Fluid–structure interaction analysis of a healthy aortic valve and its surrounding haemodynamics

The opening and closing dynamics of the aortic valve (AV) has a strong influence on haemodynamics in the aortic root, and both play a pivotal role in maintaining normal physiological functions of the valve. The aim of this study was to establish a subject‐specific fluid–structure interaction (FSI) w...

Full description

Saved in:
Bibliographic Details
Published inInternational journal for numerical methods in biomedical engineering Vol. 40; no. 11; pp. e3865 - n/a
Main Authors Yin, Zhongjie, Armour, Chlöe, Kandail, Harkamaljot, O'Regan, Declan P., Bahrami, Toufan, Mirsadraee, Saeed, Pirola, Selene, Xu, Xiao Yun
Format Journal Article
LanguageEnglish
Published Hoboken, USA John Wiley & Sons, Inc 01.11.2024
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The opening and closing dynamics of the aortic valve (AV) has a strong influence on haemodynamics in the aortic root, and both play a pivotal role in maintaining normal physiological functions of the valve. The aim of this study was to establish a subject‐specific fluid–structure interaction (FSI) workflow capable of simulating the motion of a tricuspid healthy valve and the surrounding haemodynamics under physiologically realistic conditions. A subject‐specific aortic root was reconstructed from magnetic resonance (MR) images acquired from a healthy volunteer, whilst the valve leaflets were built using a parametric model fitted to the subject‐specific aortic root geometry. The material behaviour of the leaflets was described using the isotropic hyperelastic Ogden model, and subject‐specific boundary conditions were derived from 4D‐flow MR imaging (4D‐MRI). Strongly coupled FSI simulations were performed using a finite volume‐based boundary conforming method implemented in FlowVision. Our FSI model was able to simulate the opening and closing of the AV throughout the entire cardiac cycle. Comparisons of simulation results with 4D‐MRI showed a good agreement in key haemodynamic parameters, with stroke volume differing by 7.5% and the maximum jet velocity differing by less than 1%. Detailed analysis of wall shear stress (WSS) on the leaflets revealed much higher WSS on the ventricular side than the aortic side and different spatial patterns amongst the three leaflets. This study established a subject‐specific fluid–structure interaction (FSI) workflow capable of simulating the motion of a tricuspid healthy valve and the surrounding haemodynamics under physiologically realistic conditions. Comparisons of simulation results with 4D‐MRI showed a good agreement in key haemodynamic parameters. Detailed analysis of wall shear stress (WSS) on the leaflets revealed much higher WSS on the ventricular side than the aortic side and different spatial patterns amongst the three leaflets.
AbstractList The opening and closing dynamics of the aortic valve (AV) has a strong influence on haemodynamics in the aortic root, and both play a pivotal role in maintaining normal physiological functions of the valve. The aim of this study was to establish a subject‐specific fluid–structure interaction (FSI) workflow capable of simulating the motion of a tricuspid healthy valve and the surrounding haemodynamics under physiologically realistic conditions. A subject‐specific aortic root was reconstructed from magnetic resonance (MR) images acquired from a healthy volunteer, whilst the valve leaflets were built using a parametric model fitted to the subject‐specific aortic root geometry. The material behaviour of the leaflets was described using the isotropic hyperelastic Ogden model, and subject‐specific boundary conditions were derived from 4D‐flow MR imaging (4D‐MRI). Strongly coupled FSI simulations were performed using a finite volume‐based boundary conforming method implemented in FlowVision. Our FSI model was able to simulate the opening and closing of the AV throughout the entire cardiac cycle. Comparisons of simulation results with 4D‐MRI showed a good agreement in key haemodynamic parameters, with stroke volume differing by 7.5% and the maximum jet velocity differing by less than 1%. Detailed analysis of wall shear stress (WSS) on the leaflets revealed much higher WSS on the ventricular side than the aortic side and different spatial patterns amongst the three leaflets.
