Fluid–structure interaction analysis of a healthy aortic valve and its surrounding haemodynamics
The opening and closing dynamics of the aortic valve (AV) has a strong influence on haemodynamics in the aortic root, and both play a pivotal role in maintaining normal physiological functions of the valve. The aim of this study was to establish a subject‐specific fluid–structure interaction (FSI) w...
Saved in:
Published in | International journal for numerical methods in biomedical engineering Vol. 40; no. 11; pp. e3865 - n/a |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken, USA
John Wiley & Sons, Inc
01.11.2024
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The opening and closing dynamics of the aortic valve (AV) has a strong influence on haemodynamics in the aortic root, and both play a pivotal role in maintaining normal physiological functions of the valve. The aim of this study was to establish a subject‐specific fluid–structure interaction (FSI) workflow capable of simulating the motion of a tricuspid healthy valve and the surrounding haemodynamics under physiologically realistic conditions. A subject‐specific aortic root was reconstructed from magnetic resonance (MR) images acquired from a healthy volunteer, whilst the valve leaflets were built using a parametric model fitted to the subject‐specific aortic root geometry. The material behaviour of the leaflets was described using the isotropic hyperelastic Ogden model, and subject‐specific boundary conditions were derived from 4D‐flow MR imaging (4D‐MRI). Strongly coupled FSI simulations were performed using a finite volume‐based boundary conforming method implemented in FlowVision. Our FSI model was able to simulate the opening and closing of the AV throughout the entire cardiac cycle. Comparisons of simulation results with 4D‐MRI showed a good agreement in key haemodynamic parameters, with stroke volume differing by 7.5% and the maximum jet velocity differing by less than 1%. Detailed analysis of wall shear stress (WSS) on the leaflets revealed much higher WSS on the ventricular side than the aortic side and different spatial patterns amongst the three leaflets.
This study established a subject‐specific fluid–structure interaction (FSI) workflow capable of simulating the motion of a tricuspid healthy valve and the surrounding haemodynamics under physiologically realistic conditions. Comparisons of simulation results with 4D‐MRI showed a good agreement in key haemodynamic parameters. Detailed analysis of wall shear stress (WSS) on the leaflets revealed much higher WSS on the ventricular side than the aortic side and different spatial patterns amongst the three leaflets. |
---|---|
AbstractList | The opening and closing dynamics of the aortic valve (AV) has a strong influence on haemodynamics in the aortic root, and both play a pivotal role in maintaining normal physiological functions of the valve. The aim of this study was to establish a subject‐specific fluid–structure interaction (FSI) workflow capable of simulating the motion of a tricuspid healthy valve and the surrounding haemodynamics under physiologically realistic conditions. A subject‐specific aortic root was reconstructed from magnetic resonance (MR) images acquired from a healthy volunteer, whilst the valve leaflets were built using a parametric model fitted to the subject‐specific aortic root geometry. The material behaviour of the leaflets was described using the isotropic hyperelastic Ogden model, and subject‐specific boundary conditions were derived from 4D‐flow MR imaging (4D‐MRI). Strongly coupled FSI simulations were performed using a finite volume‐based boundary conforming method implemented in FlowVision. Our FSI model was able to simulate the opening and closing of the AV throughout the entire cardiac cycle. Comparisons of simulation results with 4D‐MRI showed a good agreement in key haemodynamic parameters, with stroke volume differing by 7.5% and the maximum jet velocity differing by less than 1%. Detailed analysis of wall shear stress (WSS) on the leaflets revealed much higher WSS on the ventricular side than the aortic side and different spatial patterns amongst the three leaflets. The opening and closing dynamics of the aortic valve (AV) has a strong influence on haemodynamics in the aortic root, and both play a pivotal role in maintaining normal physiological functions of the valve. The aim of this study was to establish a subject‐specific fluid–structure interaction (FSI) workflow capable of simulating the motion of a tricuspid healthy valve and the surrounding haemodynamics under physiologically realistic conditions. A subject‐specific aortic root was reconstructed from magnetic resonance (MR) images acquired from a healthy volunteer, whilst the valve leaflets were built using a parametric model fitted to the subject‐specific aortic root geometry. The material behaviour of the leaflets was described using the isotropic hyperelastic Ogden model, and subject‐specific boundary conditions were derived from 4D‐flow MR imaging (4D‐MRI). Strongly coupled FSI simulations were performed using a finite volume‐based boundary conforming method implemented in FlowVision. Our FSI model was able to simulate the opening and closing of the AV throughout the entire cardiac cycle. Comparisons of simulation results with 4D‐MRI showed a good agreement in key haemodynamic parameters, with stroke volume differing by 7.5% and the maximum jet velocity differing by less than 1%. Detailed analysis of wall shear stress (WSS) on the leaflets revealed much higher WSS on the ventricular side than the aortic side and different spatial patterns amongst the three leaflets. This study established a subject‐specific fluid–structure interaction (FSI) workflow capable of simulating the motion of a tricuspid healthy valve and the surrounding haemodynamics under physiologically realistic conditions. Comparisons of simulation results with 4D‐MRI showed a good agreement in key haemodynamic parameters. Detailed analysis of wall shear stress (WSS) on the leaflets revealed much higher WSS on the ventricular side than the aortic side and different spatial patterns amongst the three leaflets. The opening and closing dynamics of the aortic valve (AV) has a strong influence on haemodynamics in the aortic root, and both play a pivotal role in maintaining normal physiological functions of the valve. The aim of this study was to establish a subject-specific fluid-structure interaction (FSI) workflow capable of simulating the motion of a tricuspid healthy valve and the surrounding haemodynamics under physiologically realistic conditions. A subject-specific aortic root was reconstructed from magnetic resonance (MR) images acquired from a healthy volunteer, whilst the valve leaflets were built using a parametric model fitted to the subject-specific aortic root geometry. The material behaviour of the leaflets was described using the isotropic hyperelastic Ogden model, and subject-specific boundary conditions were derived from 4D-flow MR imaging (4D-MRI). Strongly coupled FSI simulations were performed using a finite volume-based boundary conforming method implemented in FlowVision. Our FSI model was able to simulate the opening and closing of the AV throughout the entire cardiac cycle. Comparisons of simulation results with 4D-MRI showed a good agreement in key haemodynamic parameters, with stroke volume differing by 7.5% and the maximum jet velocity differing by less than 1%. Detailed analysis of wall shear stress (WSS) on the leaflets revealed much higher WSS on the ventricular side than the aortic side and different spatial patterns amongst the three leaflets.The opening and closing dynamics of the aortic valve (AV) has a strong influence on haemodynamics in the aortic root, and both play a pivotal role in maintaining normal physiological functions of the valve. The aim of this study was to establish a subject-specific fluid-structure interaction (FSI) workflow capable of simulating the motion of a tricuspid healthy valve and the surrounding haemodynamics under physiologically realistic conditions. A subject-specific aortic root was reconstructed from magnetic resonance (MR) images acquired from a healthy volunteer, whilst the valve leaflets were built using a parametric model fitted to the subject-specific aortic root geometry. The material behaviour of the leaflets was described using the isotropic hyperelastic Ogden model, and subject-specific boundary conditions were derived from 4D-flow MR imaging (4D-MRI). Strongly coupled FSI simulations were performed using a finite volume-based boundary conforming method implemented in FlowVision. Our FSI model was able to simulate the opening and closing of the AV throughout the entire cardiac cycle. Comparisons of simulation results with 4D-MRI showed a good agreement in key haemodynamic parameters, with stroke volume differing by 7.5% and the maximum jet velocity differing by less than 1%. Detailed analysis of wall shear stress (WSS) on the leaflets revealed much higher WSS on the ventricular side than the aortic side and different spatial patterns amongst the three leaflets. |
Author | Armour, Chlöe Bahrami, Toufan Yin, Zhongjie Mirsadraee, Saeed Xu, Xiao Yun Pirola, Selene Kandail, Harkamaljot O'Regan, Declan P. |
Author_xml | – sequence: 1 givenname: Zhongjie surname: Yin fullname: Yin, Zhongjie organization: Imperial College London – sequence: 2 givenname: Chlöe surname: Armour fullname: Armour, Chlöe organization: National Heart and Lung Institute, Imperial College London – sequence: 3 givenname: Harkamaljot surname: Kandail fullname: Kandail, Harkamaljot organization: Medtronic Neurovascular – sequence: 4 givenname: Declan P. surname: O'Regan fullname: O'Regan, Declan P. organization: Imperial College London – sequence: 5 givenname: Toufan surname: Bahrami fullname: Bahrami, Toufan organization: Royal Brompton and Harefield Hospitals NHS Trust – sequence: 6 givenname: Saeed surname: Mirsadraee fullname: Mirsadraee, Saeed organization: Royal Brompton and Harefield Hospitals NHS Trust – sequence: 7 givenname: Selene orcidid: 0000-0003-4368-3940 surname: Pirola fullname: Pirola, Selene email: s.pirola@tudelft.nl organization: TU Delft – sequence: 8 givenname: Xiao Yun orcidid: 0000-0002-8267-621X surname: Xu fullname: Xu, Xiao Yun email: yun.xu@imperial.ac.uk organization: Imperial College London |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39209425$$D View this record in MEDLINE/PubMed |
BookMark | eNp10UtuFDEQBmALBZEQInECZIkNmx786JeXaEQCUoANrK2y22Ycue3gR1DvuAM35CTpYZIgIfCmvPhcKtf_FB2FGAxCzynZUELYax3mDR_77hE6YaQlzSDa4ejhzsUxOsv5iqyHCSEG_gQdc8GIaFl3gtS5r2769eNnLqnqUpPBLhSTQBcXA4YAfsku42gx4J0BX3YLhpiK0_gG_I1ZyYRdyTjXlGINkwtf8Q7MHKclwOx0foYeW_DZnN3VU_Tl_O3n7bvm8tPF--2by0bzkXcNs5pxQ0c2atUqpolVajRqJK3qQWuiwCoGljHKO8ssdMr0fc9bQSkQMQ38FL069L1O8Vs1ucjZZW28h2BizZITIUZCxUBW-vIvehVrWv-6Kso60hNOxape3KmqZjPJ6-RmSIu8394KNgegU8w5GSu1K7BfXEngvKRE7hOSa0Jyn9CfER8e3Pf8B20O9LvzZvmvk9uPH377W816oLQ |
CitedBy_id | crossref_primary_10_1016_j_cmpb_2025_108598 |
Cites_doi | 10.3390/math11020428 10.1007/s10237-020-01304-9 10.1007/978-3-030-91103-4_11 10.1016/j.jmbbm.2018.06.032 10.1016/j.jbiomech.2012.07.017 10.1007/s10237-021-01429-5 10.1007/s13239-016-0285-7 10.1016/j.jbiomech.2010.08.010 10.1002/cnm.2598 10.1007/s00466-014-1059-4 10.1007/s10237-023-01695-5 10.1007/s10439-021-02877-x 10.3390/fluids6060203 10.1016/j.compbiomed.2024.108191 10.1007/s11517-020-02138-4 10.3390/fluids6080287 10.1007/s13239-021-00536-9 10.1161/CIRCULATIONAHA.107.760124 10.1002/cnm.2827 10.1002/jbm.a.34099 10.1016/j.jbiomech.2018.07.018 10.1098/rsif.2005.0073 10.1146/annurev-bioeng-100219-110055 10.1007/s11517-008-0359-2 10.1016/j.cmpb.2024.108270 10.3389/fcvm.2020.593709 10.1007/s10439-020-02575-0 10.1007/s10237-022-01684-0 10.1002/cnm.2849 10.1007/s13246-013-0230-0 10.3390/fluids4030119 10.1016/j.jbiomech.2015.10.048 10.1016/j.jtcvs.2021.06.014 10.1016/j.compbiomed.2021.105053 10.5267/j.esm.2021.1.001 10.1007/s10439-020-02571-4 10.1016/j.jfluidstructs.2018.04.009 10.1016/j.ijmecsci.2022.107410 10.1007/s13239-018-00391-1 10.1007/s10237-012-0375-x 10.1080/10255842.2016.1244266 10.3934/mbe.2022616 10.1016/j.echo.2017.10.022 10.32604/cmes.2021.014580 10.1016/j.jbiomech.2017.06.005 10.1016/j.ijcard.2013.11.034 10.3389/fphys.2021.716015 10.1016/j.medengphy.2012.04.009 10.1152/ajpheart.00037.2009 10.1371/journal.pone.0210780 10.3389/fphys.2020.577188 10.1007/s10439-022-03075-z 10.1007/s12410-016-9383-z 10.1080/10255842.2015.1058928 10.1016/j.jbiomech.2016.11.024 10.1016/j.ijcard.2021.04.051 10.1016/j.jcmg.2009.11.009 10.1098/rspa.1972.0026 10.1186/s12968-020-00608-0 10.1109/TBME.2019.2904885 10.1016/j.jcmg.2018.10.034 10.1016/j.jmbbm.2022.105577 |
ContentType | Journal Article |
Copyright | 2024 The Author(s). published by John Wiley & Sons Ltd. 2024 The Author(s). International Journal for Numerical Methods in Biomedical Engineering published by John Wiley & Sons Ltd. 2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2024 The Author(s). published by John Wiley & Sons Ltd. – notice: 2024 The Author(s). International Journal for Numerical Methods in Biomedical Engineering published by John Wiley & Sons Ltd. – notice: 2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D P64 7X8 |
DOI | 10.1002/cnm.3865 |
DatabaseName | Wiley Online Library Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Civil Engineering Abstracts Biotechnology Research Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitleList | Civil Engineering Abstracts CrossRef MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access (Activated by CARLI) url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences |
EISSN | 2040-7947 |
EndPage | n/a |
ExternalDocumentID | 39209425 10_1002_cnm_3865 CNM3865 |
Genre | researchArticle Journal Article |
GrantInformation_xml | – fundername: British Heart Foundation funderid: RE/18/4/34215 – fundername: Delft Technology Fellowship – fundername: Medical Research Council funderid: MC_UP_1605/13 – fundername: National Institute for Health Research Imperial College Biomedical Research Centre; British Heart Foundation funderid: RG/19/6/34387 – fundername: Medical Research Council grantid: MC_UP_1605/13 – fundername: National Institute for Health Research Imperial College Biomedical Research Centre; British Heart Foundation grantid: RG/19/6/34387 – fundername: British Heart Foundation grantid: RG/19/6/34387 – fundername: British Heart Foundation grantid: RE/18/4/34215 |
GroupedDBID | .3N .GA .Y3 05W 0R~ 10A 1L6 1OC 24P 31~ 33P 3SF 4.4 50Z 51W 51X 52N 52O 52P 52S 52T 52U 52W 52X 53G 66C 7PT 8-0 8-1 8-3 8-4 8-5 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCUV ABDBF ABJNI ACAHQ ACBWZ ACCFJ ACCZN ACGFO ACGFS ACIWK ACPOU ACPRK ACRPL ACUHS ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EJD ESX F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HVGLF HZ~ I-F IX1 J0M JPC KQQ LATKE LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MK~ ML~ MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 NF~ O66 O9- P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K ROL RWI SUPJJ TUS UB1 V2E W8V W99 WBKPD WIH WIK WLBEL WOHZO WRC WXSBR WYISQ XG1 XV2 ~IA ~WT 1OB AAMMB AAYXX AEFGJ AEYWJ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY CITATION CGR CUY CVF ECM EIF NPM 7QO 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D P64 7X8 |
ID | FETCH-LOGICAL-c3835-2fc23e1828cb4b2c0fbb8eb804b6acc0bafb2af22135f2fa5be66634911a09d73 |
IEDL.DBID | DR2 |
ISSN | 2040-7939 2040-7947 |
IngestDate | Tue Aug 05 09:55:16 EDT 2025 Wed Aug 13 08:58:17 EDT 2025 Mon Jul 21 05:56:00 EDT 2025 Sun Aug 24 03:22:19 EDT 2025 Thu Apr 24 23:02:36 EDT 2025 Wed Jan 22 17:13:00 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Keywords | aortic valve fluid–structure interaction haemodynamics wall shear stress |
Language | English |
License | Attribution 2024 The Author(s). International Journal for Numerical Methods in Biomedical Engineering published by John Wiley & Sons Ltd. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3835-2fc23e1828cb4b2c0fbb8eb804b6acc0bafb2af22135f2fa5be66634911a09d73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-4368-3940 0000-0002-8267-621X |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcnm.3865 |
PMID | 39209425 |
PQID | 3125060319 |
PQPubID | 2034586 |
PageCount | 17 |
ParticipantIDs | proquest_miscellaneous_3099801970 proquest_journals_3125060319 pubmed_primary_39209425 crossref_citationtrail_10_1002_cnm_3865 crossref_primary_10_1002_cnm_3865 wiley_primary_10_1002_cnm_3865_CNM3865 |
PublicationCentury | 2000 |
PublicationDate | November 2024 2024-11-00 2024-Nov 20241101 |
PublicationDateYYYYMMDD | 2024-11-01 |
PublicationDate_xml | – month: 11 year: 2024 text: November 2024 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken, USA |
PublicationPlace_xml | – name: Hoboken, USA – name: England – name: Chichester |
PublicationTitle | International journal for numerical methods in biomedical engineering |
PublicationTitleAlternate | Int J Numer Method Biomed Eng |
PublicationYear | 2024 |
Publisher | John Wiley & Sons, Inc Wiley Subscription Services, Inc |
Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley Subscription Services, Inc |
References | 2009; 47 2021; 20 2019; 12 2021; 127 2019; 14 2018; 80 2020; 58 2014; 170 2020; 11 2021; 166 2012; 11 2018; 86 2020; 19 2020; 7 2018; 9 2021; 37 2023; 22 1990 2017; 33 2000; 61 2023; 137 2008; 117 2024; 21 2010; 3 2018; 78 2019; 1‐1 2016; 49 2018; 31 2014; 54 2021; 9 2021; 49 2017; 20 2021; 6 2019; 4 2012; 100 2017; 60 2023; 11 2016; 19 2022; 51 2006; 15 2009; 297 2007 2021; 140 2005 2006; 3 1998; 377 2017; 51 2017; 50 2010; 43 2016; 7 2013; 36 2021; 12 2022 2013; 35 2020 2021; 334 2020; 1‐9 2021; 172 2024; 254 2020; 22 2022; 10 2014; 30 2012; 45 2022; 227 1972; 326 2016; 9 2023; 50 2022; 19 e_1_2_10_23_1 e_1_2_10_46_1 e_1_2_10_69_1 e_1_2_10_21_1 e_1_2_10_42_1 e_1_2_10_40_1 Holzapfel GA (e_1_2_10_73_1) 2000; 61 Jiang H (e_1_2_10_50_1) 2024; 21 Kadel S (e_1_2_10_65_1) 2020 e_1_2_10_2_1 e_1_2_10_72_1 e_1_2_10_4_1 e_1_2_10_18_1 e_1_2_10_74_1 e_1_2_10_53_1 e_1_2_10_6_1 e_1_2_10_39_1 e_1_2_10_76_1 e_1_2_10_8_1 e_1_2_10_37_1 e_1_2_10_78_1 e_1_2_10_58_1 e_1_2_10_13_1 e_1_2_10_34_1 Zienkiewicz O (e_1_2_10_44_1) 2005 e_1_2_10_11_1 e_1_2_10_32_1 e_1_2_10_30_1 e_1_2_10_51_1 Garcia D (e_1_2_10_55_1) 2006; 15 Thubrikar M (e_1_2_10_70_1) 1990 e_1_2_10_80_1 e_1_2_10_61_1 Luraghi G (e_1_2_10_16_1) 2020; 1 e_1_2_10_29_1 Raza M (e_1_2_10_38_1) 2022 e_1_2_10_63_1 e_1_2_10_25_1 e_1_2_10_48_1 e_1_2_10_67_1 e_1_2_10_24_1 e_1_2_10_45_1 e_1_2_10_22_1 e_1_2_10_20_1 Hanna L (e_1_2_10_57_1) 2022; 10 Aksenov A (e_1_2_10_41_1) 1998; 377 Ghasemi Pour MJ (e_1_2_10_14_1) 2021; 37 e_1_2_10_71_1 e_1_2_10_52_1 e_1_2_10_3_1 e_1_2_10_19_1 e_1_2_10_75_1 e_1_2_10_54_1 e_1_2_10_5_1 e_1_2_10_17_1 e_1_2_10_77_1 e_1_2_10_56_1 e_1_2_10_79_1 e_1_2_10_7_1 e_1_2_10_15_1 e_1_2_10_12_1 e_1_2_10_35_1 e_1_2_10_9_1 e_1_2_10_59_1 e_1_2_10_10_1 Vahidkhah K (e_1_2_10_27_1) 2017; 51 e_1_2_10_33_1 e_1_2_10_31_1 Cook RD (e_1_2_10_43_1) 2007 Geng Y (e_1_2_10_36_1) 2023; 50 e_1_2_10_60_1 e_1_2_10_62_1 e_1_2_10_64_1 e_1_2_10_28_1 e_1_2_10_49_1 e_1_2_10_66_1 e_1_2_10_26_1 e_1_2_10_47_1 e_1_2_10_68_1 |
References_xml | – volume: 50 start-page: 63 year: 2017 end-page: 70 article-title: Simulations of morphotype‐dependent hemodynamics in non‐dilated bicuspid aortic valve aortas publication-title: J Biomech – volume: 30 start-page: 204 issue: 2 year: 2014 end-page: 231 article-title: A systematic comparison between 1‐D and 3‐D hemodynamics in compliant arterial models publication-title: Int J Numer Method Biomed Eng – volume: 254 year: 2024 article-title: A fluid‐structure interaction simulation on the impact of intervenient ventricular assist devices on aortic valves publication-title: Comput Methods Programs Biomed – volume: 54 start-page: 1055 issue: 4 year: 2014 end-page: 1071 article-title: Fluid‐structure interaction analysis of bioprosthetic heart valves: significance of arterial wall deformation publication-title: Comput Mech – volume: 21 year: 2024 article-title: Fish swim bladders as valve leaflets enhance the durability of transcatheter aortic valve replacement devices publication-title: Acta Biomater – year: 2005 – volume: 11 issue: 2 year: 2023 article-title: Influence of aortic valve leaflet material model on hemodynamic features in healthy and pathological states publication-title: Mathematics – volume: 15 start-page: 601 issue: 5 year: 2006 end-page: 608 article-title: What do you mean by aortic valve area: geometric orifice area, effective orifice area, or gorlin area? publication-title: Journal of Heart Valve Disease – volume: 20 start-page: 468 issue: 5 year: 2017 end-page: 470 article-title: Aortic valve leaflet wall shear stress characterization revisited: impact of coronary flow publication-title: Comput Methods Biomech Biomed Engin – volume: 35 start-page: 125 issue: 1 year: 2013 end-page: 130 article-title: Numerical analysis of the radial force produced by the Medtronic‐CoreValve and Edwards‐SAPIEN after transcatheter aortic valve implantation (TAVI) publication-title: Med Eng Phys – volume: 9 start-page: 739 issue: 4 year: 2018 end-page: 751 article-title: Validation and extension of a fluid–structure interaction model of the healthy aortic valve publication-title: Cardiovasc Eng Technol – year: 1990 – volume: 4 issue: 3 year: 2019 article-title: Image‐guided fluid‐structure interaction simulation of transvalvular hemodynamics: quantifying the effects of varying aortic valve leaflet thickness publication-title: Fluids – volume: 49 start-page: 627 issue: 2 year: 2021 end-page: 641 article-title: Patient‐specific bicuspid aortic valve biomechanics: a magnetic resonance imaging integrated fluid‐structure interaction approach publication-title: Ann Biomed Eng – volume: 12 start-page: 438 year: 2021 end-page: 453 article-title: Analysis of turbulence effects in a patient‐specific aorta with aortic valve stenosis publication-title: Cardiovasc Eng Technol – volume: 11 start-page: 1085 issue: 7 year: 2012 end-page: 1096 article-title: Computational assessment of bicuspid aortic valve wall‐shear stress: implications for calcific aortic valve disease publication-title: Biomech Model Mechanobiol – volume: 86 start-page: 131 year: 2018 end-page: 142 article-title: Impact of annular and supra‐annular CoreValve deployment locations on aortic and coronary artery hemodynamics publication-title: J Mech Behav Biomed Mater – volume: 33 issue: 9 year: 2017 article-title: A novel approach to the quantification of aortic root in vivo structural mechanics publication-title: Int J Numer Method Biomed Eng – volume: 127 start-page: 159 issue: 1 year: 2021 end-page: 174 article-title: Bioprosthetic valve size selection to optimize aortic valve replacement surgical outcome: a fluid‐structure interaction modeling study publication-title: Comput Model Eng Sci – volume: 22 start-page: 837 year: 2023 end-page: 850 article-title: Fluid‐structure interaction modeling of compliant aortic valves using the lattice Boltzmann CFD and FEM methods publication-title: Biomech Model Mechanobiol – volume: 3 start-page: 15 issue: 6 year: 2006 end-page: 35 article-title: Hyperelastic modelling of arterial layers with distributed collagen fibre orientations publication-title: J R Soc Interface – start-page: 195 year: 2022 end-page: 206 – volume: 297 start-page: H208 issue: 1 year: 2009 end-page: H222 article-title: Validation of a one‐dimensional model of the systemic arterial tree publication-title: Am J Physiol Heart Circ Physiol – volume: 170 start-page: 426 issue: 3 year: 2014 end-page: 433 article-title: Blood flow characteristics in the ascending aorta after aortic valve replacement—a pilot study using 4D‐flow MRI publication-title: Int J Cardiol – year: 2022 – volume: 14 issue: 1 year: 2019 article-title: Numerical and in‐vitro experimental assessment of the performance of a novel designed expanded‐polytetrafluoroethylene stentless bi‐leaflet valve for aortic valve replacement publication-title: PLoS One – volume: 19 start-page: 13172 issue: 12 year: 2022 end-page: 13192 article-title: Fluid‐structure interaction simulation of calcified aortic valve stenosis publication-title: Math Biosci Eng – volume: 49 start-page: 2513 issue: 12 year: 2016 end-page: 2519 article-title: Prediction of patient‐specific post‐operative outcomes of TAVI procedure: the impact of the positioning strategy on valve performance publication-title: J Biomech – volume: 19 start-page: 733 issue: 7 year: 2016 end-page: 744 article-title: Assessing the impact of including leaflets in the simulation of TAVI deployment into a patient‐specific aortic root publication-title: Comput Methods Biomech Biomed Engin – volume: 50 start-page: 1 year: 2023 end-page: 4 article-title: An approach for designing patient‐specific prosthetic aortic valves based on CT images using fluid‐structure interaction (FSI) method publication-title: 2023 Comput Cardiol Conference (CinC) – volume: 11 year: 2020 article-title: Turbulent systolic flow downstream of a bioprosthetic aortic valve: velocity spectra, wall shear stresses, and turbulent dissipation rates publication-title: Front Physiol – volume: 51 start-page: 927 issue: 5 year: 2017 end-page: 935 article-title: Valve thrombosis following transcatheter aortic valve replacement: significance of blood stasis on the leaflets publication-title: Eur J Cardiothorac Surg – volume: 100 start-page: 1591 issue: 6 year: 2012 end-page: 1599 article-title: Biomechanical characterization of aortic valve tissue in humans and common animal models publication-title: J Biomed Mater Res A – volume: 22 start-page: 29 issue: 1 year: 2020 article-title: 4D flow cardiovascular magnetic resonance for monitoring of aortic valve repair in bicuspid aortic valve disease publication-title: J Cardiovasc Magn Reson – volume: 12 year: 2021 article-title: A fluid‐structure interaction study of different bicuspid aortic valve phenotypes throughout the cardiac cycle publication-title: Front Physiol – volume: 227 start-page: 107410 year: 2022 article-title: Fluid–structure interaction methods for the progressive anatomical and artificial aortic valve stenosis publication-title: Int J Mech Sci – volume: 36 start-page: 473 issue: 4 year: 2013 end-page: 486 article-title: The influence of leaflet skin friction and stiffness on the performance of bioprosthetic aortic valves publication-title: Australas Phys Eng Sci Med – volume: 22 start-page: 103 year: 2020 end-page: 126 article-title: 4D flow with MRI publication-title: Annu Rev Biomed Eng – volume: 49 start-page: 3310 issue: 12 year: 2021 end-page: 3322 article-title: Progressive calcification in bicuspid valves: a coupled hemodynamics and multiscale structural computations publication-title: Ann Biomed Eng – volume: 3 start-page: 296 issue: 3 year: 2010 end-page: 304 article-title: Echo/Doppler evaluation of hemodynamics after aortic valve replacement: principles of interrogation and evaluation of high gradients publication-title: JACC Cardiovasc Imaging – volume: 37 issue: 4 year: 2021 article-title: Modeling of aortic valve stenosis using fluid‐structure interaction method publication-title: Perfusion – volume: 78 start-page: 52 year: 2018 end-page: 69 article-title: Fluid‐structure interaction simulation of artificial textile reinforced aortic heart valve: validation with an in‐vitro test publication-title: J Biomech – volume: 7 start-page: 374 issue: 4 year: 2016 end-page: 388 article-title: Fluid‐structure interaction study of transcatheter aortic valve dynamics using smoothed particle hydrodynamics publication-title: Cardiovasc Eng Technol – volume: 1‐9 start-page: 375 year: 2020 end-page: 383 article-title: The impact of calcification patterns in transcatheter aortic valve performance: a fluid‐structure interaction analysis publication-title: Comput Methods Biomech Biomed Engin – volume: 166 start-page: 11 issue: 1 year: 2021 end-page: 21 article-title: Geometry and flow in ascending aortic aneurysms are influenced by left ventricular outflow tract orientation: detecting increased wall shear stress on the outer curve of proximal aortic aneurysms publication-title: J Thorac Cardiovasc Surg – volume: 20 start-page: 1031 issue: 3 year: 2021 end-page: 1046 article-title: Subject‐specific multiscale modeling of aortic valve biomechanics publication-title: Biomech Model Mechanobiol – volume: 49 start-page: 441 issue: 1 year: 2021 end-page: 454 article-title: Structural responses of integrated parametric aortic valve in an electro‐mechanical full heart model publication-title: Ann Biomed Eng – volume: 19 start-page: 1725 year: 2020 end-page: 1740 article-title: Numerical evaluation of transcatheter aortic valve performance during heart beating and its post‐deployment fluid‐structure interaction analysis publication-title: Biomech Model Mechanobiol – year: 2007 – volume: 33 issue: 5 year: 2017 article-title: Machine learning‐based 3‐D geometry reconstruction and modeling of aortic valve deformation using 3‐D computed tomography images publication-title: Int J Numer Method Biomed Eng – volume: 31 start-page: 405 issue: 4 year: 2018 end-page: 433 article-title: Echocardiographic imaging for transcatheter aortic valve replacement publication-title: J Am Soc Echocardiogr – volume: 377 start-page: 79 year: 1998 end-page: 83 article-title: Overcoming of barrier between CAD and CFD by modified finite volume method publication-title: Am Soc Mech Eng Press Vessels Pip Div (Publ) PVP – volume: 10 issue: 6 year: 2022 article-title: The Haemodynamic and pathophysiological mechanisms of calcific aortic valve disease publication-title: Biomedicine – volume: 61 start-page: 1 issue: 1–3 year: 2000 end-page: 48 article-title: A new constitutive framework for arterial wall mechanics and a comparative study of material models publication-title: J Elast Phys Sci Solids – volume: 117 start-page: 2818 issue: 21 year: 2008 end-page: 2819 article-title: Images in cardiovascular medicine. Evaluation of bicuspid aortic valve and aortic coarctation with 4D flow magnetic resonance imaging publication-title: Circulation – volume: 326 start-page: 565 issue: 1567 year: 1972 end-page: 584 article-title: Large deformation isotropic elasticity–on the correlation of theory and experiment for incompressible rubberlike solids publication-title: Proc R Soc Lond A Math Phys Sci – volume: 12 start-page: 252 issue: 2 year: 2019 end-page: 266 article-title: The role of imaging of flow patterns by 4D flow MRI in aortic stenosis publication-title: JACC Cardiovasc Imaging – volume: 51 start-page: 189 year: 2022 end-page: 199 article-title: Semi‐automated construction of patient‐specific aortic valves from computed tomography images publication-title: Ann Biomed Eng – volume: 58 start-page: 815 issue: 4 year: 2020 end-page: 829 article-title: Simulation study of transcatheter heart valve implantation in patients with stenotic bicuspid aortic valve publication-title: Med Biol Eng Comput – volume: 60 start-page: 15 year: 2017 end-page: 21 article-title: On the choice of outlet boundary conditions for patient‐specific analysis of aortic flow using computational fluid dynamics publication-title: J Biomech – volume: 47 start-page: 131 issue: 2 year: 2009 end-page: 141 article-title: The arterial Windkessel publication-title: Med Biol Eng Comput – volume: 137 year: 2023 article-title: A low dimensional surrogate model for a fast estimation of strain in the thrombus during a thrombectomy procedure publication-title: J Mech Behav Biomed Mater – volume: 9 start-page: 123 issue: 2 year: 2021 end-page: 136 article-title: Effect of non‐linear leaflet material properties on aortic valve dynamics ‐ a coupled fluid‐structure approach publication-title: Eng Solid Mech – year: 2020 – volume: 80 start-page: 332 year: 2018 end-page: 349 article-title: A computational study of the three‐dimensional fluid–structure interaction of aortic valve publication-title: J Fluids Struct – volume: 9 start-page: 21 year: 2016 article-title: The role of imaging in aortic valve disease publication-title: Curr Cardiovasc Imaging Rep – volume: 334 start-page: 88 year: 2021 end-page: 95 article-title: Porcine and bovine aortic valve comparison for surgical optimization: a fluid‐structure interaction modeling study publication-title: Int J Cardiol – volume: 43 start-page: 3085 issue: 16 year: 2010 end-page: 3090 article-title: Simulated elliptical bioprosthetic valve deformation: implications for asymmetric transcatheter valve deployment publication-title: J Biomech – volume: 140 year: 2021 article-title: Evaluation and verification of patient‐specific modelling of type B aortic dissection publication-title: Comput Biol Med – volume: 6 issue: 6 year: 2021 article-title: Fluid flow characteristics of healthy and calcified aortic valves using three‐dimensional Lagrangian coherent structures analysis publication-title: Fluids – volume: 6 issue: 8 year: 2021 article-title: Computational analysis of wall shear stress patterns on calcified and bicuspid aortic valves: focus on radial and Coaptation patterns publication-title: Fluids – volume: 7 year: 2020 article-title: Hemodynamic modeling of biological aortic valve replacement using preoperative data only publication-title: Front Cardiovasc Med – volume: 1‐1 start-page: 3411 year: 2019 end-page: 3419 article-title: 4D flow MRI‐based computational analysis of blood flow in patient‐specific aortic dissection publication-title: IEEE Transac Biomed Eng – volume: 172 year: 2021 article-title: Patient‐Specific Analysis of Bicuspid Aortic Valve Hemodynamics Using a Fully Coupled Fluid‐Structure Interaction (FSI) Model publication-title: Comput Biol Med – volume: 22 start-page: 987 issue: 3 year: 2023 end-page: 1002 article-title: A parametric geometry model of the aortic valve for subject‐specific blood flow simulations using a resistive approach publication-title: Biomech Model Mechanobiol – volume: 45 start-page: 2392 issue: 14 year: 2012 end-page: 2397 article-title: A general three‐dimensional parametric geometry of the native aortic valve and root for biomechanical modeling publication-title: J Biomech – ident: e_1_2_10_67_1 doi: 10.3390/math11020428 – volume-title: The Aortic Valve year: 1990 ident: e_1_2_10_70_1 – volume-title: The Finite Element Method: its Basis and Fundamentals year: 2005 ident: e_1_2_10_44_1 – ident: e_1_2_10_75_1 – volume: 377 start-page: 79 year: 1998 ident: e_1_2_10_41_1 article-title: Overcoming of barrier between CAD and CFD by modified finite volume method publication-title: Am Soc Mech Eng Press Vessels Pip Div (Publ) PVP – ident: e_1_2_10_79_1 doi: 10.1007/s10237-020-01304-9 – ident: e_1_2_10_80_1 doi: 10.1007/978-3-030-91103-4_11 – ident: e_1_2_10_21_1 doi: 10.1016/j.jmbbm.2018.06.032 – ident: e_1_2_10_35_1 – ident: e_1_2_10_40_1 doi: 10.1016/j.jbiomech.2012.07.017 – ident: e_1_2_10_31_1 doi: 10.1007/s10237-021-01429-5 – ident: e_1_2_10_77_1 doi: 10.1007/s13239-016-0285-7 – ident: e_1_2_10_76_1 doi: 10.1016/j.jbiomech.2010.08.010 – volume: 50 start-page: 1 year: 2023 ident: e_1_2_10_36_1 article-title: An approach for designing patient‐specific prosthetic aortic valves based on CT images using fluid‐structure interaction (FSI) method publication-title: 2023 Comput Cardiol Conference (CinC) – ident: e_1_2_10_53_1 doi: 10.1002/cnm.2598 – ident: e_1_2_10_69_1 doi: 10.1007/s00466-014-1059-4 – ident: e_1_2_10_37_1 doi: 10.1007/s10237-023-01695-5 – ident: e_1_2_10_15_1 doi: 10.1007/s10439-021-02877-x – ident: e_1_2_10_10_1 doi: 10.3390/fluids6060203 – volume: 61 start-page: 1 issue: 1 year: 2000 ident: e_1_2_10_73_1 article-title: A new constitutive framework for arterial wall mechanics and a comparative study of material models publication-title: J Elast Phys Sci Solids – ident: e_1_2_10_17_1 doi: 10.1016/j.compbiomed.2024.108191 – ident: e_1_2_10_25_1 doi: 10.1007/s11517-020-02138-4 – ident: e_1_2_10_18_1 doi: 10.3390/fluids6080287 – ident: e_1_2_10_62_1 doi: 10.1007/s13239-021-00536-9 – ident: e_1_2_10_6_1 doi: 10.1161/CIRCULATIONAHA.107.760124 – ident: e_1_2_10_33_1 doi: 10.1002/cnm.2827 – ident: e_1_2_10_46_1 doi: 10.1002/jbm.a.34099 – ident: e_1_2_10_22_1 doi: 10.1016/j.jbiomech.2018.07.018 – ident: e_1_2_10_74_1 doi: 10.1098/rsif.2005.0073 – volume-title: Molding Aortic Valve Hemodynamics Using a Novel Immersed Boundary Method year: 2022 ident: e_1_2_10_38_1 – ident: e_1_2_10_42_1 – ident: e_1_2_10_5_1 doi: 10.1146/annurev-bioeng-100219-110055 – ident: e_1_2_10_51_1 doi: 10.1007/s11517-008-0359-2 – ident: e_1_2_10_39_1 doi: 10.1016/j.cmpb.2024.108270 – ident: e_1_2_10_58_1 doi: 10.3389/fcvm.2020.593709 – volume: 21 year: 2024 ident: e_1_2_10_50_1 article-title: Fish swim bladders as valve leaflets enhance the durability of transcatheter aortic valve replacement devices publication-title: Acta Biomater – volume-title: Computational Assessment of Aortic Valve Function and Mechanics under Hypertension year: 2020 ident: e_1_2_10_65_1 – ident: e_1_2_10_34_1 doi: 10.1007/s10439-020-02575-0 – ident: e_1_2_10_29_1 doi: 10.1007/s10237-022-01684-0 – ident: e_1_2_10_32_1 doi: 10.1002/cnm.2849 – ident: e_1_2_10_48_1 doi: 10.1007/s13246-013-0230-0 – ident: e_1_2_10_59_1 doi: 10.3390/fluids4030119 – ident: e_1_2_10_24_1 doi: 10.1016/j.jbiomech.2015.10.048 – ident: e_1_2_10_56_1 doi: 10.1016/j.jtcvs.2021.06.014 – ident: e_1_2_10_61_1 doi: 10.1016/j.compbiomed.2021.105053 – ident: e_1_2_10_68_1 doi: 10.5267/j.esm.2021.1.001 – ident: e_1_2_10_13_1 doi: 10.1007/s10439-020-02571-4 – ident: e_1_2_10_64_1 doi: 10.1016/j.jfluidstructs.2018.04.009 – ident: e_1_2_10_66_1 doi: 10.1016/j.ijmecsci.2022.107410 – volume: 37 issue: 4 year: 2021 ident: e_1_2_10_14_1 article-title: Modeling of aortic valve stenosis using fluid‐structure interaction method publication-title: Perfusion – ident: e_1_2_10_30_1 doi: 10.1007/s13239-018-00391-1 – volume: 10 issue: 6 year: 2022 ident: e_1_2_10_57_1 article-title: The Haemodynamic and pathophysiological mechanisms of calcific aortic valve disease publication-title: Biomedicine – ident: e_1_2_10_12_1 doi: 10.1007/s10237-012-0375-x – volume-title: Concepts and Applications of Finite Element Analysis year: 2007 ident: e_1_2_10_43_1 – ident: e_1_2_10_72_1 doi: 10.1080/10255842.2016.1244266 – volume: 51 start-page: 927 issue: 5 year: 2017 ident: e_1_2_10_27_1 article-title: Valve thrombosis following transcatheter aortic valve replacement: significance of blood stasis on the leaflets publication-title: Eur J Cardiothorac Surg – ident: e_1_2_10_63_1 doi: 10.3934/mbe.2022616 – ident: e_1_2_10_4_1 doi: 10.1016/j.echo.2017.10.022 – volume: 15 start-page: 601 issue: 5 year: 2006 ident: e_1_2_10_55_1 article-title: What do you mean by aortic valve area: geometric orifice area, effective orifice area, or gorlin area? publication-title: Journal of Heart Valve Disease – ident: e_1_2_10_28_1 doi: 10.32604/cmes.2021.014580 – ident: e_1_2_10_52_1 doi: 10.1016/j.jbiomech.2017.06.005 – ident: e_1_2_10_7_1 doi: 10.1016/j.ijcard.2013.11.034 – ident: e_1_2_10_19_1 doi: 10.3389/fphys.2021.716015 – ident: e_1_2_10_26_1 doi: 10.1016/j.medengphy.2012.04.009 – ident: e_1_2_10_54_1 doi: 10.1152/ajpheart.00037.2009 – ident: e_1_2_10_23_1 doi: 10.1371/journal.pone.0210780 – ident: e_1_2_10_20_1 doi: 10.3389/fphys.2020.577188 – ident: e_1_2_10_78_1 doi: 10.1007/s10439-022-03075-z – volume: 1 start-page: 375 year: 2020 ident: e_1_2_10_16_1 article-title: The impact of calcification patterns in transcatheter aortic valve performance: a fluid‐structure interaction analysis publication-title: Comput Methods Biomech Biomed Engin – ident: e_1_2_10_3_1 doi: 10.1007/s12410-016-9383-z – ident: e_1_2_10_47_1 doi: 10.1080/10255842.2015.1058928 – ident: e_1_2_10_11_1 doi: 10.1016/j.jbiomech.2016.11.024 – ident: e_1_2_10_71_1 doi: 10.1016/j.ijcard.2021.04.051 – ident: e_1_2_10_2_1 doi: 10.1016/j.jcmg.2009.11.009 – ident: e_1_2_10_45_1 doi: 10.1098/rspa.1972.0026 – ident: e_1_2_10_9_1 doi: 10.1186/s12968-020-00608-0 – ident: e_1_2_10_60_1 doi: 10.1109/TBME.2019.2904885 – ident: e_1_2_10_8_1 doi: 10.1016/j.jcmg.2018.10.034 – ident: e_1_2_10_49_1 doi: 10.1016/j.jmbbm.2022.105577 |
SSID | ssj0000299973 |
Score | 2.4016097 |
Snippet | The opening and closing dynamics of the aortic valve (AV) has a strong influence on haemodynamics in the aortic root, and both play a pivotal role in... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e3865 |
SubjectTerms | Aorta Aortic valve Aortic Valve - diagnostic imaging Aortic Valve - physiology Boundary conditions Computer Simulation Fluid-structure interaction haemodynamics Heart valves Hemodynamics Hemodynamics - physiology Humans Image acquisition Image reconstruction Isotropic material Magnetic Resonance Imaging Models, Cardiovascular Shear stress Stress, Mechanical Stroke volume Valve leaflets wall shear stress Wall shear stresses Workflow |
Title | Fluid–structure interaction analysis of a healthy aortic valve and its surrounding haemodynamics |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcnm.3865 https://www.ncbi.nlm.nih.gov/pubmed/39209425 https://www.proquest.com/docview/3125060319 https://www.proquest.com/docview/3099801970 |
Volume | 40 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA7qyYvvx_oiguipazdpd5ujiIsIioiC4KEkaYKLbivbraAn_4P_0F_iTNNWfIF4aQ-dJm2SmfmmzXxDyI4Vmgve0R4ICC-AoxdZEXoGvKXhkQl6PUwUPj3rHl8FJ9fhdbWrEnNhHD9E88ENNaO016jgUuX7H6ShOh22sWAlmF_cqoV46II1n1d8MLOi_L_Myj1zgouaetZn-_W9n53RN4T5GbCWHqc_S27qZ3UbTe7axVi19fMXGsf_vcwcmamAKD1wK2eeTJh0gcxWoJRWKp8vEtW_LwbJ28urY5otRoYixcTIJURQWZGa0MxSSV1W5ROVGTZLYRU_GhBJ6GCc07wYjbCIEzhLeivNMEueUjkc6HyJXPWPLg-Pvaowg6choA09ZjXjBiKTSKtAMe1bpSKjIj9QXam1r6RVTFrGOjy0zMpQGYiSeACGVfoi6fFlMpVmqVklFJOqmQwtx9BOca6iTleCjQBDpLtJErbIXj1Dsa5Yy7F4xn3s-JZZDEMX49C1yHYj-eCYOn6Q2agnOa50NY85YDwfi20LaKK5DFqGv05karICZABIgy8XPb9FVtziaDoBhAkxMoPGd8sp_rX3-PDsFM9rfxVcJ9MMMJRLfdwgUzDPZhMw0FhtkUkWnG-Va_4dxOAGBg |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFL0qZQEbWt4DBYzEY5Wpx05m4kUXVdvRlHZmgVqpu2A7thjRSdBkAhpW_AOfwa_0K_olvY6TVOUhsemCTbLIlfPwvcfHju-5AK-s0Fzwng7QQAQhHoPYiigwOFoaHptwMHCJwuNJf3QcvjuJTlbgZ5ML4_Uh2gU3FxkVXrsAdwvSm5eqoTqbdV3FynpH5YFZfsX5WrG1v4ud-5qx4d7RziioSwoEGqdiUcCsZtwgp461ChXT1CoVGxXTUPWl1lRJq5i0jPV4ZJmVkTLI73mIkCCpSAcc270BN10BcSfUv_uetQs6FIFdVH-0WbVLT3DRiN1Sttk87NXh7zdOe5UiV2PccA3Omq_jt7Z86pYL1dXffhGO_E8-3zrcqbk22fbBcRdWTHYP1mreTWpUK-6DGp6W0_T8-w8vplvODXEqGnOf80FkrdtCcksk8YmjSyJz1yzBQP1i0CQl00VBinI-d3WqkA-Qj9LM8nSZydlUFw_g-Fre9CGsZnlmHgNxeeNMRpa72aviXMW9vkQYRKzV_TSNOvC2cYlE18Lsrj7IaeIlpVmCXZW4rurAy9bysxcj-YPNRuNVSQ1HRcKRxlJXT1xgE-1lBBL3d0hmJi_RBucKSFfEgHbgkffG9iZIoqlAdO_Am8qn_nr3ZGcyducn_2r4Am6NjsaHyeH-5OAp3GZIGX2m5wasYp-bZ0j5Fup5FWoEPly3c14Aa4dk2Q |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NTtwwEB5RkKpe-CkUll8jUTiFzdrJbnzggIAVFFhxAIlbaju2WIlN0IYF7Y136Fv0sfokHcdJEAIkLlySQ0Z25PHMfP6ZbwC2DFeMs5byUIB7AT69yPDQ0xgtNYt00OnYROHzXvv4Kvh1HV5PwN8qF8bxQ9QbbtYyCn9tDfwuMc1n0lCVDnZtwcryQuWpHj_ici3fOzlE3f6ktHt0eXDslRUFPIUrsdCjRlGmEVJHSgaSKt9IGWkZ-YFsC6V8KYykwlDaYqGhRoRSI7xnAXoE4fOkw7DdLzBlzxbt9TEaXNT7OT76dV4caNPikh5nvOK69Wmz-tmX0e8VpH2JkIsQ152F6RKbkn03meZgQqffYabEqaT0Avk8yO7tqJ_8e_rjyGdHQ00s68TQ5UgQUfKckMwQQVyi5ZiIzDZLcGI_aBRJSP8-J_loOLR1nTB-khuhB1kyTsWgr_IFuPqUkf0Bk2mW6iUgNs-aitAwu9qTjMmo1RboNtA3qXaShA3YqcYwViWRua2ncRs7CmYa42jHdrQbsFlL3jnyjjdkVis1xKX55jFD2Ofb-tscm6g_o-HZ0xSR6myEMoitMbzzjt-ARae-uhMEnbhsptj4dqHPd3uPD3rn9r38UcEN-Hpx2I3PTnqnK_CNIsJyiZGrMIkq12uIkO7lejE1Cfz-bFv4DwDvIuw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fluid%E2%80%93structure+interaction+analysis+of+a+healthy+aortic+valve+and+its+surrounding+haemodynamics&rft.jtitle=International+journal+for+numerical+methods+in+biomedical+engineering&rft.au=Yin%2C+Zhongjie&rft.au=Armour%2C+Chl%C3%B6e&rft.au=Kandail%2C+Harkamaljot&rft.au=O%27Regan%2C+Declan+P.&rft.date=2024-11-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=2040-7939&rft.eissn=2040-7947&rft.volume=40&rft.issue=11&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fcnm.3865&rft.externalDBID=10.1002%252Fcnm.3865&rft.externalDocID=CNM3865 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2040-7939&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2040-7939&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2040-7939&client=summon |