBgVd2HVIZ5JpyjSpyVTo2xsdsSilySIhfN8fzjmXYOC80wBcYzTBCBV3EVPKCogIhQhxmkN-BoaEYARzxvDg907pBRjHuEZp5ZhTUgzB7YvLupXOXle29dFvV_vMm2zh4m6rw4eNus7mWgVnXXMFzo1qox7_nCOweLh_mz3B-cvj82w6hxUVlEPDiS4MMwVimAhV1mhJeC4KVgvEa6JoRYwpOa1FTvmypKKsi1oLUgqDCUlFjMBNn7sN_n2nYyfXfhdc-lISkUJZCssPVKNaLa0zvguq2thYyWnBeM5QmaNEwSNUo50Oqk1dNDY9_-EnR_i0a72x1VFB9EIVfIxBG1nZTnXWuyTaVmIkv2Yk-xnJVJ78npHkSSX_1G2wGxX2pyXaSzHBrtHh0JwT1if2b6CD |
CitedBy_id | crossref_primary_10_1007_s00146_024_02128_2 crossref_primary_10_1007_s11023_024_09699_5 crossref_primary_10_1007_s11229_024_04741_6 crossref_primary_10_2478_bsrj_2024_0020 crossref_primary_10_1007_s13347_024_00705_3 crossref_primary_10_1007_s41469_023_00155_9 crossref_primary_10_1021_acsaem_3c02642 crossref_primary_10_1002_widm_1511 crossref_primary_10_1002_widm_1547 crossref_primary_10_3390_app14020775 crossref_primary_10_1038_s41598_024_60319_9 crossref_primary_10_3390_wevj15020039 crossref_primary_10_1016_j_resconrec_2023_107375 |
Cites_doi | 10.1002/sam.11348 10.1145/3236009 10.1186/gb-2002-3-7-research0036 10.7551/mitpress/5876.001.0001 10.1007/s11229-022-03798-5 10.1109/TIT.1982.1056489 10.1086/525643 10.1109/CVPR.2019.00453 10.1017/can.2021.17 10.1007/BF00485230 10.1093/mind/LIX.236.433 10.1007/s11229-022-03485-5 10.1038/s41588-019-0379-x 10.1007/s11229-020-02806-w 10.7208/chicago/9780226511993.001.0001 10.1007/s11229-020-02950-3 10.1007/s11023-020-09539-2 10.1111/1467-9868.00293 10.1007/s11229-020-02629-9 10.1016/j.patrec.2015.04.009 10.1177/2053951716679679 10.1093/acprof:oso/9780199552078.001.0001 10.1086/651316 10.1137/17M112717X 10.1109/TKDE.2021.3130191 10.1093/bioinformatics/btr597 10.1093/bjps/axz049 10.1007/s11229-021-03233-1 10.1007/s11229-022-03466-8 10.1007/s13347-021-00459-2 10.1093/qje/qju022 10.1023/A:1010933404324 10.1007/s41237-016-0008-2 10.1038/s42256-019-0138-9 10.1109/MSP.2017.2765202 10.1093/acprof:oso/9780198716808.003.0005 10.1080/01621459.2015.1062383 10.1073/pnas.1900654116 10.1007/s13347-019-00382-7 10.1093/acprof:oso/9780199580828.001.0001 10.1007/s11229-010-9821-4 10.1038/s41598-020-58766-1 10.7208/chicago/9780226507194.001.0001 10.1016/j.cviu.2017.03.007 10.1017/9781107286184 10.1093/bjps/48.3.391 10.1007/s11229-018-01949-1 10.1007/s11229-015-0810-5 10.1177/2053951719897945 10.1111/nous.12140 10.1093/bjps/axx039 10.1093/bjps/45.1.1 10.1007/s13347-019-00372-9 10.2139/ssrn.3662302 10.1086/701072 10.2307/2027085 10.1007/978-0-387-84858-7 10.1198/106186005X59243 10.1007/s11229-020-02915-6 10.1111/mila.12281 10.1109/ACCESS.2018.2870052 10.1086/392874 10.2307/2183991 10.1023/A:1023949509487 10.1093/bjps/axu040 10.1007/s11229-022-03739-2 10.1093/bjps/48.1.21 10.1007/s11023-008-9113-7 10.7551/mitpress/11964.001.0001 10.1007/s11229-019-02390-8 10.1609/aaai.v33i01.33012678 10.7208/chicago/9780226416502.001.0001 10.1093/bjps/axz035 10.1007/s10838-009-9091-3 10.1214/aos/1013203451 10.1086/392740 10.1007/978-1-4419-6646-9_2 10.2307/jj.6380610.6 10.1109/JPROC.2021.3058954 10.1201/9780429184185 10.1090/jams/852 10.1038/s42256-020-00266-y 10.1007/s11229-016-1053-9 |
ContentType | Journal Article |
Copyright | The Author(s) 2023 COPYRIGHT 2023 Springer The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2023 – notice: COPYRIGHT 2023 Springer – notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION 0-V 3V. 7WY 7WZ 7X5 7XB 87Z 88J 8A3 8FE 8FG 8FK 8FL AABKS ABSDQ ABUWG AFKRA ALSLI ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ HCIFZ HEHIP JQ2 K60 K6~ K7- L.- M0C M2R M2S P62 PGAAH PHGZM PHGZT PKEHL POGQB PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS PRQQA PYYUZ Q9U |
DOI | 10.1007/s13347-023-00635-6 |
DatabaseName | SpringerOpen Free (Free internet resource, activated by CARLI) CrossRef ProQuest Social Sciences Premium Collection【Remote access available】 ProQuest Central (Corporate) ABI/INFORM Collection ABI/INFORM Global (PDF only) Entrepreneurship Database ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Social Science Database (Alumni Edition) Entrepreneurship Database (Alumni Edition) ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) Philosophy Collection Philosophy Database ProQuest Central (Alumni) ProQuest Central UK/Ireland Social Science Premium Collection Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Technology Collection ProQuest One Community College ProQuest Central Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student SciTech Premium Collection Sociology Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced ABI/INFORM Global Social Science Database Sociology Database (ProQuest) ProQuest Advanced Technologies & Aerospace Collection ProQuest One Religion & Philosophy ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest Sociology & Social Sciences Collection ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Social Sciences ABI/INFORM Collection China ProQuest Central Basic |
DatabaseTitle | CrossRef ProQuest Business Collection (Alumni Edition) Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection SciTech Premium Collection Sociology & Social Sciences Collection ProQuest Central China ABI/INFORM Complete ProQuest One Religion & Philosophy Philosophy Collection ProQuest One Applied & Life Sciences ProQuest Central (New) ProQuest Sociology ProQuest Entrepreneurship Advanced Technologies & Aerospace Collection Business Premium Collection Social Science Premium Collection ABI/INFORM Global ProQuest One Academic Eastern Edition ProQuest Technology Collection Sociology Collection ProQuest Business Collection ProQuest Social Science Journals ProQuest Social Sciences Premium Collection ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ABI/INFORM Global (Corporate) ProQuest One Business Technology Collection ProQuest One Academic Middle East (New) ProQuest Social Science Journals (Alumni Edition) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central ABI/INFORM Professional Advanced ProQuest Central Korea ProQuest Sociology Collection ABI/INFORM Complete (Alumni Edition) ProQuest One Social Sciences ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Entrepreneurship (Alumni Edition) ABI/INFORM China ProQuest SciTech Collection ProQuest One Business (Alumni) ProQuest Central (Alumni) Business Premium Collection (Alumni) Philosophy Database |
DatabaseTitleList | ProQuest Business Collection (Alumni Edition) CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Education Philosophy |
EISSN | 2210-5441 |
ExternalDocumentID | A746540950 10_1007_s13347_023_00635_6 |
