Polymeric silk fibroin hydrogel as a conductive and multifunctional adhesive for durable skin and epidermal electronics
Silk fibroin (SF)‐based hydrogels are promising multifunctional adhesive candidates for real‐world applications in tissue engineering, implantable bioelectronics, artificial muscles, and artificial skin. However, developing conductive SF‐based hydrogels that are suitable for the micro‐physiological...
Saved in:
Published in | Smart medicine Vol. 3; no. 3; pp. e20240027 - n/a |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
John Wiley and Sons Inc
01.09.2024
Wiley-VCH |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Silk fibroin (SF)‐based hydrogels are promising multifunctional adhesive candidates for real‐world applications in tissue engineering, implantable bioelectronics, artificial muscles, and artificial skin. However, developing conductive SF‐based hydrogels that are suitable for the micro‐physiological environment and maintain their physical and chemical properties over long periods of use remains challenging. Herein, we developed an ion‐conductive SF hydrogel composed of glycidyl methacrylate silk fibroin (SilMA) and bioionic liquid choline acylate (ChoA) polymer chains, together with the modification of acrylated thymine (ThyA) and adenine (AdeA) functional groups. The resulting polymeric ion‐conductive SF composite hydrogel demonstrated high bioactivity, strong adhesion strength, good mechanical compliance, and stretchability. The formed hydrogel network of ChoA chains can coordinate with the ionic strength in the micro‐physiological environment while maintaining the adaptive coefficient of expansion and stable mechanical properties. These features help to form a stable ion‐conducting channel for the hydrogel. Additionally, the hydrogel network modified with AdeA and ThyA, can provide a strong adhesion to the surface of a variety of substrates, including wet tissue through abundant hydrogen bonding. The biocompatible and ionic conductive SF composite hydrogels can be easily prepared and incorporated into flexible skin or epidermal sensing devices. Therefore, our polymeric SF‐based hydrogel has great potential and wide application to be an important component of many flexible electronic devices for personalized healthcare.
We present an ion‐conducting SF composite hydrogel with the robust toughness and strong adhesion without compromising the high bioactivity. The bio‐cations surrounding the ChoA chains can provide a stable ion‐conducting channel for the whole hydrogel. The resulting composite hydrogel networks were also modified with acrylate adenine (AdeA) and acrylate thymine (ThyA), thus endowed the hydrogel (SF‐Cho/AT) with strong adhesion ability. Such an ion‐conducting SF polymeric hydrogel can be incorporated into wearable electronics for real‐time on‐body detection of various physical and electrical signals. |
---|---|
AbstractList | Silk fibroin (SF)-based hydrogels are promising multifunctional adhesive candidates for real-world applications in tissue engineering, implantable bioelectronics, artificial muscles, and artificial skin. However, developing conductive SF-based hydrogels that are suitable for the micro-physiological environment and maintain their physical and chemical properties over long periods of use remains challenging. Herein, we developed an ion-conductive SF hydrogel composed of glycidyl methacrylate silk fibroin (SilMA) and bioionic liquid choline acylate (ChoA) polymer chains, together with the modification of acrylated thymine (ThyA) and adenine (AdeA) functional groups. The resulting polymeric ion-conductive SF composite hydrogel demonstrated high bioactivity, strong adhesion strength, good mechanical compliance, and stretchability. The formed hydrogel network of ChoA chains can coordinate with the ionic strength in the micro-physiological environment while maintaining the adaptive coefficient of expansion and stable mechanical properties. These features help to form a stable ion-conducting channel for the hydrogel. Additionally, the hydrogel network