2D InSe Self‐Powered Schottky Photodetector with the Same Metal in Asymmetric Contacts
Self‐powered photodetectors (SPPDs) are generally carried out in multilayered heterostructures with different semiconductors or in Schottky junctions with different metal electrodes. It is interesting to build an SPPD using metal–semiconductor–metal (MSM) structures with the same type of metal elect...
Saved in:
Published in | Advanced materials interfaces Vol. 9; no. 35 |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
John Wiley & Sons, Inc
01.12.2022
Wiley-VCH |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Self‐powered photodetectors (SPPDs) are generally carried out in multilayered heterostructures with different semiconductors or in Schottky junctions with different metal electrodes. It is interesting to build an SPPD using metal–semiconductor–metal (MSM) structures with the same type of metal electrodes. Here, an SPPD is fabricated facilely by stacking a piece of irregular InSe nanosheet on a pair of Au electrodes with asymmetric van der Waals contacts. The SPPD performs a high responsivity of 0.103 A W−1, a high on‐off current ratio over 104, a high detectivity of 1.83 × 1010 Jones, a fast response time of 1 ms and a broadband sensing spectrum ranging from 300 to 1000 nm under zero bias. A series of characterization and working mechanism analysis demonstrate the contribution of the asymmetric Schottky barrier heights and contact geometries in Au–InSe junctions to the self‐powered performance of the detector. This work offers an effective scheme to construct high‐performance SPPDs in simple architecture and processing for potential optoelectronic device applications.
The Au/InSe/Au van der Waals Schottky structures with a pair of the Au electrodes are demonstrated to perform a high‐performance self‐powered broadband photoresponse due to the asymmetric Schottky barrier heights and contact geometries in Au–InSe junctions. |
---|---|
AbstractList | Self‐powered photodetectors (SPPDs) are generally carried out in multilayered heterostructures with different semiconductors or in Schottky junctions with different metal electrodes. It is interesting to build an SPPD using metal–semiconductor–metal (MSM) structures with the same type of metal electrodes. Here, an SPPD is fabricated facilely by stacking a piece of irregular InSe nanosheet on a pair of Au electrodes with asymmetric van der Waals contacts. The SPPD performs a high responsivity of 0.103 A W−1, a high on‐off current ratio over 104, a high detectivity of 1.83 × 1010 Jones, a fast response time of 1 ms and a broadband sensing spectrum ranging from 300 to 1000 nm under zero bias. A series of characterization and working mechanism analysis demonstrate the contribution of the asymmetric Schottky barrier heights and contact geometries in Au–InSe junctions to the self‐powered performance of the detector. This work offers an effective scheme to construct high‐performance SPPDs in simple architecture and processing for potential optoelectronic device applications.
The Au/InSe/Au van der Waals Schottky structures with a pair of the Au electrodes are demonstrated to perform a high‐performance self‐powered broadband photoresponse due to the asymmetric Schottky barrier heights and contact geometries in Au–InSe junctions. Self‐powered photodetectors (SPPDs) are generally carried out in multilayered heterostructures with different semiconductors or in Schottky junctions with different metal electrodes. It is interesting to build an SPPD using metal–semiconductor–metal (MSM) structures with the same type of metal electrodes. Here, an SPPD is fabricated facilely by stacking a piece of irregular InSe nanosheet on a pair of Au electrodes with asymmetric van der Waals contacts. The SPPD performs a high responsivity of 0.103 A W −1 , a high on‐off current ratio over 10 4 , a high detectivity of 1.83 × 10 10 Jones, a fast response time of 1 ms and a broadband sensing spectrum ranging from 300 to 1000 nm under zero bias. A series of characterization and working mechanism analysis demonstrate the contribution of the asymmetric Schottky barrier heights and contact geometries in Au–InSe junctions to the self‐powered performance of the detector. This work offers an effective scheme to construct high‐performance SPPDs in simple architecture and processing for potential optoelectronic device applications. Self‐powered photodetectors (SPPDs) are generally carried out in multilayered heterostructures with different semiconductors or in Schottky junctions with different metal electrodes. It is interesting to build an SPPD using metal–semiconductor–metal (MSM) structures with the same type of metal electrodes. Here, an SPPD is fabricated facilely by stacking a piece of irregular InSe nanosheet on a pair of Au electrodes with asymmetric van der Waals contacts. The SPPD performs a high responsivity of 0.103 A W−1, a high on‐off current ratio over 104, a high detectivity of 1.83 × 1010 Jones, a fast response time of 1 ms and a broadband sensing spectrum ranging from 300 to 1000 nm under zero bias. A series of characterization and working mechanism analysis demonstrate the contribution of the asymmetric Schottky barrier heights and contact geometries in Au–InSe junctions to the self‐powered performance of the detector. This work offers an effective scheme to construct high‐performance SPPDs in simple architecture and processing for potential optoelectronic device applications. Abstract Self‐powered photodetectors (SPPDs) are generally carried out in multilayered heterostructures with different semiconductors or in Schottky junctions with different metal electrodes. It is interesting to build an SPPD using metal–semiconductor–metal (MSM) structures with the same type of metal electrodes. Here, an SPPD is fabricated facilely by stacking a piece of irregular InSe nanosheet on a pair of Au electrodes with asymmetric van der Waals contacts. The SPPD performs a high responsivity of 0.103 A W−1, a high on‐off current ratio over 104, a high detectivity of 1.83 × 1010 Jones, a fast response time of 1 ms and a broadband sensing spectrum ranging from 300 to 1000 nm under zero bias. A series of characterization and working mechanism analysis demonstrate the contribution of the asymmetric Schottky barrier heights and contact geometries in Au–InSe junctions to the self‐powered performance of the detector. This work offers an effective scheme to construct high‐performance SPPDs in simple architecture and processing for potential optoelectronic device applications. |
Author | Jian, Aoqun Zhang, Zhen Shi, Zengliang Xu, Chunxiang Feng, Jiying Xie, Xiaoyu Cui, Qiannan Guo, Heng Li, Zhuxin Chen, Jinping Li, Yuanzheng Dong, Jianqi Zhu, Yizhi |
Author_xml | – sequence: 1 givenname: Jinping surname: Chen fullname: Chen, Jinping organization: Southeast University – sequence: 2 givenname: Zhen surname: Zhang fullname: Zhang, Zhen organization: Taiyuan University of Technology – sequence: 3 givenname: Jiying surname: Feng fullname: Feng, Jiying organization: Northeast Normal University – sequence: 4 givenname: Xiaoyu surname: Xie fullname: Xie, Xiaoyu organization: Southeast University – sequence: 5 givenname: Aoqun surname: Jian fullname: Jian, Aoqun organization: Taiyuan University of Technology – sequence: 6 givenname: Yuanzheng surname: Li fullname: Li, Yuanzheng organization: Northeast Normal University – sequence: 7 givenname: Heng surname: Guo fullname: Guo, Heng organization: Southeast University – sequence: 8 givenname: Yizhi surname: Zhu fullname: Zhu, Yizhi organization: Southeast University – sequence: 9 givenname: Zhuxin surname: Li fullname: Li, Zhuxin organization: Southeast University – sequence: 10 givenname: Jianqi surname: Dong fullname: Dong, Jianqi organization: Southeast University – sequence: 11 givenname: Qiannan surname: Cui fullname: Cui, Qiannan organization: Southeast University – sequence: 12 givenname: Zengliang surname: Shi fullname: Shi, Zengliang email: zlshi@seu.edu.cn organization: Southeast University – sequence: 13 givenname: Chunxiang orcidid: 0000-0001-8116-2869 surname: Xu fullname: Xu, Chunxiang email: xcxseu@seu.edu.cn organization: Southeast University |
BookMark | eNqFkV9LHDEUxYMo1Fpf-xzo8675O5k8LmtbFxSFVfAtZJI7brYzE5uJLPvWj-Bn9JMYXbGlUPp0Qzi_cy73fET7QxwAoc-UTCkh7MT6PkwZYYwQouQeOmRUVxPFJdn_4_0BHY_jukgoZZTV_BDdslO8GJaAl9C1T78er-IGEni8dKuY848tviozesjgckx4E_IK51WR2x7wBWTb4TDg2bjte8gpODyPQ7Yuj5_QQWu7EY7f5hG6-fb1en42Ob_8vpjPzieO11xOWg6q8hVxVvK6EUKKijJPqKhrzZmSTlWEWCdUqytRS11RDdq34L1r6kp5foQWO18f7drcp9DbtDXRBvP6EdOdsSkH14GpOeOeWeVlI4XWrdayaYgA4FBCKS1eX3Ze9yn-fIAxm3V8SENZ35RVuBCMCFVU053KpTiOCdr3VErMSxnmpQzzXkYBxF-AC9nmUC6VbOj-jekdtgkdbP8TYmanF4vf7DOsN58T |
CitedBy_id | crossref_primary_10_1016_j_apsusc_2023_156444 crossref_primary_10_1016_j_nanoen_2023_108891 crossref_primary_10_1021_acsnano_4c10392 crossref_primary_10_1039_D3TC03312K crossref_primary_10_1002_adsr_202200079 crossref_primary_10_1002_adpr_202300162 crossref_primary_10_1016_j_jlumin_2023_119695 crossref_primary_10_1111_jace_20343 crossref_primary_10_1002_adom_202302399 crossref_primary_10_1002_adom_202300463 crossref_primary_10_1039_D4NR03543G crossref_primary_10_1021_acs_nanolett_3c01259 crossref_primary_10_1039_D3TC03804A crossref_primary_10_1002_adfm_202405364 crossref_primary_10_1016_j_nanoen_2024_109725 crossref_primary_10_1002_adom_202401122 crossref_primary_10_1007_s40843_023_2636_7 crossref_primary_10_1149_2754_2726_ad7c61 crossref_primary_10_1002_adom_202401682 crossref_primary_10_1002_adom_202400358 crossref_primary_10_1002_lpor_202400480 crossref_primary_10_1021_acsami_3c13552 crossref_primary_10_1021_acsami_3c16047 |
Cites_doi | 10.1007/s12274-021-3745-9 10.1038/nnano.2016.242 10.1021/acsami.1c01773 10.1038/s41467-019-12707-3 10.1039/C9NR08791E 10.1002/adom.202101017 10.1002/aelm.202001125 10.1002/adfm.201802954 10.1002/aelm.202101176 10.1016/j.nanoen.2017.05.004 10.1038/s41928-021-00586-w 10.1002/advs.201901134 10.1002/adom.202001802 10.1039/C5NR04592D 10.1038/s41928-018-0086-0 10.1021/nl500817g 10.1021/acsnano.9b07563 10.1021/acsnano.0c09593 10.1088/1674-1056/27/12/128502 10.1002/aelm.202000964 10.1063/1.4986122 10.1002/adfm.201802011 10.1557/jmr.2017.402 10.1088/2053-1583/1/1/011002 10.1039/D0NR00517G 10.1002/adma.202008080 10.1021/acsnano.8b04931 10.1038/s41586-018-0129-8 10.1038/natrevmats.2017.33 10.1002/smll.201701848 10.1021/acsnano.6b07159 10.1038/s41565-019-0602-z 10.1021/acsnano.0c04329 10.1088/2053-1583/aaa721 10.1021/acsami.9b19904 10.1038/s41467-021-21861-6 10.1021/acsami.0c11456 10.1021/acsami.0c08461 10.1088/1361-6528/aa9172 10.1002/adfm.202001307 10.1002/advs.202003713 10.1021/acs.nanolett.6b04449 10.1039/D1TC00949D |
ContentType | Journal Article |
Copyright | 2022 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2022 Wiley‐VCH GmbH |
DBID | AAYXX CITATION 7SR 7U5 8BQ 8FD JG9 L7M DOA |
DOI | 10.1002/admi.202200075 |
DatabaseName | CrossRef Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | CrossRef Materials Research Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 2196-7350 |
EndPage | n/a |
ExternalDocumentID | oai_doaj_org_article_8323d2a7d5b5499f995bb04ee3e61211 10_1002_admi_202200075 ADMI202200075 |
Genre | article |
GrantInformation_xml | – fundername: Key Research and Development Program of Jiangxi Province funderid: 2018YFA0209101 – fundername: National Natural Science Foundation of China funderid: 11734005; 61821002; 62075041 – fundername: Gulf Research Program funderid: 2017YFA0700500 – fundername: Fundamental Research Funds for the Central Universities funderid: 2242021k10009 – fundername: National Key Research and Development Program of China funderid: 2018YFA0209101; 2017YFA0700500 |
GroupedDBID | 0R~ 1OC 24P 33P AAESR AAHHS AAIHA AAXRX AAZKR ABCUV ACAHQ ACCFJ ACCZN ACGFS ACPOU ACXBN ACXQS ADBBV ADKYN ADOZA ADXAS ADZMN ADZOD AEEZP AENEX AEQDE AFBPY AIACR AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AMYDB ARCSS AVUZU AZVAB BFHJK BMXJE BRXPI DCZOG DPXWK EBS G-S GODZA LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MY~ M~E O9- P2W R.K ROL SUPJJ WBKPD WOHZO WXSBR WYJ ZZTAW AAFWJ AAMMB AAYXX ABJCF ABJNI ACCMX ADMLS AEFGJ AFKRA AFPKN AGXDD AIDQK AIDYY ARAPS BENPR BGLVJ CCPQU CITATION EJD GROUPED_DOAJ HCIFZ KB. M7S PDBOC PHGZM PHGZT PQGLB PTHSS 7SR 7U5 8BQ 8FD JG9 L7M |
ID | FETCH-LOGICAL-c3835-f3e76d60ca538b4454612d0148893275c7600ac47f964859619e9dfeddcb867d3 |
IEDL.DBID | DOA |
ISSN | 2196-7350 |
IngestDate | Wed Aug 27 01:21:52 EDT 2025 Sat Jul 12 03:28:04 EDT 2025 Thu Aug 14 00:09:54 EDT 2025 Thu Apr 24 23:02:21 EDT 2025 Sat Aug 24 01:06:13 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 35 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3835-f3e76d60ca538b4454612d0148893275c7600ac47f964859619e9dfeddcb867d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-8116-2869 |
OpenAccessLink | https://doaj.org/article/8323d2a7d5b5499f995bb04ee3e61211 |
PQID | 2753442047 |
PQPubID | 2034582 |
PageCount | 7 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_8323d2a7d5b5499f995bb04ee3e61211 proquest_journals_2753442047 crossref_primary_10_1002_admi_202200075 crossref_citationtrail_10_1002_admi_202200075 wiley_primary_10_1002_admi_202200075_ADMI202200075 |
PublicationCentury | 2000 |
PublicationDate | 2022-12-01 |
PublicationDateYYYYMMDD | 2022-12-01 |
PublicationDate_xml | – month: 12 year: 2022 text: 2022-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Advanced materials interfaces |
PublicationYear | 2022 |
Publisher | John Wiley & Sons, Inc Wiley-VCH |
Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley-VCH |
References | 2021; 9 2021; 8 2021; 7 2018; 28 2017; 2 2021; 4 2019; 6 2017; 28 2019; 10 2019; 13 2020; 15 2020; 14 2020; 12 2015; 7 2018; 27 2014; 1 2021; 13 2021; 15 2021; 12 2018; 5 2021; 33 2017; 37 2018; 557 2022 2020; 30 2018; 1 2017; 17 2017; 11 2017; 32 2017; 13 2017; 12 2014; 14 2018; 12 2017; 122 e_1_2_8_28_1 e_1_2_8_29_1 e_1_2_8_24_1 e_1_2_8_25_1 e_1_2_8_26_1 e_1_2_8_27_1 e_1_2_8_3_1 e_1_2_8_2_1 e_1_2_8_5_1 e_1_2_8_4_1 e_1_2_8_7_1 e_1_2_8_6_1 e_1_2_8_9_1 e_1_2_8_8_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_22_1 e_1_2_8_23_1 e_1_2_8_1_1 e_1_2_8_41_1 e_1_2_8_40_1 e_1_2_8_17_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_32_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_30_1 |
References_xml | – volume: 12 start-page: 223 year: 2017 publication-title: Nat. Nanotechnol. – volume: 1 year: 2014 publication-title: 2D Mater. – volume: 13 year: 2021 publication-title: ACS Appl. Mater. Interfaces – year: 2022 publication-title: Adv. Electron. Mater. – volume: 5 year: 2018 publication-title: 2D Mater. – volume: 12 start-page: 7196 year: 2020 publication-title: Nanoscale – volume: 12 year: 2020 publication-title: ACS Appl. Mater. Interfaces – volume: 14 start-page: 9098 year: 2020 publication-title: ACS Nano – volume: 12 start-page: 4094 year: 2020 publication-title: Nanoscale – volume: 4 start-page: 357 year: 2021 publication-title: Nat. Electron. – volume: 7 year: 2021 publication-title: Adv. Electron. Mater. – volume: 15 start-page: 8328 year: 2021 publication-title: ACS Nano – volume: 9 start-page: 6122 year: 2021 publication-title: J. Mater. Chem. C – volume: 13 year: 2019 publication-title: ACS Nano – volume: 2 year: 2017 publication-title: Nat. Rev. Mater. – volume: 15 start-page: 2489 year: 2021 publication-title: Nano Res. – volume: 14 start-page: 2800 year: 2014 publication-title: Nano Lett. – volume: 557 start-page: 696 year: 2018 publication-title: Nature – volume: 15 start-page: 118 year: 2020 publication-title: Nat. Nanotechnol. – volume: 1 start-page: 356 year: 2018 publication-title: Nat. Electron. – volume: 33 year: 2021 publication-title: Adv. Mater. – volume: 12 start-page: 8739 year: 2018 publication-title: ACS Nano – volume: 12 start-page: 1522 year: 2021 publication-title: Nat. Commun. – volume: 30 year: 2020 publication-title: Adv. Funct. Mater. – volume: 32 start-page: 4115 year: 2017 publication-title: J. Mater. Res. – volume: 28 year: 2017 publication-title: Nanotechnology – volume: 27 year: 2018 publication-title: Chinese Phys. B – volume: 6 year: 2019 publication-title: Adv. Sci. – volume: 17 start-page: 453 year: 2017 publication-title: Nano Lett. – volume: 37 start-page: 53 year: 2017 publication-title: Nano Energy – volume: 10 start-page: 4663 year: 2019 publication-title: Nat. Commun. – volume: 28 year: 2018 publication-title: Adv. Funct. Mater. – volume: 7 year: 2015 publication-title: Nanoscale – volume: 9 year: 2021 publication-title: Adv. Opt. Mater. – volume: 11 start-page: 1588 year: 2017 publication-title: ACS Nano – volume: 13 year: 2017 publication-title: Small – volume: 122 year: 2017 publication-title: J. Appl. Phys. – volume: 8 year: 2021 publication-title: Adv. Sci. – ident: e_1_2_8_14_1 doi: 10.1007/s12274-021-3745-9 – ident: e_1_2_8_25_1 doi: 10.1038/nnano.2016.242 – ident: e_1_2_8_23_1 doi: 10.1021/acsami.1c01773 – ident: e_1_2_8_15_1 doi: 10.1038/s41467-019-12707-3 – ident: e_1_2_8_19_1 doi: 10.1039/C9NR08791E – ident: e_1_2_8_28_1 doi: 10.1002/adom.202101017 – ident: e_1_2_8_12_1 doi: 10.1002/aelm.202001125 – ident: e_1_2_8_21_1 doi: 10.1002/adfm.201802954 – ident: e_1_2_8_29_1 doi: 10.1002/aelm.202101176 – ident: e_1_2_8_8_1 doi: 10.1016/j.nanoen.2017.05.004 – ident: e_1_2_8_17_1 doi: 10.1038/s41928-021-00586-w – ident: e_1_2_8_33_1 doi: 10.1002/advs.201901134 – ident: e_1_2_8_10_1 doi: 10.1002/adom.202001802 – ident: e_1_2_8_39_1 doi: 10.1039/C5NR04592D – ident: e_1_2_8_1_1 doi: 10.1038/s41928-018-0086-0 – ident: e_1_2_8_24_1 doi: 10.1021/nl500817g – ident: e_1_2_8_32_1 doi: 10.1021/acsnano.9b07563 – ident: e_1_2_8_16_1 doi: 10.1021/acsnano.0c09593 – ident: e_1_2_8_9_1 doi: 10.1088/1674-1056/27/12/128502 – ident: e_1_2_8_22_1 doi: 10.1002/aelm.202000964 – ident: e_1_2_8_37_1 doi: 10.1063/1.4986122 – ident: e_1_2_8_26_1 doi: 10.1002/adfm.201802011 – ident: e_1_2_8_7_1 doi: 10.1557/jmr.2017.402 – ident: e_1_2_8_30_1 doi: 10.1088/2053-1583/1/1/011002 – ident: e_1_2_8_35_1 doi: 10.1039/D0NR00517G – ident: e_1_2_8_13_1 doi: 10.1002/adma.202008080 – ident: e_1_2_8_18_1 doi: 10.1021/acsnano.8b04931 – ident: e_1_2_8_20_1 doi: 10.1038/s41586-018-0129-8 – ident: e_1_2_8_6_1 doi: 10.1038/natrevmats.2017.33 – ident: e_1_2_8_3_1 doi: 10.1002/smll.201701848 – ident: e_1_2_8_36_1 doi: 10.1021/acsnano.6b07159 – ident: e_1_2_8_11_1 doi: 10.1038/s41565-019-0602-z – ident: e_1_2_8_31_1 doi: 10.1021/acsnano.0c04329 – ident: e_1_2_8_43_1 doi: 10.1088/2053-1583/aaa721 – ident: e_1_2_8_4_1 doi: 10.1021/acsami.9b19904 – ident: e_1_2_8_38_1 doi: 10.1038/s41467-021-21861-6 – ident: e_1_2_8_42_1 doi: 10.1021/acsami.0c11456 – ident: e_1_2_8_27_1 doi: 10.1021/acsami.0c08461 – ident: e_1_2_8_34_1 doi: 10.1088/1361-6528/aa9172 – ident: e_1_2_8_40_1 doi: 10.1002/adfm.202001307 – ident: e_1_2_8_41_1 doi: 10.1002/advs.202003713 – ident: e_1_2_8_5_1 doi: 10.1021/acs.nanolett.6b04449 – ident: e_1_2_8_2_1 doi: 10.1039/D1TC00949D |
SSID | ssj0001121283 |
Score | 2.4152174 |
Snippet | Self‐powered photodetectors (SPPDs) are generally carried out in multilayered heterostructures with different semiconductors or in Schottky junctions with... Abstract Self‐powered photodetectors (SPPDs) are generally carried out in multilayered heterostructures with different semiconductors or in Schottky junctions... |
SourceID | doaj proquest crossref wiley |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | 2D InSe Asymmetry Broadband Electrodes Heterostructures Indium selenides Optoelectronic devices Photometers photoresponse Response time Schottky barrier self‐powered photodetector |
Title | 2D InSe Self‐Powered Schottky Photodetector with the Same Metal in Asymmetric Contacts |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadmi.202200075 https://www.proquest.com/docview/2753442047 https://doaj.org/article/8323d2a7d5b5499f995bb04ee3e61211 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9tAEF0hUCUuFaVFDdBoD5V6snD3w_YeAwFBpVRIIVXUy2o_ZiVU4iBiDtz4CfxGfgk7aycKB8SlJ8v2yFq9nfW8Ga_fEPL9J3KIwMssr4zLhMM1p4TNOGfWcWmUAvzBefS7OJ-IX1M5XWv1hXvCWnngFrij6HHcM1N6aTGVCUpJa3MBwAHFr1LiE2PeWjKVqivxVgycS5XGnB0ZP7uO6SBjKUq-ikJJrP8Vw1znqSnQnO2Qjx1DpIN2ZJ_IBtS75EPaqekWn8mUDelFPQY6hpvw_Ph0iW3OwFOU02yafw_0Mh7nHppUjqdYZ6WR5NGxmQEdQeTa9Lqmg8XDbIbNtBxFfSrjmsUXMjk7vTo5z7r2CJmLaaXMAoey8EXuTHxpWSGkiIB4rBBGDsJK6fCbm3GiDKoQlVQxVQLlA3jvbFWUnu-RzXpew1dCvWXGWmGgskqUTlqnTOVDcDlIEYzpkWwJl3addji2sLjRreox0wivXsHbIz9W9retasablseI_soK1a7ThegDuvMB_Z4P9Mjhcu50twQXOiLAhWC5KHuEpfl8Zyh6MBxdrM72_8fADsg2PrDd_nJINpu7e_gWSUxj-2Rr8Gfyd9JPfvsCN6Xspw |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZgKwQXxFNsKeADEqeoWT_i-LhQql3oVpW2iyoulh_jqqKbRd300Bs_gd_IL8GTZFP2gJA4RbEmUTSTGX8ztr8h5O0IMUTkKstL6zPh0ee0cBnnzHkurdaAB5xnx8VkIT6dyc1uQjwL0_JD9AU39IwmXqODY0F6_5Y11IblRUrwGGvmvbtkB6FNOSA74y-Lr4vbQssoReeGjjM5Z5EpLvMNeWPO9rdfsjU5NRz-W8DzT_jazD-Hj8jDDjjScWvpx-QOVE_IvWYDp18_JWfsgE6rOdA5XMZfP36eYPczCBRZNuv62w09SddVgLqp0lMsv9KE_ejcLoHOIEFwelHR8fpmucQeW54ibZX19foZWRx-PP0wybquCZlP2abMIgdVhCL3NsUyJ4QUCcQELBwmaMKU9LgUZ71QUReilDplUKBDhBC8KwsV-HMyqFYVvCA0OGadExZKp4Xy0nltyxCjz0GKaO2QZBt1Gd9RimNni0vTkiEzg-o1vXqH5F0v_70l0_ir5HvUfi-FJNjNwOrq3HQ-ZVIw4oFZFaTDLDdqLZ3LBQAH5EUbDcnexnam88y1SRrgQrBcqCFhjT3_8SlmfDCb9ne7__PQG3J_cjo7MkfT488vyQMcb3fE7JFBfXUNrxKuqd3r7s_9Db6Y7W4 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF5BKxAXxFMEStkDEierzj683mNoGjVAqkghKOKy2mdV0ThV4x5660_gN_JL2Fk7bnOokDhZXo0ta2Zn9pvx7jcIfewDhghUZHmpbcYs-JxkJqOUGEu5ltLDAefJSXE8Z18WfHHnFH_DD9EV3MAzUrwGB79w4eCWNFS75VnM7whJy95DtAtUeXFe7w5-zH_Ob-ss_RicExtn9M0iE5TnG-7GnBxsv2RrbUoU_lu48y56TcvP6Bl62uJGPGgM_Rw98NUL9Cjt37Trl2hBhnhczTye-fPw5-b3FJqfeYeBZLOuf13jabyunK9TkR5D9RVH6IdneunxxEcEjs8qPFhfL5fQYstiYK3Stl6_QvPR0ffD46xtmpDZmGzyLFAvClfkVsdQZhjjLGIYB3XDiEyI4Bb-xGnLRJAFK7mMCZSXLnjnrCkL4ehrtFOtKv8GYWeINoZpXxrJhOXGSl26EGzuOQta91C2UZeyLaM4NLY4Vw0XMlGgXtWpt4c-dfIXDZfGvZKfQfudFHBgp4HV5alqXUrFWEQd0cJxA0lukJIbkzPvqQdatH4P7W1sp1rHXKuoAcoYyZnoIZLs-Y9PUYPhZNzdvf2fhz6gx9PhSH0bn3x9h57AcLMfZg_t1JdX_n1ENbXZbyfuX00-7Jc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=2D+InSe+Self%E2%80%90Powered+Schottky+Photodetector+with+the+Same+Metal+in+Asymmetric+Contacts&rft.jtitle=Advanced+materials+interfaces&rft.au=Chen%2C+Jinping&rft.au=Zhang%2C+Zhen&rft.au=Feng%2C+Jiying&rft.au=Xie%2C+Xiaoyu&rft.date=2022-12-01&rft.issn=2196-7350&rft.eissn=2196-7350&rft.volume=9&rft.issue=35&rft_id=info:doi/10.1002%2Fadmi.202200075&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_admi_202200075 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2196-7350&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2196-7350&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2196-7350&client=summon |