2D InSe Self‐Powered Schottky Photodetector with the Same Metal in Asymmetric Contacts

Self‐powered photodetectors (SPPDs) are generally carried out in multilayered heterostructures with different semiconductors or in Schottky junctions with different metal electrodes. It is interesting to build an SPPD using metal–semiconductor–metal (MSM) structures with the same type of metal elect...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials interfaces Vol. 9; no. 35
Main Authors Chen, Jinping, Zhang, Zhen, Feng, Jiying, Xie, Xiaoyu, Jian, Aoqun, Li, Yuanzheng, Guo, Heng, Zhu, Yizhi, Li, Zhuxin, Dong, Jianqi, Cui, Qiannan, Shi, Zengliang, Xu, Chunxiang
Format Journal Article
LanguageEnglish
Published Weinheim John Wiley & Sons, Inc 01.12.2022
Wiley-VCH
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Self‐powered photodetectors (SPPDs) are generally carried out in multilayered heterostructures with different semiconductors or in Schottky junctions with different metal electrodes. It is interesting to build an SPPD using metal–semiconductor–metal (MSM) structures with the same type of metal electrodes. Here, an SPPD is fabricated facilely by stacking a piece of irregular InSe nanosheet on a pair of Au electrodes with asymmetric van der Waals contacts. The SPPD performs a high responsivity of 0.103 A W−1, a high on‐off current ratio over 104, a high detectivity of 1.83 × 1010 Jones, a fast response time of 1 ms and a broadband sensing spectrum ranging from 300 to 1000 nm under zero bias. A series of characterization and working mechanism analysis demonstrate the contribution of the asymmetric Schottky barrier heights and contact geometries in Au–InSe junctions to the self‐powered performance of the detector. This work offers an effective scheme to construct high‐performance SPPDs in simple architecture and processing for potential optoelectronic device applications. The Au/InSe/Au van der Waals Schottky structures with a pair of the Au electrodes are demonstrated to perform a high‐performance self‐powered broadband photoresponse due to the asymmetric Schottky barrier heights and contact geometries in Au–InSe junctions.
AbstractList Self‐powered photodetectors (SPPDs) are generally carried out in multilayered heterostructures with different semiconductors or in Schottky junctions with different metal electrodes. It is interesting to build an SPPD using metal–semiconductor–metal (MSM) structures with the same type of metal electrodes. Here, an SPPD is fabricated facilely by stacking a piece of irregular InSe nanosheet on a pair of Au electrodes with asymmetric van der Waals contacts. The SPPD performs a high responsivity of 0.103 A W−1, a high on‐off current ratio over 104, a high detectivity of 1.83 × 1010 Jones, a fast response time of 1 ms and a broadband sensing spectrum ranging from 300 to 1000 nm under zero bias. A series of characterization and working mechanism analysis demonstrate the contribution of the asymmetric Schottky barrier heights and contact geometries in Au–InSe junctions to the self‐powered performance of the detector. This work offers an effective scheme to construct high‐performance SPPDs in simple architecture and processing for potential optoelectronic device applications. The Au/InSe/Au van der Waals Schottky structures with a pair of the Au electrodes are demonstrated to perform a high‐performance self‐powered broadband photoresponse due to the asymmetric Schottky barrier heights and contact geometries in Au–InSe junctions.
Self‐powered photodetectors (SPPDs) are generally carried out in multilayered heterostructures with different semiconductors or in Schottky junctions with different metal electrodes. It is interesting to build an SPPD using metal–semiconductor–metal (MSM) structures with the same type of metal electrodes. Here, an SPPD is fabricated facilely by stacking a piece of irregular InSe nanosheet on a pair of Au electrodes with asymmetric van der Waals contacts. The SPPD performs a high responsivity of 0.103 A W −1 , a high on‐off current ratio over 10 4 , a high detectivity of 1.83 × 10 10 Jones, a fast response time of 1 ms and a broadband sensing spectrum ranging from 300 to 1000 nm under zero bias. A series of characterization and working mechanism analysis demonstrate the contribution of the asymmetric Schottky barrier heights and contact geometries in Au–InSe junctions to the self‐powered performance of the detector. This work offers an effective scheme to construct high‐performance SPPDs in simple architecture and processing for potential optoelectronic device applications.
