Super Stretchable, Self‐Healing, Adhesive Ionic Conductive Hydrogels Based on Tailor‐Made Ionic Liquid for High‐Performance Strain Sensors

Ionic conductive hydrogels (ICHs) integrate the conductive performance and soft nature of tissue‐like materials to imitate the features of human skin with mechanical and sensory traits; thus, they are considered promising substitutes for conventional rigid metallic conductors when fabricating human‐...

Full description

Saved in:
Bibliographic Details
Published inAdvanced functional materials Vol. 32; no. 33
Main Authors Yao, Xue, Zhang, Sufeng, Qian, Liwei, Wei, Ning, Nica, Valentin, Coseri, Sergiu, Han, Fei
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 01.08.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Ionic conductive hydrogels (ICHs) integrate the conductive performance and soft nature of tissue‐like materials to imitate the features of human skin with mechanical and sensory traits; thus, they are considered promising substitutes for conventional rigid metallic conductors when fabricating human‐motion sensors. However, the simultaneous incorporation of excellent stretchability, toughness, ionic conductivity, self‐healing, and adhesion via a simple method remains a grand challenge. Herein, a novel ICH platform is proposed by designing a phenylboronic acid‐ionic liquid (PBA‐IL) with multiple roles that simultaneously realize the highly mechanical, electrical, and versatile properties. This elaborately designed semi‐interpenetrating network ICH is fabricated via a facile one‐step approach by introducing cellulose nanofibrils (CNFs) into the PBA‐IL/acrylamide cross‐linked network. Ingeniously, the dynamic boronic ester bonds and physical interactions (hydrogen bonds and electrostatic interactions) of the cross‐linked network endow these hydrogels with remarkable stretchability (1810 ± 38%), toughness (2.65 ± 0.03 MJ m−3), self‐healing property (92 ± 2% efficiency), adhesiveness, and transparency. Moreover, the construction of this material shows that CNFs can synergistically enhance mechanical performance and conductivity. The wide working strain range (≈1000%) and high sensitivity (GF = 8.36) make this ICH a promising candidate for constructing the next generation of gel‐based strain sensor platforms. A novel semi‐interpenetrating network polyacrylamide/phenylboronic acid‐ionic liquid/cellulose nanofibril hydrogel (PAM/PBA‐IL/CNF) is proposed based on a “tailor‐made” PBA‐IL with multiple roles. Benefiting from the ingenious structural design, the PAM/PBA‐IL/CNF simultaneously displays the excellent comprehensive merits: (i) a fine trade‐off between electrical and mechanical performance, (ii) high strain sensitivity, favorable adhesion, self‐healing property, transparency and water retention.
AbstractList Ionic conductive hydrogels (ICHs) integrate the conductive performance and soft nature of tissue‐like materials to imitate the features of human skin with mechanical and sensory traits; thus, they are considered promising substitutes for conventional rigid metallic conductors when fabricating human‐motion sensors. However, the simultaneous incorporation of excellent stretchability, toughness, ionic conductivity, self‐healing, and adhesion via a simple method remains a grand challenge. Herein, a novel ICH platform is proposed by designing a phenylboronic acid‐ionic liquid (PBA‐IL) with multiple roles that simultaneously realize the highly mechanical, electrical, and versatile properties. This elaborately designed semi‐interpenetrating network ICH is fabricated via a facile one‐step approach by introducing cellulose nanofibrils (CNFs) into the PBA‐IL/acrylamide cross‐linked network. Ingeniously, the dynamic boronic ester bonds and physical interactions (hydrogen bonds and electrostatic interactions) of the cross‐linked network endow these hydrogels with remarkable stretchability (1810 ± 38%), toughness (2.65 ± 0.03 MJ m −3 ), self‐healing property (92 ± 2% efficiency), adhesiveness, and transparency. Moreover, the construction of this material shows that CNFs can synergistically enhance mechanical performance and conductivity. The wide working strain range (≈1000%) and high sensitivity (GF = 8.36) make this ICH a promising candidate for constructing the next generation of gel‐based strain sensor platforms.
Ionic conductive hydrogels (ICHs) integrate the conductive performance and soft nature of tissue‐like materials to imitate the features of human skin with mechanical and sensory traits; thus, they are considered promising substitutes for conventional rigid metallic conductors when fabricating human‐motion sensors. However, the simultaneous incorporation of excellent stretchability, toughness, ionic conductivity, self‐healing, and adhesion via a simple method remains a grand challenge. Herein, a novel ICH platform is proposed by designing a phenylboronic acid‐ionic liquid (PBA‐IL) with multiple roles that simultaneously realize the highly mechanical, electrical, and versatile properties. This elaborately designed semi‐interpenetrating network ICH is fabricated via a facile one‐step approach by introducing cellulose nanofibrils (CNFs) into the PBA‐IL/acrylamide cross‐linked network. Ingeniously, the dynamic boronic ester bonds and physical interactions (hydrogen bonds and electrostatic interactions) of the cross‐linked network endow these hydrogels with remarkable stretchability (1810 ± 38%), toughness (2.65 ± 0.03 MJ m−3), self‐healing property (92 ± 2% efficiency), adhesiveness, and transparency. Moreover, the construction of this material shows that CNFs can synergistically enhance mechanical performance and conductivity. The wide working strain range (≈1000%) and high sensitivity (GF = 8.36) make this ICH a promising candidate for constructing the next generation of gel‐based strain sensor platforms.
