van der Waals Epitaxial Growth of 2D Metal–Porphyrin Framework Derived Thin Films for Dye‐Sensitized Solar Cells
In this work, monolithic, crystalline, porous, and oriented porphyrin thin films are grown using a novel van der Waals layer‐by‐layer (lbl) epitaxial growth protocol, yielding an unusual AB‐stacking motif of these interesting macrocycles units. Subsequently, these surface‐mounted metal‐organic frame...
Saved in:
Published in | Advanced materials interfaces Vol. 5; no. 21 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
John Wiley & Sons, Inc
09.11.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this work, monolithic, crystalline, porous, and oriented porphyrin thin films are grown using a novel van der Waals layer‐by‐layer (lbl) epitaxial growth protocol, yielding an unusual AB‐stacking motif of these interesting macrocycles units. Subsequently, these surface‐mounted metal‐organic frameworks (SURMOFs) are transformed by thermal treatment to yield well‐performing counter electrodes (CEs) for dye‐sensitized solar cells. During this calcination, the heterocyclic macrocycles are metalated, yielding compact, homogeneous, and very stable metalloporphyrin thin films (ZnTCPP‐C) with excellent CE performance. For thin films fabricated using three lbl cycles (thickness ≈17 nm), the power conversion efficiency is found to amount to 5.63%, making it a promising candidate to replace Pt CE (6.72%). Such calcined SURMOFs carry huge potential for fabricating electronic and photovoltaic devices.
A novel van der Waals epitaxial growth method for growing oriented and highly homogeneous 2D metal–porphyrin framework thin films is reported. After thermal treatment, the compact and homogeneous zinc [5,10,15,20‐(4‐carboxyphenyl) porphyrin (ZnTCPP) derived thin film zinc [5,10,15,20‐(4‐carboxyphenyl) porphyrin after calcination (ZnTCPP‐C) as counter electrode in dye‐sensitized solar cells exhibits remarkable power conversion efficiency. Such thin films carry huge potential for fabricating electronic and photovoltaic devices. |
---|---|
AbstractList | In this work, monolithic, crystalline, porous, and oriented porphyrin thin films are grown using a novel van der Waals layer‐by‐layer (lbl) epitaxial growth protocol, yielding an unusual AB‐stacking motif of these interesting macrocycles units. Subsequently, these surface‐mounted metal‐organic frameworks (SURMOFs) are transformed by thermal treatment to yield well‐performing counter electrodes (CEs) for dye‐sensitized solar cells. During this calcination, the heterocyclic macrocycles are metalated, yielding compact, homogeneous, and very stable metalloporphyrin thin films (ZnTCPP‐C) with excellent CE performance. For thin films fabricated using three lbl cycles (thickness ≈17 nm), the power conversion efficiency is found to amount to 5.63%, making it a promising candidate to replace Pt CE (6.72%). Such calcined SURMOFs carry huge potential for fabricating electronic and photovoltaic devices.
A novel van der Waals epitaxial growth method for growing oriented and highly homogeneous 2D metal–porphyrin framework thin films is reported. After thermal treatment, the compact and homogeneous zinc [5,10,15,20‐(4‐carboxyphenyl) porphyrin (ZnTCPP) derived thin film zinc [5,10,15,20‐(4‐carboxyphenyl) porphyrin after calcination (ZnTCPP‐C) as counter electrode in dye‐sensitized solar cells exhibits remarkable power conversion efficiency. Such thin films carry huge potential for fabricating electronic and photovoltaic devices. In this work, monolithic, crystalline, porous, and oriented porphyrin thin films are grown using a novel van der Waals layer‐by‐layer (lbl) epitaxial growth protocol, yielding an unusual AB‐stacking motif of these interesting macrocycles units. Subsequently, these surface‐mounted metal‐organic frameworks (SURMOFs) are transformed by thermal treatment to yield well‐performing counter electrodes (CEs) for dye‐sensitized solar cells. During this calcination, the heterocyclic macrocycles are metalated, yielding compact, homogeneous, and very stable metalloporphyrin thin films (ZnTCPP‐C) with excellent CE performance. For thin films fabricated using three lbl cycles (thickness ≈17 nm), the power conversion efficiency is found to amount to 5.63%, making it a promising candidate to replace Pt CE (6.72%). Such calcined SURMOFs carry huge potential for fabricating electronic and photovoltaic devices. Abstract In this work, monolithic, crystalline, porous, and oriented porphyrin thin films are grown using a novel van der Waals layer‐by‐layer (lbl) epitaxial growth protocol, yielding an unusual AB‐stacking motif of these interesting macrocycles units. Subsequently, these surface‐mounted metal‐organic frameworks (SURMOFs) are transformed by thermal treatment to yield well‐performing counter electrodes (CEs) for dye‐sensitized solar cells. During this calcination, the heterocyclic macrocycles are metalated, yielding compact, homogeneous, and very stable metalloporphyrin thin films (ZnTCPP‐C) with excellent CE performance. For thin films fabricated using three lbl cycles (thickness ≈17 nm), the power conversion efficiency is found to amount to 5.63%, making it a promising candidate to replace Pt CE (6.72%). Such calcined SURMOFs carry huge potential for fabricating electronic and photovoltaic devices. |
Author | Wöll, Christof Haldar, Ritesh Gu, Zhi‐Gang Wang, Yan‐Yue Zhang, Jian Chen, Shu‐Mei |
Author_xml | – sequence: 1 givenname: Yan‐Yue surname: Wang fullname: Wang, Yan‐Yue organization: Fuzhou University – sequence: 2 givenname: Shu‐Mei surname: Chen fullname: Chen, Shu‐Mei organization: Fuzhou University – sequence: 3 givenname: Ritesh surname: Haldar fullname: Haldar, Ritesh organization: Karlsruhe Institute of Technology (KIT) – sequence: 4 givenname: Christof surname: Wöll fullname: Wöll, Christof email: christof.woell@kit.edu organization: Karlsruhe Institute of Technology (KIT) – sequence: 5 givenname: Zhi‐Gang orcidid: 0000-0001-6538-2917 surname: Gu fullname: Gu, Zhi‐Gang email: zggu@fjirsm.ac.cn organization: Chinese Academy of Sciences – sequence: 6 givenname: Jian surname: Zhang fullname: Zhang, Jian email: zhj@fjirsm.ac.cn organization: Chinese Academy of Sciences |
BookMark | eNqFkM1OwkAUhScGExHZup7EdXFm-jddEopIAtEEjMtm2t6GwbZTZwpYVzyCiW_Ik1iCUXeu7s0959yTfJeoU6oSELqmZEAJYbciLeSAEcoJCbh7hrqMBp7l2y7p_NkvUN-YNSGEUkYZt7uo3ooSp6DxsxC5weNK1uJNihxPtNrVK6wyzEI8h1rkh_3no9LVqtGyxHdaFLBT-gWHoOUWUrxcHc8yLwzOlMZhA4f9xwJKI2v53uoLlQuNR5Dn5gqdZ20b9L9nDz3djZeje2v2MJmOhjMrsbntWk4qHOCx4zEKwot9R7g0phy4R5zASTwBnNlpwgOaMCayzHVdnhJi-yJhiR-ndg_dnP5WWr1uwNTRWm102VZGjNotA89z_NY1OLkSrYzRkEWVloXQTURJdIQbHeFGP3DbQHAK7GQOzT_uaBjOp7_ZLzGhgWc |
CitedBy_id | crossref_primary_10_1021_jacs_1c13610 crossref_primary_10_1016_j_talanta_2024_125779 crossref_primary_10_1021_acsami_2c07686 crossref_primary_10_1039_D0NR03115A crossref_primary_10_1039_C9CS00594C crossref_primary_10_1021_acsami_9b19022 crossref_primary_10_1016_j_matchemphys_2020_123109 crossref_primary_10_1038_s41467_023_38492_8 crossref_primary_10_1021_acs_inorgchem_3c04030 crossref_primary_10_1016_j_cis_2023_102967 crossref_primary_10_1002_adfm_201907625 crossref_primary_10_1039_D0TA06052F crossref_primary_10_1021_acs_langmuir_8b03236 crossref_primary_10_1002_chem_202400350 crossref_primary_10_1002_sstr_202200150 crossref_primary_10_1021_acsami_1c05234 crossref_primary_10_1016_j_mcat_2023_113470 crossref_primary_10_1016_j_apmt_2024_102153 crossref_primary_10_1002_pi_6120 crossref_primary_10_1016_j_jelechem_2021_115055 crossref_primary_10_1021_acsaelm_3c01237 crossref_primary_10_1063_5_0135019 crossref_primary_10_1021_acs_jpcb_1c07261 crossref_primary_10_1016_j_jallcom_2019_152817 crossref_primary_10_1021_jacs_4c04125 crossref_primary_10_1134_S1061933X21050094 crossref_primary_10_1021_acsanm_3c03983 crossref_primary_10_1016_j_apsusc_2021_152080 crossref_primary_10_1016_j_enchem_2021_100065 crossref_primary_10_1002_adfm_201908004 crossref_primary_10_1016_j_ensm_2022_06_005 crossref_primary_10_1039_D3TA04970A crossref_primary_10_1021_acsami_3c11698 crossref_primary_10_1063_1_5110895 crossref_primary_10_1021_acs_jpcc_2c04632 |
Cites_doi | 10.1002/adma.201403951 10.1021/jacs.7b07921 10.1021/jacs.5b00076 10.1021/ja505589d 10.1039/C7CS00315C 10.1002/adma.201502537 10.1021/ic801677y 10.1002/adma.201700102 10.1021/nn101319x 10.1038/ncomms5562 10.1021/acs.accounts.6b00255 10.1002/adma.201402056 10.1016/j.rser.2015.07.076 10.1002/anie.201502277 10.1002/anie.201503741 10.1002/anie.201705399 10.1021/ja204339e 10.1039/C7TA06580A 10.1038/ncomms14442 10.1021/ja4078705 10.1021/jacs.7b13069 10.1021/jacs.6b00007 10.1038/ncomms2547 10.1039/c0cs00147c 10.1039/C6NJ03202H 10.1016/j.apsusc.2017.10.206 10.1002/anie.201104240 10.1021/ar040173j 10.1021/ja2037996 10.1021/jacs.6b01093 10.1016/j.ccr.2004.05.030 10.1021/acsami.6b09196 10.1039/c2cs35310e 10.1038/nchem.2536 10.1002/aenm.201602276 10.1038/nchem.2430 10.1021/acsami.6b10340 10.1002/adma.201800124 10.1021/jacs.5b08860 10.1002/anie.201511484 10.1021/jacs.6b03263 10.1002/anie.201501862 10.1038/srep06983 10.1002/adma.201503648 10.1021/jacs.7b09553 10.1038/nchem.2469 |
ContentType | Journal Article |
Copyright | 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | AAYXX CITATION 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1002/admi.201800985 |
DatabaseName | CrossRef Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | Materials Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 2196-7350 |
EndPage | n/a |
ExternalDocumentID | 10_1002_admi_201800985 ADMI201800985 |
Genre | article |
GrantInformation_xml | – fundername: Strategic Priority Research Program of the Chinese Academy of Sciences funderid: XDB20000000 – fundername: German DFG funderid: SPP 1928 – fundername: NSFC funderid: 21872148; 21521061; 21425102; 21601189 – fundername: NSFC of Fujian province funderid: 2016J01085 – fundername: Youth Innovation Promotion Association CAS |
GroupedDBID | 0R~ 1OC 24P 33P AAESR AAHHS AAIHA AAXRX AAZKR ABCUV ACAHQ ACCFJ ACCZN ACGFS ACPOU ACXBN ACXQS ADBBV ADKYN ADOZA ADXAS ADZMN ADZOD AEEZP AENEX AEQDE AFBPY AIACR AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AMYDB ARCSS AVUZU AZVAB BMXJE BRXPI DCZOG DPXWK EBS EJD G-S GODZA LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MY~ M~E O9- P2W R.K ROL SUPJJ WBKPD WOHZO WXSBR WYJ ZZTAW AAYXX ABJCF AFKRA ARAPS BENPR BFHJK BGLVJ CCPQU CITATION GROUPED_DOAJ HCIFZ KB. M7S PDBOC PTHSS 7SR 7U5 8BQ 8FD JG9 L7M |
ID | FETCH-LOGICAL-c3835-4da4e8b4621ea6b74a51b18e860494c6ae823dc891c22aff5558d0037ac2c7bd3 |
ISSN | 2196-7350 |
IngestDate | Thu Oct 10 22:41:34 EDT 2024 Thu Sep 12 16:58:07 EDT 2024 Sat Aug 24 01:04:46 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 21 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c3835-4da4e8b4621ea6b74a51b18e860494c6ae823dc891c22aff5558d0037ac2c7bd3 |
ORCID | 0000-0001-6538-2917 |
PQID | 2131126647 |
PQPubID | 2034582 |
PageCount | 8 |
ParticipantIDs | proquest_journals_2131126647 crossref_primary_10_1002_admi_201800985 wiley_primary_10_1002_admi_201800985_ADMI201800985 |
PublicationCentury | 2000 |
PublicationDate | November 9, 2018 |
PublicationDateYYYYMMDD | 2018-11-09 |
PublicationDate_xml | – month: 11 year: 2018 text: November 9, 2018 day: 09 |
PublicationDecade | 2010 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Advanced materials interfaces |
PublicationYear | 2018 |
Publisher | John Wiley & Sons, Inc |
Publisher_xml | – name: John Wiley & Sons, Inc |
References | 2017; 5 2017; 7 2017; 8 2017; 41 2004; 248 2013; 4 2018; 140 2015; 52 2013; 42 2017; 46 2011; 40 2015; 54 2014; 26 2017; 29 2014; 136 2011; 133 2009; 48 2017; 139 2016; 55 2012; 51 2014; 5 2014; 4 2015; 27 2015; 137 2018; 434 2017; 56 2018 2013; 135 2018; 30 2016; 138 2005; 38 2016; 49 2010; 4 2016; 8 e_1_2_7_6_1 e_1_2_7_5_1 e_1_2_7_4_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_8_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_18_1 e_1_2_7_17_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_15_1 e_1_2_7_1_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_27_1 e_1_2_7_28_1 e_1_2_7_29_1 Gu Z. G. (e_1_2_7_41_1) 2018 e_1_2_7_30_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_37_1 e_1_2_7_38_1 e_1_2_7_39_1 |
References_xml | – volume: 138 start-page: 5299 year: 2016 publication-title: J. Am. Chem. Soc. – volume: 46 start-page: 5730 year: 2017 publication-title: Chem. Soc. Rev. – volume: 55 start-page: 5472 year: 2016 publication-title: Angew. Chem., Int. Ed. – volume: 8 start-page: 31403 year: 2016 publication-title: ACS Appl. Mater. Interfaces – volume: 49 start-page: 1769 year: 2016 publication-title: Acc. Chem. Res. – volume: 56 start-page: 9146 year: 2017 publication-title: Angew. Chem., Int. Ed. – volume: 140 start-page: 4035 year: 2018 publication-title: J. Am. Chem. Soc. – volume: 5 start-page: 20126 year: 2017 publication-title: J. Mater. Chem. A – volume: 4 start-page: 1444 year: 2013 publication-title: Nat. Commun. – volume: 26 start-page: 8101 year: 2014 publication-title: Adv. Mater. – volume: 8 start-page: 377 year: 2016 publication-title: Nat. Chem. – volume: 5 start-page: 4562 year: 2014 publication-title: Nat. Commun. – volume: 38 start-page: 283 year: 2005 publication-title: Acc. Chem. Res. – volume: 4 start-page: 6377 year: 2010 publication-title: ACS Nano – volume: 54 start-page: 11616 year: 2015 publication-title: Angew. Chem., Int. Ed. – volume: 137 start-page: 13183 year: 2015 publication-title: J. Am. Chem. Soc. – volume: 26 start-page: 6210 year: 2014 publication-title: Adv. Mater. – volume: 133 start-page: 16322 year: 2011 publication-title: J. Am. Chem. Soc. – volume: 137 start-page: 2235 year: 2015 publication-title: J. Am. Chem. Soc. – year: 2018 publication-title: Coord. Chem. Rev. – volume: 41 start-page: 948 year: 2017 publication-title: New J. Chem. – volume: 139 start-page: 18590 year: 2017 publication-title: J. Am. Chem. Soc. – volume: 138 start-page: 6636 year: 2016 publication-title: J. Am. Chem. Soc. – volume: 136 start-page: 11886 year: 2014 publication-title: J. Am. Chem. Soc. – volume: 135 start-page: 15698 year: 2013 publication-title: J. Am. Chem. Soc. – volume: 248 start-page: 1511 year: 2004 publication-title: Coord. Chem. Rev. – volume: 27 start-page: 7229 year: 2015 publication-title: Adv. Mater. – volume: 4 start-page: 6983 year: 2014 publication-title: Sci. Rep. – volume: 8 start-page: 14442 year: 2017 publication-title: Nat Commun. – volume: 52 start-page: 54 year: 2015 publication-title: Renewable Sustainable Energy Rev. – volume: 40 start-page: 1081 year: 2011 publication-title: Chem. Soc. Rev. – volume: 139 start-page: 13936 year: 2017 publication-title: J. Am. Chem. Soc. – volume: 8 start-page: 27332 year: 2016 publication-title: ACS Appl. Mater. Interfaces – volume: 29 start-page: 1700102 year: 2017 publication-title: Adv. Mater. – volume: 7 start-page: 1602276 year: 2017 publication-title: Adv. Energy Mater. – volume: 54 start-page: 7441 year: 2015 publication-title: Angew. Chem., Int. Ed. – volume: 138 start-page: 3518 year: 2016 publication-title: J. Am. Chem. Soc. – volume: 27 start-page: 7372 year: 2015 publication-title: Adv. Mater. – volume: 54 start-page: 9001 year: 2015 publication-title: Angew. Chem., Int. Ed. – volume: 48 start-page: 426 year: 2009 publication-title: Inorg. Chem. – volume: 51 start-page: 807 year: 2012 publication-title: Angew. Chem., Int. Ed. – volume: 8 start-page: 845 year: 2016 publication-title: Nat. Chem. – volume: 133 start-page: 8158 year: 2011 publication-title: J. Am. Chem. Soc. – volume: 434 start-page: 756 year: 2018 publication-title: Appl. Surf. Sci. – volume: 8 start-page: 250 year: 2016 publication-title: Nat. Chem. – volume: 30 start-page: 1800124 year: 2018 publication-title: Adv. Mater. – volume: 42 start-page: 2986 year: 2013 publication-title: Chem. Soc. Rev. – ident: e_1_2_7_3_1 doi: 10.1002/adma.201403951 – ident: e_1_2_7_10_1 doi: 10.1021/jacs.7b07921 – ident: e_1_2_7_28_1 doi: 10.1021/jacs.5b00076 – ident: e_1_2_7_30_1 doi: 10.1021/ja505589d – ident: e_1_2_7_23_1 doi: 10.1039/C7CS00315C – ident: e_1_2_7_29_1 doi: 10.1002/adma.201502537 – ident: e_1_2_7_37_1 doi: 10.1021/ic801677y – ident: e_1_2_7_39_1 doi: 10.1002/adma.201700102 – ident: e_1_2_7_5_1 doi: 10.1021/nn101319x – ident: e_1_2_7_25_1 doi: 10.1038/ncomms5562 – ident: e_1_2_7_1_1 doi: 10.1021/acs.accounts.6b00255 – ident: e_1_2_7_8_1 doi: 10.1002/adma.201402056 – ident: e_1_2_7_4_1 doi: 10.1016/j.rser.2015.07.076 – ident: e_1_2_7_12_1 doi: 10.1002/anie.201502277 – ident: e_1_2_7_18_1 doi: 10.1002/anie.201503741 – ident: e_1_2_7_9_1 doi: 10.1002/anie.201705399 – ident: e_1_2_7_31_1 doi: 10.1021/ja204339e – ident: e_1_2_7_44_1 doi: 10.1039/C7TA06580A – ident: e_1_2_7_22_1 doi: 10.1038/ncomms14442 – ident: e_1_2_7_36_1 doi: 10.1021/ja4078705 – ident: e_1_2_7_20_1 doi: 10.1021/jacs.7b13069 – ident: e_1_2_7_32_1 doi: 10.1021/jacs.6b00007 – year: 2018 ident: e_1_2_7_41_1 publication-title: Coord. Chem. Rev. contributor: fullname: Gu Z. G. – ident: e_1_2_7_47_1 doi: 10.1038/ncomms2547 – ident: e_1_2_7_24_1 doi: 10.1039/c0cs00147c – ident: e_1_2_7_40_1 doi: 10.1039/C6NJ03202H – ident: e_1_2_7_45_1 doi: 10.1016/j.apsusc.2017.10.206 – ident: e_1_2_7_43_1 doi: 10.1002/anie.201104240 – ident: e_1_2_7_33_1 doi: 10.1021/ar040173j – ident: e_1_2_7_35_1 doi: 10.1021/ja2037996 – ident: e_1_2_7_16_1 doi: 10.1021/jacs.6b01093 – ident: e_1_2_7_46_1 doi: 10.1016/j.ccr.2004.05.030 – ident: e_1_2_7_42_1 doi: 10.1021/acsami.6b09196 – ident: e_1_2_7_2_1 doi: 10.1039/c2cs35310e – ident: e_1_2_7_7_1 doi: 10.1038/nchem.2536 – ident: e_1_2_7_6_1 doi: 10.1002/aenm.201602276 – ident: e_1_2_7_13_1 doi: 10.1038/nchem.2430 – ident: e_1_2_7_34_1 doi: 10.1021/acsami.6b10340 – ident: e_1_2_7_17_1 doi: 10.1002/adma.201800124 – ident: e_1_2_7_27_1 doi: 10.1021/jacs.5b08860 – ident: e_1_2_7_11_1 doi: 10.1002/anie.201511484 – ident: e_1_2_7_26_1 doi: 10.1021/jacs.6b03263 – ident: e_1_2_7_14_1 doi: 10.1002/anie.201501862 – ident: e_1_2_7_15_1 doi: 10.1038/srep06983 – ident: e_1_2_7_38_1 doi: 10.1002/adma.201503648 – ident: e_1_2_7_19_1 doi: 10.1021/jacs.7b09553 – ident: e_1_2_7_21_1 doi: 10.1038/nchem.2469 |
SSID | ssj0001121283 |
Score | 2.3386817 |
Snippet | In this work, monolithic, crystalline, porous, and oriented porphyrin thin films are grown using a novel van der Waals layer‐by‐layer (lbl) epitaxial growth... Abstract In this work, monolithic, crystalline, porous, and oriented porphyrin thin films are grown using a novel van der Waals layer‐by‐layer (lbl) epitaxial... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Publisher |
SubjectTerms | 2D materials Dye-sensitized solar cells Dyes Electronic devices Energy conversion efficiency Epitaxial growth Heat treatment metal‐organic frameworks Photovoltaic cells Roasting Thin films van der Waals epitaxial growth |
Title | van der Waals Epitaxial Growth of 2D Metal–Porphyrin Framework Derived Thin Films for Dye‐Sensitized Solar Cells |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadmi.201800985 https://www.proquest.com/docview/2131126647 |
Volume | 5 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dbtMwFLbKJiRuEL-ibCBfIHFRZSzOby9LuzGQipC2so2byH_RInXp1KYS7GqPgMRT8Fp7Es6xE6eDSgxuotSR3dTn6_Fn-5zPhLzKOZB2JROPcyG8sK-0lwrFvTRQcjfuB3loslzHH-ODSfjhJDrpdH6uRC0tK7EjL9fmlfyPVaEM7IpZsv9gWdcoFMA92BeuYGG43srGmHuEWhDHHEWQ9_AAkK-4Av4O5tbVGfJANuqNNfDrJqYh-DTDjp0XJVJWG5YFPmcOPk-ZMzx7-8XUajT0Rt-0C4U4xDj3qrhEeoqT4d5QT6eLVWY7aIIJgALb326kKOY5xny1y_bWtZzy0jV9unTYGtapIodnS_d4rIvWS05VHQ8ORHnhFrKPcbf_bWw3UGq1hHx1OcNPTV5fv_V64EFjLwmsGu2OXlNWu-1oBZ02yfqP0cCqy3J1XmAMX4raqVE77jV7_b8Nhy5I0Qo6swzrZ67-HbLJwKeBM90cfJ58mbQLej6wACP76l63EQndZW9uvsRNEtTObFbnR4bgHD0g9-uZCR1YmD0kHV0-IndNhLBcPCYVmJcC2KgBG3VgoxZsdJZTNqIGbNdXPxzMqIMZrWFGEWbUwIwCzCjA7PrqewswagBGDcCekMn-3tHwwKuP7PBkAFzeCxUPdSrCmPmaxyIJeeQLP9VpjDpEMuY6ZeAF0r4vGeN5jmpzCjWQuGQyESp4SjbKWamfESqhQiAj7TPwJ2EYi5znTKBipOC-YFGXvG76MLuwyizZepN1yXbTxVn9711kDHWmgJ2GSZcw0-1_aSUbjMbv3afnt_72LXKvxfk22ajmS_0CiGwlXtYQ-gXkkJl1 |
link.rule.ids | 315,783,787,27936,27937,50826,50935 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JSgNBEC00InoRV4xG7YPgaTDTs-YYshiXiKBR8TL0NhjIIsko6imfIPiHfolVk0yiJ8HjzNB9qKX7VU3VK4DDWCBo1yqwhJDSckvaWKHUwgodrYp-yYndtMu1eek3Wu7ZvZdVE1IvzJgfYppwI89Iz2tycEpIH89YQ4Xutqk2KyROTG8eFjz6qZeDhfJt66E1S7TYeDqndJzonL4VOF4xI28s8uPfm_y-nGaI8yduTS-e-iqsTBAjK49VvAZzprcOi2nlphpuQIJQmGkzYHcCLYnVaArIKxoVO8EAO3lk_ZjxKmsaBNlfo8-rPsl10O6xelaVxapohC9GMxrhyertTnfIEMmy6pv5Gn1cU4F70n7H79cUBbOK6XSGm9Cq124qDWsySsFSGIJ6lquFa0Lp-tw2wpeBKzxb2qEJfeKHUb4wIUfthCVbcS7imFjANHHTCMVVILWzBblev2e2gSlc4CjP2Bz1jMGkjEXMJTH5SWFL7uXhKJNh9DRmzIjG3Mg8ImlHU2nnoZCJOJp4zjDixP-DqMEN8sBTsf-xS1SuNk-nTzv_WXQAS42b5kV0cXp5vgvL9D5tNywVIJcMns0e4o5E7k8s6xtbMNGV |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEN4oROPF-Iwo6h5MPDXQ7ZMjoVRQISSIEi_NvhpJeAWqUU_8BBP_Ib_E2ZYCnkw8dpvdw7czu99sZr5B6CqkQNoFdzRKGdPMkpCaywTVXEPwol0yQjOucm007VrHvO1a3bUq_kQfYvngpjwjPq-Vg49FWFiJhlIx6KnULFdJYlqbKAtUg4CNZ8uPnefO6p1Fh8M5VuME37Q1x7CKqXZjkRR-L_L7bloRznXaGt87_h7aXRBGXE52eB9tyOEB2ooTN_n0EEXAhLGQE_xEwZBwVTUBeQebwjcQX0cveBRi4uGGBI49n323RgrWSW-I_TQpC3tgg29SYNXBE_u9_mCKgchi70POZ19tld8e9T7hf1sFwbgi-_3pEer41YdKTVt0UtA4RKCWZgpqSpeZNtEltZljUktnuitdW8nDcJtKl8DmuCWdE0LDUImACSVNQznhDhPGMcoMR0N5gjCHCQa3pE5gmyGWZCENCVNCfozqjFg5dJ1iGIwTwYwgkUYmgUI7WKKdQ_kU4mDhONOAKPkfIA2mk0Mkhv2PVYKy16gvv07_M-kSbbc8P7ivN-_O0I4ajosNS3mUiSav8hxYR8QuFob1AzK70L4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=van+der+Waals+Epitaxial+Growth+of+2D+Metal%E2%80%93Porphyrin+Framework+Derived+Thin+Films+for+Dye%E2%80%90Sensitized+Solar+Cells&rft.jtitle=Advanced+materials+interfaces&rft.au=Wang%2C+Yan%E2%80%90Yue&rft.au=Chen%2C+Shu%E2%80%90Mei&rft.au=Haldar%2C+Ritesh&rft.au=W%C3%B6ll%2C+Christof&rft.date=2018-11-09&rft.issn=2196-7350&rft.eissn=2196-7350&rft.volume=5&rft.issue=21&rft_id=info:doi/10.1002%2Fadmi.201800985&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_admi_201800985 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2196-7350&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2196-7350&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2196-7350&client=summon |