Self‐powered photodetectors (SPPDs) are generally carried out in multilayered heterostructures with different semiconductors or in Schottky junctions with different metal electrodes. It is interesting to build an SPPD using metal–semiconductor–metal (MSM) structures with the same type of metal electrodes. Here, an SPPD is fabricated facilely by stacking a piece of irregular InSe nanosheet on a pair of Au electrodes with asymmetric van der Waals contacts. The SPPD performs a high responsivity of 0.103 A W−1, a high on‐off current ratio over 104, a high detectivity of 1.83 × 1010 Jones, a fast response time of 1 ms and a broadband sensing spectrum ranging from 300 to 1000 nm under zero bias. A series of characterization and working mechanism analysis demonstrate the contribution of the asymmetric Schottky barrier heights and contact geometries in Au–InSe junctions to the self‐powered performance of the detector. This work offers an effective scheme to construct high‐performance SPPDs in simple architecture and processing for potential optoelectronic device applications.
Abstract Self‐powered photodetectors (SPPDs) are generally carried out in multilayered heterostructures with different semiconductors or in Schottky junctions with different metal electrodes. It is interesting to build an SPPD using metal–semiconductor–metal (MSM) structures with the same type of metal electrodes. Here, an SPPD is fabricated facilely by stacking a piece of irregular InSe nanosheet on a pair of Au electrodes with asymmetric van der Waals contacts. The SPPD performs a high responsivity of 0.103 A W−1, a high on‐off current ratio over 104, a high detectivity of 1.83 × 1010 Jones, a fast response time of 1 ms and a broadband sensing spectrum ranging from 300 to 1000 nm under zero bias. A series of characterization and working mechanism analysis demonstrate the contribution of the asymmetric Schottky barrier heights and contact geometries in Au–InSe junctions to the self‐powered performance of the detector. This work offers an effective scheme to construct high‐performance SPPDs in simple architecture and processing for potential optoelectronic device applications.
Author Jian, Aoqun
Zhang, Zhen
Shi, Zengliang
Xu, Chunxiang
Feng, Jiying
Xie, Xiaoyu
Cui, Qiannan
Guo, Heng
Li, Zhuxin
Chen, Jinping
Li, Yuanzheng
Dong, Jianqi
Zhu, Yizhi
Author_xml – sequence: 1
  givenname: Jinping
  surname: Chen
  fullname: Chen, Jinping
  organization: Southeast University
– sequence: 2
  givenname: Zhen
  surname: Zhang
  fullname: Zhang, Zhen
  organization: Taiyuan University of Technology
– sequence: 3
  givenname: Jiying
  surname: Feng
  fullname: Feng, Jiying
  organization: Northeast Normal University
– sequence: 4
  givenname: Xiaoyu
  surname: Xie
  fullname: Xie, Xiaoyu
  organization: Southeast University
– sequence: 5
  givenname: Aoqun
  surname: Jian
  fullname: Jian, Aoqun
  organization: Taiyuan University of Technology
– sequence: 6
  givenname: Yuanzheng
  surname: Li
  fullname: Li, Yuanzheng
  organization: Northeast Normal University
– sequence: 7
  givenname: Heng
  surname: Guo
  fullname: Guo, Heng
  organization: Southeast University
– sequence: 8
  givenname: Yizhi
  surname: Zhu
  fullname: Zhu, Yizhi
  organization: Southeast University
– sequence: 9
  givenname: Zhuxin
  surname: Li
  fullname: Li, Zhuxin
  organization: Southeast University
– sequence: 10