Ionic conductive hydrogels (ICHs) integrate the conductive performance and soft nature of tissue‐like materials to imitate the features of human skin with mechanical and sensory traits; thus, they are considered promising substitutes for conventional rigid metallic conductors when fabricating human‐motion sensors. However, the simultaneous incorporation of excellent stretchability, toughness, ionic conductivity, self‐healing, and adhesion via a simple method remains a grand challenge. Herein, a novel ICH platform is proposed by designing a phenylboronic acid‐ionic liquid (PBA‐IL) with multiple roles that simultaneously realize the highly mechanical, electrical, and versatile properties. This elaborately designed semi‐interpenetrating network ICH is fabricated via a facile one‐step approach by introducing cellulose nanofibrils (CNFs) into the PBA‐IL/acrylamide cross‐linked network. Ingeniously, the dynamic boronic ester bonds and physical interactions (hydrogen bonds and electrostatic interactions) of the cross‐linked network endow these hydrogels with remarkable stretchability (1810 ± 38%), toughness (2.65 ± 0.03 MJ m−3), self‐healing property (92 ± 2% efficiency), adhesiveness, and transparency. Moreover, the construction of this material shows that CNFs can synergistically enhance mechanical performance and conductivity. The wide working strain range (≈1000%) and high sensitivity (GF = 8.36) make this ICH a promising candidate for constructing the next generation of gel‐based strain sensor platforms. A novel semi‐interpenetrating network polyacrylamide/phenylboronic acid‐ionic liquid/cellulose nanofibril hydrogel (PAM/PBA‐IL/CNF) is proposed based on a “tailor‐made” PBA‐IL with multiple roles. Benefiting from the ingenious structural design, the PAM/PBA‐IL/CNF simultaneously displays the excellent comprehensive merits: (i) a fine trade‐off between electrical and mechanical performance, (ii) high strain sensitivity, favorable adhesion, self‐healing property, transparency and water retention.
Author Wei, Ning
Han, Fei
Zhang, Sufeng
Nica, Valentin
Yao, Xue
Coseri, Sergiu
Qian, Liwei
Author_xml – sequence: 1
  givenname: Xue
  surname: Yao
  fullname: Yao, Xue
  organization: Shaanxi University of Science and Technology
– sequence: 2
  givenname: Sufeng
  orcidid: 0000-0001-7109-0355
  surname: Zhang
  fullname: Zhang, Sufeng
  email: zhangsufeng@sust.edu.cn
  organization: Shaanxi University of Science and Technology
– sequence: 3
  givenname: Liwei
  surname: Qian
  fullname: Qian, Liwei
  email: qianliwei@mail.nwpu.edu.cn
  organization: Shaanxi University of Science and Technology
– sequence: 4
  givenname: Ning
  surname: Wei
  fullname: Wei, Ning
  organization: Shaanxi University of Science and Technology
– sequence: 5
  givenname: Valentin
  surname: Nica
  fullname: Nica, Valentin
  organization: Shaanxi University of Science and Technology
– sequence: 6
  givenname: Sergiu
  surname: Coseri
  fullname: Coseri, Sergiu
  organization: “Petru Poni” Institute of Macromolecular Chemistry of Romanian Academy
– sequence: 7
  givenname: Fei
  surname: Han
  fullname: Han, Fei
  organization: Xi'an Jiaotong University
BookMark eNqFkMtqGzEUhkVxoLl027Wg29jRZWY0s3TdJA7YJGAXuhs00pEtM5ZsaabFuzxCnjFP0hmcOlAoXZ3rd37Of4EGzjtA6DMlI0oIu5HabEeMMEaSNEs_oHOa0WzICcsHp5z--IguYtwQQoXgyTl6WbQ7CHjRBGjUWlY1XOMF1Ob1-WUKsrZudY3Heg3R_gT84J1VeOKdblXTN6YHHfwK6oi_yggae4eX0tY-dPhc6j_EzO5bq7HxAU_tat0NnyB01VY6Bb22tK5TddGHeIXOjKwjfHqLl-j73e1yMh3OHu8fJuPZUPGcp0PJwFBFuCpExXiRmDzNIVXaZExWqhKiyoFqnUH3qTFCZ0oUaVZJTguhdCr5JfpyvLsLft9CbMqNb4PrJEsmCON5QnPebY2OWyr4GAOYchfsVoZDSUnZu172rpcn1zsg-QtQtpGN9a7_sv43VhyxX7aGw39EyvG3u_k7-xsI_J5c
CitedBy_id crossref_primary_10_1016_j_eurpolymj_2023_112342
crossref_primary_10_1021_acs_chemmater_3c02454
crossref_primary_10_1016_j_carbpol_2025_123253
crossref_primary_10_1016_j_cej_2023_145944
crossref_primary_10_1021_acs_nanolett_5c00664
crossref_primary_10_1021_acs_chemmater_2c03330
crossref_primary_10_1021_acs_biomac_3c00149
crossref_primary_10_1126_sciadv_adi8505
crossref_primary_10_3389_fbioe_2023_1117944
crossref_primary_10_1021_acsapm_3c02433
crossref_primary_10_1021_acsapm_2c01494
crossref_primary_10_1002_EXP_70008
crossref_primary_10_1016_j_cej_2024_157418
crossref_primary_10_1016_j_cej_2025_159437
crossref_primary_10_3390_nano14171398
crossref_primary_10_1016_j_seppur_2024_127178
crossref_primary_10_1002_adfm_202410127
crossref_primary_10_1016_j_ijbiomac_2024_129865
crossref_primary_10_1016_j_cej_2023_142543
crossref_primary_10_1016_j_polymer_2023_125844
crossref_primary_10_1039_D4TC02804J
crossref_primary_10_1002_adma_202418108
crossref_primary_10_1016_j_adna_2024_05_001
crossref_primary_10_1016_j_cej_2024_156791
crossref_primary_10_1021_acssuschemeng_4c02961
crossref_primary_10_1002_marc_202300457
crossref_primary_10_1016_j_cej_2025_161524
crossref_primary_10_1039_D3TA01627G
crossref_primary_10_1039_D3MH01696J
crossref_primary_10_1002_adfm_202401311
crossref_primary_10_1039_D3TA06771H
crossref_primary_10_1016_j_cej_2022_141082
crossref_primary_10_3390_gels11040235
crossref_primary_10_1016_j_carbpol_2022_120243
crossref_primary_10_1039_D3TA02948D
crossref_primary_10_1016_j_ijbiomac_2024_137123