The opening and closing dynamics of the aortic valve (AV) has a strong influence on haemodynamics in the aortic root, and both play a pivotal role in maintaining normal physiological functions of the valve. The aim of this study was to establish a subject‐specific fluid–structure interaction (FSI) workflow capable of simulating the motion of a tricuspid healthy valve and the surrounding haemodynamics under physiologically realistic conditions. A subject‐specific aortic root was reconstructed from magnetic resonance (MR) images acquired from a healthy volunteer, whilst the valve leaflets were built using a parametric model fitted to the subject‐specific aortic root geometry. The material behaviour of the leaflets was described using the isotropic hyperelastic Ogden model, and subject‐specific boundary conditions were derived from 4D‐flow MR imaging (4D‐MRI). Strongly coupled FSI simulations were performed using a finite volume‐based boundary conforming method implemented in FlowVision. Our FSI model was able to simulate the opening and closing of the AV throughout the entire cardiac cycle. Comparisons of simulation results with 4D‐MRI showed a good agreement in key haemodynamic parameters, with stroke volume differing by 7.5% and the maximum jet velocity differing by less than 1%. Detailed analysis of wall shear stress (WSS) on the leaflets revealed much higher WSS on the ventricular side than the aortic side and different spatial patterns amongst the three leaflets. This study established a subject‐specific fluid–structure interaction (FSI) workflow capable of simulating the motion of a tricuspid healthy valve and the surrounding haemodynamics under physiologically realistic conditions. Comparisons of simulation results with 4D‐MRI showed a good agreement in key haemodynamic parameters. Detailed analysis of wall shear stress (WSS) on the leaflets revealed much higher WSS on the ventricular side than the aortic side and different spatial patterns amongst the three leaflets.
The opening and closing dynamics of the aortic valve (AV) has a strong influence on haemodynamics in the aortic root, and both play a pivotal role in maintaining normal physiological functions of the valve. The aim of this study was to establish a subject-specific fluid-structure interaction (FSI) workflow capable of simulating the motion of a tricuspid healthy valve and the surrounding haemodynamics under physiologically realistic conditions. A subject-specific aortic root was reconstructed from magnetic resonance (MR) images acquired from a healthy volunteer, whilst the valve leaflets were built using a parametric model fitted to the subject-specific aortic root geometry. The material behaviour of the leaflets was described using the isotropic hyperelastic Ogden model, and subject-specific boundary conditions were derived from 4D-flow MR imaging (4D-MRI). Strongly coupled FSI simulations were performed using a finite volume-based boundary conforming method implemented in FlowVision. Our FSI model was able to simulate the opening and closing of the AV throughout the entire cardiac cycle. Comparisons of simulation results with 4D-MRI showed a good agreement in key haemodynamic parameters, with stroke volume differing by 7.5% and the maximum jet velocity differing by less than 1%. Detailed analysis of wall shear stress (WSS) on the leaflets revealed much higher WSS on the ventricular side than the aortic side and different spatial patterns amongst the three leaflets.The opening and closing dynamics of the aortic valve (AV) has a strong influence on haemodynamics in the aortic root, and both play a pivotal role in maintaining normal physiological functions of the valve. The aim of this study was to establish a subject-specific fluid-structure interaction (FSI) workflow capable of simulating the motion of a tricuspid healthy valve and the surrounding haemodynamics under physiologically realistic conditions. A subject-specific aortic root was reconstructed from magnetic resonance (MR) images acquired from a healthy volunteer, whilst the valve leaflets were built using a parametric model fitted to the subject-specific aortic root geometry. The material behaviour of the leaflets was described using the isotropic hyperelastic Ogden model, and subject-specific boundary conditions were derived from 4D-flow MR imaging (4D-MRI). Strongly coupled FSI simulations were performed using a finite volume-based boundary conforming method implemented in FlowVision. Our FSI model was able to simulate the opening and closing of the AV throughout the entire cardiac cycle. Comparisons of simulation results with 4D-MRI showed a good agreement in key haemodynamic parameters, with stroke volume differing by 7.5% and the maximum jet velocity differing by less than 1%. Detailed analysis of wall shear stress (WSS) on the leaflets revealed much higher WSS on the ventricular side than the aortic side and different spatial patterns amongst the three leaflets.