modified with AdeA and ThyA, can provide a strong adhesion to the surface of a variety of substrates, including wet tissue through abundant hydrogen bonding. The biocompatible and ionic conductive SF composite hydrogels can be easily prepared and incorporated into flexible skin or epidermal sensing devices. Therefore, our polymeric SF-based hydrogel has great potential and wide application to be an important component of many flexible electronic devices for personalized healthcare. Silk fibroin (SF)‐based hydrogels are promising multifunctional adhesive candidates for real‐world applications in tissue engineering, implantable bioelectronics, artificial muscles, and artificial skin. However, developing conductive SF‐based hydrogels that are suitable for the micro‐physiological environment and maintain their physical and chemical properties over long periods of use remains challenging. Herein, we developed an ion‐conductive SF hydrogel composed of glycidyl methacrylate silk fibroin (SilMA) and bioionic liquid choline acylate (ChoA) polymer chains, together with the modification of acrylated thymine (ThyA) and adenine (AdeA) functional groups. The resulting polymeric ion‐conductive SF composite hydrogel demonstrated high bioactivity, strong adhesion strength, good mechanical compliance, and stretchability. The formed hydrogel network of ChoA chains can coordinate with the ionic strength in the micro‐physiological environment while maintaining the adaptive coefficient of expansion and stable mechanical properties. These features help to form a stable ion‐conducting channel for the hydrogel. Additionally, the hydrogel network modified with AdeA and ThyA, can provide a strong adhesion to the surface of a variety of substrates, including wet tissue through abundant hydrogen bonding. The biocompatible and ionic conductive SF composite hydrogels can be easily prepared and incorporated into flexible skin or epidermal sensing devices. Therefore, our polymeric SF‐based hydrogel has great potential and wide application to be an important component of many flexible electronic devices for personalized healthcare. We present an ion‐conducting SF composite hydrogel with the robust toughness and strong adhesion without compromising the high bioactivity. The bio‐cations surrounding the ChoA chains can provide a stable ion‐conducting channel for the whole hydrogel. The resulting composite hydrogel networks were also modified with acrylate adenine (AdeA) and acrylate thymine (ThyA), thus endowed the hydrogel (SF‐Cho/AT) with strong adhesion ability. Such an ion‐conducting SF polymeric hydrogel can be incorporated into wearable electronics for real‐time on‐body detection of various physical and electrical signals. Abstract Silk fibroin (SF)‐based hydrogels are promising multifunctional adhesive candidates for real‐world applications in tissue engineering, implantable bioelectronics, artificial muscles, and artificial skin. However, developing conductive SF‐based hydrogels that are suitable for the micro‐physiological environment and maintain their physical and chemical properties over long periods of use remains challenging. Herein, we developed an ion‐conductive SF hydrogel composed of glycidyl methacrylate silk fibroin (SilMA) and bioionic liquid choline acylate (ChoA) polymer chains, together with the modification of acrylated thymine (ThyA) and adenine (AdeA) functional groups. The resulting polymeric ion‐conductive SF composite hydrogel demonstrated high bioactivity, strong adhesion strength, good mechanical compliance, and stretchability. The formed hydrogel network of ChoA chains can coordinate with the ionic strength in the micro‐physiological environment while maintaining the adaptive coefficient of expansion and stable mechanical properties. These features help to form a stable ion‐conducting channel for the hydrogel. Additionally, the hydrogel network modified with AdeA and ThyA, can provide a strong adhesion to the surface of a variety of substrates, including wet tissue through abundant hydrogen bonding. The biocompatible and ionic