Super Stretchable, Self‐Healing, Adhesive Ionic Conductive Hydrogels Based on Tailor‐Made Ionic Liquid for High‐Performance Strain Sensors
Ionic conductive hydrogels (ICHs) integrate the conductive performance and soft nature of tissue‐like materials to imitate the features of human skin with mechanical and sensory traits; thus, they are considered promising substitutes for conventional rigid metallic conductors when fabricating human‐...
Saved in:
Published in | Advanced functional materials Vol. 32; no. 33 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc
01.08.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Ionic conductive hydrogels (ICHs) integrate the conductive performance and soft nature of tissue‐like materials to imitate the features of human skin with mechanical and sensory traits; thus, they are considered promising substitutes for conventional rigid metallic conductors when fabricating human‐motion sensors. However, the simultaneous incorporation of excellent stretchability, toughness, ionic conductivity, self‐healing, and adhesion via a simple method remains a grand challenge. Herein, a novel ICH platform is proposed by designing a phenylboronic acid‐ionic liquid (PBA‐IL) with multiple roles that simultaneously realize the highly mechanical, electrical, and versatile properties. This elaborately designed semi‐interpenetrating network ICH is fabricated via a facile one‐step approach by introducing cellulose nanofibrils (CNFs) into the PBA‐IL/acrylamide cross‐linked network. Ingeniously, the dynamic boronic ester bonds and physical interactions (hydrogen bonds and electrostatic interactions) of the cross‐linked network endow these hydrogels with remarkable stretchability (1810 ± 38%), toughness (2.65 ± 0.03 MJ m−3), self‐healing property (92 ± 2% efficiency), adhesiveness, and transparency. Moreover, the construction of this material shows that CNFs can synergistically enhance mechanical performance and conductivity. The wide working strain range (≈1000%) and high sensitivity (GF = 8.36) make this ICH a promising candidate for constructing the next generation of gel‐based strain sensor platforms.
A novel semi‐interpenetrating network polyacrylamide/phenylboronic acid‐ionic liquid/cellulose nanofibril hydrogel (PAM/PBA‐IL/CNF) is proposed based on a “tailor‐made” PBA‐IL with multiple roles. Benefiting from the ingenious structural design, the PAM/PBA‐IL/CNF simultaneously displays the excellent comprehensive merits: (i) a fine trade‐off between electrical and mechanical performance, (ii) high strain sensitivity, favorable adhesion, self‐healing property, transparency and water retention. |
---|---|
AbstractList | Ionic conductive hydrogels (ICHs) integrate the conductive performance and soft nature of tissue‐like materials to imitate the features of human skin with mechanical and sensory traits; thus, they are considered promising substitutes for conventional rigid metallic conductors when fabricating human‐motion sensors. However, the simultaneous incorporation of excellent stretchability, toughness, ionic conductivity, self‐healing, and adhesion via a simple method remains a grand challenge. Herein, a novel ICH platform is proposed by designing a phenylboronic acid‐ionic liquid (PBA‐IL) with multiple roles that simultaneously realize the highly mechanical, electrical, and versatile properties. This elaborately designed semi‐interpenetrating network ICH is fabricated via a facile one‐step approach by introducing cellulose nanofibrils (CNFs) into the PBA‐IL/acrylamide cross‐linked network. Ingeniously, the dynamic boronic ester bonds and physical interactions (hydrogen bonds and electrostatic interactions) of the cross‐linked network endow these hydrogels with remarkable stretchability (1810 ± 38%), toughness (2.65 ± 0.03 MJ m
−3
), self‐healing property (92 ± 2% efficiency), adhesiveness, and transparency. Moreover, the construction of this material shows that CNFs can synergistically enhance mechanical performance and conductivity. The wide working strain range (≈1000%) and high sensitivity (GF = 8.36) make this ICH a promising candidate for constructing the next generation of gel‐based strain sensor platforms. Ionic conductive hydrogels (ICHs) integrate the conductive performance and soft nature of tissue‐like materials to imitate the features of human skin with mechanical and sensory traits; thus, they are considered promising substitutes for conventional rigid metallic conductors when fabricating human‐motion sensors. However, the simultaneous incorporation of excellent stretchability, toughness, ionic conductivity, self‐healing, and adhesion via a simple method remains a grand