Author Armour, Chlöe
Bahrami, Toufan
Yin, Zhongjie
Mirsadraee, Saeed
Xu, Xiao Yun
Pirola, Selene
Kandail, Harkamaljot
O'Regan, Declan P.
Author_xml – sequence: 1
  givenname: Zhongjie
  surname: Yin
  fullname: Yin, Zhongjie
  organization: Imperial College London
– sequence: 2
  givenname: Chlöe
  surname: Armour
  fullname: Armour, Chlöe
  organization: National Heart and Lung Institute, Imperial College London
– sequence: 3
  givenname: Harkamaljot
  surname: Kandail
  fullname: Kandail, Harkamaljot
  organization: Medtronic Neurovascular
– sequence: 4
  givenname: Declan P.
  surname: O'Regan
  fullname: O'Regan, Declan P.
  organization: Imperial College London
– sequence: 5
  givenname: Toufan
  surname: Bahrami
  fullname: Bahrami, Toufan
  organization: Royal Brompton and Harefield Hospitals NHS Trust
– sequence: 6
  givenname: Saeed
  surname: Mirsadraee
  fullname: Mirsadraee, Saeed
  organization: Royal Brompton and Harefield Hospitals NHS Trust
– sequence: 7
  givenname: Selene
  orcidid: 0000-0003-4368-3940
  surname: Pirola
  fullname: Pirola, Selene
  email: s.pirola@tudelft.nl
  organization: TU Delft
– sequence: 8
  givenname: Xiao Yun
  orcidid: 0000-0002-8267-621X
  surname: Xu
  fullname: Xu, Xiao Yun
  email: yun.xu@imperial.ac.uk
  organization: Imperial College London
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39209425$$D View this record in MEDLINE/PubMed
BookMark eNp10UtuFDEQBmALBZEQInECZIkNmx786JeXaEQCUoANrK2y22Ycue3gR1DvuAM35CTpYZIgIfCmvPhcKtf_FB2FGAxCzynZUELYax3mDR_77hE6YaQlzSDa4ejhzsUxOsv5iqyHCSEG_gQdc8GIaFl3gtS5r2769eNnLqnqUpPBLhSTQBcXA4YAfsku42gx4J0BX3YLhpiK0_gG_I1ZyYRdyTjXlGINkwtf8Q7MHKclwOx0foYeW_DZnN3VU_Tl_O3n7bvm8tPF--2by0bzkXcNs5pxQ0c2atUqpolVajRqJK3qQWuiwCoGljHKO8ssdMr0fc9bQSkQMQ38FL069L1O8Vs1ucjZZW28h2BizZITIUZCxUBW-vIvehVrWv-6Kso60hNOxape3KmqZjPJ6-RmSIu8394KNgegU8w5GSu1K7BfXEngvKRE7hOSa0Jyn9CfER8e3Pf8B20O9LvzZvmvk9uPH377W816oLQ
CitedBy_id crossref_primary_10_1016_j_cmpb_2025_108598
Cites_doi 10.3390/math11020428
10.1007/s10237-020-01304-9
10.1007/978-3-030-91103-4_11
10.1016/j.jmbbm.2018.06.032
10.1016/j.jbiomech.2012.07.017
10.1007/s10237-021-01429-5
10.1007/s13239-016-0285-7
10.1016/j.jbiomech.2010.08.010
10.1002/cnm.2598
10.1007/s00466-014-1059-4
10.1007/s10237-023-01695-5
10.1007/s10439-021-02877-x
10.3390/fluids6060203
10.1016/j.compbiomed.2024.108191
10.1007/s11517-020-02138-4
10.3390/fluids6080287
10.1007/s13239-021-00536-9
10.1161/CIRCULATIONAHA.107.760124
10.1002/cnm.2827
10.1002/jbm.a.34099
10.1016/j.jbiomech.2018.07.018
10.1098/rsif.2005.0073
10.1146/annurev-bioeng-100219-110055
10.1007/s11517-008-0359-2
10.1016/j.cmpb.2024.108270
10.3389/fcvm.2020.593709
10.1007/s10439-020-02575-0
10.1007/s10237-022-01684-0
10.1002/cnm.2849
10.1007/s13246-013-0230-0
10.3390/fluids4030119
10.1016/j.jbiomech.2015.10.048
10.1016/j.jtcvs.2021.06.014
10.1016/j.compbiomed.2021.105053
10.5267/j.esm.2021.1.001
10.1007/s10439-020-02571-4
10.1016/j.jfluidstructs.2018.04.009
10.1016/j.ijmecsci.2022.107410
10.1007/s13239-018-00391-1
10.1007/s10237-012-0375-x
10.1080/10255842.2016.1244266
10.3934/mbe.2022616
10.1016/j.echo.2017.10.022
10.32604/cmes.2021.014580
10.1016/j.jbiomech.2017.06.005