crossref_primary_10_1016_j_cej_2025_159539
crossref_primary_10_1016_j_ijbiomac_2024_138567
crossref_primary_10_1021_acsami_4c08123
crossref_primary_10_1021_acsapm_3c01567
crossref_primary_10_1002_advs_202301116
crossref_primary_10_1016_j_ijbiomac_2023_126550
crossref_primary_10_1007_s40820_022_00980_9
crossref_primary_10_1557_s43578_023_01240_1
crossref_primary_10_20517_ss_2024_38
crossref_primary_10_1016_j_ijbiomac_2024_131129
crossref_primary_10_1016_j_mtsust_2025_101088
crossref_primary_10_1049_mna2_12204
crossref_primary_10_1002_pol_20220510
crossref_primary_10_1016_j_cej_2024_153382
crossref_primary_10_1016_j_nxmate_2024_100436
crossref_primary_10_1016_j_xcrp_2024_102107
crossref_primary_10_1016_j_cej_2024_153142
crossref_primary_10_1016_j_cej_2022_140328
crossref_primary_10_1021_acsnano_3c11578
crossref_primary_10_1002_adfm_202411588
crossref_primary_10_1021_acsami_2c13223
crossref_primary_10_1021_acsami_3c12082
crossref_primary_10_1016_j_ijbiomac_2023_125471
crossref_primary_10_1016_j_nanoen_2024_109974
crossref_primary_10_1016_j_ijbiomac_2023_125353
crossref_primary_10_1016_j_ijbiomac_2023_125595
crossref_primary_10_1039_D3NR05488H
crossref_primary_10_1002_adma_202416916
crossref_primary_10_1016_j_apmt_2025_102682
crossref_primary_10_1007_s42114_024_00841_6
crossref_primary_10_1002_SMMD_20230023
crossref_primary_10_1021_acs_macromol_4c01684
crossref_primary_10_1016_j_ijbiomac_2024_129718
crossref_primary_10_1002_adma_202300447
crossref_primary_10_1016_j_cej_2023_147888
crossref_primary_10_1021_acsaelm_4c00291
crossref_primary_10_1039_D3NR05049A
crossref_primary_10_1016_j_ijbiomac_2024_131115
crossref_primary_10_1021_acs_macromol_3c02328
crossref_primary_10_1039_D4NJ01387E
crossref_primary_10_1002_SMMD_20230024
crossref_primary_10_1016_j_carbpol_2023_121310
crossref_primary_10_1021_acs_chemmater_2c03536
crossref_primary_10_1016_j_cej_2022_138253
crossref_primary_10_1016_j_cej_2024_153254
crossref_primary_10_1016_j_ijbiomac_2024_135165
crossref_primary_10_1016_j_cej_2024_153136
crossref_primary_10_1039_D2TC03877C
crossref_primary_10_1016_j_cej_2025_159636
crossref_primary_10_1016_j_ijbiomac_2025_140348
crossref_primary_10_1021_acsami_4c08984
crossref_primary_10_1016_j_jcis_2024_04_209
crossref_primary_10_1016_j_nanoen_2022_108079
crossref_primary_10_1002_smll_202411046
crossref_primary_10_1021_acsami_3c05943
crossref_primary_10_1021_acsami_4c20994
crossref_primary_10_1016_j_ijbiomac_2024_135947
crossref_primary_10_1016_j_nanoen_2024_109790
crossref_primary_10_1016_j_cej_2024_156192
crossref_primary_10_1002_advs_202301713
crossref_primary_10_1002_anie_202410335
crossref_primary_10_1016_j_ijbiomac_2023_125801
crossref_primary_10_1002_adfm_202401607
crossref_primary_10_1021_acs_nanolett_4c03896
crossref_primary_10_1021_acsami_3c09065
crossref_primary_10_1016_j_cej_2022_140467
crossref_primary_10_1021_acssuschemeng_3c04594
crossref_primary_10_1016_j_cej_2025_160750
crossref_primary_10_1002_admt_202300710
crossref_primary_10_1039_D3TC03651K
crossref_primary_10_1016_j_cej_2024_150998
crossref_primary_10_1016_j_compositesa_2023_107756
crossref_primary_10_1002_admt_202301123
crossref_primary_10_1016_j_jcis_2023_10_127
crossref_primary_10_1039_D3MH02074F
crossref_primary_10_1016_j_cej_2024_158243
crossref_primary_10_1016_j_cej_2024_151163
crossref_primary_10_1016_j_microc_2024_112304
crossref_primary_10_1039_D3TC00949A
crossref_primary_10_1002_adfm_202308974
crossref_primary_10_1039_D3MH00612C
crossref_primary_10_1016_j_cej_2023_147065
crossref_primary_10_1016_j_cej_2023_147063
crossref_primary_10_1016_j_seppur_2024_130082
crossref_primary_10_1002_advs_202405828
crossref_primary_10_3389_fbioe_2023_1222723
crossref_primary_10_1016_j_cej_2025_160283
crossref_primary_10_1016_j_biortech_2024_131204
crossref_primary_10_3390_gels9030257
crossref_primary_10_1016_j_eurpolymj_2024_113620
crossref_primary_10_1016_j_compositesb_2024_111345
crossref_primary_10_1016_j_ijbiomac_2024_139297
crossref_primary_10_1002_adfm_202213895
crossref_primary_10_1002_adfm_202306793
crossref_primary_10_1021_acsami_3c07540
crossref_primary_10_1016_j_giant_2024_100237
crossref_primary_10_1016_j_ijbiomac_2024_136100
crossref_primary_10_1002_adma_202310020
crossref_primary_10_1002_smll_202402472
crossref_primary_10_1002_ange_202410335
crossref_primary_10_1002_adma_202416345
crossref_primary_10_1002_adfm_202311457
crossref_primary_10_1016_j_cej_2024_153107
crossref_primary_10_3390_nano13172465
crossref_primary_10_1016_j_carbpol_2024_122286
crossref_primary_10_1016_j_eurpolymj_2024_113314
crossref_primary_10_1080_09205063_2024_2434300
crossref_primary_10_1016_j_jcis_2024_11_032
crossref_primary_10_1021_acssuschemeng_2c07727
crossref_primary_10_1007_s10965_024_04132_y
crossref_primary_10_1002_adfm_202301404
crossref_primary_10_1021_acssuschemeng_3c01838
crossref_primary_10_1016_j_cej_2024_155195
crossref_primary_10_1007_s40820_024_01432_2
crossref_primary_10_1007_s42765_024_00418_4
crossref_primary_10_1007_s11705_023_2316_x
crossref_primary_10_1007_s42114_024_01165_1
crossref_primary_10_1016_j_cej_2025_159838
crossref_primary_10_1002_adfm_202415530
crossref_primary_10_1016_j_seppur_2024_130187
crossref_primary_10_1021_acsami_3c18818
crossref_primary_10_1016_j_carbpol_2024_122608
crossref_primary_10_1016_j_ijbiomac_2023_129083
crossref_primary_10_1039_D4TC00775A
crossref_primary_10_1016_j_cej_2024_156608
crossref_primary_10_1016_j_mtcomm_2024_109542
crossref_primary_10_1021_acsapm_3c00771
crossref_primary_10_1063_5_0218251
crossref_primary_10_1039_D3SU00139C
crossref_primary_10_1039_D4TC04899G
crossref_primary_10_1002_admt_202400355
crossref_primary_10_1007_s40843_023_2611_4
crossref_primary_10_1557_s43577_024_00735_4
crossref_primary_10_1016_j_cej_2023_142939
crossref_primary_10_1016_j_pmatsci_2023_101156
crossref_primary_10_3390_molecules28124690
crossref_primary_10_1002_aelm_202300436
crossref_primary_10_1016_j_actbio_2023_05_045
crossref_primary_10_1007_s42765_024_00390_z
crossref_primary_10_1016_j_cej_2023_146188
crossref_primary_10_1039_D2TC04411K
crossref_primary_10_1002_adma_202306350
crossref_primary_10_1021_acsami_3c18247
crossref_primary_10_1002_adfm_202417180
crossref_primary_10_1016_j_carbpol_2023_121572
crossref_primary_10_1002_smll_202208116
crossref_primary_10_1039_D3RA05120J
crossref_primary_10_1002_batt_202400245
crossref_primary_10_1002_advs_202412726
crossref_primary_10_1016_j_cej_2024_156387
crossref_primary_10_1039_D4QM00931B
crossref_primary_10_1016_j_jcis_2023_12_016
crossref_primary_10_1002_adfm_202215193
crossref_primary_10_1016_j_cej_2024_149282
crossref_primary_10_1002_adfm_202408351
crossref_primary_10_1039_D2TA05781F
crossref_primary_10_1039_D3TA06779C
crossref_primary_10_1007_s11426_024_2297_0
crossref_primary_10_1039_D3TA02584E
crossref_primary_10_1002_adma_202308424
crossref_primary_10_1021_acsapm_4c02143
crossref_primary_10_1021_acsapm_3c01281
crossref_primary_10_1016_j_cej_2024_151917
crossref_primary_10_1002_adfm_202402115
crossref_primary_10_1016_j_cej_2023_146840
crossref_primary_10_1039_D3TC02359A
crossref_primary_10_1360_SSC_2023_0010
crossref_primary_10_1016_j_eurpolymj_2023_111984
crossref_primary_10_1002_adhm_202400562
crossref_primary_10_1002_smll_202401622
crossref_primary_10_1016_j_carbpol_2023_121106
crossref_primary_10_1002_adfm_202210188
crossref_primary_10_1016_j_susmat_2025_e01237
crossref_primary_10_1016_j_cej_2024_156137
crossref_primary_10_1016_j_carbpol_2024_122858
crossref_primary_10_1021_acsapm_4c03345
crossref_primary_10_1007_s40843_022_2411_9
crossref_primary_10_1016_j_jcis_2023_09_051
crossref_primary_10_1016_j_sna_2024_115981
crossref_primary_10_1016_j_aej_2023_06_058
crossref_primary_10_1016_j_reactfunctpolym_2024_105901
crossref_primary_10_1016_j_cej_2023_141393
crossref_primary_10_1002_admt_202301628
crossref_primary_10_1016_j_carbpol_2024_123056
crossref_primary_10_1021_acssensors_4c01567
crossref_primary_10_1002_adfm_202212856
crossref_primary_10_1007_s40820_023_01225_z
crossref_primary_10_1016_j_cej_2022_139982
crossref_primary_10_1039_D4TC04150J
crossref_primary_10_1016_j_ijbiomac_2025_139764
crossref_primary_10_1016_j_microc_2024_110064
crossref_primary_10_1039_D3MH00739A
crossref_primary_10_1021_acs_chemmater_4c00846
crossref_primary_10_1016_j_ceramint_2023_07_024
crossref_primary_10_1021_acsami_2c16866
crossref_primary_10_1016_j_cej_2023_148324
crossref_primary_10_1016_j_carbpol_2025_123220
crossref_primary_10_1016_j_ijbiomac_2024_133802
crossref_primary_10_1016_j_eurpolymj_2024_113122
crossref_primary_10_1002_adma_202405511
crossref_primary_10_1016_j_ijbiomac_2023_126857
crossref_primary_10_1002_advs_202404451
crossref_primary_10_1016_j_carbpol_2024_121784
crossref_primary_10_1039_D3QM00076A
crossref_primary_10_1016_j_ijbiomac_2024_137299
crossref_primary_10_3390_polym17040542
crossref_primary_10_1016_j_cej_2024_154176
crossref_primary_10_1016_j_ijbiomac_2024_137841
crossref_primary_10_1016_j_giant_2023_100234
crossref_primary_10_1016_j_nxmate_2023_100049
crossref_primary_10_1039_D3SM00581J
crossref_primary_10_1002_sus2_249
crossref_primary_10_1002_adma_202413901
crossref_primary_10_1016_j_compositesa_2023_107478
crossref_primary_10_1016_j_cej_2023_143660
crossref_primary_10_1002_aenm_202402130
crossref_primary_10_1039_D4TA05288A
crossref_primary_10_1002_smll_202403955
crossref_primary_10_1016_j_ijbiomac_2023_125415
crossref_primary_10_1016_j_nanoen_2024_109260
crossref_primary_10_1016_j_cej_2023_146816
crossref_primary_10_1016_j_ijbiomac_2023_125417
crossref_primary_10_1016_j_carbpol_2024_122788
crossref_primary_10_1016_j_bioelechem_2024_108882
crossref_primary_10_1016_j_carbpol_2023_120600
crossref_primary_10_1016_j_cej_2024_150472
crossref_primary_10_1016_j_jcis_2024_06_192
crossref_primary_10_1002_marc_202401078
crossref_primary_10_1039_D3QM00109A
crossref_primary_10_1002_jbm_a_37840
crossref_primary_10_1016_j_carbpol_2024_123189
crossref_primary_10_1016_j_cej_2023_148305
crossref_primary_10_1021_acsaenm_3c00078
crossref_primary_10_1038_s41467_024_47029_6
crossref_primary_10_1016_j_carbpol_2023_121262
crossref_primary_10_1016_j_carbpol_2023_121385
crossref_primary_10_1021_acsmaterialslett_4c00809
crossref_primary_10_1021_acsami_3c19473
crossref_primary_10_1002_eem2_12794
crossref_primary_10_1016_j_cej_2024_151691
crossref_primary_10_1002_adfm_202306820
crossref_primary_10_1021_acsnano_4c01179
crossref_primary_10_1002_adfm_202419308