challenge. Herein, a novel ICH platform is proposed by designing a phenylboronic acid‐ionic liquid (PBA‐IL) with multiple roles that simultaneously realize the highly mechanical, electrical, and versatile properties. This elaborately designed semi‐interpenetrating network ICH is fabricated via a facile one‐step approach by introducing cellulose nanofibrils (CNFs) into the PBA‐IL/acrylamide cross‐linked network. Ingeniously, the dynamic boronic ester bonds and physical interactions (hydrogen bonds and electrostatic interactions) of the cross‐linked network endow these hydrogels with remarkable stretchability (1810 ± 38%), toughness (2.65 ± 0.03 MJ m−3), self‐healing property (92 ± 2% efficiency), adhesiveness, and transparency. Moreover, the construction of this material shows that CNFs can synergistically enhance mechanical performance and conductivity. The wide working strain range (≈1000%) and high sensitivity (GF = 8.36) make this ICH a promising candidate for constructing the next generation of gel‐based strain sensor platforms. Ionic conductive hydrogels (ICHs) integrate the conductive performance and soft nature of tissue‐like materials to imitate the features of human skin with mechanical and sensory traits; thus, they are considered promising substitutes for conventional rigid metallic conductors when fabricating human‐motion sensors. However, the simultaneous incorporation of excellent stretchability, toughness, ionic conductivity, self‐healing, and adhesion via a simple method remains a grand challenge. Herein, a novel ICH platform is proposed by designing a phenylboronic acid‐ionic liquid (PBA‐IL) with multiple roles that simultaneously realize the highly mechanical, electrical, and versatile properties. This elaborately designed semi‐interpenetrating network ICH is fabricated via a facile one‐step approach by introducing cellulose nanofibrils (CNFs) into the PBA‐IL/acrylamide cross‐linked network. Ingeniously, the dynamic boronic ester bonds and physical interactions (hydrogen bonds and electrostatic interactions) of the cross‐linked network endow these hydrogels with remarkable stretchability (1810 ± 38%), toughness (2.65 ± 0.03 MJ m−3), self‐healing property (92 ± 2% efficiency), adhesiveness, and transparency. Moreover, the construction of this material shows that CNFs can synergistically enhance mechanical performance and conductivity. The wide working strain range (≈1000%) and high sensitivity (GF = 8.36) make this ICH a promising candidate for constructing the next generation of gel‐based strain sensor platforms. A novel semi‐interpenetrating network polyacrylamide/phenylboronic acid‐ionic liquid/cellulose nanofibril hydrogel (PAM/PBA‐IL/CNF) is proposed based on a “tailor‐made” PBA‐IL with multiple roles. Benefiting from the ingenious structural design, the PAM/PBA‐IL/CNF simultaneously displays the excellent comprehensive merits: (i) a fine trade‐off between electrical and mechanical performance, (ii) high strain sensitivity, favorable adhesion, self‐healing property, transparency and water retention. |
Author | Wei, Ning Han, Fei Zhang, Sufeng Nica, Valentin Yao, Xue Coseri, Sergiu Qian, Liwei |
Author_xml | – sequence: 1 givenname: Xue surname: Yao fullname: Yao, Xue organization: Shaanxi University of Science and Technology – sequence: 2 givenname: Sufeng orcidid: 0000-0001-7109-0355 surname: Zhang fullname: Zhang, Sufeng email: zhangsufeng@sust.edu.cn organization: Shaanxi University of Science and Technology – sequence: 3 givenname: Liwei surname: Qian fullname: Qian, Liwei email: qianliwei@mail.nwpu.edu.cn organization: Shaanxi University of Science and Technology – sequence: 4 givenname: Ning surname: Wei fullname: Wei, Ning organization: Shaanxi University of Science and Technology – sequence: 5 givenname: Valentin surname: Nica fullname: Nica, Valentin organization: Shaanxi University of Science and Technology – sequence: 6 givenname: Sergiu surname: Coseri fullname: Coseri, Sergiu organization: “Petru Poni” Institute of Macromolecular Chemistry of Romanian Academy – sequence: 7 givenname: Fei surname: Han fullname: Han, Fei organization: Xi'an Jiaotong University |
BookMark | eNqFkMtqGzEUhkVxoLl027Wg29jRZWY0s3TdJA7YJGAXuhs00pEtM5ZsaabFuzxCnjFP0hmcOlAoXZ3rd37Of4EGzjtA6DMlI0oIu5HabEeMMEaSNEs_oHOa0WzICcsHp5z--IguYtwQQoXgyTl6WbQ7CHjRBGjUWlY1XOMF1Ob1-WUKsrZudY3Heg3R_gT84J1VeOKdblXTN6YHHfwK6oi_yggae4eX0tY-dPhc6j_EzO5bq7HxAU_tat0NnyB01VY6Bb22tK5TddGHeIXOjKwjfHqLl-j73e1yMh3OHu8fJuPZUPGcp0PJwFBFuCpExXiRmDzNIVXaZExWqhKiyoFqnUH3qTFCZ0oUaVZJTguhdCr5JfpyvLsLft9CbMqNb4PrJEsmCON5QnPebY2OWyr4GAOYchfsVoZDSUnZu172rpcn1zsg-QtQtpGN9a7_sv43VhyxX7aGw39EyvG3u_k7-xsI_J5c |