10.1016/j.ijcard.2013.11.034
10.3389/fphys.2021.716015
10.1016/j.medengphy.2012.04.009
10.1152/ajpheart.00037.2009
10.1371/journal.pone.0210780
10.3389/fphys.2020.577188
10.1007/s10439-022-03075-z
10.1007/s12410-016-9383-z
10.1080/10255842.2015.1058928
10.1016/j.jbiomech.2016.11.024
10.1016/j.ijcard.2021.04.051
10.1016/j.jcmg.2009.11.009
10.1098/rspa.1972.0026
10.1186/s12968-020-00608-0
10.1109/TBME.2019.2904885
10.1016/j.jcmg.2018.10.034
10.1016/j.jmbbm.2022.105577
ContentType Journal Article
Copyright 2024 The Author(s). published by John Wiley & Sons Ltd.
2024 The Author(s). International Journal for Numerical Methods in Biomedical Engineering published by John Wiley & Sons Ltd.
2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024 The Author(s). published by John Wiley & Sons Ltd.
– notice: 2024 The Author(s). International Journal for Numerical Methods in Biomedical Engineering published by John Wiley & Sons Ltd.
– notice: 2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1002/cnm.3865
DatabaseName Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Civil Engineering Abstracts
Biotechnology Research Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList Civil Engineering Abstracts
CrossRef

MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access (Activated by CARLI)
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISSN 2040-7947
EndPage n/a
ExternalDocumentID 39209425
10_1002_cnm_3865
CNM3865
Genre researchArticle
Journal Article
GrantInformation_xml – fundername: British Heart Foundation
  funderid: RE/18/4/34215
– fundername: Delft Technology Fellowship
– fundername: Medical Research Council
  funderid: MC_UP_1605/13
– fundername: National Institute for Health Research Imperial College Biomedical Research Centre; British Heart Foundation
  funderid: RG/19/6/34387
– fundername: Medical Research Council
  grantid: MC_UP_1605/13
– fundername: National Institute for Health Research Imperial College Biomedical Research Centre; British Heart Foundation
  grantid: RG/19/6/34387
– fundername: British Heart Foundation
  grantid: RG/19/6/34387
– fundername: British Heart Foundation
  grantid: RE/18/4/34215
GroupedDBID .3N
.GA
.Y3
05W
0R~
10A
1L6
1OC
24P
31~
33P
3SF
4.4
50Z
51W
51X
52N
52O
52P
52S
52T
52U
52W
52X
53G
66C
7PT
8-0
8-1
8-3
8-4
8-5
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ABDBF
ABJNI
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACIWK
ACPOU
ACPRK
ACRPL
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
ESX
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HVGLF
HZ~
I-F
IX1
J0M
JPC
KQQ
LATKE
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MK~
ML~
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NF~
O66
O9-
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
ROL
RWI
SUPJJ
TUS
UB1
V2E
W8V
W99
WBKPD
WIH
WIK
WLBEL
WOHZO
WRC
WXSBR
WYISQ
XG1
XV2
~IA
~WT
1OB
AAMMB
AAYXX
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c3835-2fc23e1828cb4b2c0fbb8eb804b6acc0bafb2af22135f2fa5be66634911a09d73
IEDL.DBID DR2
ISSN 2040-7939
2040-7947
IngestDate Tue Aug 05 09:55:16 EDT 2025
Wed Aug 13 08:58:17 EDT 2025
Mon Jul 21 05:56:00 EDT 2025
Sun Aug 24 03:22:19 EDT 2025