  givenname: Jianqi
  surname: Dong
  fullname: Dong, Jianqi
  organization: Southeast University
– sequence: 11
  givenname: Qiannan
  surname: Cui
  fullname: Cui, Qiannan
  organization: Southeast University
– sequence: 12
  givenname: Zengliang
  surname: Shi
  fullname: Shi, Zengliang
  email: zlshi@seu.edu.cn
  organization: Southeast University
– sequence: 13
  givenname: Chunxiang
  orcidid: 0000-0001-8116-2869
  surname: Xu
  fullname: Xu, Chunxiang
  email: xcxseu@seu.edu.cn
  organization: Southeast University
BookMark eNqFkV9LHDEUxYMo1Fpf-xzo8675O5k8LmtbFxSFVfAtZJI7brYzE5uJLPvWj-Bn9JMYXbGlUPp0Qzi_cy73fET7QxwAoc-UTCkh7MT6PkwZYYwQouQeOmRUVxPFJdn_4_0BHY_jukgoZZTV_BDdslO8GJaAl9C1T78er-IGEni8dKuY848tviozesjgckx4E_IK51WR2x7wBWTb4TDg2bjte8gpODyPQ7Yuj5_QQWu7EY7f5hG6-fb1en42Ob_8vpjPzieO11xOWg6q8hVxVvK6EUKKijJPqKhrzZmSTlWEWCdUqytRS11RDdq34L1r6kp5foQWO18f7drcp9DbtDXRBvP6EdOdsSkH14GpOeOeWeVlI4XWrdayaYgA4FBCKS1eX3Ze9yn-fIAxm3V8SENZ35RVuBCMCFVU053KpTiOCdr3VErMSxnmpQzzXkYBxF-AC9nmUC6VbOj-jekdtgkdbP8TYmanF4vf7DOsN58T
CitedBy_id crossref_primary_10_1016_j_apsusc_2023_156444
crossref_primary_10_1016_j_nanoen_2023_108891
crossref_primary_10_1021_acsnano_4c10392
crossref_primary_10_1039_D3TC03312K
crossref_primary_10_1002_adsr_202200079
crossref_primary_10_1002_adpr_202300162
crossref_primary_10_1016_j_jlumin_2023_119695
crossref_primary_10_1111_jace_20343
crossref_primary_10_1002_adom_202302399
crossref_primary_10_1002_adom_202300463
crossref_primary_10_1039_D4NR03543G
crossref_primary_10_1021_acs_nanolett_3c01259
crossref_primary_10_1039_D3TC03804A
crossref_primary_10_1002_adfm_202405364
crossref_primary_10_1016_j_nanoen_2024_109725
crossref_primary_10_1002_adom_202401122
crossref_primary_10_1007_s40843_023_2636_7
crossref_primary_10_1149_2754_2726_ad7c61
crossref_primary_10_1002_adom_202401682
crossref_primary_10_1002_adom_202400358
crossref_primary_10_1002_lpor_202400480
crossref_primary_10_1021_acsami_3c13552
crossref_primary_10_1021_acsami_3c16047
Cites_doi 10.1007/s12274-021-3745-9
10.1038/nnano.2016.242
10.1021/acsami.1c01773
10.1038/s41467-019-12707-3
10.1039/C9NR08791E
10.1002/adom.202101017
10.1002/aelm.202001125
10.1002/adfm.201802954
10.1002/aelm.202101176
10.1016/j.nanoen.2017.05.004
10.1038/s41928-021-00586-w
10.1002/advs.201901134
10.1002/adom.202001802
10.1039/C5NR04592D
10.1038/s41928-018-0086-0
10.1021/nl500817g
10.1021/acsnano.9b07563
10.1021/acsnano.0c09593
10.1088/1674-1056/27/12/128502
10.1002/aelm.202000964
10.1063/1.4986122
10.1002/adfm.201802011
10.1557/jmr.2017.402
10.1088/2053-1583/1/1/011002
10.1039/D0NR00517G
10.1002/adma.202008080
10.1021/acsnano.8b04931
10.1038/s41586-018-0129-8
10.1038/natrevmats.2017.33
10.1002/smll.201701848
10.1021/acsnano.6b07159
10.1038/s41565-019-0602-z
10.1021/acsnano.0c04329
10.1088/2053-1583/aaa721
10.1021/acsami.9b19904
10.1038/s41467-021-21861-6
10.1021/acsami.0c11456
10.1021/acsami.0c08461
10.1088/1361-6528/aa9172
10.1002/adfm.202001307
10.1002/advs.202003713
10.1021/acs.nanolett.6b04449
10.1039/D1TC00949D
ContentType Journal Article
Copyright 2022 Wiley‐VCH GmbH
Copyright_xml – notice: 2022 Wiley‐VCH GmbH
DBID AAYXX
CITATION
7SR
7U5
8BQ
8FD
JG9
L7M
DOA
DOI 10.1002/admi.202200075
DatabaseName CrossRef
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList
CrossRef
Materials Research Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2196-7350
EndPage n/a