GroupedDBID | -5C -5G -BR -EM -W8 -~C .4S .DC .VR 0-V 06D 0R~ 0VY 199 203 2J2 2JN 2KG 2KM 2LR 2VQ 30V 3V. 4.4 406 408 5VS 7WY 7X5 8FL 8UJ 95- 95. 95~ 96X AAAVM AABHQ AABKS AACDK AAHNG AAHSB AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABDBF ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMQK ABNWP ABQBU ABQSL ABSDQ ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACCUX ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACPIV ACSNA ACUHS ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALSLI ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARALO ARAPS ARCSS ARMRJ ASOEW ASPBG AVWKF AXYYD AYQZM AZFZN AZQEC B-. B0M BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS C6C C9D CCPQU CSCUP DDRTE DNIVK DO4 DPUIP DWQXO EAD EAP EAS EBLON EBS EDJ EDO EIOEI EJD EMF EMG EMH EMK ESBYG ESO EST ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GROUPED_ABI_INFORM_COMPLETE H13 HCIFZ HEHIP HF~ HG6 HMJXF HRMNR HVGLF HZ~ IAO IEA IER IGS IKXTQ IOF ITC IWAJR IXD J-C J0Z JBSCW JZLTJ K60 K6~ K7- KOV LLZTM M0C M2R M2S M4Y MA- N2Q NPVJJ NQJWS NU0 O9- O93 O9G O9J P9Q PF0 PQBIZ PQBZA PQQKQ PROAC PT4 Q2X QOS R89 R9I RIG ROL RPD RSV S16 S1Z S27 S3B SAP SHS SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 XH6 YLTOR Z45 Z81 Z83 ZMTXR ~8M ~A9 AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT AEIIB PMFND 7XB 8FE 8FG 8FK ABRTQ JQ2 L.- P62 PGAAH PKEHL POGQB PQEST PQGLB PQUKI PRINS PRQQA Q9U |
ID | FETCH-LOGICAL-c3836-f62e7f4f704128a9d0b265874d806d2a3c2ff963d8536b9389d7de8298f122023 |
IEDL.DBID | U2A |
ISSN | 2210-5433 |
IngestDate | Fri Jul 25 05:25:04 EDT 2025 Tue Jun 17 22:11:39 EDT 2025 Fri Jun 13 00:12:29 EDT 2025 Tue Jun 10 21:09:16 EDT 2025 Thu Apr 24 23:01:39 EDT 2025 Tue Jul 01 03:55:15 EDT 2025 Fri Feb 21 02:43:26 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Generative modeling Metaphysics Epistemology Clustering Abstraction Machine learning |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3836-f62e7f4f704128a9d0b265874d806d2a3c2ff963d8536b9389d7de8298f122023 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-9632-2159 |
OpenAccessLink | https://link.springer.com/10.1007/s13347-023-00635-6 |
PQID | 2804145875 |
PQPubID | 75937 |
ParticipantIDs | proquest_journals_2804145875 gale_infotracmisc_A746540950 gale_infotracgeneralonefile_A746540950 gale_infotracacademiconefile_A746540950 crossref_citationtrail_10_1007_s13347_023_00635_6 crossref_primary_10_1007_s13347_023_00635_6 springer_journals_10_1007_s13347_023_00635_6 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20230600 2023-06-00 20230601 |
PublicationDateYYYYMMDD | 2023-06-01 |
PublicationDate_xml | – month: 6 year: 2023 text: 20230600 |
PublicationDecade | 2020 |
PublicationPlace | Dordrecht |
PublicationPlace_xml | – name: Dordrecht |
PublicationTitle | Philosophy & technology |
PublicationTitleAbbrev | Philos. Technol |
PublicationYear | 2023 |
Publisher | Springer Netherlands Springer Springer Nature B.V |
Publisher_xml | – name: Springer Netherlands – name: Springer – name: Springer Nature B.V |
References | Ben-David, S. & Ackerman, M. (2008). Measures of clustering quality: A working set of axioms for clustering. In Advances in Neural Information Processing Systems. Zednik, C. (2019). Solving the black box problem: A normative framework for explainable artificial intelligence. Philosophy & Technology, 34, 265–288. GuidottiRMonrealeARuggieriSTuriniFGiannottiFPedreschiDA survey of methods for explaining black box modelsACM Computing Surveys2018515142 JolliffeITPrincipal component analysis2002New YorkSpringer SchölkopfBLocatelloFBauerSKeNRKalchbrennerNGoyalABengioYToward causal representation learningProceedings of the IEEE20211095612634 GabrielIArtificial intelligence, values, and alignmentMinds and Machines2020303411437 Higgins, I., Matthey, L., Pal, A., Burgess, C., Glorot, X., Botvinick, M., … Lechner, A. (2017). beta-VAE: Learning basic visual concepts with a constrained variational framework. International Conference on Learning Representations. CreswellAWhiteTDumoulinVArulkumaranKSenguptaBBharathAAGenerative adversarial networks: An overviewIEEE Signal Processing Magazine20183515365 Mittelstadt, B. D., Allo, P., Taddeo, M., Wachter, S., & Floridi, L. (2016). The ethics of algorithms: Mapping the debate. Big Data & Society. KieseppäIAAkaike information criterion, curve-fitting, and the philosophical problem of simplicityThe British Journal for the Philosophy of Science19974812148 LloydSLeast squares quantization in PCMIEEE Transactions on Information Theory1982282129137 Mayo-WilsonCZollmanKJSThe computational philosophy: Simulation as a core philosophical methodSynthese2021199136473673 MartinARKanaiMKamataniYOkadaYNealeBMDalyMJClinical use of current polygenic risk scores may exacerbate health disparitiesNature Genetics2019514584591 Floridi, L. (2008). The method of levels of abstraction. Minds and Machines, 18(3), 303–329. Stadler, T., Oprisanu, B., & Troncoso, C. (2022). Synthetic data - Anonymisation groundhog day. In 31st USENIX Security Symposium, 1451–1468. FriedmanJHGreedy function approximation: A gradient boosting machineThe Annals of Statistics200129511891232 AdadiABerradaMPeeking inside the black-box: A survey on explainable artificial intelligence (XAI)IEEE Access201865213852160 Choi, Y., Vergari, A., & Van den Broeck, G. (2020). Probabilistic circuits: A unifying framework for tractable probabilistic models. Technical Report, University of California, Los Angeles. PotochnikAIdealization and the aims of science2017University of Chicago Press Harman, G., & Kulkarni, S. (2007). Reliable reasoning: Induction and statistical learning theory. Cambridge, MA: The MIT Press. Cohen-Addad, V., Kanade, V., & Mallmann-Trenn, F. (2018). Clustering redemption: Beyond the impossibility of Kleinberg’s axioms. Advances in Neural Information Processing Systems (Vol. 31). BlockNJFodorJAWhat psychological states are notThe Philosophical Review1972812159181 Bird, A., & Tobin, E. (2022). Natural kinds. In E. N. Zalta (Ed.), The Stanford Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford University. Hastie, T., Tibshirani, R., & Friedman, J. (2009). The elements of statistical learning: Data mining, inference, and prediction. New York: Springer. Gui, J., Sun, Z., Wen, Y., Tao, D., & Ye, J. (2021). A review on generative adversarial networks: Algorithms, theory, and applications. IEEE Transactions on Knowledge and Data Engineering, 35(4), 3313–3332. KolodnerJCase-based reasoning1993San Mateo, CAMorgan Kaufmann Wikipedia. (2022). K-means clustering. In Wikipedia, The Free Encyclopedia. Retrieved September 7, 2022 from. https://en.wikipedia.org/w/index.php?title=K-means_clustering&oldid=1100754774. Bickle, J. (2020). Multiple realizability. In E. N. Zalta (Ed.), The Stanford Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford University. FisherACaffoBSchwartzBZipunnikovVFast, exact bootstrap principal component analysis for p > 1 millionJournal of the American Statistical Association2016111514846860 von KügelgenJSharmaYGreseleLBrendelWSchölkopfBBesserveMLocatelloFSelf-supervised learning with data augmentations provably isolates content from styleAdvances in Neural Information Processing Systems2021341645116467 TibshiraniRWaltherGHastieTEstimating the number of clusters in a data set via the gap statisticJournal of the Royal Statistical Society: Series B2001632411423 MurdochWJSinghCKumbierKAbbasi-AslRYuBDefinitions, methods, and applications in interpretable machine learningProceedings of the National Academy of Sciences2019116442207122080 StuartMTFehigeYBrownJRThe Routledge companion to thought experiments2018LondonRoutledge Tsamados, A., Aggarwal, N., Cowls, J., Morley, J., Roberts, H., Taddeo, M., & Floridi, L. (2021). The ethics of algorithms: Key problems and solutions. AI & SOCIETY. BandyopadhyayPSBoikRJThe curve fitting problem: A Bayesian rejoinderPhilosophy of Science199966S3S390S402 MontiSTamayoPMesirovJGolubTConsensus clustering: A resampling-based method for class discovery and visualization of gene expression microarray dataMachine Learning2003521–291118 HennigCWhat are the true clusters?Pattern Recognition Letters2015645362 DennettDReal patternsThe Journal of Philosophy19918812751 ForsterMSoberEHow to tell when simpler, more unified, or less ad hoc theories will provide more accurate predictionsThe British Journal for the Philosophy of Science1994451135 FeffermanCMitterSNarayananHTesting the manifold hypothesisJournal of the American Mathematical Society20162949831049 MayoDStatistical inference as severe testing: How to get beyond the statistics wars2018New YorkCambridge University Press WoodwardJThe problem of variable choiceSynthese2016193410471072 Sullivan, E. (2020). Understanding from machine learning models. The British Journal for the Philosophy of Science, 73(1), 109–133. CookVJNewsonMChomsky’s universal grammar (Third Edit)2007OxfordBlackwell John, C. R., Watson, D., Russ, D., Goldmann, K., Ehrenstein, M., Pitzalis, C., … Barnes, M. (2020). M3C: Monte Carlo reference-based consensus clustering. Scientific Reports, 10(1), 1816. BucknerCUnderstanding adversarial examples requires a theory of artefacts for deep learningNature Machine Intelligence2020212731736 KinneyDDiachronic trends in the topic distributions of formal epistemology abstractsSynthese2022200110 BreimanLRandom ForestsMachine Learning2001451133 de RuiterAThe distinct wrong of deepfakesPhilos. Technol.202134413111332 WeslakeBExplanatory depthPhilosophy of Science2010772273294 ClarkeCHow to define levels of explanation and evaluate their indispensabilitySynthese2017194622112231 Kleinberg, J. (2002). An impossibility theorem for clustering. Advances in Neural Information Processing Systems 15, 463–470. Cambridge, MA, USA: MIT Press. WilliamsonTModal logic as metaphysics2013Oxford University Press DeVitoSA gruesome problem for the curve-fitting solutionThe British Journal for the Philosophy of Science1997483391396 FodorJASpecial sciences (or: The disunity of science as a working hypothesis)Synthese197428297115 SterkenburgTFGrünwaldPDThe no-free-lunch theorems of supervised learningSynthese20211993997910015 KimIRamdasASinghAWassermanLClassification accuracy as a proxy for two-sample testingThe Annals of Statistics2021491411434 PutnamHCapitanWHMerrillDDPsychological predicatesArt, mind, and religion1967University of Pittsburgh Press3748 ChalupkaKEberhardtFPeronaPCausal feature learning: An overviewBehaviormetrika2017441137164 ChettyRHendrenNKlinePSaezEWhere is the land of opportunity? The geography of intergenerational mobility in the United StatesThe Quarterly Journal of Economics2014129415531623 StutzDHermansALeibeBSuperpixels: An evaluation of the state-of-the-artComputer Vision and Image Understanding2018166127 TibshiraniRWaltherGCluster validation by prediction strengthJournal of Computational and Graphical Statistics2005143511528 Levin, J. (2021). Functionalism. In E. N. Zalta (Ed.), The Stanford Encyclopedia of Philosophy ({W}inter 2). Metaphysics Research Lab, Stanford University. Williamson, T. (2016). Knowing by imagining (A. Kind & P. Kung, Eds.). Knowledge Through Imagination, pp. 113–123. EllisBScientific essentialism2001Cambridge University Press Pfau, D., & Vinyals, O. (2016). Connecting generative adversarial networks and actor-critic methods. Advances in Neural Information Processing Systems, 29. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., and Bengio, Y. (2014). Generative adversarial nets. In Advances in Neural Information Processing Systems (vol. 27). ShimizuSHoyerPOHyvärinenAKerminenAA linear non-Gaussian acyclic model for causal discoveryJournal of Machine Learning Research200677220032030 Zimmermann, A., & Lee-Stronach, C. (2021). Proceed with caution. Canadian Journal of Philosophy, 52(1), 6–25. StrevensMDepth: An account of scientific explanation2008Cambridge, MAHarvard University Press Bommasani, R., Hudson, D., Adeli, E., Altman, R., Arora, S., von Arx, S., …, & Wang, W. (2022). On the opportunities and risks of foundation models. arXiv preprint, 2108.07258. LaCroixTUsing logic to evolve more logic: Composing logical operators via self-assemblyThe British Journal for the Philosophy of Science2020732407437 SchurzGHume’s problem solved: The optimality of meta-induction2019The MIT Press Karras, T., Laine, S., & Aila, T. (2019). A style-based generator architecture for generative adversarial networks. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Watson, D., Blesch, K., Kapar, J., & Wright, M. (2023). Adversarial random forests for density estimation and generative modeling. In Proceedings of the 26th International Conference on Artificial Intelligence and Statistics. Valencia, Spain. Robertson, T.I. & Atkins, P. (2020). Essential vs. accidental properties. In E. N. Zalta (Ed.), The Stanford Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford University. SpanosACurve fitting, the reliability of inductive inference, and the error-statistical approachPhilosophy of Science200774 T Williamson (635_CR115) 2013 J Woodward (635_CR117) 2016; 193 L Breiman (635_CR12) 2001; 45 S Kripke (635_CR64) 1980 SA Mulaik (635_CR80) 2001; 68 DJ Stekhoven (635_CR97) 2012; 28 F Tang (635_CR103) 2017; 10 VJ Cook (635_CR22) 2007 A de Ruiter (635_CR28) 2021; 34 635_CR68 JA Barrett (635_CR5) 2019; 70 R Gorwa (635_CR44) 2020; 7 I Gabriel (635_CR41) 2020; 30 D Dennett (635_CR29) 1991; 88 C Rudin (635_CR90) 2021; 16 635_CR61 635_CR62 T LaCroix (635_CR66) 2020; 73 D Mayo (635_CR74) 2018 B Schölkopf (635_CR91) 2021; 109 AR Martin (635_CR72) 2019; 51 M Forster (635_CR38) 1994; 45 I Goodfellow (635_CR43) 2016 A Criminisi (635_CR27) 2012 J von Kügelgen (635_CR108) 2021; 34 J Wang (635_CR109) 2019 C Buckner (635_CR13) 2018; 195 A Clark (635_CR18) 2017; 51 C Fefferman (635_CR33) 2016; 29 635_CR51 635_CR53 635_CR55 JA Hartigan (635_CR48) 1975 J Hohwy (635_CR52) 2020; 35 635_CR2 635_CR1 B Ellis (635_CR32) 2001 635_CR85 635_CR88 J Pääkkönen (635_CR84) 2021; 199 635_CR89 D Mayo (635_CR73) 1996 C Buckner (635_CR14) 2020; 2 S Leonelli (635_CR67) 2016 635_CR70 M Krishnan (635_CR65) 2020; 33 S Monti (635_CR79) 2003; 52 M Strevens (635_CR99) 2008 A Adadi (635_CR3) 2018; 6 R Tibshirani (635_CR104) 2005; 14 R Tibshirani (635_CR105) 2001; 63 R Guidotti (635_CR46) 2018; 51 LR Franklin-Hall (635_CR39) 2014; 67 A Correia (635_CR24) 2020; 33 A Creswell (635_CR26) 2018; 35 B Skyrms (635_CR94) 2010 A Potochnik (635_CR86) 2017 635_CR76 635_CR78 I Kim (635_CR57) 2021; 49 R Millière (635_CR77) 2022; 200 635_CR116 635_CR118 635_CR119 A Spanos (635_CR95) 2007; 74 635_CR25 S Lloyd (635_CR69) 1982; 28 NJ Block (635_CR10) 1972; 81 C Malaterre (635_CR71) 2021; 199 D Corfield (635_CR23) 2009; 40 JH Friedman (635_CR40) 2001; 29 G Schurz (635_CR92) 2019 635_CR21 D Stutz (635_CR101) 2018; 166 K Chalupka (635_CR15) 2017; 44 J Kolodner (635_CR63) 1993 635_CR106 635_CR8 635_CR9 635_CR6 635_CR7 C Clarke (635_CR19) 2017; 194 D Kinney (635_CR59) 2022; 200 C Öhman (635_CR83) 2022; 200 PS Bandyopadhyay (635_CR4) 1999; 66 WJ Murdoch (635_CR81) 2019; 116 D Watson (635_CR111) 2021; 198 (635_CR100) 2018 635_CR17 635_CR112 635_CR114 IA Kieseppä (635_CR56) 1997; 48 635_CR96 A Turing (635_CR107) 1950; LIX 635_CR11 A Fisher (635_CR34) 2016; 111 C Mayo-Wilson (635_CR75) 2021; 199 S Shimizu (635_CR93) 2006; 7 C Hennig (635_CR50) 2015; 64 M Noichl (635_CR82) 2021; 198 635_CR47 635_CR49 R Chetty (635_CR16) 2014; 129 D Kinney (635_CR60) 2020 H Putnam (635_CR87) 1967 635_CR102 D Watson (635_CR110) 2022; 200 635_CR42 635_CR45 IT Jolliffe (635_CR54) 2002 S DeVito (635_CR30) 1997; 48 635_CR36 TF Sterkenburg (635_CR98) 2021; 199 D Kinney (635_CR58) 2018; 86 B Weslake (635_CR113) 2010; 77 V Cohen-Addad (635_CR20) 2019; 48 JA Fodor (635_CR37) 1974; 28 L Floridi (635_CR35) 2012; 184 635_CR31 |
References_xml | – reference: PotochnikAIdealization and the aims of science2017University of Chicago Press – reference: BucknerCEmpiricism without magic: Transformational abstraction in deep convolutional neural networksSynthese201819553395372 – reference: KinneyDDiachronic trends in the topic distributions of formal epistemology abstractsSynthese2022200110 – reference: ShimizuSHoyerPOHyvärinenAKerminenAA linear non-Gaussian acyclic model for causal discoveryJournal of Machine Learning Research200677220032030 – reference: GorwaRBinnsRKatzenbachCAlgorithmic content moderation: Technical and political challenges in the automation of platform governanceBig Data & Society2020712053951719897945 – reference: TibshiraniRWaltherGCluster validation by prediction strengthJournal of Computational and Graphical Statistics2005143511528 – reference: KinneyDOn the explanatory depth and pragmatic value of coarse-grained, probabilistic, causal explanationsPhilosophy of Science2018861145167 – reference: MillièreRDeep learning and synthetic mediaSynthese20222004231 – reference: Cohen-AddadVKleinPNMathieuCLocal search yields approximation schemes for k-means and k-median in Euclidean and minor-free metricsSIAM Journal on Computing2019482644667 – reference: Watson, D., Blesch, K., Kapar, J., & Wright, M. (2023). Adversarial random forests for density estimation and generative modeling. In Proceedings of the 26th International Conference on Artificial Intelligence and Statistics. Valencia, Spain. – reference: Bommasani, R., Hudson, D., Adeli, E., Altman, R., Arora, S., von Arx, S., …, & Wang, W. (2022). On the opportunities and risks of foundation models. arXiv preprint, 2108.07258. – reference: Abboud, A., Cohen-Addad, V., & Houdrouge, H. (2019). Subquadratic high-dimensional hierarchical clustering. Advances in Neural Information Processing Systems (Vol. 32). – reference: MayoDStatistical inference as severe testing: How to get beyond the statistics wars2018New YorkCambridge University Press – reference: PääkkönenJYlikoskiPHumanistic interpretation and machine learningSynthese2021199114611497 – reference: CookVJNewsonMChomsky’s universal grammar (Third Edit)2007OxfordBlackwell – reference: SchurzGHume’s problem solved: The optimality of meta-induction2019The MIT Press – reference: NoichlMModeling the structure of recent philosophySynthese2021198650895100 – reference: HohwyJNew directions in predictive processingMind & Language2020352209223 – reference: Floridi, L. (2008). The method of levels of abstraction. Minds and Machines, 18(3), 303–329. – reference: WoodwardJThe problem of variable choiceSynthese2016193410471072 – reference: Gui, J., Sun, Z., Wen, Y., Tao, D., & Ye, J. (2021). A review on generative adversarial networks: Algorithms, theory, and applications. IEEE Transactions on Knowledge and Data Engineering, 35(4), 3313–3332. – reference: Cohen-Addad, V., Kanade, V., & Mallmann-Trenn, F. (2018). Clustering redemption: Beyond the impossibility of Kleinberg’s axioms. Advances in Neural Information Processing Systems (Vol. 31). – reference: ClarkeCHow to define levels of explanation and evaluate their indispensabilitySynthese2017194622112231 – reference: Higgins, I., Matthey, L., Pal, A., Burgess, C., Glorot, X., Botvinick, M., … Lechner, A. (2017). beta-VAE: Learning basic visual concepts with a constrained variational framework. International Conference on Learning Representations. – reference: WatsonDFloridiLThe explanation game: A formal framework for interpretable machine learningSynthese20211981092119242 – reference: StekhovenDJBühlmannPMissForest—Non-parametric missing value imputation for mixed-type dataBioinformatics2012281112118 – reference: Ben-David, S. & Ackerman, M. (2008). Measures of clustering quality: A working set of axioms for clustering. In Advances in Neural Information Processing Systems. – reference: ForsterMSoberEHow to tell when simpler, more unified, or less ad hoc theories will provide more accurate predictionsThe British Journal for the Philosophy of Science1994451135 – reference: SterkenburgTFGrünwaldPDThe no-free-lunch theorems of supervised learningSynthese20211993997910015 – reference: ChalupkaKEberhardtFPeronaPCausal feature learning: An overviewBehaviormetrika2017441137164 – reference: WeslakeBExplanatory depthPhilosophy of Science2010772273294 – reference: StuartMTFehigeYBrownJRThe Routledge companion to thought experiments2018LondonRoutledge – reference: StrevensMDepth: An account of scientific explanation2008Cambridge, MAHarvard University Press – reference: Mayo-WilsonCZollmanKJSThe computational philosophy: Simulation as a core philosophical methodSynthese2021199136473673 – reference: StutzDHermansALeibeBSuperpixels: An evaluation of the state-of-the-artComputer Vision and Image Understanding2018166127 – reference: FeffermanCMitterSNarayananHTesting the manifold hypothesisJournal of the American Mathematical Society20162949831049 – reference: GuidottiRMonrealeARuggieriSTuriniFGiannottiFPedreschiDA survey of methods for explaining black box modelsACM Computing Surveys2018515142 – reference: SpanosACurve fitting, the reliability of inductive inference, and the error-statistical approachPhilosophy of Science200774510461066 – reference: Franklin-HallLRHigh-level explanation and the interventionist’s ‘variables problem’The British Journal for the Philosophy of Science2014672553577 – reference: LloydSLeast squares quantization in PCMIEEE Transactions on Information Theory1982282129137 – reference: Bird, A., & Tobin, E. (2022). Natural kinds. In E. N. Zalta (Ed.), The Stanford Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford University. – reference: HennigCWhat are the true clusters?Pattern Recognition Letters2015645362 – reference: KieseppäIAAkaike information criterion, curve-fitting, and the philosophical problem of simplicityThe British Journal for the Philosophy of Science19974812148 – reference: MulaikSAThe curve-fitting problem: An objectivist viewPhilosophy of Science2001682218241 – reference: Ravuri, S., & Vinyals, O. (2019). Classification accuracy score for conditional generative models. Advances in Neural Information Processing Systems, 32. – reference: John, C. R., Watson, D., Russ, D., Goldmann, K., Ehrenstein, M., Pitzalis, C., … Barnes, M. (2020). M3C: Monte Carlo reference-based consensus clustering. Scientific Reports, 10(1), 1816. – reference: Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., and Bengio, Y. (2014). Generative adversarial nets. In Advances in Neural Information Processing Systems (vol. 27). – reference: FloridiLSemantic information and the network theory of accountSynthese20121843431454 – reference: FriedmanJHGreedy function approximation: A gradient boosting machineThe Annals of Statistics200129511891232 – reference: ClarkABusting out: Predictive brains, embodied minds, and the puzzle of the evidentiary veilNoûs2017514727753 – reference: MalaterreCLareauFPulizzottoDSt-OngeJEight journals over eight decades: A computational topic-modeling approach to contemporary philosophy of scienceSynthese2021199128832923 – reference: BreimanLRandom ForestsMachine Learning2001451133 – reference: von KügelgenJSharmaYGreseleLBrendelWSchölkopfBBesserveMLocatelloFSelf-supervised learning with data augmentations provably isolates content from styleAdvances in Neural Information Processing Systems2021341645116467 – reference: KinneyDWatsonDJaegerMNielsenTDCausal feature learning for utility-maximizing agentsInternational Conference on Probabilistic Graphical Models2020Skørping, DenmarkPMLR257268 – reference: TibshiraniRWaltherGHastieTEstimating the number of clusters in a data set via the gap statisticJournal of the Royal Statistical Society: Series B2001632411423 – reference: MontiSTamayoPMesirovJGolubTConsensus clustering: A resampling-based method for class discovery and visualization of gene expression microarray dataMachine Learning2003521–291118 – reference: SchölkopfBLocatelloFBauerSKeNRKalchbrennerNGoyalABengioYToward causal representation learningProceedings of the IEEE20211095612634 – reference: Williamson, T. (2016). Knowing by imagining (A. Kind & P. Kung, Eds.). Knowledge Through Imagination, pp. 113–123. – reference: Bickle, J. (2020). Multiple realizability. In E. N. Zalta (Ed.), The Stanford Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford University. – reference: KolodnerJCase-based reasoning1993San Mateo, CAMorgan Kaufmann – reference: MurdochWJSinghCKumbierKAbbasi-AslRYuBDefinitions, methods, and applications in interpretable machine learningProceedings of the National Academy of Sciences2019116442207122080 – reference: GabrielIArtificial intelligence, values, and alignmentMinds and Machines2020303411437 – reference: EllisBScientific essentialism2001Cambridge University Press – reference: RudinCChenCChenZHuangHSemenovaLZhongCInterpretable machine learning: Fundamental principles and 10 grand challengesStat. Surv.202116185 – reference: CorreiaAPeharzRde CamposCPJoints in random forestsAdvances in Neural Information Processing Systems2020331140411415 – reference: TangFIshwaranHRandom forest missing data algorithmsStatistical Analysis and Data Mining2017106363377 – reference: de RuiterAThe distinct wrong of deepfakesPhilos. Technol.202134413111332 – reference: Zimmermann, A., & Lee-Stronach, C. (2021). Proceed with caution. Canadian Journal of Philosophy, 52(1), 6–25. – reference: Hastie, T., Tibshirani, R., & Friedman, J. (2009). The elements of statistical learning: Data mining, inference, and prediction. New York: Springer. – reference: DennettDReal patternsThe Journal of Philosophy19918812751 – reference: LaCroixTUsing logic to evolve more logic: Composing logical operators via self-assemblyThe British Journal for the Philosophy of Science2020732407437 – reference: Mittelstadt, B. D., Allo, P., Taddeo, M., Wachter, S., & Floridi, L. (2016). The ethics of algorithms: Mapping the debate. Big Data & Society. – reference: Sullivan, E. (2020). Understanding from machine learning models. The British Journal for the Philosophy of Science, 73(1), 109–133. – reference: FisherACaffoBSchwartzBZipunnikovVFast, exact bootstrap principal component analysis for p > 1 millionJournal of the American Statistical Association2016111514846860 – reference: FodorJASpecial sciences (or: The disunity of science as a working hypothesis)Synthese197428297115 – reference: Wikipedia. (2022). K-means clustering. In Wikipedia, The Free Encyclopedia. Retrieved September 7, 2022 from. https://en.wikipedia.org/w/index.php?title=K-means_clustering&oldid=1100754774. – reference: BlockNJFodorJAWhat psychological states are notThe Philosophical Review1972812159181 – reference: CriminisiAShottonJKonukogluEDecision forests: A unified framework for classification, regression, density estimation, manifold, learning and semi-supervised learning2012Now Publishers – reference: Tsamados, A., Aggarwal, N., Cowls, J., Morley, J., Roberts, H., Taddeo, M., & Floridi, L. (2021). The ethics of algorithms: Key problems and solutions. AI & SOCIETY. – reference: LeonelliSData-centric biology: A philosophical study2016ChicagoUniversity of Chicago Press – reference: Kleinbaum, D.G., & Klein, M. (2012). Kaplan-Meier survival curves and the log-rank test. In: Survival analysis. Statistics for Biology and Health. New York: Springer. – reference: Zednik, C. (2019). Solving the black box problem: A normative framework for explainable artificial intelligence. Philosophy & Technology, 34, 265–288. – reference: AdadiABerradaMPeeking inside the black-box: A survey on explainable artificial intelligence (XAI)IEEE Access201865213852160 – reference: Levin, J. (2021). Functionalism. In E. N. Zalta (Ed.), The Stanford Encyclopedia of Philosophy ({W}inter 2). Metaphysics Research Lab, Stanford University. – reference: WangJTepfenhartWFormal methods in computer science2019Boca Raton, FLChapman and Hall/CRC – reference: Robertson, T.I. & Atkins, P. (2020). Essential vs. accidental properties. In E. N. Zalta (Ed.), The Stanford Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford University. – reference: TuringAComputing machinery and intelligenceMind1950LIX236433460 – reference: Choi, Y., Vergari, A., & Van den Broeck, G. (2020). Probabilistic circuits: A unifying framework for tractable probabilistic models. Technical Report, University of California, Los Angeles. – reference: KripkeSNaming and necessity1980Cambridge, MAHarvard University Press – reference: BandyopadhyayPSBoikRJThe curve fitting problem: A Bayesian rejoinderPhilosophy of Science199966S3S390S402 – reference: JolliffeITPrincipal component analysis2002New YorkSpringer – reference: Stadler, T., Oprisanu, B., & Troncoso, C. (2022). Synthetic data - Anonymisation groundhog day. In 31st USENIX Security Symposium, 1451–1468. – reference: ChettyRHendrenNKlinePSaezEWhere is the land of opportunity? The geography of intergenerational mobility in the United StatesThe Quarterly Journal of Economics2014129415531623 – reference: BucknerCUnderstanding adversarial examples requires a theory of artefacts for deep learningNature Machine Intelligence2020212731736 – reference: DeVitoSA gruesome problem for the curve-fitting solutionThe British Journal for the Philosophy of Science1997483391396 – reference: Karras, T., Laine, S., & Aila, T. (2019). A style-based generator architecture for generative adversarial networks. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. – reference: KrishnanMAgainst interpretability: A critical examination of the interpretability problem in machine learningPhilosophy & Technology2020333487502 – reference: MartinARKanaiMKamataniYOkadaYNealeBMDalyMJClinical use of current polygenic risk scores may exacerbate health disparitiesNature Genetics2019514584591 – reference: Lundberg, S. M., Erion, G., Chen, H., DeGrave, A., Prutkin, J. M., Nair, B., … Lee, S.-I. (2020). From local explanations to global understanding with explainable AI for trees. Nature Machine Intelligence, 2(1), 56–67. – reference: Harman, G., & Kulkarni, S. (2007). Reliable reasoning: Induction and statistical learning theory. Cambridge, MA: The MIT Press. – reference: Beckers, S., Eberhardt, F., & Halpern, J. Y. (2019). Approximate causal abstraction. Proceedings of the Conference on Uncertainty in Artificial Intelligence, 210. – reference: MayoDError and the growth of experimental knowledge1996ChicagoUniversity of Chicago Press – reference: Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Efficient estimation of word representations in vector space. International Conference on Learning Representations. – reference: KimIRamdasASinghAWassermanLClassification accuracy as a proxy for two-sample testingThe Annals of Statistics2021491411434 – reference: SkyrmsBSignals: Evolution, learning, and information2010OxfordOxford University Press – reference: HartiganJAClustering algorithms1975New YorkWiley – reference: Kleinberg, J. (2002). An impossibility theorem for clustering. Advances in Neural Information Processing Systems 15, 463–470. Cambridge, MA, USA: MIT Press. – reference: PutnamHCapitanWHMerrillDDPsychological predicatesArt, mind, and religion1967University of Pittsburgh Press3748 – reference: BarrettJASkyrmsBMohseniASelf-assembling networksThe British Journal for the Philosophy of Science2019701301325 – reference: Crabbé, J., & van der Schaar, M. (2022). Label-free explainability for unsupervised models. Proceedings of the 34th International Conference on Machine Learning. – reference: Dudoit, S., & Fridlyand, J. (2002). A prediction-based resampling method for estimating the number of clusters in a dataset. Genome Biology, 3(7). – reference: GoodfellowIBengioYCourvilleADeep learning2016MIT Press – reference: Pfau, D., & Vinyals, O. (2016). Connecting generative adversarial networks and actor-critic methods. Advances in Neural Information Processing Systems, 29. – reference: WilliamsonTModal logic as metaphysics2013Oxford University Press – reference: CorfieldDSchölkopfBVapnikVFalsificationism and statistical learning theory: Comparing the Popper and Vapnik-Chervonenkis dimensionsJournal for General Philosophy of Science20094015158 – reference: CreswellAWhiteTDumoulinVArulkumaranKSenguptaBBharathAAGenerative adversarial networks: An overviewIEEE Signal Processing Magazine20183515365 – reference: Ackerman, M. & Ben-David, S. (2009). Clusterability: A theoretical analysis. In Proceedings of the 12th International Conference on Artificial Intelligence and Statistics. – reference: ÖhmanCThe identification game: Deepfakes and the epistemic limits of identitySynthese20222004319 – reference: WatsonDConceptual challenges for interpretable machine learningSynthese202220026598 – volume: 10 start-page: 363 issue: 6 year: 2017 ident: 635_CR103 publication-title: Statistical Analysis and Data Mining doi: 10.1002/sam.11348 – volume: 51 start-page: 1 issue: 5 year: 2018 ident: 635_CR46 publication-title: ACM Computing Surveys doi: 10.1145/3236009 – volume: 33 start-page: 11404 year: 2020 ident: 635_CR24 publication-title: Advances in Neural Information Processing Systems – ident: 635_CR31 doi: 10.1186/gb-2002-3-7-research0036 – ident: 635_CR47 doi: 10.7551/mitpress/5876.001.0001 – ident: 635_CR76 – volume: 200 start-page: 319 issue: 4 year: 2022 ident: 635_CR83 publication-title: Synthese doi: 10.1007/s11229-022-03798-5 – volume: 28 start-page: 129 issue: 2 year: 1982 ident: 635_CR69 publication-title: IEEE Transactions on Information Theory doi: 10.1109/TIT.1982.1056489 – volume: 74 start-page: 1046 issue: 5 year: 2007 ident: 635_CR95 publication-title: Philosophy of Science doi: 10.1086/525643 – ident: 635_CR55 doi: 10.1109/CVPR.2019.00453 – ident: 635_CR119 doi: 10.1017/can.2021.17 – ident: 635_CR62 – volume-title: Case-based reasoning year: 1993 ident: 635_CR63 – ident: 635_CR85 – volume: 28 start-page: 97 issue: 2 year: 1974 ident: 635_CR37 publication-title: Synthese doi: 10.1007/BF00485230 – volume-title: Depth: An account of scientific explanation year: 2008 ident: 635_CR99 – volume: LIX start-page: 433 issue: 236 year: 1950 ident: 635_CR107 publication-title: Mind doi: 10.1093/mind/LIX.236.433 – volume: 200 start-page: 65 issue: 2 year: 2022 ident: 635_CR110 publication-title: Synthese doi: 10.1007/s11229-022-03485-5 – volume: 51 start-page: 584 issue: 4 year: 2019 ident: 635_CR72 publication-title: Nature Genetics doi: 10.1038/s41588-019-0379-x – volume: 199 start-page: 1461 issue: 1 year: 2021 ident: 635_CR84 publication-title: Synthese doi: 10.1007/s11229-020-02806-w – volume-title: Error and the growth of experimental knowledge year: 1996 ident: 635_CR73 doi: 10.7208/chicago/9780226511993.001.0001 – volume: 199 start-page: 3647 issue: 1 year: 2021 ident: 635_CR75 publication-title: Synthese doi: 10.1007/s11229-020-02950-3 – volume: 30 start-page: 411 issue: 3 year: 2020 ident: 635_CR41 publication-title: Minds and Machines doi: 10.1007/s11023-020-09539-2 – volume: 63 start-page: 411 issue: 2 year: 2001 ident: 635_CR105 publication-title: Journal of the Royal Statistical Society: Series B doi: 10.1111/1467-9868.00293 – volume-title: Naming and necessity year: 1980 ident: 635_CR64 – volume: 49 start-page: 411 issue: 1 year: 2021 ident: 635_CR57 publication-title: The Annals of Statistics – ident: 635_CR21 – volume: 198 start-page: 9211 issue: 10 year: 2021 ident: 635_CR111 publication-title: Synthese doi: 10.1007/s11229-020-02629-9 – ident: 635_CR88 – ident: 635_CR8 – start-page: 257 volume-title: International Conference on Probabilistic Graphical Models year: 2020 ident: 635_CR60 – volume: 64 start-page: 53 year: 2015 ident: 635_CR50 publication-title: Pattern Recognition Letters doi: 10.1016/j.patrec.2015.04.009 – ident: 635_CR78 doi: 10.1177/2053951716679679 – volume-title: Modal logic as metaphysics year: 2013 ident: 635_CR115 doi: 10.1093/acprof:oso/9780199552078.001.0001 – volume: 77 start-page: 273 issue: 2 year: 2010 ident: 635_CR113 publication-title: Philosophy of Science doi: 10.1086/651316 – ident: 635_CR42 – volume-title: Deep learning year: 2016 ident: 635_CR43 – volume: 7 start-page: 2003 issue: 72 year: 2006 ident: 635_CR93 publication-title: Journal of Machine Learning Research – volume-title: The Routledge companion to thought experiments year: 2018 ident: 635_CR100 – volume: 48 start-page: 644 issue: 2 year: 2019 ident: 635_CR20 publication-title: SIAM Journal on Computing doi: 10.1137/17M112717X – ident: 635_CR45 doi: 10.1109/TKDE.2021.3130191 – ident: 635_CR17 – ident: 635_CR51 – volume: 28 start-page: 112 issue: 1 year: 2012 ident: 635_CR97 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btr597 – ident: 635_CR68 – volume: 73 start-page: 407 issue: 2 year: 2020 ident: 635_CR66 publication-title: The British Journal for the Philosophy of Science doi: 10.1093/bjps/axz049 – volume: 199 start-page: 9979 issue: 3 year: 2021 ident: 635_CR98 publication-title: Synthese doi: 10.1007/s11229-021-03233-1 – volume: 200 start-page: 10 issue: 1 year: 2022 ident: 635_CR59 publication-title: Synthese doi: 10.1007/s11229-022-03466-8 – volume: 34 start-page: 1311 issue: 4 year: 2021 ident: 635_CR28 publication-title: Philos. Technol. doi: 10.1007/s13347-021-00459-2 – volume: 129 start-page: 1553 issue: 4 year: 2014 ident: 635_CR16 publication-title: The Quarterly Journal of Economics doi: 10.1093/qje/qju022 – volume: 45 start-page: 1 issue: 1 year: 2001 ident: 635_CR12 publication-title: Machine Learning doi: 10.1023/A:1010933404324 – volume: 44 start-page: 137 issue: 1 year: 2017 ident: 635_CR15 publication-title: Behaviormetrika doi: 10.1007/s41237-016-0008-2 – ident: 635_CR70 doi: 10.1038/s42256-019-0138-9 – volume: 35 start-page: 53 issue: 1 year: 2018 ident: 635_CR26 publication-title: IEEE Signal Processing Magazine doi: 10.1109/MSP.2017.2765202 – volume-title: Decision forests: A unified framework for classification, regression, density estimation, manifold, learning and semi-supervised learning year: 2012 ident: 635_CR27 – ident: 635_CR114 – ident: 635_CR116 doi: 10.1093/acprof:oso/9780198716808.003.0005 – volume: 111 start-page: 846 issue: 514 year: 2016 ident: 635_CR34 publication-title: Journal of the American Statistical Association doi: 10.1080/01621459.2015.1062383 – volume: 116 start-page: 22071 issue: 44 year: 2019 ident: 635_CR81 publication-title: Proceedings of the National Academy of Sciences doi: 10.1073/pnas.1900654116 – ident: 635_CR118 doi: 10.1007/s13347-019-00382-7 – volume-title: Principal component analysis year: 2002 ident: 635_CR54 – volume-title: Signals: Evolution, learning, and information year: 2010 ident: 635_CR94 doi: 10.1093/acprof:oso/9780199580828.001.0001 – volume: 184 start-page: 431 issue: 3 year: 2012 ident: 635_CR35 publication-title: Synthese doi: 10.1007/s11229-010-9821-4 – ident: 635_CR53 doi: 10.1038/s41598-020-58766-1 – ident: 635_CR96 – volume-title: Idealization and the aims of science year: 2017 ident: 635_CR86 doi: 10.7208/chicago/9780226507194.001.0001 – volume: 166 start-page: 1 year: 2018 ident: 635_CR101 publication-title: Computer Vision and Image Understanding doi: 10.1016/j.cviu.2017.03.007 – volume-title: Statistical inference as severe testing: How to get beyond the statistics wars year: 2018 ident: 635_CR74 doi: 10.1017/9781107286184 – volume: 48 start-page: 391 issue: 3 year: 1997 ident: 635_CR30 publication-title: The British Journal for the Philosophy of Science doi: 10.1093/bjps/48.3.391 – volume: 195 start-page: 5339 year: 2018 ident: 635_CR13 publication-title: Synthese doi: 10.1007/s11229-018-01949-1 – volume: 193 start-page: 1047 issue: 4 year: 2016 ident: 635_CR117 publication-title: Synthese doi: 10.1007/s11229-015-0810-5 – volume: 7 start-page: 205395171989794 issue: 1 year: 2020 ident: 635_CR44 publication-title: Big Data & Society doi: 10.1177/2053951719897945 – volume: 51 start-page: 727 issue: 4 year: 2017 ident: 635_CR18 publication-title: Noûs doi: 10.1111/nous.12140 – volume: 70 start-page: 301 issue: 1 year: 2019 ident: 635_CR5 publication-title: The British Journal for the Philosophy of Science doi: 10.1093/bjps/axx039 – ident: 635_CR11 – volume: 45 start-page: 1 issue: 1 year: 1994 ident: 635_CR38 publication-title: The British Journal for the Philosophy of Science doi: 10.1093/bjps/45.1.1 – volume: 33 start-page: 487 issue: 3 year: 2020 ident: 635_CR65 publication-title: Philosophy & Technology doi: 10.1007/s13347-019-00372-9 – ident: 635_CR106 doi: 10.2139/ssrn.3662302 – volume-title: Scientific essentialism year: 2001 ident: 635_CR32 – ident: 635_CR9 – ident: 635_CR89 – ident: 635_CR1 – volume: 34 start-page: 16451 year: 2021 ident: 635_CR108 publication-title: Advances in Neural Information Processing Systems – volume: 86 start-page: 145 issue: 1 year: 2018 ident: 635_CR58 publication-title: Philosophy of Science doi: 10.1086/701072 – volume: 88 start-page: 27 issue: 1 year: 1991 ident: 635_CR29 publication-title: The Journal of Philosophy doi: 10.2307/2027085 – ident: 635_CR49 doi: 10.1007/978-0-387-84858-7 – ident: 635_CR112 – volume: 16 start-page: 1 year: 2021 ident: 635_CR90 publication-title: Stat. Surv. – volume: 14 start-page: 511 issue: 3 year: 2005 ident: 635_CR104 publication-title: Journal of Computational and Graphical Statistics doi: 10.1198/106186005X59243 – volume: 199 start-page: 2883 issue: 1 year: 2021 ident: 635_CR71 publication-title: Synthese doi: 10.1007/s11229-020-02915-6 – volume: 35 start-page: 209 issue: 2 year: 2020 ident: 635_CR52 publication-title: Mind & Language doi: 10.1111/mila.12281 – ident: 635_CR25 – volume: 6 start-page: 52138 year: 2018 ident: 635_CR3 publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2870052 – volume: 68 start-page: 218 issue: 2 year: 2001 ident: 635_CR80 publication-title: Philosophy of Science doi: 10.1086/392874 – volume-title: Chomsky’s universal grammar (Third Edit) year: 2007 ident: 635_CR22 – volume: 81 start-page: 159 issue: 2 year: 1972 ident: 635_CR10 publication-title: The Philosophical Review doi: 10.2307/2183991 – volume: 52 start-page: 91 issue: 1–2 year: 2003 ident: 635_CR79 publication-title: Machine Learning doi: 10.1023/A:1023949509487 – volume: 67 start-page: 553 issue: 2 year: 2014 ident: 635_CR39 publication-title: The British Journal for the Philosophy of Science doi: 10.1093/bjps/axu040 – volume: 200 start-page: 231 issue: 4 year: 2022 ident: 635_CR77 publication-title: Synthese doi: 10.1007/s11229-022-03739-2 – ident: 635_CR7 – volume: 48 start-page: 21 issue: 1 year: 1997 ident: 635_CR56 publication-title: The British Journal for the Philosophy of Science doi: 10.1093/bjps/48.1.21 – ident: 635_CR36 doi: 10.1007/s11023-008-9113-7 – volume-title: Clustering algorithms year: 1975 ident: 635_CR48 – volume-title: Hume’s problem solved: The optimality of meta-induction year: 2019 ident: 635_CR92 doi: 10.7551/mitpress/11964.001.0001 – volume: 198 start-page: 5089 issue: 6 year: 2021 ident: 635_CR82 publication-title: Synthese doi: 10.1007/s11229-019-02390-8 – ident: 635_CR6 doi: 10.1609/aaai.v33i01.33012678 – volume-title: Data-centric biology: A philosophical study year: 2016 ident: 635_CR67 doi: 10.7208/chicago/9780226416502.001.0001 – ident: 635_CR102 doi: 10.1093/bjps/axz035 – volume: 40 start-page: 51 issue: 1 year: 2009 ident: 635_CR23 publication-title: Journal for General Philosophy of Science doi: 10.1007/s10838-009-9091-3 – volume: 29 start-page: 1189 issue: 5 year: 2001 ident: 635_CR40 publication-title: The Annals of Statistics doi: 10.1214/aos/1013203451 – volume: 66 start-page: S390 issue: S3 year: 1999 ident: 635_CR4 publication-title: Philosophy of Science doi: 10.1086/392740 – ident: 635_CR61 doi: 10.1007/978-1-4419-6646-9_2 – start-page: 37 volume-title: Art, mind, and religion year: 1967 ident: 635_CR87 doi: 10.2307/jj.6380610.6 – volume: 109 start-page: 612 issue: 5 year: 2021 ident: 635_CR91 publication-title: Proceedings of the IEEE doi: 10.1109/JPROC.2021.3058954 – volume-title: Formal methods in computer science year: 2019 ident: 635_CR109 doi: 10.1201/9780429184185 – volume: 29 start-page: 983 issue: 4 year: 2016 ident: 635_CR33 publication-title: Journal of the American Mathematical Society doi: 10.1090/jams/852 – volume: 2 start-page: 731 issue: 12 year: 2020 ident: 635_CR14 publication-title: Nature Machine Intelligence doi: 10.1038/s42256-020-00266-y – volume: 194 start-page: 2211 issue: 6 year: 2017 ident: 635_CR19 publication-title: Synthese doi: 10.1007/s11229-016-1053-9 – ident: 635_CR2 |
SSID | ssj0000516327 |
Score | 2.2570896 |
Snippet | Unsupervised learning algorithms are widely used for many important statistical tasks with numerous applications in science and industry. Yet despite their... |
SourceID | proquest gale crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 28 |
SubjectTerms | Algorithms Analysis Clustering Contingency Data mining Education Epistemology Ethics Machine learning Philosophy Philosophy of Technology Research Article Unsupervised learning |
SummonAdditionalLinks | – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV07T8MwED7xWGBAPEWhoAwIJMCicZzYmRBCFMQADFRisxI_WFBaaBn499ylTkt5rfHlZJ3vfA_b3wEcOFkfFyVMea-Y8JjuYApmWOnT3EnvUjR2um1xl930xO1T-hQKbsNwrbLZE-uN2vYN1cjPOAHliBTD6_PBK6OuUXS6GlpozMNijJ6G9Fx1ryc1FlS4LKm7tnLMbFgqkiS8mxm_nksSIRk6LUaOOmXZjG_6vkP_OCqtPVB3FVZC6BhdjNd6DeZctQ7LXwAF12HpoelM8LEBx_dVhOFdNP0W9X3Uq4bvA9oghs5GAV31eRN63avHyxsWWiMwgyllxnzGUZLCS4LLUkVuOyXHWEIKqzqZ5UViuPdoWxa9cVbmGJVYaZ3iufIxp47pW7BQ9Su3DVHsY5N7JVxOz0zjuJCiNKUquEe2MrEtiBuhaBNww6l9xYueIh6TIDVy1bUgddaCk8k_gzFqxr_URyRrTSaFnE0RXgbg_AicSl9IAn3DWLDTgsMZyucxNPdvhO0ZQrQZMzvcLKsONjvUUw1rwWmz1NPhv-e_8z-3XVjitZJR6aYNC6O3d7eHkcyo3K_V9RMYQulm priority: 102 providerName: ProQuest |
Title | On the Philosophy of Unsupervised Learning |
URI | https://link.springer.com/article/10.1007/s13347-023-00635-6 https://www.proquest.com/docview/2804145875 |
Volume | 36 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED90vuiD6FSsztEHUVADa5om6eMc20RBRRzoU-hHshfpxLkH_3svXbo5nYJPheR6hEsud5fkfgdwrEV5XRQSaYwkzGC4gyFYRlITxVoYHaGy29cWt_xqwK6foieXFDauXrtXV5LlTj1PdgtDJgjaGGLtakT4KqxFGLtbdRzQ9uxkBZcZD8tarRTjGRKxMHTZMsvZLFik7_vyjwvS0u70tmDTOYx-ezrD27Cii7qttezeZdRh4wukYB3W76vaBB87cHZX-Ojg-fM2f2T8QTGevNotYqxz3-GrDndh0Os-dq6IK45AMgwqOTGcoiyZERYwSyZx3kopehOC5bLFc5qEGTUGtStHe8zTGP2SXORa0liagNqa6XtQK0aF3gc_MEEWG8l0bBNNgyARLM1SmVCDbEWYexBUAlKZQw63BSxe1Bzz2ApVIVdVClVxD85n_7xOcTP-pD61cldWqZBzlrjcAByfhadSbWFh39AbbHlwskA5nIJzLyNsLBCi1mSL3dUUK6e1Y0UtGBNDIUYeXFTTPu_-ffwH_yM_hHVaLkB7mNOA2vvbRB-hb_OeNmFV9vpNWGv3n2-6-L3s3t4_YGuHd5rlMv8EFAvu8A |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB6h5QA9IKBUXZ45tCBRLDaOEycHhHhqeXSLECtxM4kfXFB2YUGIP8VvZCYPli0tN66xM7LG87Q93wD8sLK4LgpY7FzMhMN0B1MwzTIXJlY6G6Ky02uLTtTuiuPL8HIMnutaGHpWWdvEwlCbnqYz8k1OQDkixPB6u3_LqGsU3a7WLTRKsTixT4-Ysg22jvZxf39yfnhwsddmVVcBpjEbi5iLOC5COElIU3GamFbG0Q1LYeJWZHgaaO4ciqVBRxZlCTp0I42NeRI7n_MC6ABN_rigitYGjO8edM7OX091UMSjoOgTyzGXYqEIgqpSp6zXCwIhGdJgFBqELBrxhn_7hHeXs4XPO5yGqSpY9XZK6ZqBMZvPwpc3EIazMHlW90J4-grrf3IPA0pv-M3rOa-bDx76ZJIG1ngVnuv1HHQ_hW3foJH3cvsdPN_5OnGxsAkVtvp-KkWmszjlDsnKwDTBr5midIVUTg0zbtQQY5kYqZCqKhipoib8ev2nX-J0fDh7jXitSImRsk6rWgRcH8FhqR1JMHMYfbaasDoy87oEA__XxMWRiailenS43lZVWYmBGsp0EzbqrR4O_3_98x9TW4GJ9sXvU3V61DlZgEleCBwdHC1C4_7uwS5hHHWfLVfC68HVZ-vLC3CiJXQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB5VRULhgPpCBErZAwWJ1mrW9q69B4QqSkgJansgUm_urh-9VJvQtEL9a_11ndlHQ6D0luvaO7LG87Q93wC886q6LhJMh6CZDJjuYApmWRGSzKvgE1R2em1xlA5G8vtpcroEt20tDD2rbG1iZajd2NIZ-R4noByZYHi9F5pnEScH_c-TX4w6SNFNa9tOoxaRob_5jenb9NPhAe71Nuf9rz-_DFjTYYBZzMxSFlKOC5JBEeqUzjPXKzi6ZCWd7qWO58LyEFBEHTq1tMjQuTvlvOaZDjHnFegBmv8nSqiMEj_d_3Z_voPCnoqqYyzHrIolUoimZqeu3BNCKoYUGAUJCUvn_OLf3uGfa9rK-_VX4HkTtkb7tZytwpIv1-DZH2CGa9A5absi3KzDx-MywtAymn2LxiEaldPrCRmnqXdRg-x6vgGjhTDtBSyX49K_hCgOsc2Clj6jEtc4zpUsbKFzHpCsEq4LccsUYxvMcmqdcWFmaMvESINUTcVIk3Zh5_6fSY3Y8ejsD8RrQ-qMlG3eVCXg-ggYy-wrApzDOLTXhfdzM89rWPCHJm7OTUR9tfPD7baaxl5MzUy6u7DbbvVs-P_rf_U4tbfwFLXE_Dg8Gr6GDq_kjU6QNmH56vLav8GA6qrYqiQ3grNFq8odapEoRA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+Philosophy+of+Unsupervised+Learning&rft.jtitle=Philosophy+%26+technology&rft.au=Watson%2C+David+S&rft.date=2023-06-01&rft.pub=Springer&rft.issn=2210-5433&rft.volume=36&rft.issue=2&rft_id=info:doi/10.1007%2Fs13347-023-00635-6&rft.externalDocID=A746540950 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2210-5433&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2210-5433&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2210-5433&client=summon |