Thu Apr 24 23:02:36 EDT 2025
Wed Jan 22 17:13:00 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords aortic valve
fluid–structure interaction
haemodynamics
wall shear stress
Language English
License Attribution
2024 The Author(s). International Journal for Numerical Methods in Biomedical Engineering published by John Wiley & Sons Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3835-2fc23e1828cb4b2c0fbb8eb804b6acc0bafb2af22135f2fa5be66634911a09d73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-4368-3940
0000-0002-8267-621X
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcnm.3865
PMID 39209425
PQID 3125060319
PQPubID 2034586
PageCount 17
ParticipantIDs proquest_miscellaneous_3099801970
proquest_journals_3125060319
pubmed_primary_39209425
crossref_citationtrail_10_1002_cnm_3865
crossref_primary_10_1002_cnm_3865
wiley_primary_10_1002_cnm_3865_CNM3865
PublicationCentury 2000
PublicationDate November 2024
2024-11-00
2024-Nov
20241101
PublicationDateYYYYMMDD 2024-11-01
PublicationDate_xml – month: 11
  year: 2024
  text: November 2024
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: England
– name: Chichester
PublicationTitle International journal for numerical methods in biomedical engineering
PublicationTitleAlternate Int J Numer Method Biomed Eng
PublicationYear 2024
Publisher John Wiley & Sons, Inc
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley Subscription Services, Inc
References 2009; 47
2021; 20
2019; 12
2021; 127
2019; 14
2018; 80
2020; 58
2014; 170
2020; 11
2021; 166
2012; 11
2018; 86
2020; 19
2020; 7
2018; 9
2021; 37
2023; 22
1990
2017; 33
2000; 61
2023; 137
2008; 117
2024; 21
2010; 3
2018; 78
2019; 1‐1
2016; 49
2018; 31
2014; 54
2021; 9
2021; 49
2017; 20
2021; 6
2019; 4
2012; 100
2017; 60
2023; 11
2016; 19
2022; 51
2006; 15
2009; 297
2007
2021; 140
2005
2006; 3
1998; 377
2017; 51
2017; 50
2010; 43
2016; 7
2013; 36
2021; 12
2022
2013; 35
2020
2021; 334
2020; 1‐9
2021; 172
2024; 254
2020; 22
2022; 10
2014; 30
2012; 45
2022; 227
1972; 326
2016; 9
2023; 50
2022; 19
e_1_2_10_23_1
e_1_2_10_46_1
e_1_2_10_69_1
e_1_2_10_21_1
e_1_2_10_42_1
e_1_2_10_40_1
Holzapfel GA (e_1_2_10_73_1) 2000; 61
Jiang H (e_1_2_10_50_1) 2024; 21
Kadel S (e_1_2_10_65_1) 2020
e_1_2_10_2_1
e_1_2_10_72_1
e_1_2_10_4_1
e_1_2_10_18_1
e_1_2_10_74_1
e_1_2_10_53_1
e_1_2_10_6_1
e_1_2_10_39_1
e_1_2_10_76_1
e_1_2_10_8_1
e_1_2_10_37_1
e_1_2_10_78_1
e_1_2_10_58_1
e_1_2_10_13_1
e_1_2_10_34_1
Zienkiewicz O (e_1_2_10_44_1) 2005
e_1_2_10_11_1
e_1_2_10_32_1
e_1_2_10_30_1
e_1_2_10_51_1
Garcia D (e_1_2_10_55_1) 2006; 15
Thubrikar M (e_1_2_10_70_1) 1990
e_1_2_10_80_1
e_1_2_10_61_1
Luraghi G (e_1_2_10_16_1) 2020; 1
e_1_2_10_29_1
Raza M (e_1_2_10_38_1) 2022
e_1_2_10_63_1
e_1_2_10_25_1
e_1_2_10_48_1
e_1_2_10_67_1
e_1_2_10_24_1
e_1_2_10_45_1
e_1_2_10_22_1
e_1_2_10_20_1
Hanna L (e_1_2_10_57_1) 2022; 10
Aksenov A (e_1_2_10_41_1) 1998; 377
Ghasemi Pour MJ (e_1_2_10_14_1) 2021; 37
e_1_2_10_71_1
e_1_2_10_52_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_75_1
e_1_2_10_54_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_77_1
e_1_2_10_56_1
e_1_2_10_79_1
e_1_2_10_7_1
e_1_2_10_15_1
e_1_2_10_12_1
e_1_2_10_35_1
e_1_2_10_9_1
e_1_2_10_59_1