CitedBy_id | crossref_primary_10_1016_j_eurpolymj_2023_112342 crossref_primary_10_1021_acs_chemmater_3c02454 crossref_primary_10_1016_j_carbpol_2025_123253 crossref_primary_10_1016_j_cej_2023_145944 crossref_primary_10_1021_acs_nanolett_5c00664 crossref_primary_10_1021_acs_chemmater_2c03330 crossref_primary_10_1021_acs_biomac_3c00149 crossref_primary_10_1126_sciadv_adi8505 crossref_primary_10_3389_fbioe_2023_1117944 crossref_primary_10_1021_acsapm_3c02433 crossref_primary_10_1021_acsapm_2c01494 crossref_primary_10_1002_EXP_70008 crossref_primary_10_1016_j_cej_2024_157418 crossref_primary_10_1016_j_cej_2025_159437 crossref_primary_10_3390_nano14171398 crossref_primary_10_1016_j_seppur_2024_127178 crossref_primary_10_1002_adfm_202410127 crossref_primary_10_1016_j_ijbiomac_2024_129865 crossref_primary_10_1016_j_cej_2023_142543 crossref_primary_10_1016_j_polymer_2023_125844 crossref_primary_10_1039_D4TC02804J crossref_primary_10_1002_adma_202418108 crossref_primary_10_1016_j_adna_2024_05_001 crossref_primary_10_1016_j_cej_2024_156791 crossref_primary_10_1021_acssuschemeng_4c02961 crossref_primary_10_1002_marc_202300457 crossref_primary_10_1016_j_cej_2025_161524 crossref_primary_10_1039_D3TA01627G crossref_primary_10_1039_D3MH01696J crossref_primary_10_1002_adfm_202401311 crossref_primary_10_1039_D3TA06771H crossref_primary_10_1016_j_cej_2022_141082 crossref_primary_10_3390_gels11040235 crossref_primary_10_1016_j_carbpol_2022_120243 crossref_primary_10_1039_D3TA02948D crossref_primary_10_1016_j_ijbiomac_2024_137123 crossref_primary_10_1016_j_cej_2025_159539 crossref_primary_10_1016_j_ijbiomac_2024_138567 crossref_primary_10_1021_acsami_4c08123 crossref_primary_10_1021_acsapm_3c01567 crossref_primary_10_1002_advs_202301116 crossref_primary_10_1016_j_ijbiomac_2023_126550 crossref_primary_10_1007_s40820_022_00980_9 crossref_primary_10_1557_s43578_023_01240_1 crossref_primary_10_20517_ss_2024_38 crossref_primary_10_1016_j_ijbiomac_2024_131129 crossref_primary_10_1016_j_mtsust_2025_101088 crossref_primary_10_1049_mna2_12204 crossref_primary_10_1002_pol_20220510 crossref_primary_10_1016_j_cej_2024_153382 crossref_primary_10_1016_j_nxmate_2024_100436 crossref_primary_10_1016_j_xcrp_2024_102107 crossref_primary_10_1016_j_cej_2024_153142 crossref_primary_10_1016_j_cej_2022_140328 crossref_primary_10_1021_acsnano_3c11578 crossref_primary_10_1002_adfm_202411588 crossref_primary_10_1021_acsami_2c13223 crossref_primary_10_1021_acsami_3c12082 crossref_primary_10_1016_j_ijbiomac_2023_125471 crossref_primary_10_1016_j_nanoen_2024_109974 crossref_primary_10_1016_j_ijbiomac_2023_125353 crossref_primary_10_1016_j_ijbiomac_2023_125595 crossref_primary_10_1039_D3NR05488H crossref_primary_10_1002_adma_202416916 crossref_primary_10_1016_j_apmt_2025_102682 crossref_primary_10_1007_s42114_024_00841_6 crossref_primary_10_1002_SMMD_20230023 crossref_primary_10_1021_acs_macromol_4c01684 crossref_primary_10_1016_j_ijbiomac_2024_129718 crossref_primary_10_1002_adma_202300447 crossref_primary_10_1016_j_cej_2023_147888 crossref_primary_10_1021_acsaelm_4c00291 crossref_primary_10_1039_D3NR05049A crossref_primary_10_1016_j_ijbiomac_2024_131115 crossref_primary_10_1021_acs_macromol_3c02328 crossref_primary_10_1039_D4NJ01387E crossref_primary_10_1002_SMMD_20230024 crossref_primary_10_1016_j_carbpol_2023_121310 crossref_primary_10_1021_acs_chemmater_2c03536 crossref_primary_10_1016_j_cej_2022_138253 crossref_primary_10_1016_j_cej_2024_153254 crossref_primary_10_1016_j_ijbiomac_2024_135165 crossref_primary_10_1016_j_cej_2024_153136 crossref_primary_10_1039_D2TC03877C crossref_primary_10_1016_j_cej_2025_159636 crossref_primary_10_1016_j_ijbiomac_2025_140348 crossref_primary_10_1021_acsami_4c08984 crossref_primary_10_1016_j_jcis_2024_04_209 crossref_primary_10_1016_j_nanoen_2022_108079 crossref_primary_10_1002_smll_202411046 crossref_primary_10_1021_acsami_3c05943 crossref_primary_10_1021_acsami_4c20994 crossref_primary_10_1016_j_ijbiomac_2024_135947 crossref_primary_10_1016_j_nanoen_2024_109790 crossref_primary_10_1016_j_cej_2024_156192 crossref_primary_10_1002_advs_202301713 crossref_primary_10_1002_anie_202410335 crossref_primary_10_1016_j_ijbiomac_2023_125801 crossref_primary_10_1002_adfm_202401607 crossref_primary_10_1021_acs_nanolett_4c03896 crossref_primary_10_1021_acsami_3c09065 crossref_primary_10_1016_j_cej_2022_140467 crossref_primary_10_1021_acssuschemeng_3c04594 crossref_primary_10_1016_j_cej_2025_160750 crossref_primary_10_1002_admt_202300710 crossref_primary_10_1039_D3TC03651K crossref_primary_10_1016_j_cej_2024_150998 crossref_primary_10_1016_j_compositesa_2023_107756 crossref_primary_10_1002_admt_202301123 crossref_primary_10_1016_j_jcis_2023_10_127 crossref_primary_10_1039_D3MH02074F crossref_primary_10_1016_j_cej_2024_158243 crossref_primary_10_1016_j_cej_2024_151163 crossref_primary_10_1016_j_microc_2024_112304 crossref_primary_10_1039_D3TC00949A crossref_primary_10_1002_adfm_202308974 crossref_primary_10_1039_D3MH00612C crossref_primary_10_1016_j_cej_2023_147065 crossref_primary_10_1016_j_cej_2023_147063 crossref_primary_10_1016_j_seppur_2024_130082 crossref_primary_10_1002_advs_202405828 crossref_primary_10_3389_fbioe_2023_1222723 crossref_primary_10_1016_j_cej_2025_160283 crossref_primary_10_1016_j_biortech_2024_131204 crossref_primary_10_3390_gels9030257 crossref_primary_10_1016_j_eurpolymj_2024_113620 crossref_primary_10_1016_j_compositesb_2024_111345 crossref_primary_10_1016_j_ijbiomac_2024_139297 crossref_primary_10_1002_adfm_202213895 crossref_primary_10_1002_adfm_202306793 crossref_primary_10_1021_acsami_3c07540 crossref_primary_10_1016_j_giant_2024_100237 crossref_primary_10_1016_j_ijbiomac_2024_136100 crossref_primary_10_1002_adma_202310020 crossref_primary_10_1002_smll_202402472 crossref_primary_10_1002_ange_202410335 crossref_primary_10_1002_adma_202416345 crossref_primary_10_1002_adfm_202311457 crossref_primary_10_1016_j_cej_2024_153107 crossref_primary_10_3390_nano13172465 crossref_primary_10_1016_j_carbpol_2024_122286 crossref_primary_10_1016_j_eurpolymj_2024_113314 crossref_primary_10_1080_09205063_2024_2434300 crossref_primary_10_1016_j_jcis_2024_11_032 crossref_primary_10_1021_acssuschemeng_2c07727 crossref_primary_10_1007_s10965_024_04132_y crossref_primary_10_1002_adfm_202301404 crossref_primary_10_1021_acssuschemeng_3c01838 crossref_primary_10_1016_j_cej_2024_155195 crossref_primary_10_1007_s40820_024_01432_2 crossref_primary_10_1007_s42765_024_00418_4 crossref_primary_10_1007_s11705_023_2316_x crossref_primary_10_1007_s42114_024_01165_1 crossref_primary_10_1016_j_cej_2025_159838 crossref_primary_10_1002_adfm_202415530 crossref_primary_10_1016_j_seppur_2024_130187 crossref_primary_10_1021_acsami_3c18818 crossref_primary_10_1016_j_carbpol_2024_122608 crossref_primary_10_1016_j_ijbiomac_2023_129083 crossref_primary_10_1039_D4TC00775A crossref_primary_10_1016_j_cej_2024_156608 crossref_primary_10_1016_j_mtcomm_2024_109542 crossref_primary_10_1021_acsapm_3c00771 crossref_primary_10_1063_5_0218251 crossref_primary_10_1039_D3SU00139C crossref_primary_10_1039_D4TC04899G crossref_primary_10_1002_admt_202400355 crossref_primary_10_1007_s40843_023_2611_4 crossref_primary_10_1557_s43577_024_00735_4 crossref_primary_10_1016_j_cej_2023_142939 crossref_primary_10_1016_j_pmatsci_2023_101156 crossref_primary_10_3390_molecules28124690 crossref_primary_10_1002_aelm_202300436 crossref_primary_10_1016_j_actbio_2023_05_045 crossref_primary_10_1007_s42765_024_00390_z crossref_primary_10_1016_j_cej_2023_146188 crossref_primary_10_1039_D2TC04411K crossref_primary_10_1002_adma_202306350 crossref_primary_10_1021_acsami_3c18247 crossref_primary_10_1002_adfm_202417180 crossref_primary_10_1016_j_carbpol_2023_121572 crossref_primary_10_1002_smll_202208116 crossref_primary_10_1039_D3RA05120J crossref_primary_10_1002_batt_202400245 crossref_primary_10_1002_advs_202412726 crossref_primary_10_1016_j_cej_2024_156387 crossref_primary_10_1039_D4QM00931B crossref_primary_10_1016_j_jcis_2023_12_016 crossref_primary_10_1002_adfm_202215193 crossref_primary_10_1016_j_cej_2024_149282 crossref_primary_10_1002_adfm_202408351 crossref_primary_10_1039_D2TA05781F crossref_primary_10_1039_D3TA06779C crossref_primary_10_1007_s11426_024_2297_0 crossref_primary_10_1039_D3TA02584E crossref_primary_10_1002_adma_202308424 crossref_primary_10_1021_acsapm_4c02143 crossref_primary_10_1021_acsapm_3c01281 crossref_primary_10_1016_j_cej_2024_151917 crossref_primary_10_1002_adfm_202402115 crossref_primary_10_1016_j_cej_2023_146840 crossref_primary_10_1039_D3TC02359A crossref_primary_10_1360_SSC_2023_0010 crossref_primary_10_1016_j_eurpolymj_2023_111984 crossref_primary_10_1002_adhm_202400562 crossref_primary_10_1002_smll_202401622 crossref_primary_10_1016_j_carbpol_2023_121106 crossref_primary_10_1002_adfm_202210188 crossref_primary_10_1016_j_susmat_2025_e01237 crossref_primary_10_1016_j_cej_2024_156137 crossref_primary_10_1016_j_carbpol_2024_122858 crossref_primary_10_1021_acsapm_4c03345 crossref_primary_10_1007_s40843_022_2411_9 crossref_primary_10_1016_j_jcis_2023_09_051 crossref_primary_10_1016_j_sna_2024_115981 crossref_primary_10_1016_j_aej_2023_06_058 crossref_primary_10_1016_j_reactfunctpolym_2024_105901 crossref_primary_10_1016_j_cej_2023_141393 crossref_primary_10_1002_admt_202301628 crossref_primary_10_1016_j_carbpol_2024_123056 crossref_primary_10_1021_acssensors_4c01567 crossref_primary_10_1002_adfm_202212856 crossref_primary_10_1007_s40820_023_01225_z crossref_primary_10_1016_j_cej_2022_139982 crossref_primary_10_1039_D4TC04150J crossref_primary_10_1016_j_ijbiomac_2025_139764 crossref_primary_10_1016_j_microc_2024_110064 crossref_primary_10_1039_D3MH00739A crossref_primary_10_1021_acs_chemmater_4c00846 crossref_primary_10_1016_j_ceramint_2023_07_024 crossref_primary_10_1021_acsami_2c16866 crossref_primary_10_1016_j_cej_2023_148324 crossref_primary_10_1016_j_carbpol_2025_123220 crossref_primary_10_1016_j_ijbiomac_2024_133802 crossref_primary_10_1016_j_eurpolymj_2024_113122 crossref_primary_10_1002_adma_202405511 crossref_primary_10_1016_j_ijbiomac_2023_126857 crossref_primary_10_1002_advs_202404451 crossref_primary_10_1016_j_carbpol_2024_121784 crossref_primary_10_1039_D3QM00076A crossref_primary_10_1016_j_ijbiomac_2024_137299 crossref_primary_10_3390_polym17040542 crossref_primary_10_1016_j_cej_2024_154176 crossref_primary_10_1016_j_ijbiomac_2024_137841 crossref_primary_10_1016_j_giant_2023_100234 crossref_primary_10_1016_j_nxmate_2023_100049 crossref_primary_10_1039_D3SM00581J crossref_primary_10_1002_sus2_249 crossref_primary_10_1002_adma_202413901 crossref_primary_10_1016_j_compositesa_2023_107478 crossref_primary_10_1016_j_cej_2023_143660 crossref_primary_10_1002_aenm_202402130 crossref_primary_10_1039_D4TA05288A crossref_primary_10_1002_smll_202403955 crossref_primary_10_1016_j_ijbiomac_2023_125415 crossref_primary_10_1016_j_nanoen_2024_109260 crossref_primary_10_1016_j_cej_2023_146816 crossref_primary_10_1016_j_ijbiomac_2023_125417 crossref_primary_10_1016_j_carbpol_2024_122788 crossref_primary_10_1016_j_bioelechem_2024_108882 crossref_primary_10_1016_j_carbpol_2023_120600 crossref_primary_10_1016_j_cej_2024_150472 crossref_primary_10_1016_j_jcis_2024_06_192 crossref_primary_10_1002_marc_202401078 crossref_primary_10_1039_D3QM00109A crossref_primary_10_1002_jbm_a_37840 crossref_primary_10_1016_j_carbpol_2024_123189 crossref_primary_10_1016_j_cej_2023_148305 crossref_primary_10_1021_acsaenm_3c00078 crossref_primary_10_1038_s41467_024_47029_6 crossref_primary_10_1016_j_carbpol_2023_121262 crossref_primary_10_1016_j_carbpol_2023_121385 crossref_primary_10_1021_acsmaterialslett_4c00809 crossref_primary_10_1021_acsami_3c19473 crossref_primary_10_1002_eem2_12794 crossref_primary_10_1016_j_cej_2024_151691 crossref_primary_10_1002_adfm_202306820 crossref_primary_10_1021_acsnano_4c01179 crossref_primary_10_1002_adfm_202419308 crossref_primary_10_1021_acsapm_3c02742 crossref_primary_10_1021_acsnano_4c00085 crossref_primary_10_1007_s40820_023_01311_2 crossref_primary_10_1021_acs_biomac_4c01538 crossref_primary_10_1039_D3MH00813D crossref_primary_10_1038_s41428_024_00957_y crossref_primary_10_1002_adfm_202415507 crossref_primary_10_1016_j_snb_2024_136346 |
Cites_doi | 10.1039/D0TC05242F 10.1002/adma.202100047 10.1021/acsnano.1c08193 10.1002/adfm.202105264 10.1039/C8EE02892C 10.1039/D0TA07390C 10.1021/acsnano.1c03830 10.1002/mame.201900227 10.1021/acs.chemmater.9b04041 10.1002/aelm.201900668 10.1002/advs.202105742 10.1002/adfm.202104686 10.1016/j.carbpol.2021.118082 10.1021/acsami.0c10495 10.1016/j.nanoen.2020.105064 10.1002/adfm.201806220 10.1021/acs.chemrev.1c00071 10.1039/D0MH00100G 10.1039/D0TB02929G 10.1039/D0TA09735G 10.1021/acs.chemmater.0c02919 10.1002/anie.201915836 10.1002/aelm.202000239 10.1002/adma.201904732 10.1002/adma.202105306 10.1002/adfm.202003430 10.1016/j.cej.2021.132957 10.1002/adfm.201802576 10.1016/j.cej.2021.129865 10.1016/j.cej.2019.123912 10.1016/j.cej.2020.127306 10.1021/acs.macromol.0c02060 10.1016/j.cej.2020.125547 10.1038/s41467-019-11364-w 10.1039/C8TA12360H 10.1002/smll.202104702 10.1021/acs.biomac.0c01777 10.1021/acsami.0c16719 10.1016/j.cej.2019.122832 10.1021/acsami.0c18250 10.1021/acsami.9b18646 10.1021/acsami.0c18161 10.1039/D0MH01029D 10.1021/acs.chemmater.0c03526 10.1002/adhm.202002083 10.1002/adma.201606425 10.1021/acsami.0c21598 10.1126/sciadv.aax0648 10.1021/acs.biomac.9b01128 10.1016/j.cej.2021.132919 10.1002/aelm.201900285 10.1002/adma.202107309 10.1021/acsami.0c21121 10.1039/C9MH01688K 10.1002/advs.202004377 10.1039/D1MH00998B 10.1039/D0TA02902E 10.1039/D1TA05262D 10.1021/acsami.0c06091 10.1021/acsami.9b08369 10.1126/sciadv.abl5066 10.1002/adfm.201804416 10.1038/s41467-018-03456-w 10.1002/adhm.202101089 10.1039/C9TA10502F 10.1002/adma.202201065 |
ContentType | Journal Article |
Copyright | 2022 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2022 Wiley‐VCH GmbH |
DBID | AAYXX CITATION 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1002/adfm.202204565 |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | CrossRef Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1616-3028 |
EndPage | n/a |
ExternalDocumentID | 10_1002_adfm_202204565 ADFM202204565 |
Genre | article |
GrantInformation_xml | – fundername: China‐CEEC University Joint Education Project funderid: 2021099 – fundername: International Joint Research Center for biomass chemistry and materials, Shaanxi international science and technology cooperation base funderid: 2018GHJD‐19 – fundername: Shaanxi Key industry innovation chain projects funderid: 2020ZDLGY11‐0 – fundername: Key Research and Development Project of Shaanxi funderid: 2021GY‐240 – fundername: National Nature Science Foundation of China funderid: 21805177; 52103147 – fundername: Science and Technology Plan of Weiyang District of Xi'an funderid: 201910 |
GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OC 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WFSAM WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ~IA ~WT .Y3 31~ AANHP AASGY AAYXX ACBWZ ACRPL ACYXJ ADMLS ADNMO AEYWJ AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION EJD FEDTE HF~ HVGLF LW6 7SP 7SR 7U5 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 L7M |
ID | FETCH-LOGICAL-c3835-a2ef1c03c97b2394f858e5cdf62abcb77b8e1dd6e001ff7d6c7956ba3197cd5a3 |
IEDL.DBID | DR2 |
ISSN | 1616-301X |
IngestDate | Fri Jul 25 06:41:59 EDT 2025 Thu Apr 24 22:59:15 EDT 2025 Tue Jul 01 00:30:30 EDT 2025 Wed Jan 22 16:24:47 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 33 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3835-a2ef1c03c97b2394f858e5cdf62abcb77b8e1dd6e001ff7d6c7956ba3197cd5a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-7109-0355 |
PQID | 2702384183 |
PQPubID | 2045204 |
PageCount | 14 |
ParticipantIDs | proquest_journals_2702384183 crossref_primary_10_1002_adfm_202204565 crossref_citationtrail_10_1002_adfm_202204565 wiley_primary_10_1002_adfm_202204565_ADFM202204565 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-08-01 |
PublicationDateYYYYMMDD | 2022-08-01 |
PublicationDate_xml | – month: 08 year: 2022 text: 2022-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | Advanced functional materials |
PublicationYear | 2022 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2022; 430 2021; 9 2021; 8 2019; 7 2021; 408 2018; 28 2019; 6 2021; 22 2019; 5 2019; 31 2021; 420 2020; 382 2020; 385 2019; 11 2019; 10 2019; 12 2020; 59 2017; 29 2020; 12 2021; 265 2019; 304 2021; 121 2020; 32 2020; 76 2020; 8 2021; 13 2020; 7 2018; 9 2020; 6 2021; 15 2021; 10 2021; 31 2021; 34 2021; 33 2020; 53 2020; 30 2022 2021; 17 2022; 8 2022; 34 2019; 29 2020; 398 2020; 21 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_3_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_66_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_64_1 e_1_2_8_62_1 e_1_2_8_1_1 e_1_2_8_41_1 e_1_2_8_60_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_51_1 e_1_2_8_30_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_48_1 e_1_2_8_2_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_65_1 e_1_2_8_63_1 e_1_2_8_40_1 e_1_2_8_61_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_58_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_56_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_54_1 e_1_2_8_52_1 e_1_2_8_50_1 |
References_xml | – volume: 265 year: 2021 publication-title: Carbohydr. Polym. – volume: 6 year: 2019 publication-title: Adv. Electron. Mater. – volume: 34 year: 2021 publication-title: Adv. Mater. – volume: 9 start-page: 2561 year: 2021 publication-title: J. Mater. Chem. B – volume: 9 start-page: 3635 year: 2021 publication-title: J. Mater. Chem. C – volume: 13 year: 2021 publication-title: ACS Appl. Mater. Interfaces – volume: 13 start-page: 1353 year: 2021 publication-title: ACS Appl. Mater. Interfaces – volume: 10 year: 2021 publication-title: Adv. Healthcare Mater – volume: 31 start-page: 9850 year: 2019 publication-title: Chem. Mater. – volume: 12 year: 2020 publication-title: ACS Appl. Mater. Interfaces – volume: 8 year: 2022 publication-title: Sci. Adv. – volume: 22 start-page: 1273 year: 2021 publication-title: Biomacromolecules – volume: 398 year: 2020 publication-title: Chem. Eng. J. – volume: 382 year: 2020 publication-title: Chem. Eng. J. – volume: 12 start-page: 1558 year: 2020 publication-title: ACS Appl. Mater. Interfaces – volume: 34 year: 2022 publication-title: Adv. Mater. – volume: 304 year: 2019 publication-title: Macromol. Mater. Eng. – volume: 8 start-page: 351 year: 2020 publication-title: Mater. Horiz. – volume: 8 start-page: 2761 year: 2021 publication-title: Mater. Horiz. – volume: 6 year: 2020 publication-title: Adv. Electron. Mater. – volume: 33 year: 2021 publication-title: Adv. Mater. – volume: 30 year: 2020 publication-title: Adv. Funct. Mater. – volume: 29 year: 2019 publication-title: Adv. Funct. Mater. – volume: 10 year: 2021 publication-title: Adv. Healthcare Mater. – volume: 5 year: 2019 publication-title: Adv. Electron. Mater. – volume: 121 year: 2021 publication-title: Chem. Rev. – volume: 28 year: 2018 publication-title: Adv. Funct. Mater. – volume: 21 start-page: 230 year: 2020 publication-title: Biomacromolecules – year: 2022 publication-title: Adv. Sci. – volume: 9 year: 2021 publication-title: J. Mater. Chem. A – volume: 32 start-page: 8938 year: 2020 publication-title: Chem. Mater. – volume: 8 year: 2021 publication-title: Adv. Sci. – volume: 76 year: 2020 publication-title: Nano Energy – volume: 13 start-page: 5614 year: 2021 publication-title: ACS Appl. Mater. Interfaces – volume: 7 year: 2019 publication-title: J. Mater. Chem. A – volume: 29 year: 2017 publication-title: Adv. Mater. – volume: 408 year: 2021 publication-title: Chem. Eng. J. – volume: 12 start-page: 706 year: 2019 publication-title: Energy Environ. Sci. – volume: 10 start-page: 3429 year: 2019 publication-title: Nat. Commun. – volume: 15 year: 2021 publication-title: ACS Nano – volume: 13 start-page: 5486 year: 2021 publication-title: ACS Appl. Mater. Interfaces – volume: 17 year: 2021 publication-title: Small – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 59 start-page: 4793 year: 2020 publication-title: Angew. Chem., Int. Ed. – volume: 31 year: 2021 publication-title: Adv. Mater. – volume: 11 year: 2019 publication-title: ACS Appl. Mater. Interfaces – volume: 7 start-page: 4525 year: 2019 publication-title: J. Mater. Chem. A – volume: 9 start-page: 1134 year: 2018 publication-title: Nat. Commun. – volume: 430 year: 2022 publication-title: Chem. Eng. J. – volume: 31 year: 2021 publication-title: Adv. Funct. Mater. – volume: 385 year: 2020 publication-title: Chem. Eng. J. – volume: 7 start-page: 2085 year: 2020 publication-title: Mater. Horiz. – volume: 5 year: 2019 publication-title: Sci. Adv. – volume: 53 year: 2020 publication-title: Macromolecules – volume: 7 start-page: 919 year: 2020 publication-title: Mater. Horiz. – volume: 420 year: 2021 publication-title: Chem. Eng. J. – volume: 32 year: 2020 publication-title: Chem. Mater. – volume: 8 year: 2020 publication-title: J. Mater. Chem. A – ident: e_1_2_8_24_1 doi: 10.1039/D0TC05242F – ident: e_1_2_8_8_1 doi: 10.1002/adma.202100047 – ident: e_1_2_8_17_1 doi: 10.1021/acsnano.1c08193 – ident: e_1_2_8_4_1 doi: 10.1002/adfm.202105264 – ident: e_1_2_8_53_1 doi: 10.1039/C8EE02892C – ident: e_1_2_8_2_1 doi: 10.1039/D0TA07390C – ident: e_1_2_8_18_1 doi: 10.1021/acsnano.1c03830 – ident: e_1_2_8_62_1 doi: 10.1002/mame.201900227 – ident: e_1_2_8_54_1 doi: 10.1021/acs.chemmater.9b04041 – ident: e_1_2_8_44_1 doi: 10.1002/aelm.201900668 – ident: e_1_2_8_46_1 doi: 10.1002/advs.202105742 – ident: e_1_2_8_13_1 doi: 10.1002/adfm.202104686 – ident: e_1_2_8_34_1 doi: 10.1016/j.carbpol.2021.118082 – ident: e_1_2_8_58_1 doi: 10.1021/acsami.0c10495 – ident: e_1_2_8_64_1 doi: 10.1016/j.nanoen.2020.105064 – ident: e_1_2_8_27_1 doi: 10.1002/adfm.201806220 – ident: e_1_2_8_32_1 doi: 10.1021/acs.chemrev.1c00071 – ident: e_1_2_8_61_1 doi: 10.1039/D0MH00100G – ident: e_1_2_8_19_1 doi: 10.1039/D0TB02929G – ident: e_1_2_8_45_1 doi: 10.1039/D0TA09735G – ident: e_1_2_8_56_1 doi: 10.1021/acs.chemmater.0c02919 – ident: e_1_2_8_50_1 doi: 10.1002/anie.201915836 – ident: e_1_2_8_15_1 doi: 10.1002/aelm.202000239 – ident: e_1_2_8_29_1 doi: 10.1002/adma.201904732 – ident: e_1_2_8_66_1 doi: 10.1002/adma.202105306 – ident: e_1_2_8_28_1 doi: 10.1002/adfm.202003430 – ident: e_1_2_8_5_1 doi: 10.1016/j.cej.2021.132957 – ident: e_1_2_8_43_1 doi: 10.1002/adfm.201802576 – ident: e_1_2_8_51_1 doi: 10.1016/j.cej.2021.129865 – ident: e_1_2_8_23_1 doi: 10.1016/j.cej.2019.123912 – ident: e_1_2_8_25_1 doi: 10.1016/j.cej.2020.127306 – ident: e_1_2_8_22_1 doi: 10.1021/acs.macromol.0c02060 – ident: e_1_2_8_9_1 doi: 10.1016/j.cej.2020.125547 – ident: e_1_2_8_37_1 doi: 10.1038/s41467-019-11364-w – ident: e_1_2_8_42_1 doi: 10.1039/C8TA12360H – ident: e_1_2_8_26_1 doi: 10.1002/smll.202104702 – ident: e_1_2_8_10_1 doi: 10.1021/acs.biomac.0c01777 – ident: e_1_2_8_16_1 doi: 10.1021/acsami.0c16719 – ident: e_1_2_8_57_1 doi: 10.1016/j.cej.2019.122832 – ident: e_1_2_8_47_1 doi: 10.1021/acsami.0c18250 – ident: e_1_2_8_60_1 doi: 10.1021/acsami.9b18646 – ident: e_1_2_8_7_1 doi: 10.1021/acsami.0c18161 – ident: e_1_2_8_48_1 doi: 10.1039/D0MH01029D – ident: e_1_2_8_33_1 doi: 10.1021/acs.chemmater.0c03526 – ident: e_1_2_8_36_1 doi: 10.1002/adhm.202002083 – ident: e_1_2_8_11_1 doi: 10.1002/adma.201606425 – ident: e_1_2_8_63_1 doi: 10.1021/acsami.0c21598 – ident: e_1_2_8_41_1 doi: 10.1126/sciadv.aax0648 – ident: e_1_2_8_31_1 doi: 10.1021/acs.biomac.9b01128 – ident: e_1_2_8_55_1 doi: 10.1016/j.cej.2021.132919 – ident: e_1_2_8_59_1 doi: 10.1002/aelm.201900285 – ident: e_1_2_8_14_1 doi: 10.1002/adma.202107309 – ident: e_1_2_8_38_1 doi: 10.1021/acsami.0c21121 – ident: e_1_2_8_40_1 doi: 10.1039/C9MH01688K – ident: e_1_2_8_1_1 doi: 10.1002/advs.202004377 – ident: e_1_2_8_6_1 doi: 10.1039/D1MH00998B – ident: e_1_2_8_20_1 doi: 10.1039/D0TA02902E – ident: e_1_2_8_21_1 doi: 10.1039/D1TA05262D – ident: e_1_2_8_12_1 doi: 10.1021/acsami.0c06091 – ident: e_1_2_8_30_1 doi: 10.1021/acsami.9b08369 – ident: e_1_2_8_52_1 doi: 10.1126/sciadv.abl5066 – ident: e_1_2_8_39_1 doi: 10.1002/adfm.201804416 – ident: e_1_2_8_3_1 doi: 10.1038/s41467-018-03456-w – ident: e_1_2_8_65_1 doi: 10.1002/adhm.202101089 – ident: e_1_2_8_35_1 doi: 10.1039/C9TA10502F – ident: e_1_2_8_49_1 doi: 10.1002/adma.202201065 |
SSID | ssj0017734 |
Score | 2.72241 |
Snippet | Ionic conductive hydrogels (ICHs) integrate the conductive performance and soft nature of tissue‐like materials to imitate the features of human skin with... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Acrylamide cellulose nanofibrils conductive hydrogels Conductors Healing Human motion Hydrogels Hydrogen bonds Interpenetrating networks Ion currents Ionic liquids Ions Materials science Mechanical properties Motion sensors multifunctional sensors self‐adhesion self‐healing Sensors Strain Stretchability Toughness |
Title | Super Stretchable, Self‐Healing, Adhesive Ionic Conductive Hydrogels Based on Tailor‐Made Ionic Liquid for High‐Performance Strain Sensors |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202204565 https://www.proquest.com/docview/2702384183 |
Volume | 32 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8JAEN4YT3rwbUTR7MHEC0X63HJElKARYxQTbs2-qkTSYoGDnvwJ_EZ_iTMtLWhiTPTWx87udh8z33ZnviXkGCCw0K5QBq87juH4Tt3whagbph0ywK81IVLGm86N135wrnpubyGKP-OHKH644cxI9TVOcC5Gp3PSUK5CjCS3rBSUgBJGhy1ERXcFf5TJWLat7Jno4GX2ctbGmnX6VfyrVZpDzUXAmlqc1jrheV0zR5Pn6mQsqvLtG43jfz5mg6zN4ChtZONnkyzpaIusLpAUbpPp_WSoE4rb19DDGGlVofd6EH68TzGGCdJUaEM9afSDp5fItEubcYQ0svig_aqS-BEMMD0De6loHNEu7w_iBMQ7XOUS1_2XSV9RQNAUPU_g5e08ogHL5v0ISo1GcTLaIQ-ti26zbczOcTAkrH9dg1s6NGXNlnUm8CT20Hd97UoVehYXUjAmfG0q5WnosTBkypMMVm2Cg3ZgUrnc3iXLURzpPUJB_3jKUbbLAMgBugBwJT0bMIalIR9blIiR92MgZyTnWMVBkNEzWwG2dFC0dImcFOmHGb3HjynL-bAIZtN8FGAwn-07oBZLxEr795dcgsZ5q1Pc7f9F6ICs4HXmhFgmy-Nkog8BGI3FUTr4PwFuHQf6 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LbxMxEB6VcgAOvBGBAj6AuHTbrPfhzYFDaIgSmlSIplJuW78WIqLdskmEyomf0L_CX-En8EuY2VdaJISE1APH9folezz-xp75DPAcIbCygTKO7Pi-40d-x4mU6jiulwjEr22lCsab8UE4OPLfToPpBnyvY2FKfojmwI1WRqGvaYHTgfTumjVUmoRCyTkvUEnlV7lvT7-g1bZ4NezhFL_gvP9msjdwqocFHI0GWeBIbhNXtz3dEYqeBk-iILKBNknIpdJKCBVZ15jQog5PEmFCLdCMUBLFVWgTSA_rvQJX6RlxouvvvW8Yq1whyovs0CWXMnda80S2-e7F_l7cB9fg9jxELva4_i34UY9O6dryaWe1VDv662_Ekf_V8N2GmxXiZt1yidyBDZvehRvneBjvwdnh6sTmjG7oUYgpmGybHdp58vPbGYVpYZ5t1jUfLbn6syGRCbO9LCWmXEoYnJo8-4AYg71GSGBYlrKJnM2zHIuPpalLjGafVzPD0Ehg5FyDP9-tgzaobTlLsdV0keWL-3B0KUPyADbTLLUPgaGKDY1vvEAgVkUAhfhRhx7CKG6xHk-1wKkFJ9YVjzt1cR6XDNQ8ppmNm5ltwcsm_0nJYPLHnFu1HMaVJlvEFK_oRT5q_hbwQqD-Ukvc7fXHzdejfyn0DK4NJuNRPBoe7D-G65Re-lxuweYyX9kniAOX6mmx8hgcX7as_gK042gu |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtNAEB6VVkL0UP5FSoE9gLjUbbz-WfvAITSNEtpUFW2l3Iz3xzQisoOTCJUTj9BH4VV4BZ6EGf-lRUJISD1w9Hp3vdqdmf3GO_MtwEuEwNJ4Ultx6LqWG7ihFUgZWraTCMSvbSkLxpvhkd8_c9-NvNEKfK9zYUp-iOaHG2lGYa9Jwac62V2ShsY6oUxyzgtQUoVVHpiLL-i0zd4MurjCrzjv7Z_u9a3qXgFLoT_mWTE3ia3ajgqFpJvBk8ALjKd04vNYKimEDIyttW_QhCeJ0L4S6EXIGKVVKO3FDvZ7C9Zcvx3SZRHd9w1hlS1EeY7t2xRRZo9qmsg2370-3uvb4BLbXkXIxRbXuws_6skpI1s-7Szmckd9_Y038n-avXuwUeFt1ikV5D6smPQBrF9hYXwIlyeLqckZnc-jCFMq2TY7MZPk57dLStLCOtuso88NBfqzAVEJs70sJZ5cKuhf6Dz7iAiDvUVAoFmWstN4PMlybD6Mdd3icPx5MdYMXQRGoTX48niZskHfjscpfjWdZfnsEZzdyJQ8htU0S80TYGhgfe1qxxOIVBE-IXpUvoMgihvsx5EtsGq5iVTF4k5DnEQl_zSPaGWjZmVb8LqpPy35S_5Yc6sWw6iyY7OIshWdwEW73wJeyNNfeok63d6wedr8l0Yv4PZxtxcdDo4OnsIdKi4DLrdgdZ4vzDMEgXP5vNA7Bh9uWlR_AQOSZt0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Super+Stretchable%2C+Self%E2%80%90Healing%2C+Adhesive+Ionic+Conductive+Hydrogels+Based+on+Tailor%E2%80%90Made+Ionic+Liquid+for+High%E2%80%90Performance+Strain+Sensors&rft.jtitle=Advanced+functional+materials&rft.au=Yao%2C+Xue&rft.au=Zhang%2C+Sufeng&rft.au=Qian%2C+Liwei&rft.au=Wei%2C+Ning&rft.date=2022-08-01&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=32&rft.issue=33&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadfm.202204565&rft.externalDBID=10.1002%252Fadfm.202204565&rft.externalDocID=ADFM202204565 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon |