Anisotropic Fracture Toughness of Bulk GaN

The wurtzite structure of GaN determines its anisotropic mechanical properties, which is significant in the processes of material preparation and application. By using nanoindentation method, the fracture toughnesses along the c‐, a‐, and m‐planes of GaN were measured. Experimental results reveal th...

Full description

Saved in:
Bibliographic Details
Published inphysica status solidi (b) Vol. 255; no. 5
Main Authors Cheng, Yutian, Cai, Duanjun, Wang, Hui, Wu, Jiejun, Liu, Xiangshun, Zhang, Guoyi, Yu, Tongjun
Format Journal Article
LanguageEnglish
Published 01.05.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The wurtzite structure of GaN determines its anisotropic mechanical properties, which is significant in the processes of material preparation and application. By using nanoindentation method, the fracture toughnesses along the c‐, a‐, and m‐planes of GaN were measured. Experimental results reveal that the fracture toughnesses along nonpolar m‐ and a‐planes are similar, 1.55 ± 0.13 MPa · m1/2 and 1.59 ± 0.12 MPa · m1/2, respectively, but obviously smaller than the value of c‐plane, about 2.12 ± 0.21 MPa · m1/2. This could be understood by the differences of GaN bond densities and energies among the corresponding planes. Using first‐principles calculations, the fracture toughness of GaN under different stress states was investigated within the framework of density functional theory. The anisotropic property that the fracture toughness for c‐plane GaN is higher than that of a‐ or m‐plane GaN for all cases of stress states, should be the fundamental reason for the great difficulty in complete separation of thick GaN films, which is the key process in manufacturing GaN substrates. The wurtzite structure of GaN determines the anisotropy of its mechanical properties, which is significant in the processes of material preparation and application. Experimental results reveal that the fracture toughness along nonpolar m‐ and a‐planes of wurtzite GaN is similar, 1.54 MPa · m1/2 and 1.59 MPa · m1/2, respectively, but obviously smaller than the value along c‐plane, about 2.11 MPa · m1/2.
AbstractList The wurtzite structure of GaN determines its anisotropic mechanical properties, which is significant in the processes of material preparation and application. By using nanoindentation method, the fracture toughnesses along the c‐, a‐, and m‐planes of GaN were measured. Experimental results reveal that the fracture toughnesses along nonpolar m‐ and a‐planes are similar, 1.55 ± 0.13 MPa · m1/2 and 1.59 ± 0.12 MPa · m1/2, respectively, but obviously smaller than the value of c‐plane, about 2.12 ± 0.21 MPa · m1/2. This could be understood by the differences of GaN bond densities and energies among the corresponding planes. Using first‐principles calculations, the fracture toughness of GaN under different stress states was investigated within the framework of density functional theory. The anisotropic property that the fracture toughness for c‐plane GaN is higher than that of a‐ or m‐plane GaN for all cases of stress states, should be the fundamental reason for the great difficulty in complete separation of thick GaN films, which is the key process in manufacturing GaN substrates. The wurtzite structure of GaN determines the anisotropy of its mechanical properties, which is significant in the processes of material preparation and application. Experimental results reveal that the fracture toughness along nonpolar m‐ and a‐planes of wurtzite GaN is similar, 1.54 MPa · m1/2 and 1.59 MPa · m1/2, respectively, but obviously smaller than the value along c‐plane, about 2.11 MPa · m1/2.
The wurtzite structure of GaN determines its anisotropic mechanical properties, which is significant in the processes of material preparation and application. By using nanoindentation method, the fracture toughnesses along the c ‐, a ‐, and m ‐planes of GaN were measured. Experimental results reveal that the fracture toughnesses along nonpolar m ‐ and a ‐planes are similar, 1.55 ± 0.13 MPa · m 1/2 and 1.59 ± 0.12 MPa · m 1/2 , respectively, but obviously smaller than the value of c ‐plane, about 2.12 ± 0.21 MPa · m 1/2 . This could be understood by the differences of GaN bond densities and energies among the corresponding planes. Using first‐principles calculations, the fracture toughness of GaN under different stress states was investigated within the framework of density functional theory. The anisotropic property that the fracture toughness for c ‐plane GaN is higher than that of a ‐ or m ‐plane GaN for all cases of stress states, should be the fundamental reason for the great difficulty in complete separation of thick GaN films, which is the key process in manufacturing GaN substrates.
Author Yu, Tongjun
Cai, Duanjun
Cheng, Yutian
Wang, Hui
Wu, Jiejun
Liu, Xiangshun
Zhang, Guoyi
Author_xml – sequence: 1
  givenname: Yutian
  surname: Cheng
  fullname: Cheng, Yutian
  organization: Research Center for Wide‐gap Semiconductors, State Key Laboratory for Artificial Microstructures and Mesoscopic Physics, School of Physics, Peking University
– sequence: 2
  givenname: Duanjun
  surname: Cai
  fullname: Cai, Duanjun
  organization: Fujian Key Laboratory of Semiconductor Materials and Applications, Department of Physics, Xiamen University
– sequence: 3
  givenname: Hui
  surname: Wang
  fullname: Wang, Hui
  organization: Research Center for Wide‐gap Semiconductors, State Key Laboratory for Artificial Microstructures and Mesoscopic Physics, School of Physics, Peking University
– sequence: 4
  givenname: Jiejun
  surname: Wu
  fullname: Wu, Jiejun
  email: wujiejun@pku.edu.cn
  organization: Research Center for Wide‐gap Semiconductors, State Key Laboratory for Artificial Microstructures and Mesoscopic Physics, School of Physics, Peking University
– sequence: 5
  givenname: Xiangshun
  surname: Liu
  fullname: Liu, Xiangshun
  organization: Research Center for Wide‐gap Semiconductors, State Key Laboratory for Artificial Microstructures and Mesoscopic Physics, School of Physics, Peking University
– sequence: 6
  givenname: Guoyi
  surname: Zhang
  fullname: Zhang, Guoyi
  organization: Research Center for Wide‐gap Semiconductors, State Key Laboratory for Artificial Microstructures and Mesoscopic Physics, School of Physics, Peking University
– sequence: 7
  givenname: Tongjun
  surname: Yu
  fullname: Yu, Tongjun
  email: tongjun@pku.edu.cn
  organization: Research Center for Wide‐gap Semiconductors, State Key Laboratory for Artificial Microstructures and Mesoscopic Physics, School of Physics, Peking University
BookMark eNqFj0FLwzAYhoNMsJtePfcsdH5f05jkuA03haHC5jkkaaLV2pRkRfbvdUz06Om9vM8Dz5iMutA5Qi4RpghQXvcpmWkJyAEYshOSISuxoJLhiGRAORQoeXlGxim9AQBHihm5mnVNCrsY-sbmy6jtbogu34bh5bVzKeXB5_Ohfc9X-uGcnHrdJnfxsxPyvLzdLu6K9ePqfjFbF5YKygrNhDN1XTFqKlki-htZa-coSMukRGq8l0agRmErakFLW6EzgtcOuRfI6YRMj14bQ0rRedXH5kPHvUJQh1J1KFW_pd-APAKfTev2_7zV02Yz_2O_AHHwWPo
CitedBy_id crossref_primary_10_1063_5_0012969
crossref_primary_10_1021_acs_nanolett_1c00773
crossref_primary_10_1016_j_apsusc_2021_152188
crossref_primary_10_1016_j_matdes_2019_107985
crossref_primary_10_35848_1347_4065_ac89c2
crossref_primary_10_1021_acsaelm_0c00892
Cites_doi 10.1557/JMR.1992.1564
10.1143/JJAP.19.2395
10.1063/1.4861170
10.1111/j.1151-2916.1981.tb10320.x
10.1186/1556-276X-7-150
10.1063/1.1330243
10.1103/PhysRevB.61.3877
10.1103/PhysRevB.59.1758
10.1063/1.126788
10.1063/1.1338968
10.1088/0953-8984/12/49/335
10.1002/pssa.201200542
10.1016/0927-0256(96)00008-0
10.1557/PROC-622-T6.18.1
10.1109/LED.2004.824845
10.1063/1.336035
10.1039/C4CE01188K
10.1143/JJAP.42.L1
10.1063/1.3195684
10.1063/1.1476058
10.1016/j.jcrysgro.2015.11.027
10.1016/j.cossms.2015.04.003
10.1016/j.scriptamat.2009.10.025
10.1016/S0921-5093(98)00724-2
10.1063/1.111832
10.1002/pssa.201532070
10.1063/1.117865
10.1016/j.jcrysgro.2011.11.037
10.1007/s002140050031
10.1016/j.jcrysgro.2016.04.010
ContentType Journal Article
Copyright 2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
DBID AAYXX
CITATION
DOI 10.1002/pssb.201700515
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1521-3951
EndPage n/a
ExternalDocumentID 10_1002_pssb_201700515
PSSB201700515
Genre article
GrantInformation_xml – fundername: Guangdong Innovative Research Team Program
  funderid: 2009010044
– fundername: National Natural Science Foundation of China
  funderid: 61474003; 61674007; 61376012
– fundername: National Key Research and Development Program of China
  funderid: 2017YFB0404203
GroupedDBID .GA
05W
0R~
10A
1L6
1OB
1OC
33P
3SF
3WU
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5VS
66C
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ACAHQ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEIGN
AEIMD
AEUQT
AEUYR
AFFNX
AFFPM
AFGKR
AFPWT
AHBTC
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
AMBMR
AMYDB
AUFTA
AZBYB
AZFZN
AZVAB
BAFTC
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BY8
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
FEDTE
G.N
GNP
GODZA
GYQRN
H.T
H.X
HGLYW
HHY
HVGLF
HZ~
IX1
J0M
JPC
LATKE
LAW
LC2
LC3
LEEKS
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NF~
O66
O9-
OIG
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
SAMSI
W8V
W99
WBKPD
WGJPS
WIH
WIK
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XV2
ZZTAW
~IA
~WT
AAYXX
CITATION
ID FETCH-LOGICAL-c3835-a58ebdd453b49211f69daee309c59913bff9b81a18c43c0a9c41eb87de17f8173
IEDL.DBID DR2
ISSN 0370-1972
IngestDate Fri Aug 23 03:42:12 EDT 2024
Sat Aug 24 01:06:02 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3835-a58ebdd453b49211f69daee309c59913bff9b81a18c43c0a9c41eb87de17f8173
PageCount 5
ParticipantIDs crossref_primary_10_1002_pssb_201700515
wiley_primary_10_1002_pssb_201700515_PSSB201700515
PublicationCentury 2000
PublicationDate May 2018
PublicationDateYYYYMMDD 2018-05-01
PublicationDate_xml – month: 05
  year: 2018
  text: May 2018
PublicationDecade 2010
PublicationTitle physica status solidi (b)
PublicationYear 2018
References 2012; 340
2015; 19
2004; 201
2004; 25
2016; 445
2002; 80
2001; 89
1981; 64
2010; 62
1994; 64
1998; A253
1992; 7
2009; 95
1980; 19
2000; 103
2000; 12
2015; 212
2000; 622
2000; 76
1999; 59
2000; 61
2014; 16
2013; 210
2016; 436
1996; 69
2001; 78
2012; 7
2003; 42
2014; 104
1996; 6
1985; 58
e_1_2_6_32_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_30_1
Sommer F. (e_1_2_6_3_1) 2004; 201
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_14_1
e_1_2_6_11_1
e_1_2_6_12_1
e_1_2_6_17_1
e_1_2_6_18_1
e_1_2_6_15_1
e_1_2_6_16_1
e_1_2_6_21_1
e_1_2_6_20_1
Hong M. H. (e_1_2_6_25_1) 2000; 622
e_1_2_6_9_1
e_1_2_6_8_1
e_1_2_6_5_1
e_1_2_6_4_1
e_1_2_6_7_1
e_1_2_6_6_1
e_1_2_6_24_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_22_1
e_1_2_6_29_1
e_1_2_6_28_1
e_1_2_6_27_1
e_1_2_6_26_1
References_xml – volume: 7
  start-page: 150
  year: 2012
  publication-title: Nanoscale Res. Lett
– volume: 58
  start-page: 1828
  year: 1985
  publication-title: J. Appl. Phys
– volume: A253
  start-page: 151
  year: 1998
  publication-title: Mater. Sci. Eng
– volume: 25
  start-page: 161
  year: 2004
  publication-title: IEEE Electron Device Lett
– volume: 62
  start-page: 199
  year: 2010
  publication-title: Scr. Mater
– volume: 95
  start-page: 051905
  year: 2009
  publication-title: Appl. Phys. Lett
– volume: 69
  start-page: 4044
  year: 1996
  publication-title: Appl. Phys. Lett
– volume: 19
  start-page: 324
  year: 2015
  publication-title: Curr. Opin. Solid State Mater. Sci
– volume: 104
  start-page: 012110
  year: 2014
  publication-title: Appl. Phys. Lett
– volume: 445
  start-page: 24
  year: 2016
  publication-title: J. Cryst. Growth
– volume: 12
  start-page: 10319
  year: 2000
  publication-title: J. Phys.: Condens. Matter
– volume: 16
  start-page: 9063
  year: 2014
  publication-title: CrystEngComm
– volume: 78
  start-page: 288
  year: 2001
  publication-title: Appl. Phys. Lett
– volume: 64
  start-page: 1687
  year: 1994
  publication-title: Appl. Phys. Lett
– volume: 76
  start-page: 3807
  year: 2000
  publication-title: Appl. Phys. Lett
– volume: 89
  start-page: 1025
  year: 2001
  publication-title: J. Appl. Phys
– volume: 59
  start-page: 1758
  year: 1999
  publication-title: Phys. Rev. B
– volume: 64
  start-page: 533
  year: 1981
  publication-title: J. Am. Ceram. Soc
– volume: 212
  start-page: 1049
  year: 2015
  publication-title: Phys. Status Solidi A
– volume: 201
  start-page: 2628
  year: 2004
  publication-title: Phys. Status Solidi A
– volume: 61
  start-page: 3877
  year: 2000
  publication-title: Phys. Rev. B
– volume: 6
  start-page: 15
  year: 1996
  publication-title: Comput. Mater. Sci
– volume: 103
  start-page: 265
  year: 2000
  publication-title: Theor. Chem. Acc
– volume: 7
  start-page: 1564
  year: 1992
  publication-title: J. Mater. Res
– volume: 80
  start-page: 3301
  year: 2002
  publication-title: Appl. Phys. Lett
– volume: 340
  start-page: 18
  year: 2012
  publication-title: J. Cryst. Growth
– volume: 19
  start-page: 2395
  year: 1980
  publication-title: Jpn. J. Appl. Phys
– volume: 210
  start-page: 213
  year: 2013
  publication-title: Phys. Status Solidi A
– volume: 436
  start-page: 76
  year: 2016
  publication-title: J. Cryst. Growth
– volume: 42
  start-page: L1
  year: 2003
  publication-title: Jpn. J. Appl. Phys
– volume: 622
  start-page: T6.18.1
  year: 2000
  publication-title: Mater. Res. Soc. Symp. Proc
– ident: e_1_2_6_22_1
  doi: 10.1557/JMR.1992.1564
– ident: e_1_2_6_8_1
  doi: 10.1143/JJAP.19.2395
– ident: e_1_2_6_31_1
  doi: 10.1063/1.4861170
– ident: e_1_2_6_14_1
  doi: 10.1111/j.1151-2916.1981.tb10320.x
– ident: e_1_2_6_24_1
  doi: 10.1186/1556-276X-7-150
– ident: e_1_2_6_17_1
  doi: 10.1063/1.1330243
– ident: e_1_2_6_27_1
  doi: 10.1103/PhysRevB.61.3877
– ident: e_1_2_6_30_1
  doi: 10.1103/PhysRevB.59.1758
– ident: e_1_2_6_5_1
  doi: 10.1063/1.126788
– ident: e_1_2_6_10_1
  doi: 10.1063/1.1338968
– ident: e_1_2_6_19_1
  doi: 10.1088/0953-8984/12/49/335
– ident: e_1_2_6_23_1
  doi: 10.1002/pssa.201200542
– ident: e_1_2_6_29_1
  doi: 10.1016/0927-0256(96)00008-0
– volume: 622
  start-page: T6.18.1
  year: 2000
  ident: e_1_2_6_25_1
  publication-title: Mater. Res. Soc. Symp. Proc
  doi: 10.1557/PROC-622-T6.18.1
  contributor:
    fullname: Hong M. H.
– ident: e_1_2_6_4_1
  doi: 10.1109/LED.2004.824845
– ident: e_1_2_6_11_1
  doi: 10.1063/1.336035
– ident: e_1_2_6_32_1
  doi: 10.1039/C4CE01188K
– volume: 201
  start-page: 2628
  year: 2004
  ident: e_1_2_6_3_1
  publication-title: Phys. Status Solidi A
  contributor:
    fullname: Sommer F.
– ident: e_1_2_6_12_1
  doi: 10.1143/JJAP.42.L1
– ident: e_1_2_6_13_1
  doi: 10.1063/1.3195684
– ident: e_1_2_6_9_1
  doi: 10.1063/1.1476058
– ident: e_1_2_6_7_1
  doi: 10.1016/j.jcrysgro.2015.11.027
– ident: e_1_2_6_16_1
  doi: 10.1016/j.cossms.2015.04.003
– ident: e_1_2_6_26_1
  doi: 10.1016/j.scriptamat.2009.10.025
– ident: e_1_2_6_15_1
  doi: 10.1016/S0921-5093(98)00724-2
– ident: e_1_2_6_2_1
  doi: 10.1063/1.111832
– ident: e_1_2_6_6_1
  doi: 10.1002/pssa.201532070
– ident: e_1_2_6_18_1
  doi: 10.1063/1.117865
– ident: e_1_2_6_21_1
  doi: 10.1016/j.jcrysgro.2011.11.037
– ident: e_1_2_6_28_1
  doi: 10.1007/s002140050031
– ident: e_1_2_6_20_1
  doi: 10.1016/j.jcrysgro.2016.04.010
SSID ssj0007131
ssj0047196
Score 2.3059373
Snippet The wurtzite structure of GaN determines its anisotropic mechanical properties, which is significant in the processes of material preparation and application....
SourceID crossref
wiley
SourceType Aggregation Database
Publisher
SubjectTerms anisotropic mechanical properties
fracture toughness
GaN
nanoindentation
self‐separation
Title Anisotropic Fracture Toughness of Bulk GaN
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fpssb.201700515
Volume 255
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA4yEHzxLs4bfRAEIVvbNE3yuIlzCA5xG-yt5Apj0o51ffHXm7Rbt_ki6FsLbcgJyTnfSb58B4B7iWIjYqGgRSMGRpwYyBDmUClioxdWgimXKL4N4v44ep3gydYt_kofot5wcyuj9NdugXORtzeiofM8F46aRcoyJdYJOzU9h4o-NvpRNgOrCR_WC7Pq5JL40BXbWks4-mF7t62dELUNWcuY0zsCfN3bimoyaxVL0ZJfP4Qc_2POMThcAVKvU82gE7Cn01OwXxJDZX4GHjvpNM-Wi2w-lV7PXakqFtobudo-zkl6mfG6xefMe-GDczDuPY-e-nBVXwFKm5diyDHVQqkIIxExmwiamCmuNfKZxBY2ImEMEzTgAZURkj5nMgq0oETpgBgaEHQBGmmW6kvgaYGVbRQjjS0kwYJiEmpk0Q2XjEeaNsHDekiTeSWjkVSCyWHiLE9qy5sgLIfpl8-S9-GwW79d_eWna3Bgn2nFXrwBjeWi0LcWYSzFXTmLvgEzkcXO
link.rule.ids 315,786,790,1382,27957,27958,46329,46753
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF60InrxLdZnDoIgpCbdbLJ7bMVatS1iW_AW9gmlkpQmufjr3U2a1HoR9JiQLJllZ-abzbffAHDNoa-Yz4St0YiyPRoom0BEbSECnb2QYESYQrE_8Ltj7_kdlWxCcxam0IeoNtyMZ-Tx2ji42ZC-W6qGzpKEGW5WkPcpWQcb2udRXlW9LRWkdA1WUT50HCbFv8vAsU27rVLE0WnerQ62kqS-g9Y863R2ASu_tyCbTBtZyhr884eU478M2gM7C0xqtYpFtA_WZHQANnNuKE8OwW0rmiRxOo9nE251zKmqbC6tkWnvY-KkFSurnX1MrUc6OALjzsPovmsvWizYXJemyKYISyaEhyDziK4FlU8ElRI6hCONHCFTijDsUhdzD3KHEu65kuFASDdQ2A3gMahFcSRPgCUZEnpQBCXSqAQxjIKmhBrgUE6oJ3Ed3JRzGs4KJY2w0ExuhsbysLK8Dpr5PP3yWPg6HLarq9O_vHQFtrqjfi_sPQ1ezsC2vo8LMuM5qKXzTF5owJGyy3xJfQHEgcnw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF60onjxLdZnDoIgpE2y2WT32FprfZViW-gt7BNKJQ1tcvHXu5v06UXQY0KyZJbZmW-y334DwC2HgWIBE7ZGI8r2aahsAhG1hQh19kKCEWEKxfd20Or7LwM0WDnFX-hDLH64mZWRx2uzwBOhqkvR0GQ6ZYaaFeZtSjbBlh9Az_h142MpIKVLsAXjQ4dhUmxdho5tum3NNRwdr7o-2FqOWsWsedJp7gM6_9yCazKqZCmr8K8fSo7_secA7M0QqVUrXOgQbMj4CGznzFA-PQb3tXg4HaeTcTLkVtOcqcom0uqZ5j4mSlpjZdWzz5H1RNsnoN987D207FmDBZvrwhTZFGHJhPARZD7RlaAKiKBSQodwpHEjZEoRhl3qYu5D7lDCfVcyHArphgq7ITwFpXgcyzNgSYaEHhRBiTQmQQyj0JNQwxvKCfUlLoO7-ZRGSaGjERWKyV5kLI8WlpeBl0_TL49FnW63vrg6_8tLN2Cn02hGb8_t1wuwq2_jgsl4CUrpJJNXGm2k7Dp3qG-K5Mif
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Anisotropic+Fracture+Toughness+of+Bulk+GaN&rft.jtitle=physica+status+solidi+%28b%29&rft.au=Cheng%2C+Yutian&rft.au=Cai%2C+Duanjun&rft.au=Wang%2C+Hui&rft.au=Wu%2C+Jiejun&rft.date=2018-05-01&rft.issn=0370-1972&rft.eissn=1521-3951&rft.volume=255&rft.issue=5&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fpssb.201700515&rft.externalDBID=10.1002%252Fpssb.201700515&rft.externalDocID=PSSB201700515
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0370-1972&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0370-1972&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0370-1972&client=summon