crossref_primary_10_1021_acsapm_3c02742
crossref_primary_10_1021_acsnano_4c00085
crossref_primary_10_1007_s40820_023_01311_2
crossref_primary_10_1021_acs_biomac_4c01538
crossref_primary_10_1039_D3MH00813D
crossref_primary_10_1038_s41428_024_00957_y
crossref_primary_10_1002_adfm_202415507
crossref_primary_10_1016_j_snb_2024_136346
Cites_doi 10.1039/D0TC05242F
10.1002/adma.202100047
10.1021/acsnano.1c08193
10.1002/adfm.202105264
10.1039/C8EE02892C
10.1039/D0TA07390C
10.1021/acsnano.1c03830
10.1002/mame.201900227
10.1021/acs.chemmater.9b04041
10.1002/aelm.201900668
10.1002/advs.202105742
10.1002/adfm.202104686
10.1016/j.carbpol.2021.118082
10.1021/acsami.0c10495
10.1016/j.nanoen.2020.105064
10.1002/adfm.201806220
10.1021/acs.chemrev.1c00071
10.1039/D0MH00100G
10.1039/D0TB02929G
10.1039/D0TA09735G
10.1021/acs.chemmater.0c02919
10.1002/anie.201915836
10.1002/aelm.202000239
10.1002/adma.201904732
10.1002/adma.202105306
10.1002/adfm.202003430
10.1016/j.cej.2021.132957
10.1002/adfm.201802576
10.1016/j.cej.2021.129865
10.1016/j.cej.2019.123912
10.1016/j.cej.2020.127306
10.1021/acs.macromol.0c02060
10.1016/j.cej.2020.125547
10.1038/s41467-019-11364-w
10.1039/C8TA12360H
10.1002/smll.202104702
10.1021/acs.biomac.0c01777
10.1021/acsami.0c16719
10.1016/j.cej.2019.122832
10.1021/acsami.0c18250
10.1021/acsami.9b18646
10.1021/acsami.0c18161
10.1039/D0MH01029D
10.1021/acs.chemmater.0c03526
10.1002/adhm.202002083
10.1002/adma.201606425
10.1021/acsami.0c21598
10.1126/sciadv.aax0648
10.1021/acs.biomac.9b01128
10.1016/j.cej.2021.132919
10.1002/aelm.201900285
10.1002/adma.202107309
10.1021/acsami.0c21121
10.1039/C9MH01688K
10.1002/advs.202004377
10.1039/D1MH00998B
10.1039/D0TA02902E
10.1039/D1TA05262D
10.1021/acsami.0c06091
10.1021/acsami.9b08369
10.1126/sciadv.abl5066
10.1002/adfm.201804416
10.1038/s41467-018-03456-w
10.1002/adhm.202101089
10.1039/C9TA10502F
10.1002/adma.202201065
ContentType Journal Article
Copyright 2022 Wiley‐VCH GmbH
Copyright_xml – notice: 2022 Wiley‐VCH GmbH
DBID AAYXX
CITATION
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/adfm.202204565
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList CrossRef
Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1616-3028
EndPage n/a
ExternalDocumentID 10_1002_adfm_202204565
ADFM202204565
Genre article
GrantInformation_xml – fundername: China‐CEEC University Joint Education Project
  funderid: 2021099
– fundername: International Joint Research Center for biomass chemistry and materials, Shaanxi international science and technology cooperation base
  funderid: 2018GHJD‐19
– fundername: Shaanxi Key industry innovation chain projects
  funderid: 2020ZDLGY11‐0
– fundername: Key Research and Development Project of Shaanxi
  funderid: 2021GY‐240
– fundername: National Nature Science Foundation of China
  funderid: 21805177; 52103147
– fundername: Science and Technology Plan of Weiyang District of Xi'an
  funderid: 201910
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OC
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
.Y3
31~
AANHP
AASGY
AAYXX
ACBWZ
ACRPL
ACYXJ
ADMLS
ADNMO
AEYWJ
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
HF~
HVGLF
LW6
7SP
7SR
7U5
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
L7M
ID FETCH-LOGICAL-c3835-a2ef1c03c97b2394f858e5cdf62abcb77b8e1dd6e001ff7d6c7956ba3197cd5a3
IEDL.DBID DR2
ISSN 1616-301X
IngestDate Fri Jul 25 06:41:59 EDT 2025
Thu Apr 24 22:59:15 EDT 2025
Tue Jul 01 00:30:30 EDT 2025
Wed Jan 22 16:24:47 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 33
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3835-a2ef1c03c97b2394f858e5cdf62abcb77b8e1dd6e001ff7d6c7956ba3197cd5a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7109-0355
PQID 2702384183
PQPubID 2045204
PageCount 14
ParticipantIDs proquest_journals_2702384183
crossref_primary_10_1002_adfm_202204565
crossref_citationtrail_10_1002_adfm_202204565
wiley_primary_10_1002_adfm_202204565_ADFM202204565
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-08-01
PublicationDateYYYYMMDD 2022-08-01
PublicationDate_xml – month: 08
  year: 2022
  text: 2022-08-01
  day: 01
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Advanced functional materials
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2022; 430
2021; 9
2021; 8
2019; 7
2021; 408
2018; 28
2019; 6
2021; 22
2019; 5
2019; 31
2021; 420
2020; 382
2020; 385
2019; 11
2019; 10
2019; 12
2020; 59
2017; 29
2020; 12
2021; 265
2019; 304
2021; 121
2020; 32
2020; 76
2020; 8
2021; 13
2020; 7
2018; 9
2020; 6
2021; 15
2021; 10
2021; 31
2021; 34
2021; 33
2020; 53
2020; 30
2022
2021; 17
2022; 8
2022; 34
2019; 29
2020; 398
2020; 21
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_66_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_64_1
e_1_2_8_62_1
e_1_2_8_1_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_51_1
e_1_2_8_30_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_65_1
e_1_2_8_63_1
e_1_2_8_40_1
e_1_2_8_61_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_58_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_56_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_52_1
e_1_2_8_50_1
References_xml – volume: 265
  year: 2021
  publication-title: Carbohydr. Polym.
– volume: 6
  year: 2019
  publication-title: Adv. Electron. Mater.
– volume: 34
  year: 2021
  publication-title: Adv. Mater.
– volume: 9
  start-page: 2561
  year: 2021
  publication-title: J. Mater. Chem. B
– volume: 9
  start-page: 3635
  year: 2021
  publication-title: J. Mater. Chem. C
– volume: 13
  year: 2021
  publication-title: ACS Appl. Mater. Interfaces
– volume: 13
  start-page: 1353
  year: 2021
  publication-title: ACS Appl. Mater. Interfaces
– volume: 10
  year: 2021
  publication-title: Adv. Healthcare Mater
– volume: 31
  start-page: 9850
  year: 2019
  publication-title: Chem. Mater.
– volume: 12
  year: 2020
  publication-title: ACS Appl. Mater. Interfaces
– volume: 8
  year: 2022
  publication-title: Sci. Adv.
– volume: 22
  start-page: 1273
  year: 2021
  publication-title: Biomacromolecules
– volume: 398
  year: 2020
  publication-title: Chem. Eng. J.
– volume: 382
  year: 2020
  publication-title: Chem. Eng. J.
– volume: 12
  start-page: 1558
  year: 2020
  publication-title: ACS Appl. Mater. Interfaces
– volume: 34
  year: 2022
  publication-title: Adv. Mater.
– volume: 304
  year: 2019
  publication-title: Macromol. Mater. Eng.
– volume: 8
  start-page: 351
  year: 2020
  publication-title: Mater. Horiz.
– volume: 8
  start-page: 2761
  year: 2021
  publication-title: Mater. Horiz.
– volume: 6
  year: 2020
  publication-title: Adv. Electron. Mater.
– volume: 33
  year: 2021
  publication-title: Adv. Mater.
– volume: 30
  year: 2020
  publication-title: Adv. Funct. Mater.
– volume: 29
  year: 2019
  publication-title: Adv. Funct. Mater.
– volume: 10
  year: 2021
  publication-title: Adv. Healthcare Mater.
– volume: 5
  year: 2019
  publication-title: Adv. Electron. Mater.
– volume: 121
  year: 2021
  publication-title: Chem. Rev.
– volume: 28
  year: 2018
  publication-title: Adv. Funct. Mater.
– volume: 21
  start-page: 230
  year: 2020
  publication-title: Biomacromolecules
– year: 2022
  publication-title: Adv. Sci.
– volume: 9
  year: 2021
  publication-title: J. Mater. Chem. A
– volume: 32
  start-page: 8938
  year: 2020
  publication-title: Chem. Mater.
– volume: 8
  year: 2021
  publication-title: Adv. Sci.
– volume: 76
  year: 2020
  publication-title: Nano Energy
– volume: 13
  start-page: 5614
  year: 2021
  publication-title: ACS Appl. Mater. Interfaces
– volume: 7
  year: 2019
  publication-title: J. Mater. Chem. A
– volume: 29
  year: 2017
  publication-title: Adv. Mater.
– volume: 408
  year: 2021
  publication-title: Chem. Eng. J.
– volume: 12
  start-page: 706
  year: 2019
  publication-title: Energy Environ. Sci.
– volume: 10
  start-page: 3429
  year: 2019
  publication-title: Nat. Commun.
– volume: 15
  year: 2021
  publication-title: ACS Nano
– volume: 13
  start-page: 5486
  year: 2021
  publication-title: ACS Appl. Mater. Interfaces
– volume: 17
  year: 2021
  publication-title: Small
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 59
  start-page: 4793
  year: 2020
  publication-title: Angew. Chem., Int. Ed.
– volume: 31
  year: 2021
  publication-title: Adv. Mater.
– volume: 11
  year: 2019
  publication-title: ACS Appl. Mater. Interfaces
– volume: 7
  start-page: 4525
  year: 2019
  publication-title: J. Mater. Chem. A
– volume: 9
  start-page: 1134
  year: 2018
  publication-title: Nat. Commun.
– volume: 430
  year: 2022
  publication-title: Chem. Eng. J.
– volume: 31
  year: 2021
  publication-title: Adv. Funct. Mater.
– volume: 385
  year: 2020
  publication-title: Chem. Eng. J.
– volume: 7
  start-page: 2085
  year: 2020
  publication-title: Mater. Horiz.
– volume: 5
  year: 2019
  publication-title: Sci. Adv.
– volume: 53
  year: 2020
  publication-title: Macromolecules
– volume: 7
  start-page: 919
  year: 2020
  publication-title: Mater. Horiz.
– volume: 420
  year: 2021
  publication-title: Chem. Eng. J.
– volume: 32
  year: 2020
  publication-title: Chem. Mater.
– volume: 8
  year: 2020
  publication-title: J. Mater. Chem. A
– ident: e_1_2_8_24_1
  doi: 10.1039/D0TC05242F
– ident: e_1_2_8_8_1
  doi: 10.1002/adma.202100047
– ident: e_1_2_8_17_1
  doi: 10.1021/acsnano.1c08193
– ident: e_1_2_8_4_1
  doi: 10.1002/adfm.202105264
– ident: e_1_2_8_53_1
  doi: 10.1039/C8EE02892C
– ident: e_1_2_8_2_1
  doi: 10.1039/D0TA07390C
– ident: e_1_2_8_18_1
  doi: 10.1021/acsnano.1c03830
– ident: e_1_2_8_62_1
  doi: 10.1002/mame.201900227
– ident: e_1_2_8_54_1
  doi: 10.1021/acs.chemmater.9b04041
– ident: e_1_2_8_44_1
  doi: 10.1002/aelm.201900668
– ident: e_1_2_8_46_1
  doi: 10.1002/advs.202105742
– ident: e_1_2_8_13_1
  doi: 10.1002/adfm.202104686
– ident: e_1_2_8_34_1
  doi: 10.1016/j.carbpol.2021.118082
– ident: e_1_2_8_58_1
  doi: 10.1021/acsami.0c10495
– ident: e_1_2_8_64_1
  doi: 10.1016/j.nanoen.2020.105064
– ident: e_1_2_8_27_1
  doi: 10.1002/adfm.201806220
– ident: e_1_2_8_32_1
  doi: 10.1021/acs.chemrev.1c00071
– ident: e_1_2_8_61_1
  doi: 10.1039/D0MH00100G
– ident: e_1_2_8_19_1
  doi: 10.1039/D0TB02929G
– ident: e_1_2_8_45_1
  doi: 10.1039/D0TA09735G
– ident: e_1_2_8_56_1
  doi: 10.1021/acs.chemmater.0c02919
– ident: e_1_2_8_50_1
  doi: 10.1002/anie.201915836
– ident: e_1_2_8_15_1
  doi: 10.1002/aelm.202000239
– ident: e_1_2_8_29_1
  doi: 10.1002/adma.201904732
– ident: e_1_2_8_66_1
  doi: 10.1002/adma.202105306
– ident: e_1_2_8_28_1
  doi: 10.1002/adfm.202003430
– ident: e_1_2_8_5_1
  doi: 10.1016/j.cej.2021.132957
– ident: e_1_2_8_43_1
  doi: 10.1002/adfm.201802576
– ident: e_1_2_8_51_1
  doi: 10.1016/j.cej.2021.129865
– ident: e_1_2_8_23_1
  doi: 10.1016/j.cej.2019.123912
– ident: e_1_2_8_25_1
  doi: 10.1016/j.cej.2020.127306
– ident: e_1_2_8_22_1
  doi: 10.1021/acs.macromol.0c02060
– ident: e_1_2_8_9_1
  doi: 10.1016/j.cej.2020.125547
– ident: e_1_2_8_37_1
  doi: 10.1038/s41467-019-11364-w
– ident: e_1_2_8_42_1
  doi: 10.1039/C8TA12360H
– ident: e_1_2_8_26_1
  doi: 10.1002/smll.202104702
– ident: e_1_2_8_10_1
  doi: 10.1021/acs.biomac.0c01777
– ident: e_1_2_8_16_1
  doi: 10.1021/acsami.0c16719
– ident: e_1_2_8_57_1
  doi: 10.1016/j.cej.2019.122832
– ident: e_1_2_8_47_1
  doi: 10.1021/acsami.0c18250
– ident: e_1_2_8_60_1
  doi: 10.1021/acsami.9b18646
– ident: e_1_2_8_7_1
  doi: 10.1021/acsami.0c18161
– ident: e_1_2_8_48_1
  doi: 10.1039/D0MH01029D
– ident: e_1_2_8_33_1
  doi: 10.1021/acs.chemmater.0c03526
– ident: e_1_2_8_36_1
  doi: 10.1002/adhm.202002083
– ident: e_1_2_8_11_1
  doi: 10.1002/adma.201606425
– ident: e_1_2_8_63_1
  doi: 10.1021/acsami.0c21598
– ident: e_1_2_8_41_1
  doi: 10.1126/sciadv.aax0648
– ident: e_1_2_8_31_1
  doi: 10.1021/acs.biomac.9b01128
– ident: e_1_2_8_55_1
  doi: 10.1016/j.cej.2021.132919
– ident: e_1_2_8_59_1
  doi: 10.1002/aelm.201900285
– ident: e_1_2_8_14_1
  doi: 10.1002/adma.202107309
– ident: e_1_2_8_38_1
  doi: 10.1021/acsami.0c21121
– ident: e_1_2_8_40_1
  doi: 10.1039/C9MH01688K
– ident: e_1_2_8_1_1
  doi: 10.1002/advs.202004377
– ident: e_1_2_8_6_1
  doi: 10.1039/D1MH00998B
– ident: e_1_2_8_20_1
  doi: 10.1039/D0TA02902E
– ident: e_1_2_8_21_1
  doi: 10.1039/D1TA05262D
– ident: e_1_2_8_12_1
  doi: 10.1021/acsami.0c06091
– ident: e_1_2_8_30_1
  doi: 10.1021/acsami.9b08369
– ident: e_1_2_8_52_1
  doi: 10.1126/sciadv.abl5066
– ident: e_1_2_8_39_1
  doi: 10.1002/adfm.201804416
– ident: e_1_2_8_3_1
  doi: 10.1038/s41467-018-03456-w
– ident: e_1_2_8_65_1
  doi: 10.1002/adhm.202101089
– ident: e_1_2_8_35_1
  doi: 10.1039/C9TA10502F
– ident: e_1_2_8_49_1
  doi: 10.1002/adma.202201065
SSID ssj0017734
Score 2.72241
Snippet Ionic conductive hydrogels (ICHs) integrate the conductive performance and soft nature of tissue‐like materials to imitate the features of human skin with...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Acrylamide
cellulose nanofibrils
conductive hydrogels
Conductors
Healing
Human motion
Hydrogels
Hydrogen bonds
Interpenetrating networks
Ion currents
Ionic liquids
Ions
Materials science
Mechanical properties
Motion sensors
multifunctional sensors
self‐adhesion
self‐healing
Sensors
Strain
Stretchability
Toughness
Title Super Stretchable, Self‐Healing, Adhesive Ionic Conductive Hydrogels Based on Tailor‐Made Ionic Liquid for High‐Performance Strain Sensors
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202204565
https://www.proquest.com/docview/2702384183
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8JAEN4YT3rwbUTR7MHEC0X63HJElKARYxQTbs2-qkTSYoGDnvwJ_EZ_iTMtLWhiTPTWx87udh8z33ZnviXkGCCw0K5QBq87juH4Tt3whagbph0ywK81IVLGm86N135wrnpubyGKP-OHKH644cxI9TVOcC5Gp3PSUK5CjCS3rBSUgBJGhy1ERXcFf5TJWLat7Jno4GX2ctbGmnX6VfyrVZpDzUXAmlqc1jrheV0zR5Pn6mQsqvLtG43jfz5mg6zN4ChtZONnkyzpaIusLpAUbpPp_WSoE4rb19DDGGlVofd6EH68TzGGCdJUaEM9afSDp5fItEubcYQ0svig_aqS-BEMMD0De6loHNEu7w_iBMQ7XOUS1_2XSV9RQNAUPU_g5e08ogHL5v0ISo1GcTLaIQ-ti26zbczOcTAkrH9dg1s6NGXNlnUm8CT20Hd97UoVehYXUjAmfG0q5WnosTBkypMMVm2Cg3ZgUrnc3iXLURzpPUJB_3jKUbbLAMgBugBwJT0bMIalIR9blIiR92MgZyTnWMVBkNEzWwG2dFC0dImcFOmHGb3HjynL-bAIZtN8FGAwn-07oBZLxEr795dcgsZ5q1Pc7f9F6ICs4HXmhFgmy-Nkog8BGI3FUTr4PwFuHQf6
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LbxMxEB6VcgAOvBGBAj6AuHTbrPfhzYFDaIgSmlSIplJuW78WIqLdskmEyomf0L_CX-En8EuY2VdaJISE1APH9folezz-xp75DPAcIbCygTKO7Pi-40d-x4mU6jiulwjEr22lCsab8UE4OPLfToPpBnyvY2FKfojmwI1WRqGvaYHTgfTumjVUmoRCyTkvUEnlV7lvT7-g1bZ4NezhFL_gvP9msjdwqocFHI0GWeBIbhNXtz3dEYqeBk-iILKBNknIpdJKCBVZ15jQog5PEmFCLdCMUBLFVWgTSA_rvQJX6RlxouvvvW8Yq1whyovs0CWXMnda80S2-e7F_l7cB9fg9jxELva4_i34UY9O6dryaWe1VDv662_Ekf_V8N2GmxXiZt1yidyBDZvehRvneBjvwdnh6sTmjG7oUYgpmGybHdp58vPbGYVpYZ5t1jUfLbn6syGRCbO9LCWmXEoYnJo8-4AYg71GSGBYlrKJnM2zHIuPpalLjGafVzPD0Ehg5FyDP9-tgzaobTlLsdV0keWL-3B0KUPyADbTLLUPgaGKDY1vvEAgVkUAhfhRhx7CKG6xHk-1wKkFJ9YVjzt1cR6XDNQ8ppmNm5ltwcsm_0nJYPLHnFu1HMaVJlvEFK_oRT5q_hbwQqD-Ukvc7fXHzdejfyn0DK4NJuNRPBoe7D-G65Re-lxuweYyX9kniAOX6mmx8hgcX7as_gK042gu
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtNAEB6VVkL0UP5FSoE9gLjUbbz-WfvAITSNEtpUFW2l3Iz3xzQisoOTCJUTj9BH4VV4BZ6EGf-lRUJISD1w9Hp3vdqdmf3GO_MtwEuEwNJ4Ultx6LqWG7ihFUgZWraTCMSvbSkLxpvhkd8_c9-NvNEKfK9zYUp-iOaHG2lGYa9Jwac62V2ShsY6oUxyzgtQUoVVHpiLL-i0zd4MurjCrzjv7Z_u9a3qXgFLoT_mWTE3ia3ajgqFpJvBk8ALjKd04vNYKimEDIyttW_QhCeJ0L4S6EXIGKVVKO3FDvZ7C9Zcvx3SZRHd9w1hlS1EeY7t2xRRZo9qmsg2370-3uvb4BLbXkXIxRbXuws_6skpI1s-7Szmckd9_Y038n-avXuwUeFt1ikV5D6smPQBrF9hYXwIlyeLqckZnc-jCFMq2TY7MZPk57dLStLCOtuso88NBfqzAVEJs70sJZ5cKuhf6Dz7iAiDvUVAoFmWstN4PMlybD6Mdd3icPx5MdYMXQRGoTX48niZskHfjscpfjWdZfnsEZzdyJQ8htU0S80TYGhgfe1qxxOIVBE-IXpUvoMgihvsx5EtsGq5iVTF4k5DnEQl_zSPaGWjZmVb8LqpPy35S_5Yc6sWw6iyY7OIshWdwEW73wJeyNNfeok63d6wedr8l0Yv4PZxtxcdDo4OnsIdKi4DLrdgdZ4vzDMEgXP5vNA7Bh9uWlR_AQOSZt0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Super+Stretchable%2C+Self%E2%80%90Healing%2C+Adhesive+Ionic+Conductive+Hydrogels+Based+on+Tailor%E2%80%90Made+Ionic+Liquid+for+High%E2%80%90Performance+Strain+Sensors&rft.jtitle=Advanced+functional+materials&rft.au=Yao%2C+Xue&rft.au=Zhang%2C+Sufeng&rft.au=Qian%2C+Liwei&rft.au=Wei%2C+Ning&rft.date=2022-08-01&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=32&rft.issue=33&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadfm.202204565&rft.externalDBID=10.1002%252Fadfm.202204565&rft.externalDocID=ADFM202204565
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon