Dependent, independent, and pseudo-independent protection layers in risk analysis

Risk analysis is an important tool to provide support for various risk management decisions in hazardous industries. For the last decade, the semiquantitative Layers of Protection Analysis (LOPA) has been the dominating risk analysis technique in the US process industry. One basic assumption in LOPA...

Full description

Saved in:
Bibliographic Details
Published inProcess safety progress Vol. 35; no. 3; pp. 286 - 294
Main Authors Jin, Hui, Summers, Angela
Format Journal Article
LanguageEnglish
Published Blackwell Publishing Ltd 01.09.2016
Subjects
Online AccessGet full text
ISSN1066-8527
1547-5913
DOI10.1002/prs.11796

Cover

Abstract Risk analysis is an important tool to provide support for various risk management decisions in hazardous industries. For the last decade, the semiquantitative Layers of Protection Analysis (LOPA) has been the dominating risk analysis technique in the US process industry. One basic assumption in LOPA is that all the protection layers are independent from each other and from the initiating cause; otherwise, no risk reduction credit should be taken in the LOPA. However, many processes do have protection layers, which are dependent to some extent. For these systems, assuming independency may be too optimistic, whereas disregarding the partial risk reduction afforded from a partially dependent protection layer is pessimistic. This article considers processes with dependent protection layers (with a shared component), independent protection layers, and pseudo‐independent protection layers (subject to common cause failure). A long distance gas pipeline system is used as an example. Using reduced Event Trees for incident scenario modeling, Fault Trees for protection layers, and solving them in a coupled calculation, this article shows how protection layer dependencies are treated in risk analysis to obtain the overall risk reduction without being too optimistic or pessimistic. © 2015 American Institute of Chemical Engineers Process Saf Prog 35: 286–294, 2016
AbstractList Risk analysis is an important tool to provide support for various risk management decisions in hazardous industries. For the last decade, the semiquantitative Layers of Protection Analysis (LOPA) has been the dominating risk analysis technique in the US process industry. One basic assumption in LOPA is that all the protection layers are independent from each other and from the initiating cause; otherwise, no risk reduction credit should be taken in the LOPA. However, many processes do have protection layers, which are dependent to some extent. For these systems, assuming independency may be too optimistic, whereas disregarding the partial risk reduction afforded from a partially dependent protection layer is pessimistic. This article considers processes with dependent protection layers (with a shared component), independent protection layers, and pseudo‐independent protection layers (subject to common cause failure). A long distance gas pipeline system is used as an example. Using reduced Event Trees for incident scenario modeling, Fault Trees for protection layers, and solving them in a coupled calculation, this article shows how protection layer dependencies are treated in risk analysis to obtain the overall risk reduction without being too optimistic or pessimistic. © 2015 American Institute of Chemical Engineers Process Saf Prog 35: 286–294, 2016
Risk analysis is an important tool to provide support for various risk management decisions in hazardous industries. For the last decade, the semiquantitative Layers of Protection Analysis (LOPA) has been the dominating risk analysis technique in the US process industry. One basic assumption in LOPA is that all the protection layers are independent from each other and from the initiating cause; otherwise, no risk reduction credit should be taken in the LOPA. However, many processes do have protection layers, which are dependent to some extent. For these systems, assuming independency may be too optimistic, whereas disregarding the partial risk reduction afforded from a partially dependent protection layer is pessimistic. This article considers processes with dependent protection layers (with a shared component), independent protection layers, and pseudo-independent protection layers (subject to common cause failure). A long distance gas pipeline system is used as an example. Using reduced Event Trees for incident scenario modeling, Fault Trees for protection layers, and solving them in a coupled calculation, this article shows how protection layer dependencies are treated in risk analysis to obtain the overall risk reduction without being too optimistic or pessimistic. copyright 2015 American Institute of Chemical Engineers Process Saf Prog 35: 286-294, 2016
Author Summers, Angela
Jin, Hui
Author_xml – sequence: 1
  givenname: Hui
  surname: Jin
  fullname: Jin, Hui
  email: hjin@sis-tech.com
  organization: SIS-TECH Solutions, LP, 12621 Featherwood Drive, Suite 120, TX, 77034, Houston
– sequence: 2
  givenname: Angela
  surname: Summers
  fullname: Summers, Angela
  organization: SIS-TECH Solutions, LP, 12621 Featherwood Drive, Suite 120, TX, 77034, Houston
BookMark eNp9kE9Lw0AQxRepYK0e_AY5Kph2N_s3R6naCqVWLehtWZIJrE2TuJui-fZuqRYR9PTmDe83zMwx6lV1BQidETwkGCejxvkhITIVB6hPOJMxTwnthRoLESueyCN07P0rxlgJlfbRwzU0UOVQtZeRDbo3psqjxsMmr-Mf_ahxdQtZa-sqKk0HzgcqctavAmDKzlt_gg4LU3o4_dIBWt7eLMfTeHY_uRtfzeKMKipigEIWCRU0U0woIiFLEk45xhnOQXJRMEUx5dRgVgSbJwwblhrIMS9YjukAne_Gho3eNuBbvbY-g7I0FdQbr4miXHCuSBKiF7to5mrvHRS6cXZtXKcJ1tuvBR-A7ddCdvQrm9nWbO9tnbHlf8S7LaH7e7RePD59E_GOsL6Fjz1h3EoLSSXXz_OJntMpo4vJQr_QT_4aj7k
CitedBy_id crossref_primary_10_1016_j_ijcip_2022_100535
crossref_primary_10_1002_prs_11971
Cites_doi 10.1002/prs.10145
10.1002/prs.11493
10.1177/1748006X12462780
ContentType Journal Article
Copyright 2015 American Institute of Chemical Engineers
Copyright_xml – notice: 2015 American Institute of Chemical Engineers
DBID BSCLL
AAYXX
CITATION
7TB
8FD
FR3
KR7
DOI 10.1002/prs.11796
DatabaseName Istex
CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
DatabaseTitleList CrossRef
Civil Engineering Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1547-5913
EndPage 294
ExternalDocumentID 10_1002_prs_11796
PRS11796
ark_67375_WNG_N3H43PGP_X
Genre article
GroupedDBID -~X
.3N
.GA
.Y3
05W
0R~
10A
123
1L6
1OB
1OC
1ZS
29P
31~
33P
3SF
3V.
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5VS
66C
702
7PT
7RQ
7XC
8-0
8-1
8-3
8-4
8-5
8FE
8FG
8FH
8FW
8UM
8WZ
930
A03
A6W
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJCF
ABJNI
ABPVW
ABUWG
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFKRA
AFPWT
AFRAH
AFZJQ
AHBTC
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATCPS
ATUGU
AUFTA
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BENPR
BFHJK
BGLVJ
BHBCM
BHPHI
BLYAC
BMNLL
BMXJE
BNHUX
BPHCQ
BROTX
BRXPI
BSCLL
BY8
CCPQU
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DU5
DWQXO
EBS
EJD
F00
F01
F04
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HCIFZ
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
I-F
ITG
ITH
IX1
J0M
JPC
KQQ
L6V
LATKE
LAW
LC2
LC3
LEEKS
LH4
LH6
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M7S
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NDZJH
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PATMY
PQQKQ
PROAC
PTHSS
PYCSY
Q.N
Q11
QB0
QRW
R.K
RBB
RIWAO
RJQFR
ROL
RWI
RWL
RX1
RXW
RYL
S0X
SAMSI
SUPJJ
TAE
UB1
V2E
V8K
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WSB
WXSBR
WYISQ
XG1
XV2
ZZTAW
~IA
~WT
AAHQN
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AEUYN
AFWVQ
ALVPJ
AAYXX
ADMLS
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
PHGZM
PHGZT
7TB
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
FR3
KR7
ID FETCH-LOGICAL-c3836-eef7f2363c846817ec2253500c0de756f4830353a04f756d240a49aed05f4d03
IEDL.DBID DR2
ISSN 1066-8527
IngestDate Fri Jul 11 00:48:55 EDT 2025
Tue Jul 01 00:59:35 EDT 2025
Thu Apr 24 23:04:57 EDT 2025
Wed Jan 22 16:43:18 EST 2025
Wed Oct 30 09:55:26 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3836-eef7f2363c846817ec2253500c0de756f4830353a04f756d240a49aed05f4d03
Notes istex:51C6EB9D3DA4CD9AA3A3309B1FF858048B0C8313
ArticleID:PRS11796
ark:/67375/WNG-N3H43PGP-X
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1835655812
PQPubID 23500
PageCount 9
ParticipantIDs proquest_miscellaneous_1835655812
crossref_primary_10_1002_prs_11796
crossref_citationtrail_10_1002_prs_11796
wiley_primary_10_1002_prs_11796_PRS11796
istex_primary_ark_67375_WNG_N3H43PGP_X
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 2016
PublicationDateYYYYMMDD 2016-09-01
PublicationDate_xml – month: 09
  year: 2016
  text: September 2016
PublicationDecade 2010
PublicationTitle Process safety progress
PublicationTitleAlternate Proc. Safety Prog
PublicationYear 2016
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References M. Rausand and A. Høyland, System Reliability Theory; Models, Statistical Methods, and Applications, 2nd Edition, Wiley, Hoboken, NJ, 2004.
CCPS, Layer of Protection Analysis: Simplified Process Risk Assessment, Center for Chemical Process Safety, American Institute of Chemical Engineers, New York, NY, 2001.
R. Freeman, Quantifying LOPA uncertainty, Process Saf Prog 31 (2012), 240-247.
NOG, Guidelines for the Application of IEC 61508 and IEC 61511 in the Petroleum Activities on the Norwegian Continental Shelf, Norwegian Oil Industry Association, Stavanger, Norway, 2004.
M. Gentile and A.E. Summers, Random, systematic, and common cause failure: How do you manage them? Process Saf Prog 25 (2006), 331-338.
SIS-TECH, SIL Solver 7.0, SIS-TECH Solution, Houston, TX, 2014.
Isograph, Reliability Workbench 12.0, Isograph, UK, 2014.
IEC, Functional Safety: Safety Instrumented Systems for the Process Industry Sector, Part 1-3, International Electrotechnical Commission, Geneva, 2003.
H. Jin, M.A. Lundteigen, and M. Rausand, Uncertainty assessment of reliability estimates for safety-instrumented systems, Proc Inst Mech Eng Part O J Risk Reliab 226 (2012), 646-665.
2004
2003
2014
2001
2012; 226
2012; 31
2006; 25
e_1_2_10_9_1
Isograph (e_1_2_10_7_1) 2014
e_1_2_10_10_1
SIS‐TECH (e_1_2_10_8_1) 2014
CCPS (e_1_2_10_4_1) 2001
IEC (e_1_2_10_3_1) 2003
NOG (e_1_2_10_2_1) 2004
Rausand M. (e_1_2_10_5_1) 2004
e_1_2_10_6_1
References_xml – reference: IEC, Functional Safety: Safety Instrumented Systems for the Process Industry Sector, Part 1-3, International Electrotechnical Commission, Geneva, 2003.
– reference: Isograph, Reliability Workbench 12.0, Isograph, UK, 2014.
– reference: M. Gentile and A.E. Summers, Random, systematic, and common cause failure: How do you manage them? Process Saf Prog 25 (2006), 331-338.
– reference: M. Rausand and A. Høyland, System Reliability Theory; Models, Statistical Methods, and Applications, 2nd Edition, Wiley, Hoboken, NJ, 2004.
– reference: H. Jin, M.A. Lundteigen, and M. Rausand, Uncertainty assessment of reliability estimates for safety-instrumented systems, Proc Inst Mech Eng Part O J Risk Reliab 226 (2012), 646-665.
– reference: NOG, Guidelines for the Application of IEC 61508 and IEC 61511 in the Petroleum Activities on the Norwegian Continental Shelf, Norwegian Oil Industry Association, Stavanger, Norway, 2004.
– reference: SIS-TECH, SIL Solver 7.0, SIS-TECH Solution, Houston, TX, 2014.
– reference: CCPS, Layer of Protection Analysis: Simplified Process Risk Assessment, Center for Chemical Process Safety, American Institute of Chemical Engineers, New York, NY, 2001.
– reference: R. Freeman, Quantifying LOPA uncertainty, Process Saf Prog 31 (2012), 240-247.
– volume: 226
  start-page: 646
  year: 2012
  end-page: 665
  article-title: Uncertainty assessment of reliability estimates for safety‐instrumented systems
  publication-title: Proc Inst Mech Eng Part O J Risk Reliab
– year: 2014
– year: 2001
– volume: 31
  start-page: 240
  year: 2012
  end-page: 247
  article-title: Quantifying LOPA uncertainty
  publication-title: Process Saf Prog
– year: 2004
– year: 2003
– volume: 25
  start-page: 331
  year: 2006
  end-page: 338
  article-title: Random, systematic, and common cause failure: How do you manage them?
  publication-title: Process Saf Prog
– volume-title: System Reliability Theory; Models, Statistical Methods, and Applications
  year: 2004
  ident: e_1_2_10_5_1
– ident: e_1_2_10_6_1
  doi: 10.1002/prs.10145
– volume-title: Layer of Protection Analysis: Simplified Process Risk Assessment
  year: 2001
  ident: e_1_2_10_4_1
– ident: e_1_2_10_9_1
  doi: 10.1002/prs.11493
– ident: e_1_2_10_10_1
  doi: 10.1177/1748006X12462780
– volume-title: Guidelines for the Application of IEC 61508 and IEC 61511 in the Petroleum Activities on the Norwegian Continental Shelf
  year: 2004
  ident: e_1_2_10_2_1
– volume-title: Functional Safety: Safety Instrumented Systems for the Process Industry Sector, Part 1‐3
  year: 2003
  ident: e_1_2_10_3_1
– volume-title: Reliability Workbench 12.0
  year: 2014
  ident: e_1_2_10_7_1
– volume-title: SIL Solver 7.0
  year: 2014
  ident: e_1_2_10_8_1
SSID ssj0008689
Score 2.0548706
Snippet Risk analysis is an important tool to provide support for various risk management decisions in hazardous industries. For the last decade, the semiquantitative...
SourceID proquest
crossref
wiley
istex
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 286
SubjectTerms Chemical engineers
common cause failure
Common cause failures
dependent failure
Event tree analysis
Fault trees
Gas pipelines
LOPA
Reduction
Risk
Risk analysis
Title Dependent, independent, and pseudo-independent protection layers in risk analysis
URI https://api.istex.fr/ark:/67375/WNG-N3H43PGP-X/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fprs.11796
https://www.proquest.com/docview/1835655812
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9tAEB5McmkPfYc6TYMaSumhSlbah2R6CnUTU1pjYpf4UFhWuysIDrLxA0JP-Qn5jf0lnV09bJcWSm5aNCOtdvbxjXb2G4C3LqELApEopJppdFAyEyqbJ6HROumk3EZW-yjfvuh9Z1_GfNyCj_VZmJIfovnh5kaGn6_dAFfZ4mRNGjqbL9yOY8fRbUdUON787sWaOioVPv0dejwiTHmc1KxCJD5pNLfWol3XrDdbQHMTrvr15uwx_KhrWoaZTI5Xy-xY__yDxPGen_IEHlU4NDgtO85TaNniGTzcYCd8DsNulSB3-SG4arLlYkEVJpgt7MpMf93ebdwJKtIHNHVwrRyWR73ABa-jSsl98gJGZ59Hn3phlYMh1Oi7itCi4fKYCqoRqKRRYjVOAJQToomxCRc5S3ER5FQRlmPRIEBQrKOsITxnhtA92CmmhX0JQZymitAs01EuWCfRKmaapcQkwp3d1XEb3tfGkLriJ3dpMq5lyawcS2wm6ZupDUeN6Kwk5fib0Dtv0UZCzScuii3h8rJ_Lvu0x-jgfCDHbXhTm1zi2HIbJqqw0xU-B-Gp4BwxEFbOG_Dfr5ODi6G_2P9_0VfwAPGXKEPWDmBnOV_Z14hxltkh7J52v30dHvpO_Rs3WvpL
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTxsxEB5ROLQ9tNCHmrbAUqGqhy4468duJC6IV3g0iiAVuSDLa3ulCrSJQiJVnPgJ_Y39JYy9DwICCXFba8e7tsePb-zxNwCrLqALApFmSDXTaKCkJlQ2i0OjddxKuG1a7b18O6L9mx30eX8GNqq7MAU_RL3h5kaGn6_dAHcb0uu3rKHD0aU7cmyJFzDHEGg402v7-JY8KhE-AB7aPCJMeBRXvEIkWq-z3lmN5lzD_r0DNacBq19xdt_CWVXWwtHkfG0yTtf01T0ax-dWZh7elFA02Cz6zgLM2PwdvJ4iKHwPJ9tljNzxz-BPHTAXEyo3wfDSTszg__W_qTdByfuA2g4ulIPzmC9w_uuYpaA_-QC93Z3eVjsswzCEGs1XEVrUXRZRQTVilaQZW41zAOWEaGJszEXGElwHOVWEZZg0iBEUaylrCM-YIfQjzOaD3H6CIEoSRWia6mYmWCvWKmKaJcTEwl3f1VEDflTakLqkKHeRMi5kQa4cSWwm6ZupAd9q0WHBy_GQ0Hev0lpCjc6dI1vM5WlnT3Zom9HuXlf2G7BS6Vzi8HJnJiq3gwl-BxGq4BxhEBbOa_Dx38nu8Yl_-Px00WV42e79OpJH-53DL_AK4ZgoPNi-wux4NLGLCHnG6ZLv2Tf1s_zW
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bSxwxFD5YhVIf1NYW11unpRQfOpqdXGYWn0rtur2wLF5wHwohk2RAlNll3QXxyZ_gb_SXeJK5uIqC9G3CnDOTycnlO5OT7wB8cQldEIg0Q6qZRgclNaGyWRwareNWwm3Tah_l2xWdY_a7z_szsFudhSn4Ieofbm5k-PnaDfChyXbuSUOHowu349gSr2COCUQSDhEd3HNHJcLnv0OXR4QJj-KKVohEO7Xqg8VozrXr5QOkOY1X_YLTXoR_VVWLOJOz7ck43dZXj1gc__NblmChBKLB96LnvIUZm7-D-Sl6wmU43Csz5I6_Bad1ulwsqNwEwws7MYPb65upO0HJ-oC2Ds6VA_OoF7jodVQpyE_ew1H759GPTlgmYQg1Oq8itGi5LKKCakQqSTO2GmcAygnRxNiYi4wluApyqgjLsGgQISjWUtYQnjFD6AeYzQe5XYEgShJFaJrqZiZYK9YqYpolxMTCHd7VUQO2KmNIXRKUuzwZ57KgVo4kNpP0zdSAz7XosGDleEroq7doLaFGZy6MLebypLsvu7TDaG-_J_sN-FSZXOLgcjsmKreDCT4H8angHEEQVs4b8PnXyd7Bob9YfbnoR3jd22vLv7-6f9bgDWIxUYSvrcPseDSxG4h3xumm79d3Cn37hQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dependent%2C+independent%2C+and+pseudo-independent+protection+layers+in+risk+analysis&rft.jtitle=Process+safety+progress&rft.au=Jin%2C+Hui&rft.au=Summers%2C+Angela&rft.date=2016-09-01&rft.issn=1066-8527&rft.eissn=1547-5913&rft.volume=35&rft.issue=3&rft.spage=286&rft.epage=294&rft_id=info:doi/10.1002%2Fprs.11796&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1066-8527&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1066-8527&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1066-8527&client=summon