conductive SF composite hydrogels can be easily prepared and incorporated into flexible skin or epidermal sensing devices. Therefore, our polymeric SF‐based hydrogel has great potential and wide application to be an important component of many flexible electronic devices for personalized healthcare. Silk fibroin (SF)-based hydrogels are promising multifunctional adhesive candidates for real-world applications in tissue engineering, implantable bioelectronics, artificial muscles, and artificial skin. However, developing conductive SF-based hydrogels that are suitable for the micro-physiological environment and maintain their physical and chemical properties over long periods of use remains challenging. Herein, we developed an ion-conductive SF hydrogel composed of glycidyl methacrylate silk fibroin (SilMA) and bioionic liquid choline acylate (ChoA) polymer chains, together with the modification of acrylated thymine (ThyA) and adenine (AdeA) functional groups. The resulting polymeric ion-conductive SF composite hydrogel demonstrated high bioactivity, strong adhesion strength, good mechanical compliance, and stretchability. The formed hydrogel network of ChoA chains can coordinate with the ionic strength in the micro-physiological environment while maintaining the adaptive coefficient of expansion and stable mechanical properties. These features help to form a stable ion-conducting channel for the hydrogel. Additionally, the hydrogel network modified with AdeA and ThyA, can provide a strong adhesion to the surface of a variety of substrates, including wet tissue through abundant hydrogen bonding. The biocompatible and ionic conductive SF composite hydrogels can be easily prepared and incorporated into flexible skin or epidermal sensing devices. Therefore, our polymeric SF-based hydrogel has great potential and wide application to be an important component of many flexible electronic devices for personalized healthcare.Silk fibroin (SF)-based hydrogels are promising multifunctional adhesive candidates for real-world applications in tissue engineering, implantable bioelectronics, artificial muscles, and artificial skin. However, developing conductive SF-based hydrogels that are suitable for the micro-physiological environment and maintain their physical and chemical properties over long periods of use remains challenging. Herein, we developed an ion-conductive SF hydrogel composed of glycidyl methacrylate silk fibroin (SilMA) and bioionic liquid choline acylate (ChoA) polymer chains, together with the modification of acrylated thymine (ThyA) and adenine (AdeA) functional groups. The resulting polymeric ion-conductive SF composite hydrogel demonstrated high bioactivity, strong adhesion strength, good mechanical compliance, and stretchability. The formed hydrogel network of ChoA chains can coordinate with the ionic strength in the micro-physiological environment while maintaining the adaptive coefficient of expansion and stable mechanical properties. These features help to form a stable ion-conducting channel for the hydrogel. Additionally, the hydrogel network modified with AdeA and ThyA, can provide a strong adhesion to the surface of a variety of substrates, including wet tissue through abundant hydrogen bonding. The biocompatible and ionic conductive SF composite hydrogels can be easily prepared and incorporated into flexible skin or epidermal sensing devices. Therefore, our polymeric SF-based hydrogel has great potential and wide application to be an important component of many flexible electronic devices for personalized healthcare. |
Author | Wu, Yilun Jiang, Zhenlin Gu, Wenyi Zhao, Qingyu Fu, Fanfan Shen, Aining Liu, Changyi |
AuthorAffiliation | 2 College of Chemistry and Chemical Engineering Research Center for Advanced Mirco‐ and Nano‐Fabrication Materials Shanghai University of Engineering Science Shanghai China 1 School of Environmental and Biological Engineering Nanjing University of Science and Technology Nanjing China 3 Shenzhen Bay Laboratory Shenzhen Guangdong China 4 College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University Nanjing China 5 Australian Institute of Bioengineering and Nanotechnology The University of Queensland Brisbane Queensland Australia |
AuthorAffiliation_xml | – name: 5 Australian Institute of Bioengineering and Nanotechnology The University of Queensland Brisbane Queensland Australia – name: 1 School of Environmental and Biological Engineering Nanjing University of Science and Technology Nanjing China – name: 4 College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University Nanjing China – name: 2 College of Chemistry and Chemical Engineering Research Center for Advanced Mirco‐ and Nano‐Fabrication Materials Shanghai University of Engineering Science Shanghai China – name: 3 Shenzhen Bay Laboratory Shenzhen Guangdong China |
Author_xml | – sequence: 1 givenname: Fanfan orcidid: 0000-0002-4443-9846 surname: Fu fullname: Fu, Fanfan organization: Nanjing University of Science and Technology – sequence: 2 givenname: Changyi orcidid: 0009-0005-0034-9207 surname: Liu fullname: Liu, Changyi organization: Nanjing University of Science and Technology – sequence: 3 givenname: Zhenlin orcidid: 0000-0003-2087-9924 surname: Jiang fullname: Jiang, Zhenlin email: jiangzhenlin@sues.edu.cn organization: Shanghai University of Engineering Science – sequence: 4 givenname: Qingyu orcidid: 0009-0004-6155-2324 surname: Zhao fullname: Zhao, Qingyu organization: Nanjing University of Science and Technology – sequence: 5 givenname: Aining surname: Shen fullname: Shen, Aining organization: Shenzhen Bay Laboratory – sequence: 6 givenname: Yilun orcidid: 0000-0003-1562-7570 surname: Wu fullname: Wu, Yilun email: yilun.wu@njtech.edu.cn organization: The University of Queensland – sequence: 7 givenname: Wenyi orcidid: 0000-0003-3360-1390 surname: Gu fullname: Gu, Wenyi email: w.gu@uq.edu.au organization: The University of Queensland |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39420950$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kU1P3DAQhqOKqlDKsdcqx15C_RXbOVUV_UICtVLbs-XY412DY2_tBLT_vl4WEFx6smfm0TMjva-bg5giNM1bjE4xQuTDr8vLz6cEEVYL8aI5IqLHHZYCHzz5HzYnpVyhigyEiIG9ag7pwAgaenTU3P5MYTtB9qYtPly3zo85-diutzanFYRWl1a3JkW7mNnfQKujbaclzN4tsXZS1JWxayi7oUu5tUvWY4C2XFfNjoaNt5CnykEAM-cUvSlvmpdOhwIn9-9x8-frl99n37uLH9_Ozz5ddIZKyjuinUQaCYsRASqERMB7iQzSxHGLueSyNw44GzjuGaIShOn1oBkZCWfS0uPmfO-1SV-pTfaTzluVtFd3jZRXSufZmwDKOkqs1NwhgRjTepA9YBi5GzixdVN1fdy7Nss4gTUQ56zDM-nzSfRrtUo3CmNGetSTanh_b8jp7wJlVpMvBkLQEdJSFMVYDIOkglW026Mmp1IyuMc9GKld-GoXvnoIv_Lvnh73SD9EXQGyB259gO3_bXcVJpz-A_EdvGw |
Cites_doi | 10.1016/j.actbio.2022.11.002 10.1021/acsapm.1c00335 10.1126/sciadv.aaw9906 10.1126/sciadv.adg0234 10.1038/s41570-023-00486-x 10.1002/adfm.202213342 10.1039/D1TC01578H 10.1002/SMMD.20230004 10.1021/acsnano.2c01616 10.1038/s41565-020-00805-z 10.1002/SMMD.20230024 10.1016/j.pmatsci.2023.101091 10.1016/j.matchemphys.2024.129478 10.1126/sciadv.aaw2541 10.1002/smll.202105116 10.1016/j.smaim.2021.11.001 10.1021/acsnano.2c09850 10.1126/science.aaz6694 10.1021/acsami.7b04832 10.1126/sciadv.aaw1899 10.1002/adfm.202313354 10.1039/D2MH00533F 10.1038/s41467-018-05222-4 10.1016/j.nanoen.2020.105242 10.1186/s12951-022-01414-9 10.1073/pnas.2305704120 10.1038/nmat4037 10.1186/s12951-022-01669-2 10.1038/s41467-020-15316-7 10.1021/acsami.2c02534 10.1021/acsmaterialslett.0c00309 10.1021/acsnano.3c02897 10.1002/adfm.202006432 10.1016/j.polymer.2003.12.040 10.1002/macp.201400269 10.1039/C9NR03250A 10.1021/acsami.7b04623 10.1016/j.biomaterials.2019.119720 10.1038/s41563-019-0560-8 10.1038/s41467-018-03759-y 10.1016/j.clay.2019.105405 10.1021/acsami.9b23378 10.1002/advs.202301479 10.1126/sciadv.aaw1066 10.1002/marc.202100776 10.1002/agt2.542 10.1016/j.cej.2022.134763 10.1039/C8SM01854E 10.1039/D1BM00936B 10.1126/scirobotics.aar8580 10.1038/s41563-020-00814-2 10.1016/j.matt.2020.01.008 10.1038/s41467-023-41874-7 10.1016/j.cej.2024.150014 10.1016/j.engreg.2022.08.001 |
ContentType | Journal Article |
Copyright | 2024 The Author(s). published by Wiley‐VCH GmbH on behalf of Wenzhou Institute, University of Chinese Academy of Sciences. 2024 The Author(s). Smart Medicine published by Wiley‐VCH GmbH on behalf of Wenzhou Institute, University of Chinese Academy of Sciences. |
Copyright_xml | – notice: 2024 The Author(s). published by Wiley‐VCH GmbH on behalf of Wenzhou Institute, University of Chinese Academy of Sciences. – notice: 2024 The Author(s). Smart Medicine published by Wiley‐VCH GmbH on behalf of Wenzhou Institute, University of Chinese Academy of Sciences. |
DBID | 24P WIN NPM AAYXX CITATION 7X8 5PM DOA |
DOI | 10.1002/SMMD.20240027 |
DatabaseName | Wiley Online Library Open Access Wiley Online Library Open Access PubMed CrossRef MEDLINE - Academic PubMed Central (Full Participant titles) Directory of Open Access Journals |
DatabaseTitle | PubMed CrossRef MEDLINE - Academic |
DatabaseTitleList | PubMed CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Online Library url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2751-1871 |
EndPage | n/a |
ExternalDocumentID | oai_doaj_org_article_df32d8a6f07044aa985e1eb6f962d686 10_1002_SMMD_20240027 39420950 SMMD126 |
Genre | researchArticle Journal Article |
GroupedDBID | 0R~ 24P 7X7 8FI 8FJ ABUWG ADPDF AFKRA ALMA_UNASSIGNED_HOLDINGS ALUQN AVUZU BENPR CCPQU EBS FYUFA GROUPED_DOAJ HMCUK OVD OVEED PGMZT PIMPY PSYQQ RPM TEORI UKHRP WIN NPM AAYXX CITATION 7X8 5PM |
ID | FETCH-LOGICAL-c3836-2af80a07d102e37780e6580c0a2f6d168685cfe6496154038e7c5a9a42b2648d3 |
IEDL.DBID | RPM |
ISSN | 2751-1871 2751-1863 |
IngestDate | Tue Oct 22 15:16:46 EDT 2024 Fri Oct 18 05:24:59 EDT 2024 Sat Oct 19 17:15:42 EDT 2024 Fri Dec 06 07:44:21 EST 2024 Sat Nov 02 12:04:54 EDT 2024 Thu Sep 26 12:15:57 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | epidermal electronics flexible sensor ionic conductive hydrogel adhesives silk fibroin |
Language | English |
License | Attribution 2024 The Author(s). Smart Medicine published by Wiley‐VCH GmbH on behalf of Wenzhou Institute, University of Chinese Academy of Sciences. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3836-2af80a07d102e37780e6580c0a2f6d168685cfe6496154038e7c5a9a42b2648d3 |
Notes | Fanfan Fu and Changyi Liu contributed equally to this work. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-3360-1390 0000-0003-1562-7570 0000-0003-2087-9924 0009-0004-6155-2324 0000-0002-4443-9846 0009-0005-0034-9207 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11425052/ |
PMID | 39420950 |
PQID | 3117998374 |
PQPubID | 23479 |
PageCount | 12 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_df32d8a6f07044aa985e1eb6f962d686 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11425052 proquest_miscellaneous_3117998374 crossref_primary_10_1002_SMMD_20240027 pubmed_primary_39420950 wiley_primary_10_1002_SMMD_20240027_SMMD126 |
PublicationCentury | 2000 |
PublicationDate | September 2024 |
PublicationDateYYYYMMDD | 2024-09-01 |
PublicationDate_xml | – month: 09 year: 2024 text: September 2024 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Hoboken |
PublicationTitle | Smart medicine |
PublicationTitleAlternate | Smart Med |
PublicationYear | 2024 |
Publisher | John Wiley and Sons Inc Wiley-VCH |
Publisher_xml | – name: John Wiley and Sons Inc – name: Wiley-VCH |
References | 2021; 9 2023; 10 2014; 215 2021; 20 2023; 14 2021; 3 2023; 33 2019; 5 2023; 17 2023; 120 2023; 5 2020; 185 2019; 11 2023; 7 2023; 9 2004; 45 2024; 320 2024; 485 2022; 20 2020; 12 2020; 11 2022; 43 2023; 2 2020; 77 2024; 34 2022; 434 2017; 9 2020; 19 2021; 16 2018; 9 2018; 3 2021; 31 2020; 2 2022; 3 2023; 135 2022; 9 2023; 155 2022; 14 2014; 13 2020; 232 2021; 372 2022; 16 2018; 14 2022; 18 e_1_2_10_23_1 e_1_2_10_46_1 e_1_2_10_21_1 e_1_2_10_44_1 e_1_2_10_42_1 e_1_2_10_40_1 e_1_2_10_2_1 e_1_2_10_4_1 e_1_2_10_18_1 e_1_2_10_53_1 e_1_2_10_6_1 e_1_2_10_16_1 e_1_2_10_39_1 e_1_2_10_55_1 e_1_2_10_8_1 e_1_2_10_14_1 e_1_2_10_37_1 e_1_2_10_13_1 e_1_2_10_34_1 e_1_2_10_11_1 e_1_2_10_32_1 e_1_2_10_30_1 e_1_2_10_51_1 e_1_2_10_29_1 e_1_2_10_27_1 e_1_2_10_25_1 e_1_2_10_48_1 e_1_2_10_24_1 e_1_2_10_45_1 e_1_2_10_22_1 e_1_2_10_43_1 e_1_2_10_20_1 e_1_2_10_41_1 e_1_2_10_52_1 e_1_2_10_3_1 e_1_2_10_19_1 e_1_2_10_54_1 e_1_2_10_5_1 e_1_2_10_17_1 e_1_2_10_38_1 e_1_2_10_56_1 e_1_2_10_7_1 e_1_2_10_15_1 e_1_2_10_36_1 e_1_2_10_12_1 e_1_2_10_35_1 e_1_2_10_9_1 e_1_2_10_10_1 e_1_2_10_33_1 e_1_2_10_31_1 e_1_2_10_50_1 e_1_2_10_28_1 e_1_2_10_49_1 e_1_2_10_26_1 e_1_2_10_47_1 |
References_xml | – volume: 18 year: 2022 publication-title: Small – volume: 485 year: 2024 publication-title: Chem. Eng. J. – volume: 9 start-page: 17489 year: 2017 publication-title: ACS Appl. Mater. Interfaces – volume: 45 start-page: 1503 year: 2004 publication-title: Polymer – volume: 10 year: 2023 publication-title: Adv. Sci. – volume: 185 year: 2020 publication-title: Appl. Clay Sci. – volume: 43 year: 2022 publication-title: Macromol. Rapid Commun. – volume: 434 year: 2022 publication-title: Chem. Eng. J. – volume: 320 year: 2024 publication-title: Mater. Chem. Phys. – volume: 13 start-page: 867 year: 2014 publication-title: Nat. Mater. – volume: 16 start-page: 206 year: 2021 publication-title: Nat. Nanotechnol. – volume: 33 year: 2023 publication-title: Adv. Funct. Mater. – volume: 9 start-page: 17645 year: 2017 publication-title: ACS Appl. Mater. Interfaces – volume: 155 year: 2023 publication-title: Acta Biomater. – volume: 9 start-page: 11794 year: 2021 publication-title: J. Mater. Chem. C – volume: 16 start-page: 10209 year: 2022 publication-title: ACS Nano – volume: 372 start-page: 1078 year: 2021 publication-title: Science – volume: 9 year: 2023 publication-title: Sci. Adv. – volume: 17 start-page: 9681 year: 2023 publication-title: ACS Nano – volume: 11 year: 2020 publication-title: Nat. Commun. – volume: 34 year: 2024 publication-title: Adv. Funct. Mater. – volume: 3 year: 2021 publication-title: ACS Appl. Polym. Mater. – volume: 14 start-page: 21945 year: 2022 publication-title: ACS Appl. Mater. Interfaces – volume: 19 start-page: 102 year: 2020 publication-title: Nat. Mater. – volume: 9 start-page: 2215 year: 2022 publication-title: Mater. Horiz. – volume: 2 start-page: 948 year: 2020 publication-title: Matter – volume: 2 year: 2023 publication-title: Smart Med. – volume: 14 start-page: 9693 year: 2018 publication-title: Soft Matter – volume: 5 year: 2023 publication-title: Aggregate – volume: 3 year: 2018 publication-title: Sci. Robot. – volume: 135 year: 2023 publication-title: Prog. Mater. Sci. – volume: 7 start-page: 302 year: 2023 publication-title: Nat. Rev. Chem. – volume: 120 year: 2023 publication-title: Proc. Natl. Acad. Sci. – volume: 215 start-page: 1498 year: 2014 publication-title: Macromol. Chem. Phys. – volume: 14 year: 2023 publication-title: Nat. Commun. – volume: 77 year: 2020 publication-title: Nano Energy – volume: 9 start-page: 7194 year: 2021 publication-title: Biomater. Sci. – volume: 2 start-page: 1287 year: 2020 publication-title: ACS Mater. Lett. – volume: 11 start-page: 10846 year: 2019 publication-title: Nanoscale – volume: 16 start-page: 19533 year: 2022 publication-title: ACS Nano – volume: 3 start-page: 352 year: 2022 publication-title: Eng. Regen. – volume: 20 year: 2022 publication-title: J. Nanobiotechnol. – volume: 31 year: 2021 publication-title: Adv. Funct. Mater. – volume: 3 start-page: 1 year: 2022 publication-title: Smart Mater. Med. – volume: 5 year: 2019 publication-title: Sci. Adv. – volume: 9 year: 2018 publication-title: Nat. Commun. – volume: 12 start-page: 10039 year: 2020 publication-title: ACS Appl. Mater. Interfaces – volume: 232 year: 2020 publication-title: Biomaterials – volume: 20 start-page: 229 year: 2021 publication-title: Nat. Mater. – ident: e_1_2_10_55_1 doi: 10.1016/j.actbio.2022.11.002 – ident: e_1_2_10_11_1 doi: 10.1021/acsapm.1c00335 – ident: e_1_2_10_2_1 doi: 10.1126/sciadv.aaw9906 – ident: e_1_2_10_31_1 doi: 10.1126/sciadv.adg0234 – ident: e_1_2_10_39_1 doi: 10.1038/s41570-023-00486-x – ident: e_1_2_10_47_1 doi: 10.1002/adfm.202213342 – ident: e_1_2_10_20_1 doi: 10.1039/D1TC01578H – ident: e_1_2_10_34_1 doi: 10.1002/SMMD.20230004 – ident: e_1_2_10_42_1 doi: 10.1021/acsnano.2c01616 – ident: e_1_2_10_6_1 doi: 10.1038/s41565-020-00805-z – ident: e_1_2_10_29_1 doi: 10.1002/SMMD.20230024 – ident: e_1_2_10_35_1 doi: 10.1016/j.pmatsci.2023.101091 – ident: e_1_2_10_10_1 doi: 10.1016/j.matchemphys.2024.129478 – ident: e_1_2_10_40_1 doi: 10.1126/sciadv.aaw2541 – ident: e_1_2_10_12_1 doi: 10.1002/smll.202105116 – ident: e_1_2_10_30_1 doi: 10.1016/j.smaim.2021.11.001 – ident: e_1_2_10_18_1 doi: 10.1021/acsnano.2c09850 – ident: e_1_2_10_44_1 doi: 10.1126/science.aaz6694 – ident: e_1_2_10_54_1 doi: 10.1021/acsami.7b04832 – ident: e_1_2_10_27_1 doi: 10.1126/sciadv.aaw1899 – ident: e_1_2_10_36_1 doi: 10.1002/adfm.202313354 – ident: e_1_2_10_50_1 doi: 10.1039/D2MH00533F – ident: e_1_2_10_28_1 doi: 10.1038/s41467-018-05222-4 – ident: e_1_2_10_32_1 doi: 10.1016/j.nanoen.2020.105242 – ident: e_1_2_10_33_1 doi: 10.1186/s12951-022-01414-9 – ident: e_1_2_10_41_1 doi: 10.1073/pnas.2305704120 – ident: e_1_2_10_4_1 doi: 10.1038/nmat4037 – ident: e_1_2_10_25_1 doi: 10.1186/s12951-022-01669-2 – ident: e_1_2_10_13_1 doi: 10.1038/s41467-020-15316-7 – ident: e_1_2_10_46_1 doi: 10.1021/acsami.2c02534 – ident: e_1_2_10_22_1 doi: 10.1021/acsmaterialslett.0c00309 – ident: e_1_2_10_26_1 doi: 10.1021/acsnano.3c02897 – ident: e_1_2_10_45_1 doi: 10.1002/adfm.202006432 – ident: e_1_2_10_52_1 doi: 10.1016/j.polymer.2003.12.040 – ident: e_1_2_10_56_1 doi: 10.1002/macp.201400269 – ident: e_1_2_10_8_1 doi: 10.1039/C9NR03250A – ident: e_1_2_10_49_1 doi: 10.1021/acsami.7b04623 – ident: e_1_2_10_43_1 doi: 10.1016/j.biomaterials.2019.119720 – ident: e_1_2_10_38_1 doi: 10.1038/s41563-019-0560-8 – ident: e_1_2_10_51_1 doi: 10.1038/s41467-018-03759-y – ident: e_1_2_10_53_1 doi: 10.1016/j.clay.2019.105405 – ident: e_1_2_10_48_1 doi: 10.1021/acsami.9b23378 – ident: e_1_2_10_24_1 doi: 10.1002/advs.202301479 – ident: e_1_2_10_9_1 doi: 10.1126/sciadv.aaw1066 – ident: e_1_2_10_15_1 doi: 10.1002/marc.202100776 – ident: e_1_2_10_16_1 doi: 10.1002/agt2.542 – ident: e_1_2_10_17_1 doi: 10.1016/j.cej.2022.134763 – ident: e_1_2_10_7_1 doi: 10.1039/C8SM01854E – ident: e_1_2_10_37_1 doi: 10.1039/D1BM00936B – ident: e_1_2_10_3_1 doi: 10.1126/scirobotics.aar8580 – ident: e_1_2_10_5_1 doi: 10.1038/s41563-020-00814-2 – ident: e_1_2_10_21_1 doi: 10.1016/j.matt.2020.01.008 – ident: e_1_2_10_14_1 doi: 10.1038/s41467-023-41874-7 – ident: e_1_2_10_23_1 doi: 10.1016/j.cej.2024.150014 – ident: e_1_2_10_19_1 doi: 10.1016/j.engreg.2022.08.001 |
SSID | ssj0002922794 ssib051605433 |
Score | 2.3183641 |
Snippet | Silk fibroin (SF)‐based hydrogels are promising multifunctional adhesive candidates for real‐world applications in tissue engineering, implantable... Silk fibroin (SF)-based hydrogels are promising multifunctional adhesive candidates for real-world applications in tissue engineering, implantable... Abstract Silk fibroin (SF)‐based hydrogels are promising multifunctional adhesive candidates for real‐world applications in tissue engineering, implantable... |
SourceID | doaj pubmedcentral proquest crossref pubmed wiley |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher |
StartPage | e20240027 |
SubjectTerms | epidermal electronics flexible sensor hydrogel adhesives ionic conductive silk fibroin |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYhp15CS9vEfaFC6SWYaCVZlo59hVDYUkgCuZmxJXWXLHZYZyn5952RdpNdWtpLj7KFLM0na2ak0TeMvRMOEOXalQZEW6KGUCV0VVUqU0WKUtAx0ob-9Js5u9Rfr6qrrVRfFBOW6YGz4E58VNJbMBHnptYAzlZhEloTnZHe2Ey2LeSWM0VrsHTEjKfXpJpYPjmfTj-jO0ghk5RBZksJJa7-PxmYv8dJbtuvSQGdPmYHa8uRf8g9fsL2Qv-U_fw-LO7SoQsf54trHtH7HeY9n9355fAjLDiMHDj6vETrigsbh97zFERICi3vA3Lws0BR7BwNWO5XS7pNxcdrbIZqB8ohi8v3gj-kzBmfscvTLxefzsp1LoWyQx_UlBKiFSBqj7IKqq6tCGh7iE6AjMZPUJC26mIw2qGJo4Wyoe4qcKBlSzFwXj1n-_3QhyPG_UQjvjLSrVhd6egs1ICotsQlr1xXsPcb4TY3mTKjyeTIsiEUmg0KBftIor-vREzX6QHi36zxb_6Ff8HeboBr8M-g4w7ow7AaG5XY7tAB1wU7zEDef0o5LdG4FAWzOxDv9GX3TT-fJfZtunxM2f8Kdpxmw9_HmEoTaV78j7G-ZI-o3Rzi9ort3y5X4TXaRLftmzT9fwEoeQl3 priority: 102 providerName: Directory of Open Access Journals – databaseName: Wiley Online Library Open Access dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEBZteumltPTlvlCh9FJMZEmWpWNfIRS2BNpAbmZsSdkli13WWUL-fWZk76ampdCjLWFL_izpm9HoG8beCQeIcuVyA6LJcYVQObRlmStTRopS0DGSQ3_x3Ryf6m9n5dmU55TOwoz6EHuHG42MNF_TAIdmOLwVDf2xWHxB-45iIGV1l91DamMohYHUJ3sni3QkkEc7y7Iqi7xA62DS2cSyw9kTZutSku__G-f8M3Tyd0qb1qSjh-zBRCb5xxH9R-xO6B6zq5N-fZ32YfiwWl_wiL3sVx1fXvtNfx7WHAYOHM1gUnrFuY5D53mKK6Q1bnQNcvDLQIHtHDkt99sNHbDiwwU-hmoHSiuLM_qa32bRGZ6w06OvPz8f51N6hbxFs9TkEqIVICqPHCOoqrIiIB0RrQAZjS-MNbZsYzDaIevRQtlQtSU40LKhsDivnrKDru_Cc8Z9oRFyGemgrC51dBYqQKAbkpdXrs3Y-93HrX-NKhr1qJcsa0Kh3qGQsU_06feVSPw63eg35_U0lmoflfQWTMTpSmsAZ8tQhMZEZ6THZmfs7Q64GgcL7YBAF_rtUKskgIc2uc7YsxHI_auU0xL5psiYnUE8a8u8pFstkyA3nUemhIAZ-5D-hn_3MV0V0rz4r9ov2X26NYa3vWIHl5tteI186LJ5k_75GwmmA58 priority: 102 providerName: Wiley-Blackwell |
Title | Polymeric silk fibroin hydrogel as a conductive and multifunctional adhesive for durable skin and epidermal electronics |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2FSMMD.20240027 https://www.ncbi.nlm.nih.gov/pubmed/39420950 https://www.proquest.com/docview/3117998374 https://pubmed.ncbi.nlm.nih.gov/PMC11425052 https://doaj.org/article/df32d8a6f07044aa985e1eb6f962d686 |
Volume | 3 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELW65cIFgfhKgZWREBeUbuKvxEdaWlVIW62ASnuLnNjurpom1aYr1H_PjJOUrkAcuERKYiVOxva8sZ_fEPIh0QasnOlYmaSMwUPw2FRSxlxJjywF4T1O6M_P1dmF-LqUyz2ixr0wgbRflevDpr4-bNarwK28ua5mI09stpgf4_5PTMA2m5AJ-N_dGF2mgNDFAGJwPGYaVfJweZllMo3TXPFBbBPuzb7P518gTEQqJWaWeeCcgob_34Dnn_zJh7g2OKbTp-TJgCjp577mz8iea56Tn4u2vguLMbRb11fUQ1Tcrhu6urOb9tLV1HTUUIiFUe4VBjxqGksDuRAdXT8_SI1dOWS3UwC21G43uMuKdlfwGCztMLcsDOs1_Z1Kp3tBLk5PfhyfxUOOhbiC2FTFzPg8MUlmAWg4nmV54gCTJFVimFc2VbnKZeWdEhqgj0h47rJKGm0EK5EbZ_lLst-0jXtNqE0F2J153C0rpPA6N5kBa5eoMc91FZGP488tbnopjaIXTWYFWqEYrRCRI_z194VQATtcaDeXxdAOCus5s7lRHsYsIYzRuXSpK5XXilmodkTej4YroMfgMohpXLvtCh5U8CAwFxF51Rvy_lVcCwagM4lIvmPinbrs3oFGGlS5x0YZkU-hNfz7G8NZytTB_7_oDXmMT-sJb2_J_u1m694BQrotp2TCxAKO2TKbkkdHJ-eLb9Mw2zANXeUXhlsSDw |
link.rule.ids | 230,314,727,780,784,864,885,2102,11562,27924,27925,31720,33745,46052,46476,50814,50923,53791,53793 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELagPcAFgXgFChgJcUFRHb8SH8ujWqBbIdFFFZfIie3uqqsEbbqq-u-ZcbLbRiAkjoktJ_Z4PN-Mx58JecOMBSnnJtWWVSlYCJHaWqlUaBUwS0GGgAH96bGezOSXU3V64xR_zw-xDbihZsT1GhUcA9L716yh36fTj-DgYRIkz2-TXTB9CJF2D37Mfs62cRZukCMPN5d5rrI0AwdhoNqEsv1RGyPTFBn8_wY7_8yevIlqo1k6vE_uDXiSHvQT4AG55ZuH5PJbu7yKWzG0WyzPaYCOtouGzq_cqj3zS2o7ail4wkj2CssdtY2jMbUQzVwfHaTWzT3mtlOAtdStV3jGinbn0AzW9nizLCzqS3p9kU73iMwOP518mKTDDQtpDZ6pTrkNBbMsdwAzvMjzgnlAJKxmlgftMl3oQtXBa2kA-EgmCp_XyhoreYWZcU48JjtN2_inhLpMgtR5wLOyUslgCptbkHWFDPPC1Al5uxnc8ldPpFH2lMm8RCmUGykk5D0O_bYS8l_HF-3qrBzUqXRBcFdYHWDFktJaUyif-UoHo7mD307I643gStAX3ASxjW_XXSkiBx645TIhT3pBbj8ljOQAOVlCipGIR_8yLmkW88jJjUeS8U7AhLyLs-HffYxPGdfP_qv2K3JncjI9Ko8-H399Tu5icZ_ttkd2LlZr_wLg0UX1ctCA3xvwCNk |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bi9QwFD7oLIgvonir1wjii5Rt0zRtHlfXYb3MsqAjiy8hbZKdYYd2me4g--89J-3MWhTBxzYhTfv1JN9JTr4D8DpRBlEuVCxNUsU4Q2SxqfM8zmTuKUpBeE8L-rNjeTQXn07z0yHPKZ2F6fUhdgtuZBlhvCYDv7B-_1o09Otsdoj-HcVA8uIm7CHTSMUE9g6-z3_Md8ssXJFEHu0t8yJP4xT9g0FpE8v2R22MZqYg4P831vln8OTvpDbMStO7cGegk-ygx_8e3HDNffh50q6uwk4M65arc-bxPdtlwxZXdt2euRUzHTMMHWHSesXRjpnGshBZSLNcvzjIjF04Cm1nyGqZ3azpiBXrzrEZqu0osSyO6St2nUenewDz6Ydv74_iIcFCXKNjKmNufJmYpLDIMlxWFGXikJAkdWK4lzaVpSzz2jspFPIekWSlK-rcKCN4RYFxNnsIk6Zt3GNgNhUIOvd0VFbkwqvSFAahrkhgPlN1BG-2H1df9DoauldM5ppQ0FsUInhHn35XieSvw412faYHa9LWZ9yWRnocsIQwRpW5S10lvZLcYrcjeLUFTqO50B6IaVy76XQWJPDQKxcRPOqB3D0qU4Ij40wiKEcQj_oyLmmWiyDJTSeSKSVgBG_D3_DvdwxXKZdP_qv2S7h1cjjVXz4ef34Kt6m0j3V7BpPL9cY9R3J0Wb0YDOAXbKQIAg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Polymeric+silk+fibroin+hydrogel+as+a+conductive+and+multifunctional+adhesive+for+durable+skin+and+epidermal+electronics&rft.jtitle=Smart+medicine&rft.au=Fu%2C+Fanfan&rft.au=Liu%2C+Changyi&rft.au=Jiang%2C+Zhenlin&rft.au=Zhao%2C+Qingyu&rft.date=2024-09-01&rft.issn=2751-1871&rft.eissn=2751-1871&rft.volume=3&rft.issue=3&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2FSMMD.20240027&rft.externalDBID=10.1002%252FSMMD.20240027&rft.externalDocID=SMMD126 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2751-1871&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2751-1871&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2751-1871&client=summon |