Polymeric silk fibroin hydrogel as a conductive and multifunctional adhesive for durable skin and epidermal electronics

Silk fibroin (SF)‐based hydrogels are promising multifunctional adhesive candidates for real‐world applications in tissue engineering, implantable bioelectronics, artificial muscles, and artificial skin. However, developing conductive SF‐based hydrogels that are suitable for the micro‐physiological...

Full description

Saved in:
Bibliographic Details
Published inSmart medicine Vol. 3; no. 3; pp. e20240027 - n/a
Main Authors Fu, Fanfan, Liu, Changyi, Jiang, Zhenlin, Zhao, Qingyu, Shen, Aining, Wu, Yilun, Gu, Wenyi
Format Journal Article
LanguageEnglish
Published Germany John Wiley and Sons Inc 01.09.2024
Wiley-VCH
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Silk fibroin (SF)‐based hydrogels are promising multifunctional adhesive candidates for real‐world applications in tissue engineering, implantable bioelectronics, artificial muscles, and artificial skin. However, developing conductive SF‐based hydrogels that are suitable for the micro‐physiological environment and maintain their physical and chemical properties over long periods of use remains challenging. Herein, we developed an ion‐conductive SF hydrogel composed of glycidyl methacrylate silk fibroin (SilMA) and bioionic liquid choline acylate (ChoA) polymer chains, together with the modification of acrylated thymine (ThyA) and adenine (AdeA) functional groups. The resulting polymeric ion‐conductive SF composite hydrogel demonstrated high bioactivity, strong adhesion strength, good mechanical compliance, and stretchability. The formed hydrogel network of ChoA chains can coordinate with the ionic strength in the micro‐physiological environment while maintaining the adaptive coefficient of expansion and stable mechanical properties. These features help to form a stable ion‐conducting channel for the hydrogel. Additionally, the hydrogel network modified with AdeA and ThyA, can provide a strong adhesion to the surface of a variety of substrates, including wet tissue through abundant hydrogen bonding. The biocompatible and ionic conductive SF composite hydrogels can be easily prepared and incorporated into flexible skin or epidermal sensing devices. Therefore, our polymeric SF‐based hydrogel has great potential and wide application to be an important component of many flexible electronic devices for personalized healthcare. We present an ion‐conducting SF composite hydrogel with the robust toughness and strong adhesion without compromising the high bioactivity. The bio‐cations surrounding the ChoA chains can provide a stable ion‐conducting channel for the whole hydrogel. The resulting composite hydrogel networks were also modified with acrylate adenine (AdeA) and acrylate thymine (ThyA), thus endowed the hydrogel (SF‐Cho/AT) with strong adhesion ability. Such an ion‐conducting SF polymeric hydrogel can be incorporated into wearable electronics for real‐time on‐body detection of various physical and electrical signals.
AbstractList Silk fibroin (SF)-based hydrogels are promising multifunctional adhesive candidates for real-world applications in tissue engineering, implantable bioelectronics, artificial muscles, and artificial skin. However, developing conductive SF-based hydrogels that are suitable for the micro-physiological environment and maintain their physical and chemical properties over long periods of use remains challenging. Herein, we developed an ion-conductive SF hydrogel composed of glycidyl methacrylate silk fibroin (SilMA) and bioionic liquid choline acylate (ChoA) polymer chains, together with the modification of acrylated thymine (ThyA) and adenine (AdeA) functional groups. The resulting polymeric ion-conductive SF composite hydrogel demonstrated high bioactivity, strong adhesion strength, good mechanical compliance, and stretchability. The formed hydrogel network of ChoA chains can coordinate with the ionic strength in the micro-physiological environment while maintaining the adaptive coefficient of expansion and stable mechanical properties. These features help to form a stable ion-conducting channel for the hydrogel. Additionally, the hydrogel network modified with AdeA and ThyA, can provide a strong adhesion to the surface of a variety of substrates, including wet tissue through abundant hydrogen bonding. The biocompatible and ionic conductive SF composite hydrogels can be easily prepared and incorporated into flexible skin or epidermal sensing devices. Therefore, our polymeric SF-based hydrogel has great potential and wide application to be an important component of many flexible electronic devices for personalized healthcare.
Silk fibroin (SF)‐based hydrogels are promising multifunctional adhesive candidates for real‐world applications in tissue engineering, implantable bioelectronics, artificial muscles, and artificial skin. However, developing conductive SF‐based hydrogels that are suitable for the micro‐physiological environment and maintain their physical and chemical properties over long periods of use remains challenging. Herein, we developed an ion‐conductive SF hydrogel composed of glycidyl methacrylate silk fibroin (SilMA) and bioionic liquid choline acylate (ChoA) polymer chains, together with the modification of acrylated thymine (ThyA) and adenine (AdeA) functional groups. The resulting polymeric ion‐conductive SF composite hydrogel demonstrated high bioactivity, strong adhesion strength, good mechanical compliance, and stretchability. The formed hydrogel network of ChoA chains can coordinate with the ionic strength in the micro‐physiological environment while maintaining the adaptive coefficient of expansion and stable mechanical properties. These features help to form a stable ion‐conducting channel for the hydrogel. Additionally, the hydrogel network modified with AdeA and ThyA, can provide a strong adhesion to the surface of a variety of substrates, including wet tissue through abundant hydrogen bonding. The biocompatible and ionic conductive SF composite hydrogels can be easily prepared and incorporated into flexible skin or epidermal sensing devices. Therefore, our polymeric SF‐based hydrogel has great potential and wide application to be an important component of many flexible electronic devices for personalized healthcare. We present an ion‐conducting SF composite hydrogel with the robust toughness and strong adhesion without compromising the high bioactivity. The bio‐cations surrounding the ChoA chains can provide a stable ion‐conducting channel for the whole hydrogel. The resulting composite hydrogel networks were also modified with acrylate adenine (AdeA) and acrylate thymine (ThyA), thus endowed the hydrogel (SF‐Cho/AT) with strong adhesion ability. Such an ion‐conducting SF polymeric hydrogel can be incorporated into wearable electronics for real‐time on‐body detection of various physical and electrical signals.
Abstract Silk fibroin (SF)‐based hydrogels are promising multifunctional adhesive candidates for real‐world applications in tissue engineering, implantable bioelectronics, artificial muscles, and artificial skin. However, developing conductive SF‐based hydrogels that are suitable for the micro‐physiological environment and maintain their physical and chemical properties over long periods of use remains challenging. Herein, we developed an ion‐conductive SF hydrogel composed of glycidyl methacrylate silk fibroin (SilMA) and bioionic liquid choline acylate (ChoA) polymer chains, together with the modification of acrylated thymine (ThyA) and adenine (AdeA) functional groups. The resulting polymeric ion‐conductive SF composite hydrogel demonstrated high bioactivity, strong adhesion strength, good mechanical compliance, and stretchability. The formed hydrogel network of ChoA chains can coordinate with the ionic strength in the micro‐physiological environment while maintaining the adaptive coefficient of expansion and stable mechanical properties. These features help to form a stable ion‐conducting channel for the hydrogel. Additionally, the hydrogel network modified with AdeA and ThyA, can provide a strong adhesion to the surface of a variety of substrates, including wet tissue through abundant hydrogen bonding. The biocompatible and ionic conductive SF composite hydrogels can be easily prepared and incorporated into flexible skin or epidermal sensing devices. Therefore, our polymeric SF‐based hydrogel has great potential and wide application to be an important component of many flexible electronic devices for personalized healthcare.
Silk fibroin (SF)-based hydrogels are promising multifunctional adhesive candidates for real-world applications in tissue engineering, implantable bioelectronics, artificial muscles, and artificial skin. However, developing conductive SF-based hydrogels that are suitable for the micro-physiological environment and maintain their physical and chemical properties over long periods of use remains challenging. Herein, we developed an ion-conductive SF hydrogel composed of glycidyl methacrylate silk fibroin (SilMA) and bioionic liquid choline acylate (ChoA) polymer chains, together with the modification of acrylated thymine (ThyA) and adenine (AdeA) functional groups. The resulting polymeric ion-conductive SF composite hydrogel demonstrated high bioactivity, strong adhesion strength, good mechanical compliance, and stretchability. The formed hydrogel network of ChoA chains can coordinate with the ionic strength in the micro-physiological environment while maintaining the adaptive coefficient of expansion and stable mechanical properties. These features help to form a stable ion-conducting channel for the hydrogel. Additionally, the hydrogel network modified with AdeA and ThyA, can provide a strong adhesion to the surface of a variety of substrates, including wet tissue through abundant hydrogen bonding. The biocompatible and ionic conductive SF composite hydrogels can be easily prepared and incorporated into flexible skin or epidermal sensing devices. Therefore, our polymeric SF-based hydrogel has great potential and wide application to be an important component of many flexible electronic devices for personalized healthcare.Silk fibroin (SF)-based hydrogels are promising multifunctional adhesive candidates for real-world applications in tissue engineering, implantable bioelectronics, artificial muscles, and artificial skin. However, developing conductive SF-based hydrogels that are suitable for the micro-physiological environment and maintain their physical and chemical properties over long periods of use remains challenging. Herein, we developed an ion-conductive SF hydrogel composed of glycidyl methacrylate silk fibroin (SilMA) and bioionic liquid choline acylate (ChoA) polymer chains, together with the modification of acrylated thymine (ThyA) and adenine (AdeA) functional groups. The resulting polymeric ion-conductive SF composite hydrogel demonstrated high bioactivity, strong adhesion strength, good mechanical compliance, and stretchability. The formed hydrogel network of ChoA chains can coordinate with the ionic strength in the micro-physiological environment while maintaining the adaptive coefficient of expansion and stable mechanical properties. These features help to form a stable ion-conducting channel for the hydrogel. Additionally, the hydrogel network modified with AdeA and ThyA, can provide a strong adhesion to the surface of a variety of substrates, including wet tissue through abundant hydrogen bonding. The biocompatible and ionic conductive SF composite hydrogels can be easily prepared and incorporated into flexible skin or epidermal sensing devices. Therefore, our polymeric SF-based hydrogel has great potential and wide application to be an important component of many flexible electronic devices for personalized healthcare.
Author Wu, Yilun
Jiang, Zhenlin
Gu, Wenyi
Zhao, Qingyu
Fu, Fanfan
Shen, Aining
Liu, Changyi
AuthorAffiliation 2 College of Chemistry and Chemical Engineering Research Center for Advanced Mirco‐ and Nano‐Fabrication Materials Shanghai University of Engineering Science Shanghai China
1 School of Environmental and Biological Engineering Nanjing University of Science and Technology Nanjing China
3 Shenzhen Bay Laboratory Shenzhen Guangdong China
4 College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University Nanjing China
5 Australian Institute of Bioengineering and Nanotechnology The University of Queensland Brisbane Queensland Australia
AuthorAffiliation_xml – name: 5 Australian Institute of Bioengineering and Nanotechnology The University of Queensland Brisbane Queensland Australia
– name: 1 School of Environmental and Biological Engineering Nanjing University of Science and Technology Nanjing China
– name: 4 College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University Nanjing China
– name: 2 College of Chemistry and Chemical Engineering Research Center for Advanced Mirco‐ and Nano‐Fabrication Materials Shanghai University of Engineering Science Shanghai China
– name: 3 Shenzhen Bay Laboratory Shenzhen Guangdong China
Author_xml – sequence: 1
  givenname: Fanfan
  orcidid: 0000-0002-4443-9846
  surname: Fu
  fullname: Fu, Fanfan
  organization: Nanjing University of Science and Technology
– sequence: 2
  givenname: Changyi
  orcidid: 0009-0005-0034-9207
  surname: Liu
  fullname: Liu, Changyi
  organization: Nanjing University of Science and Technology
– sequence: 3
  givenname: Zhenlin
  orcidid: 0000-0003-2087-9924
  surname: Jiang
  fullname: Jiang, Zhenlin
  email: jiangzhenlin@sues.edu.cn
  organization: Shanghai University of Engineering Science
– sequence: 4
  givenname: Qingyu
  orcidid: 0009-0004-6155-2324
  surname: Zhao
  fullname: Zhao, Qingyu
  organization: Nanjing University of Science and Technology
– sequence: 5
  givenname: Aining
  surname: Shen
  fullname: Shen, Aining
  organization: Shenzhen Bay Laboratory
– sequence: 6
  givenname: Yilun
  orcidid: 0000-0003-1562-7570
  surname: Wu
  fullname: Wu, Yilun
  email: yilun.wu@njtech.edu.cn
  organization: The University of Queensland
– sequence: 7
  givenname: Wenyi
  orcidid: 0000-0003-3360-1390
  surname: Gu
  fullname: Gu, Wenyi
  email: w.gu@uq.edu.au
  organization: The University of Queensland
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39420950$$D View this record in MEDLINE/PubMed
BookMark eNp9kU1P3DAQhqOKqlDKsdcqx15C_RXbOVUV_UICtVLbs-XY412DY2_tBLT_vl4WEFx6smfm0TMjva-bg5giNM1bjE4xQuTDr8vLz6cEEVYL8aI5IqLHHZYCHzz5HzYnpVyhigyEiIG9ag7pwAgaenTU3P5MYTtB9qYtPly3zo85-diutzanFYRWl1a3JkW7mNnfQKujbaclzN4tsXZS1JWxayi7oUu5tUvWY4C2XFfNjoaNt5CnykEAM-cUvSlvmpdOhwIn9-9x8-frl99n37uLH9_Ozz5ddIZKyjuinUQaCYsRASqERMB7iQzSxHGLueSyNw44GzjuGaIShOn1oBkZCWfS0uPmfO-1SV-pTfaTzluVtFd3jZRXSufZmwDKOkqs1NwhgRjTepA9YBi5GzixdVN1fdy7Nss4gTUQ56zDM-nzSfRrtUo3CmNGetSTanh_b8jp7wJlVpMvBkLQEdJSFMVYDIOkglW026Mmp1IyuMc9GKld-GoXvnoIv_Lvnh73SD9EXQGyB259gO3_bXcVJpz-A_EdvGw
Cites_doi 10.1016/j.actbio.2022.11.002
10.1021/acsapm.1c00335
10.1126/sciadv.aaw9906
10.1126/sciadv.adg0234
10.1038/s41570-023-00486-x
10.1002/adfm.202213342
10.1039/D1TC01578H
10.1002/SMMD.20230004
10.1021/acsnano.2c01616
10.1038/s41565-020-00805-z
10.1002/SMMD.20230024
10.1016/j.pmatsci.2023.101091
10.1016/j.matchemphys.2024.129478
10.1126/sciadv.aaw2541
10.1002/smll.202105116
10.1016/j.smaim.2021.11.001
10.1021/acsnano.2c09850
10.1126/science.aaz6694
10.1021/acsami.7b04832
10.1126/sciadv.aaw1899
10.1002/adfm.202313354
10.1039/D2MH00533F
10.1038/s41467-018-05222-4
10.1016/j.nanoen.2020.105242
10.1186/s12951-022-01414-9
10.1073/pnas.2305704120
10.1038/nmat4037
10.1186/s12951-022-01669-2
10.1038/s41467-020-15316-7
10.1021/acsami.2c02534
10.1021/acsmaterialslett.0c00309
10.1021/acsnano.3c02897
10.1002/adfm.202006432
10.1016/j.polymer.2003.12.040
10.1002/macp.201400269
10.1039/C9NR03250A
10.1021/acsami.7b04623
10.1016/j.biomaterials.2019.119720
10.1038/s41563-019-0560-8
10.1038/s41467-018-03759-y
10.1016/j.clay.2019.105405
10.1021/acsami.9b23378
10.1002/advs.202301479
10.1126/sciadv.aaw1066
10.1002/marc.202100776
10.1002/agt2.542
10.1016/j.cej.2022.134763
10.1039/C8SM01854E
10.1039/D1BM00936B
10.1126/scirobotics.aar8580
10.1038/s41563-020-00814-2
10.1016/j.matt.2020.01.008
10.1038/s41467-023-41874-7
10.1016/j.cej.2024.150014
10.1016/j.engreg.2022.08.001
ContentType Journal Article
Copyright 2024 The Author(s). published by Wiley‐VCH GmbH on behalf of Wenzhou Institute, University of Chinese Academy of Sciences.
2024 The Author(s). Smart Medicine published by Wiley‐VCH GmbH on behalf of Wenzhou Institute, University of Chinese Academy of Sciences.
Copyright_xml – notice: 2024 The Author(s). published by Wiley‐VCH GmbH on behalf of Wenzhou Institute, University of Chinese Academy of Sciences.
– notice: 2024 The Author(s). Smart Medicine published by Wiley‐VCH GmbH on behalf of Wenzhou Institute, University of Chinese Academy of Sciences.
DBID 24P
WIN
NPM
AAYXX
CITATION
7X8
5PM
DOA
DOI 10.1002/SMMD.20240027
DatabaseName Wiley Online Library Open Access
Wiley Online Library Open Access
PubMed
CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
Directory of Open Access Journals
DatabaseTitle PubMed
CrossRef
MEDLINE - Academic
DatabaseTitleList PubMed
CrossRef


MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
EISSN 2751-1871
EndPage n/a
ExternalDocumentID oai_doaj_org_article_df32d8a6f07044aa985e1eb6f962d686
10_1002_SMMD_20240027
39420950
SMMD126
Genre researchArticle
Journal Article
GroupedDBID 0R~
24P
7X7
8FI
8FJ
ABUWG
ADPDF
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AVUZU
BENPR
CCPQU
EBS
FYUFA
GROUPED_DOAJ
HMCUK
OVD
OVEED
PGMZT
PIMPY
PSYQQ
RPM
TEORI
UKHRP
WIN
NPM
AAYXX
CITATION
7X8
5PM
ID FETCH-LOGICAL-c3836-2af80a07d102e37780e6580c0a2f6d168685cfe6496154038e7c5a9a42b2648d3
IEDL.DBID RPM
ISSN 2751-1871
2751-1863
IngestDate Tue Oct 22 15:16:46 EDT 2024
Fri Oct 18 05:24:59 EDT 2024
Sat Oct 19 17:15:42 EDT 2024
Fri Dec 06 07:44:21 EST 2024
Sat Nov 02 12:04:54 EDT 2024
Thu Sep 26 12:15:57 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords epidermal electronics
flexible sensor
ionic conductive
hydrogel adhesives
silk fibroin
Language English
License Attribution
2024 The Author(s). Smart Medicine published by Wiley‐VCH GmbH on behalf of Wenzhou Institute, University of Chinese Academy of Sciences.
This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3836-2af80a07d102e37780e6580c0a2f6d168685cfe6496154038e7c5a9a42b2648d3
Notes Fanfan Fu and Changyi Liu contributed equally to this work.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-3360-1390
0000-0003-1562-7570
0000-0003-2087-9924
0009-0004-6155-2324
0000-0002-4443-9846
0009-0005-0034-9207
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11425052/
PMID 39420950
PQID 3117998374
PQPubID 23479
PageCount 12
ParticipantIDs doaj_primary_oai_doaj_org_article_df32d8a6f07044aa985e1eb6f962d686
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11425052
proquest_miscellaneous_3117998374
crossref_primary_10_1002_SMMD_20240027
pubmed_primary_39420950
wiley_primary_10_1002_SMMD_20240027_SMMD126
PublicationCentury 2000
PublicationDate September 2024
PublicationDateYYYYMMDD 2024-09-01
PublicationDate_xml – month: 09
  year: 2024
  text: September 2024
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Hoboken
PublicationTitle Smart medicine
PublicationTitleAlternate Smart Med
PublicationYear 2024
Publisher John Wiley and Sons Inc
Wiley-VCH
Publisher_xml – name: John Wiley and Sons Inc
– name: Wiley-VCH
References 2021; 9
2023; 10
2014; 215
2021; 20
2023; 14
2021; 3
2023; 33
2019; 5
2023; 17
2023; 120
2023; 5
2020; 185
2019; 11
2023; 7
2023; 9
2004; 45
2024; 320
2024; 485
2022; 20
2020; 12
2020; 11
2022; 43
2023; 2
2020; 77
2024; 34
2022; 434
2017; 9
2020; 19
2021; 16
2018; 9
2018; 3
2021; 31
2020; 2
2022; 3
2023; 135
2022; 9
2023; 155
2022; 14
2014; 13
2020; 232
2021; 372
2022; 16
2018; 14
2022; 18
e_1_2_10_23_1
e_1_2_10_46_1
e_1_2_10_21_1
e_1_2_10_44_1
e_1_2_10_42_1
e_1_2_10_40_1
e_1_2_10_2_1
e_1_2_10_4_1
e_1_2_10_18_1
e_1_2_10_53_1
e_1_2_10_6_1
e_1_2_10_16_1
e_1_2_10_39_1
e_1_2_10_55_1
e_1_2_10_8_1
e_1_2_10_14_1
e_1_2_10_37_1
e_1_2_10_13_1
e_1_2_10_34_1
e_1_2_10_11_1
e_1_2_10_32_1
e_1_2_10_30_1
e_1_2_10_51_1
e_1_2_10_29_1
e_1_2_10_27_1
e_1_2_10_25_1
e_1_2_10_48_1
e_1_2_10_24_1
e_1_2_10_45_1
e_1_2_10_22_1
e_1_2_10_43_1
e_1_2_10_20_1
e_1_2_10_41_1
e_1_2_10_52_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_54_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_38_1
e_1_2_10_56_1
e_1_2_10_7_1
e_1_2_10_15_1
e_1_2_10_36_1
e_1_2_10_12_1
e_1_2_10_35_1
e_1_2_10_9_1
e_1_2_10_10_1
e_1_2_10_33_1
e_1_2_10_31_1
e_1_2_10_50_1
e_1_2_10_28_1
e_1_2_10_49_1
e_1_2_10_26_1
e_1_2_10_47_1
References_xml – volume: 18
  year: 2022
  publication-title: Small
– volume: 485
  year: 2024
  publication-title: Chem. Eng. J.
– volume: 9
  start-page: 17489
  year: 2017
  publication-title: ACS Appl. Mater. Interfaces
– volume: 45
  start-page: 1503
  year: 2004
  publication-title: Polymer
– volume: 10
  year: 2023
  publication-title: Adv. Sci.
– volume: 185
  year: 2020
  publication-title: Appl. Clay Sci.
– volume: 43
  year: 2022
  publication-title: Macromol. Rapid Commun.
– volume: 434
  year: 2022
  publication-title: Chem. Eng. J.
– volume: 320
  year: 2024
  publication-title: Mater. Chem. Phys.
– volume: 13
  start-page: 867
  year: 2014
  publication-title: Nat. Mater.
– volume: 16
  start-page: 206
  year: 2021
  publication-title: Nat. Nanotechnol.
– volume: 33
  year: 2023
  publication-title: Adv. Funct. Mater.
– volume: 9
  start-page: 17645
  year: 2017
  publication-title: ACS Appl. Mater. Interfaces
– volume: 155
  year: 2023
  publication-title: Acta Biomater.
– volume: 9
  start-page: 11794
  year: 2021
  publication-title: J. Mater. Chem. C
– volume: 16
  start-page: 10209
  year: 2022
  publication-title: ACS Nano
– volume: 372
  start-page: 1078
  year: 2021
  publication-title: Science
– volume: 9
  year: 2023
  publication-title: Sci. Adv.
– volume: 17
  start-page: 9681
  year: 2023
  publication-title: ACS Nano
– volume: 11
  year: 2020
  publication-title: Nat. Commun.
– volume: 34
  year: 2024
  publication-title: Adv. Funct. Mater.
– volume: 3
  year: 2021
  publication-title: ACS Appl. Polym. Mater.
– volume: 14
  start-page: 21945
  year: 2022
  publication-title: ACS Appl. Mater. Interfaces
– volume: 19
  start-page: 102
  year: 2020
  publication-title: Nat. Mater.
– volume: 9
  start-page: 2215
  year: 2022
  publication-title: Mater. Horiz.
– volume: 2
  start-page: 948
  year: 2020
  publication-title: Matter
– volume: 2
  year: 2023
  publication-title: Smart Med.
– volume: 14
  start-page: 9693
  year: 2018
  publication-title: Soft Matter
– volume: 5
  year: 2023
  publication-title: Aggregate
– volume: 3
  year: 2018
  publication-title: Sci. Robot.
– volume: 135
  year: 2023
  publication-title: Prog. Mater. Sci.
– volume: 7
  start-page: 302
  year: 2023
  publication-title: Nat. Rev. Chem.
– volume: 120
  year: 2023
  publication-title: Proc. Natl. Acad. Sci.
– volume: 215
  start-page: 1498
  year: 2014
  publication-title: Macromol. Chem. Phys.
– volume: 14
  year: 2023
  publication-title: Nat. Commun.
– volume: 77
  year: 2020
  publication-title: Nano Energy
– volume: 9
  start-page: 7194
  year: 2021
  publication-title: Biomater. Sci.
– volume: 2
  start-page: 1287
  year: 2020
  publication-title: ACS Mater. Lett.
– volume: 11
  start-page: 10846
  year: 2019
  publication-title: Nanoscale
– volume: 16
  start-page: 19533
  year: 2022
  publication-title: ACS Nano
– volume: 3
  start-page: 352
  year: 2022
  publication-title: Eng. Regen.
– volume: 20
  year: 2022
  publication-title: J. Nanobiotechnol.
– volume: 31
  year: 2021
  publication-title: Adv. Funct. Mater.
– volume: 3
  start-page: 1
  year: 2022
  publication-title: Smart Mater. Med.
– volume: 5
  year: 2019
  publication-title: Sci. Adv.
– volume: 9
  year: 2018
  publication-title: Nat. Commun.
– volume: 12
  start-page: 10039
  year: 2020
  publication-title: ACS Appl. Mater. Interfaces
– volume: 232
  year: 2020
  publication-title: Biomaterials
– volume: 20
  start-page: 229
  year: 2021
  publication-title: Nat. Mater.
– ident: e_1_2_10_55_1
  doi: 10.1016/j.actbio.2022.11.002
– ident: e_1_2_10_11_1
  doi: 10.1021/acsapm.1c00335
– ident: e_1_2_10_2_1
  doi: 10.1126/sciadv.aaw9906
– ident: e_1_2_10_31_1
  doi: 10.1126/sciadv.adg0234
– ident: e_1_2_10_39_1
  doi: 10.1038/s41570-023-00486-x
– ident: e_1_2_10_47_1
  doi: 10.1002/adfm.202213342
– ident: e_1_2_10_20_1
  doi: 10.1039/D1TC01578H
– ident: e_1_2_10_34_1
  doi: 10.1002/SMMD.20230004
– ident: e_1_2_10_42_1
  doi: 10.1021/acsnano.2c01616
– ident: e_1_2_10_6_1
  doi: 10.1038/s41565-020-00805-z
– ident: e_1_2_10_29_1
  doi: 10.1002/SMMD.20230024
– ident: e_1_2_10_35_1
  doi: 10.1016/j.pmatsci.2023.101091
– ident: e_1_2_10_10_1
  doi: 10.1016/j.matchemphys.2024.129478
– ident: e_1_2_10_40_1
  doi: 10.1126/sciadv.aaw2541
– ident: e_1_2_10_12_1
  doi: 10.1002/smll.202105116
– ident: e_1_2_10_30_1
  doi: 10.1016/j.smaim.2021.11.001
– ident: e_1_2_10_18_1
  doi: 10.1021/acsnano.2c09850
– ident: e_1_2_10_44_1
  doi: 10.1126/science.aaz6694
– ident: e_1_2_10_54_1
  doi: 10.1021/acsami.7b04832
– ident: e_1_2_10_27_1
  doi: 10.1126/sciadv.aaw1899
– ident: e_1_2_10_36_1
  doi: 10.1002/adfm.202313354
– ident: e_1_2_10_50_1
  doi: 10.1039/D2MH00533F
– ident: e_1_2_10_28_1
  doi: 10.1038/s41467-018-05222-4
– ident: e_1_2_10_32_1
  doi: 10.1016/j.nanoen.2020.105242
– ident: e_1_2_10_33_1
  doi: 10.1186/s12951-022-01414-9
– ident: e_1_2_10_41_1
  doi: 10.1073/pnas.2305704120
– ident: e_1_2_10_4_1
  doi: 10.1038/nmat4037
– ident: e_1_2_10_25_1
  doi: 10.1186/s12951-022-01669-2
– ident: e_1_2_10_13_1
  doi: 10.1038/s41467-020-15316-7
– ident: e_1_2_10_46_1
  doi: 10.1021/acsami.2c02534
– ident: e_1_2_10_22_1
  doi: 10.1021/acsmaterialslett.0c00309
– ident: e_1_2_10_26_1
  doi: 10.1021/acsnano.3c02897
– ident: e_1_2_10_45_1
  doi: 10.1002/adfm.202006432
– ident: e_1_2_10_52_1
  doi: 10.1016/j.polymer.2003.12.040
– ident: e_1_2_10_56_1
  doi: 10.1002/macp.201400269
– ident: e_1_2_10_8_1
  doi: 10.1039/C9NR03250A
– ident: e_1_2_10_49_1
  doi: 10.1021/acsami.7b04623
– ident: e_1_2_10_43_1
  doi: 10.1016/j.biomaterials.2019.119720
– ident: e_1_2_10_38_1
  doi: 10.1038/s41563-019-0560-8
– ident: e_1_2_10_51_1
  doi: 10.1038/s41467-018-03759-y
– ident: e_1_2_10_53_1
  doi: 10.1016/j.clay.2019.105405
– ident: e_1_2_10_48_1
  doi: 10.1021/acsami.9b23378
– ident: e_1_2_10_24_1
  doi: 10.1002/advs.202301479
– ident: e_1_2_10_9_1
  doi: 10.1126/sciadv.aaw1066
– ident: e_1_2_10_15_1
  doi: 10.1002/marc.202100776
– ident: e_1_2_10_16_1
  doi: 10.1002/agt2.542
– ident: e_1_2_10_17_1
  doi: 10.1016/j.cej.2022.134763
– ident: e_1_2_10_7_1
  doi: 10.1039/C8SM01854E
– ident: e_1_2_10_37_1
  doi: 10.1039/D1BM00936B
– ident: e_1_2_10_3_1
  doi: 10.1126/scirobotics.aar8580
– ident: e_1_2_10_5_1
  doi: 10.1038/s41563-020-00814-2
– ident: e_1_2_10_21_1
  doi: 10.1016/j.matt.2020.01.008
– ident: e_1_2_10_14_1
  doi: 10.1038/s41467-023-41874-7
– ident: e_1_2_10_23_1
  doi: 10.1016/j.cej.2024.150014
– ident: e_1_2_10_19_1
  doi: 10.1016/j.engreg.2022.08.001
SSID ssj0002922794
ssib051605433
Score 2.3183641
Snippet Silk fibroin (SF)‐based hydrogels are promising multifunctional adhesive candidates for real‐world applications in tissue engineering, implantable...
Silk fibroin (SF)-based hydrogels are promising multifunctional adhesive candidates for real-world applications in tissue engineering, implantable...
Abstract Silk fibroin (SF)‐based hydrogels are promising multifunctional adhesive candidates for real‐world applications in tissue engineering, implantable...
SourceID doaj
pubmedcentral
proquest
crossref
pubmed
wiley
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage e20240027
SubjectTerms epidermal electronics
flexible sensor
hydrogel adhesives
ionic conductive
silk fibroin
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYhp15CS9vEfaFC6SWYaCVZlo59hVDYUkgCuZmxJXWXLHZYZyn5952RdpNdWtpLj7KFLM0na2ak0TeMvRMOEOXalQZEW6KGUCV0VVUqU0WKUtAx0ob-9Js5u9Rfr6qrrVRfFBOW6YGz4E58VNJbMBHnptYAzlZhEloTnZHe2Ey2LeSWM0VrsHTEjKfXpJpYPjmfTj-jO0ghk5RBZksJJa7-PxmYv8dJbtuvSQGdPmYHa8uRf8g9fsL2Qv-U_fw-LO7SoQsf54trHtH7HeY9n9355fAjLDiMHDj6vETrigsbh97zFERICi3vA3Lws0BR7BwNWO5XS7pNxcdrbIZqB8ohi8v3gj-kzBmfscvTLxefzsp1LoWyQx_UlBKiFSBqj7IKqq6tCGh7iE6AjMZPUJC26mIw2qGJo4Wyoe4qcKBlSzFwXj1n-_3QhyPG_UQjvjLSrVhd6egs1ICotsQlr1xXsPcb4TY3mTKjyeTIsiEUmg0KBftIor-vREzX6QHi36zxb_6Ff8HeboBr8M-g4w7ow7AaG5XY7tAB1wU7zEDef0o5LdG4FAWzOxDv9GX3TT-fJfZtunxM2f8Kdpxmw9_HmEoTaV78j7G-ZI-o3Rzi9ort3y5X4TXaRLftmzT9fwEoeQl3
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEBZteumltPTlvlCh9FJMZEmWpWNfIRS2BNpAbmZsSdkli13WWUL-fWZk76ampdCjLWFL_izpm9HoG8beCQeIcuVyA6LJcYVQObRlmStTRopS0DGSQ3_x3Ryf6m9n5dmU55TOwoz6EHuHG42MNF_TAIdmOLwVDf2xWHxB-45iIGV1l91DamMohYHUJ3sni3QkkEc7y7Iqi7xA62DS2cSyw9kTZutSku__G-f8M3Tyd0qb1qSjh-zBRCb5xxH9R-xO6B6zq5N-fZ32YfiwWl_wiL3sVx1fXvtNfx7WHAYOHM1gUnrFuY5D53mKK6Q1bnQNcvDLQIHtHDkt99sNHbDiwwU-hmoHSiuLM_qa32bRGZ6w06OvPz8f51N6hbxFs9TkEqIVICqPHCOoqrIiIB0RrQAZjS-MNbZsYzDaIevRQtlQtSU40LKhsDivnrKDru_Cc8Z9oRFyGemgrC51dBYqQKAbkpdXrs3Y-93HrX-NKhr1qJcsa0Kh3qGQsU_06feVSPw63eg35_U0lmoflfQWTMTpSmsAZ8tQhMZEZ6THZmfs7Q64GgcL7YBAF_rtUKskgIc2uc7YsxHI_auU0xL5psiYnUE8a8u8pFstkyA3nUemhIAZ-5D-hn_3MV0V0rz4r9ov2X26NYa3vWIHl5tteI186LJ5k_75GwmmA58
  priority: 102
  providerName: Wiley-Blackwell
Title Polymeric silk fibroin hydrogel as a conductive and multifunctional adhesive for durable skin and epidermal electronics
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2FSMMD.20240027
https://www.ncbi.nlm.nih.gov/pubmed/39420950
https://www.proquest.com/docview/3117998374
https://pubmed.ncbi.nlm.nih.gov/PMC11425052
https://doaj.org/article/df32d8a6f07044aa985e1eb6f962d686
Volume 3
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELW65cIFgfhKgZWREBeUbuKvxEdaWlVIW62ASnuLnNjurpom1aYr1H_PjJOUrkAcuERKYiVOxva8sZ_fEPIh0QasnOlYmaSMwUPw2FRSxlxJjywF4T1O6M_P1dmF-LqUyz2ixr0wgbRflevDpr4-bNarwK28ua5mI09stpgf4_5PTMA2m5AJ-N_dGF2mgNDFAGJwPGYaVfJweZllMo3TXPFBbBPuzb7P518gTEQqJWaWeeCcgob_34Dnn_zJh7g2OKbTp-TJgCjp577mz8iea56Tn4u2vguLMbRb11fUQ1Tcrhu6urOb9tLV1HTUUIiFUe4VBjxqGksDuRAdXT8_SI1dOWS3UwC21G43uMuKdlfwGCztMLcsDOs1_Z1Kp3tBLk5PfhyfxUOOhbiC2FTFzPg8MUlmAWg4nmV54gCTJFVimFc2VbnKZeWdEhqgj0h47rJKGm0EK5EbZ_lLst-0jXtNqE0F2J153C0rpPA6N5kBa5eoMc91FZGP488tbnopjaIXTWYFWqEYrRCRI_z194VQATtcaDeXxdAOCus5s7lRHsYsIYzRuXSpK5XXilmodkTej4YroMfgMohpXLvtCh5U8CAwFxF51Rvy_lVcCwagM4lIvmPinbrs3oFGGlS5x0YZkU-hNfz7G8NZytTB_7_oDXmMT-sJb2_J_u1m694BQrotp2TCxAKO2TKbkkdHJ-eLb9Mw2zANXeUXhlsSDw
link.rule.ids 230,314,727,780,784,864,885,2102,11562,27924,27925,31720,33745,46052,46476,50814,50923,53791,53793
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELagPcAFgXgFChgJcUFRHb8SH8ujWqBbIdFFFZfIie3uqqsEbbqq-u-ZcbLbRiAkjoktJ_Z4PN-Mx58JecOMBSnnJtWWVSlYCJHaWqlUaBUwS0GGgAH96bGezOSXU3V64xR_zw-xDbihZsT1GhUcA9L716yh36fTj-DgYRIkz2-TXTB9CJF2D37Mfs62cRZukCMPN5d5rrI0AwdhoNqEsv1RGyPTFBn8_wY7_8yevIlqo1k6vE_uDXiSHvQT4AG55ZuH5PJbu7yKWzG0WyzPaYCOtouGzq_cqj3zS2o7ail4wkj2CssdtY2jMbUQzVwfHaTWzT3mtlOAtdStV3jGinbn0AzW9nizLCzqS3p9kU73iMwOP518mKTDDQtpDZ6pTrkNBbMsdwAzvMjzgnlAJKxmlgftMl3oQtXBa2kA-EgmCp_XyhoreYWZcU48JjtN2_inhLpMgtR5wLOyUslgCptbkHWFDPPC1Al5uxnc8ldPpFH2lMm8RCmUGykk5D0O_bYS8l_HF-3qrBzUqXRBcFdYHWDFktJaUyif-UoHo7mD307I643gStAX3ASxjW_XXSkiBx645TIhT3pBbj8ljOQAOVlCipGIR_8yLmkW88jJjUeS8U7AhLyLs-HffYxPGdfP_qv2K3JncjI9Ko8-H399Tu5icZ_ttkd2LlZr_wLg0UX1ctCA3xvwCNk
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bi9QwFD7oLIgvonir1wjii5Rt0zRtHlfXYb3MsqAjiy8hbZKdYYd2me4g--89J-3MWhTBxzYhTfv1JN9JTr4D8DpRBlEuVCxNUsU4Q2SxqfM8zmTuKUpBeE8L-rNjeTQXn07z0yHPKZ2F6fUhdgtuZBlhvCYDv7B-_1o09Otsdoj-HcVA8uIm7CHTSMUE9g6-z3_Md8ssXJFEHu0t8yJP4xT9g0FpE8v2R22MZqYg4P831vln8OTvpDbMStO7cGegk-ygx_8e3HDNffh50q6uwk4M65arc-bxPdtlwxZXdt2euRUzHTMMHWHSesXRjpnGshBZSLNcvzjIjF04Cm1nyGqZ3azpiBXrzrEZqu0osSyO6St2nUenewDz6Ydv74_iIcFCXKNjKmNufJmYpLDIMlxWFGXikJAkdWK4lzaVpSzz2jspFPIekWSlK-rcKCN4RYFxNnsIk6Zt3GNgNhUIOvd0VFbkwqvSFAahrkhgPlN1BG-2H1df9DoauldM5ppQ0FsUInhHn35XieSvw412faYHa9LWZ9yWRnocsIQwRpW5S10lvZLcYrcjeLUFTqO50B6IaVy76XQWJPDQKxcRPOqB3D0qU4Ij40wiKEcQj_oyLmmWiyDJTSeSKSVgBG_D3_DvdwxXKZdP_qv2S7h1cjjVXz4ef34Kt6m0j3V7BpPL9cY9R3J0Wb0YDOAXbKQIAg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Polymeric+silk+fibroin+hydrogel+as+a+conductive+and+multifunctional+adhesive+for+durable+skin+and+epidermal+electronics&rft.jtitle=Smart+medicine&rft.au=Fu%2C+Fanfan&rft.au=Liu%2C+Changyi&rft.au=Jiang%2C+Zhenlin&rft.au=Zhao%2C+Qingyu&rft.date=2024-09-01&rft.issn=2751-1871&rft.eissn=2751-1871&rft.volume=3&rft.issue=3&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2FSMMD.20240027&rft.externalDBID=10.1002%252FSMMD.20240027&rft.externalDocID=SMMD126
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2751-1871&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2751-1871&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2751-1871&client=summon