ExternalDocumentID oai_doaj_org_article_8323d2a7d5b5499f995bb04ee3e61211
10_1002_admi_202200075
ADMI202200075
Genre article
GrantInformation_xml – fundername: Key Research and Development Program of Jiangxi Province
  funderid: 2018YFA0209101
– fundername: National Natural Science Foundation of China
  funderid: 11734005; 61821002; 62075041
– fundername: Gulf Research Program
  funderid: 2017YFA0700500
– fundername: Fundamental Research Funds for the Central Universities
  funderid: 2242021k10009
– fundername: National Key Research and Development Program of China
  funderid: 2018YFA0209101; 2017YFA0700500
GroupedDBID 0R~
1OC
24P
33P
AAESR
AAHHS
AAIHA
AAXRX
AAZKR
ABCUV
ACAHQ
ACCFJ
ACCZN
ACGFS
ACPOU
ACXBN
ACXQS
ADBBV
ADKYN
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AENEX
AEQDE
AFBPY
AIACR
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMYDB
ARCSS
AVUZU
AZVAB
BFHJK
BMXJE
BRXPI
DCZOG
DPXWK
EBS
G-S
GODZA
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MY~
M~E
O9-
P2W
R.K
ROL
SUPJJ
WBKPD
WOHZO
WXSBR
WYJ
ZZTAW
AAFWJ
AAMMB
AAYXX
ABJCF
ABJNI
ACCMX
ADMLS
AEFGJ
AFKRA
AFPKN
AGXDD
AIDQK
AIDYY
ARAPS
BENPR
BGLVJ
CCPQU
CITATION
EJD
GROUPED_DOAJ
HCIFZ
KB.
M7S
PDBOC
PHGZM
PHGZT
PQGLB
PTHSS
7SR
7U5
8BQ
8FD
JG9
L7M
ID FETCH-LOGICAL-c3835-f3e76d60ca538b4454612d0148893275c7600ac47f964859619e9dfeddcb867d3
IEDL.DBID DOA
ISSN 2196-7350
IngestDate Wed Aug 27 01:21:52 EDT 2025
Sat Jul 12 03:28:04 EDT 2025
Thu Aug 14 00:09:54 EDT 2025
Thu Apr 24 23:02:21 EDT 2025
Sat Aug 24 01:06:13 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 35
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3835-f3e76d60ca538b4454612d0148893275c7600ac47f964859619e9dfeddcb867d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8116-2869
OpenAccessLink https://doaj.org/article/8323d2a7d5b5499f995bb04ee3e61211
PQID 2753442047
PQPubID 2034582
PageCount 7
ParticipantIDs doaj_primary_oai_doaj_org_article_8323d2a7d5b5499f995bb04ee3e61211
proquest_journals_2753442047
crossref_primary_10_1002_admi_202200075
crossref_citationtrail_10_1002_admi_202200075
wiley_primary_10_1002_admi_202200075_ADMI202200075
PublicationCentury 2000
PublicationDate 2022-12-01
PublicationDateYYYYMMDD 2022-12-01
PublicationDate_xml – month: 12
  year: 2022
  text: 2022-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Advanced materials interfaces
PublicationYear 2022
Publisher John Wiley & Sons, Inc
Wiley-VCH
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley-VCH
References 2021; 9
2021; 8
2021; 7
2018; 28
2017; 2
2021; 4
2019; 6
2017; 28
2019; 10
2019; 13
2020; 15
2020; 14
2020; 12
2015; 7
2018; 27
2014; 1
2021; 13
2021; 15
2021; 12
2018; 5
2021; 33
2017; 37
2018; 557
2022
2020; 30
2018; 1
2017; 17
2017; 11
2017; 32
2017; 13
2017; 12
2014; 14
2018; 12
2017; 122
e_1_2_8_28_1
e_1_2_8_29_1
e_1_2_8_24_1
e_1_2_8_25_1
e_1_2_8_26_1
e_1_2_8_27_1
e_1_2_8_3_1
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_4_1
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_22_1
e_1_2_8_23_1
e_1_2_8_1_1
e_1_2_8_41_1
e_1_2_8_40_1
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_32_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_30_1
References_xml – volume: 12
  start-page: 223
  year: 2017
  publication-title: Nat. Nanotechnol.
– volume: 1
  year: 2014
  publication-title: 2D Mater.
– volume: 13
  year: 2021
  publication-title: ACS Appl. Mater. Interfaces
– year: 2022
  publication-title: Adv. Electron. Mater.
– volume: 5
  year: 2018
  publication-title: 2D Mater.
– volume: 12
  start-page: 7196
  year: 2020
  publication-title: Nanoscale
– volume: 12
  year: 2020
  publication-title: ACS Appl. Mater. Interfaces
– volume: 14
  start-page: 9098
  year: 2020
  publication-title: ACS Nano
– volume: 12
  start-page: 4094
  year: 2020
  publication-title: Nanoscale
– volume: 4
  start-page: 357
  year: 2021
  publication-title: Nat. Electron.
– volume: 7
  year: 2021
  publication-title: Adv. Electron. Mater.
– volume: 15
  start-page: 8328
  year: 2021
  publication-title: ACS Nano
– volume: 9
  start-page: 6122
  year: 2021
  publication-title: J. Mater. Chem. C
– volume: 13
  year: 2019
  publication-title: ACS Nano
– volume: 2
  year: 2017
  publication-title: Nat. Rev. Mater.
– volume: 15
  start-page: 2489
  year: 2021
  publication-title: Nano Res.
– volume: 14
  start-page: 2800
  year: 2014
  publication-title: Nano Lett.
– volume: 557
  start-page: 696
  year: 2018
  publication-title: Nature
– volume: 15
  start-page: 118
  year: 2020
  publication-title: Nat. Nanotechnol.
– volume: 1
  start-page: 356
  year: 2018
  publication-title: Nat. Electron.
– volume: 33
  year: 2021
  publication-title: Adv. Mater.
– volume: 12
  start-page: 8739
  year: 2018
  publication-title: ACS Nano
– volume: 12
  start-page: 1522
  year: 2021
  publication-title: Nat. Commun.
– volume: 30
  year: 2020
  publication-title: Adv. Funct. Mater.
– volume: 32
  start-page: 4115
  year: 2017
  publication-title: J. Mater. Res.
– volume: 28
  year: 2017
  publication-title: Nanotechnology
– volume: 27
  year: 2018
  publication-title: Chinese Phys. B
– volume: 6
  year: 2019
  publication-title: Adv. Sci.
– volume: 17
  start-page: 453
  year: 2017
  publication-title: Nano Lett.
– volume: 37
  start-page: 53
  year: 2017
  publication-title: Nano Energy
– volume: 10
  start-page: 4663
  year: 2019
  publication-title: Nat. Commun.
– volume: 28
  year: 2018
  publication-title: Adv. Funct. Mater.
– volume: 7
  year: 2015
  publication-title: Nanoscale
– volume: 9
  year: 2021
  publication-title: Adv. Opt. Mater.
– volume: 11
  start-page: 1588
  year: 2017
  publication-title: ACS Nano
– volume: 13
  year: 2017
  publication-title: Small
– volume: 122
  year: 2017
  publication-title: J. Appl. Phys.
– volume: 8
  year: 2021
  publication-title: Adv. Sci.
– ident: e_1_2_8_14_1
  doi: 10.1007/s12274-021-3745-9
– ident: e_1_2_8_25_1
  doi: 10.1038/nnano.2016.242
– ident: e_1_2_8_23_1
  doi: 10.1021/acsami.1c01773
– ident: e_1_2_8_15_1
  doi: 10.1038/s41467-019-12707-3
– ident: e_1_2_8_19_1
  doi: 10.1039/C9NR08791E
– ident: e_1_2_8_28_1
  doi: 10.1002/adom.202101017
– ident: e_1_2_8_12_1
  doi: 10.1002/aelm.202001125
– ident: e_1_2_8_21_1
  doi: 10.1002/adfm.201802954
– ident: e_1_2_8_29_1
  doi: 10.1002/aelm.202101176
– ident: e_1_2_8_8_1
  doi: 10.1016/j.nanoen.2017.05.004
– ident: e_1_2_8_17_1
  doi: 10.1038/s41928-021-00586-w
– ident: e_1_2_8_33_1
  doi: 10.1002/advs.201901134
– ident: e_1_2_8_10_1
  doi: 10.1002/adom.202001802
– ident: e_1_2_8_39_1
  doi: 10.1039/C5NR04592D
– ident: e_1_2_8_1_1
  doi: 10.1038/s41928-018-0086-0
– ident: e_1_2_8_24_1
  doi: 10.1021/nl500817g
– ident: e_1_2_8_32_1
  doi: 10.1021/acsnano.9b07563
– ident: e_1_2_8_16_1
  doi: 10.1021/acsnano.0c09593
– ident: e_1_2_8_9_1
  doi: 10.1088/1674-1056/27/12/128502
– ident: e_1_2_8_22_1
  doi: 10.1002/aelm.202000964
– ident: e_1_2_8_37_1
  doi: 10.1063/1.4986122
– ident: e_1_2_8_26_1
  doi: 10.1002/adfm.201802011
– ident: e_1_2_8_7_1
  doi: 10.1557/jmr.2017.402
– ident: e_1_2_8_30_1
  doi: 10.1088/2053-1583/1/1/011002
– ident: e_1_2_8_35_1
  doi: 10.1039/D0NR00517G
– ident: e_1_2_8_13_1
  doi: 10.1002/adma.202008080
– ident: e_1_2_8_18_1
  doi: 10.1021/acsnano.8b04931
– ident: e_1_2_8_20_1
  doi: 10.1038/s41586-018-0129-8
– ident: e_1_2_8_6_1
  doi: 10.1038/natrevmats.2017.33
– ident: e_1_2_8_3_1
  doi: 10.1002/smll.201701848
– ident: e_1_2_8_36_1
  doi: 10.1021/acsnano.6b07159
– ident: e_1_2_8_11_1
  doi: 10.1038/s41565-019-0602-z
– ident: e_1_2_8_31_1
  doi: 10.1021/acsnano.0c04329
– ident: e_1_2_8_43_1
  doi: 10.1088/2053-1583/aaa721
– ident: e_1_2_8_4_1
  doi: 10.1021/acsami.9b19904
– ident: e_1_2_8_38_1
  doi: 10.1038/s41467-021-21861-6
– ident: e_1_2_8_42_1
  doi: 10.1021/acsami.0c11456
– ident: e_1_2_8_27_1
  doi: 10.1021/acsami.0c08461
– ident: e_1_2_8_34_1
  doi: 10.1088/1361-6528/aa9172
– ident: e_1_2_8_40_1
  doi: 10.1002/adfm.202001307
– ident: e_1_2_8_41_1
  doi: 10.1002/advs.202003713
– ident: e_1_2_8_5_1
  doi: 10.1021/acs.nanolett.6b04449
– ident: e_1_2_8_2_1
  doi: 10.1039/D1TC00949D
SSID ssj0001121283
Score 2.4152174
Snippet Self‐powered photodetectors (SPPDs) are generally carried out in multilayered heterostructures with different semiconductors or in Schottky junctions with...
Abstract Self‐powered photodetectors (SPPDs) are generally carried out in multilayered heterostructures with different semiconductors or in Schottky junctions...
SourceID doaj
proquest
crossref
wiley
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms 2D InSe
Asymmetry
Broadband
Electrodes
Heterostructures
Indium selenides
Optoelectronic devices
Photometers
photoresponse
Response time
Schottky barrier
self‐powered photodetector
Title 2D InSe Self‐Powered Schottky Photodetector with the Same Metal in Asymmetric Contacts
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadmi.202200075
https://www.proquest.com/docview/2753442047
https://doaj.org/article/8323d2a7d5b5499f995bb04ee3e61211
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9tAEF0hUCUuFaVFDdBoD5V6snD3w_YeAwFBpVRIIVXUy2o_ZiVU4iBiDtz4CfxGfgk7aycKB8SlJ8v2yFq9nfW8Ga_fEPL9J3KIwMssr4zLhMM1p4TNOGfWcWmUAvzBefS7OJ-IX1M5XWv1hXvCWnngFrij6HHcM1N6aTGVCUpJa3MBwAHFr1LiE2PeWjKVqivxVgycS5XGnB0ZP7uO6SBjKUq-ikJJrP8Vw1znqSnQnO2Qjx1DpIN2ZJ_IBtS75EPaqekWn8mUDelFPQY6hpvw_Ph0iW3OwFOU02yafw_0Mh7nHppUjqdYZ6WR5NGxmQEdQeTa9Lqmg8XDbIbNtBxFfSrjmsUXMjk7vTo5z7r2CJmLaaXMAoey8EXuTHxpWSGkiIB4rBBGDsJK6fCbm3GiDKoQlVQxVQLlA3jvbFWUnu-RzXpew1dCvWXGWmGgskqUTlqnTOVDcDlIEYzpkWwJl3addji2sLjRreox0wivXsHbIz9W9retasablseI_soK1a7ThegDuvMB_Z4P9Mjhcu50twQXOiLAhWC5KHuEpfl8Zyh6MBxdrM72_8fADsg2PrDd_nJINpu7e_gWSUxj-2Rr8Gfyd9JPfvsCN6Xspw
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZgKwQXxFNsKeADEqeoWT_i-LhQql3oVpW2iyoulh_jqqKbRd300Bs_gd_IL8GTZFP2gJA4RbEmUTSTGX8ztr8h5O0IMUTkKstL6zPh0ee0cBnnzHkurdaAB5xnx8VkIT6dyc1uQjwL0_JD9AU39IwmXqODY0F6_5Y11IblRUrwGGvmvbtkB6FNOSA74y-Lr4vbQssoReeGjjM5Z5EpLvMNeWPO9rdfsjU5NRz-W8DzT_jazD-Hj8jDDjjScWvpx-QOVE_IvWYDp18_JWfsgE6rOdA5XMZfP36eYPczCBRZNuv62w09SddVgLqp0lMsv9KE_ejcLoHOIEFwelHR8fpmucQeW54ibZX19foZWRx-PP0wybquCZlP2abMIgdVhCL3NsUyJ4QUCcQELBwmaMKU9LgUZ71QUReilDplUKBDhBC8KwsV-HMyqFYVvCA0OGadExZKp4Xy0nltyxCjz0GKaO2QZBt1Gd9RimNni0vTkiEzg-o1vXqH5F0v_70l0_ir5HvUfi-FJNjNwOrq3HQ-ZVIw4oFZFaTDLDdqLZ3LBQAH5EUbDcnexnam88y1SRrgQrBcqCFhjT3_8SlmfDCb9ne7__PQG3J_cjo7MkfT488vyQMcb3fE7JFBfXUNrxKuqd3r7s_9Db6Y7W4
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF5BKxAXxFMEStkDEierzj683mNoGjVAqkghKOKy2mdV0ThV4x5660_gN_JL2Fk7bnOokDhZXo0ta2Zn9pvx7jcIfewDhghUZHmpbcYs-JxkJqOUGEu5ltLDAefJSXE8Z18WfHHnFH_DD9EV3MAzUrwGB79w4eCWNFS75VnM7whJy95DtAtUeXFe7w5-zH_Ob-ss_RicExtn9M0iE5TnG-7GnBxsv2RrbUoU_lu48y56TcvP6Bl62uJGPGgM_Rw98NUL9Cjt37Trl2hBhnhczTye-fPw5-b3FJqfeYeBZLOuf13jabyunK9TkR5D9RVH6IdneunxxEcEjs8qPFhfL5fQYstiYK3Stl6_QvPR0ffD46xtmpDZmGzyLFAvClfkVsdQZhjjLGIYB3XDiEyI4Bb-xGnLRJAFK7mMCZSXLnjnrCkL4ehrtFOtKv8GYWeINoZpXxrJhOXGSl26EGzuOQta91C2UZeyLaM4NLY4Vw0XMlGgXtWpt4c-dfIXDZfGvZKfQfudFHBgp4HV5alqXUrFWEQd0cJxA0lukJIbkzPvqQdatH4P7W1sp1rHXKuoAcoYyZnoIZLs-Y9PUYPhZNzdvf2fhz6gx9PhSH0bn3x9h57AcLMfZg_t1JdX_n1ENbXZbyfuX00-7Jc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=2D+InSe+Self%E2%80%90Powered+Schottky+Photodetector+with+the+Same+Metal+in+Asymmetric+Contacts&rft.jtitle=Advanced+materials+interfaces&rft.au=Chen%2C+Jinping&rft.au=Zhang%2C+Zhen&rft.au=Feng%2C+Jiying&rft.au=Xie%2C+Xiaoyu&rft.date=2022-12-01&rft.issn=2196-7350&rft.eissn=2196-7350&rft.volume=9&rft.issue=35&rft_id=info:doi/10.1002%2Fadmi.202200075&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_admi_202200075
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2196-7350&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2196-7350&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2196-7350&client=summon