e_1_2_10_10_1
Vahidkhah K (e_1_2_10_27_1) 2017; 51
e_1_2_10_33_1
e_1_2_10_31_1
Cook RD (e_1_2_10_43_1) 2007
Geng Y (e_1_2_10_36_1) 2023; 50
e_1_2_10_60_1
e_1_2_10_62_1
e_1_2_10_64_1
e_1_2_10_28_1
e_1_2_10_49_1
e_1_2_10_66_1
e_1_2_10_26_1
e_1_2_10_47_1
e_1_2_10_68_1
References_xml – volume: 50
  start-page: 63
  year: 2017
  end-page: 70
  article-title: Simulations of morphotype‐dependent hemodynamics in non‐dilated bicuspid aortic valve aortas
  publication-title: J Biomech
– volume: 30
  start-page: 204
  issue: 2
  year: 2014
  end-page: 231
  article-title: A systematic comparison between 1‐D and 3‐D hemodynamics in compliant arterial models
  publication-title: Int J Numer Method Biomed Eng
– volume: 254
  year: 2024
  article-title: A fluid‐structure interaction simulation on the impact of intervenient ventricular assist devices on aortic valves
  publication-title: Comput Methods Programs Biomed
– volume: 54
  start-page: 1055
  issue: 4
  year: 2014
  end-page: 1071
  article-title: Fluid‐structure interaction analysis of bioprosthetic heart valves: significance of arterial wall deformation
  publication-title: Comput Mech
– volume: 21
  year: 2024
  article-title: Fish swim bladders as valve leaflets enhance the durability of transcatheter aortic valve replacement devices
  publication-title: Acta Biomater
– year: 2005
– volume: 11
  issue: 2
  year: 2023
  article-title: Influence of aortic valve leaflet material model on hemodynamic features in healthy and pathological states
  publication-title: Mathematics
– volume: 15
  start-page: 601
  issue: 5
  year: 2006
  end-page: 608
  article-title: What do you mean by aortic valve area: geometric orifice area, effective orifice area, or gorlin area?
  publication-title: Journal of Heart Valve Disease
– volume: 20
  start-page: 468
  issue: 5
  year: 2017
  end-page: 470
  article-title: Aortic valve leaflet wall shear stress characterization revisited: impact of coronary flow
  publication-title: Comput Methods Biomech Biomed Engin
– volume: 35
  start-page: 125
  issue: 1
  year: 2013
  end-page: 130
  article-title: Numerical analysis of the radial force produced by the Medtronic‐CoreValve and Edwards‐SAPIEN after transcatheter aortic valve implantation (TAVI)
  publication-title: Med Eng Phys
– volume: 9
  start-page: 739
  issue: 4
  year: 2018
  end-page: 751
  article-title: Validation and extension of a fluid–structure interaction model of the healthy aortic valve
  publication-title: Cardiovasc Eng Technol
– year: 1990
– volume: 4
  issue: 3
  year: 2019
  article-title: Image‐guided fluid‐structure interaction simulation of transvalvular hemodynamics: quantifying the effects of varying aortic valve leaflet thickness
  publication-title: Fluids
– volume: 49
  start-page: 627
  issue: 2
  year: 2021
  end-page: 641
  article-title: Patient‐specific bicuspid aortic valve biomechanics: a magnetic resonance imaging integrated fluid‐structure interaction approach
  publication-title: Ann Biomed Eng
– volume: 12
  start-page: 438
  year: 2021
  end-page: 453
  article-title: Analysis of turbulence effects in a patient‐specific aorta with aortic valve stenosis
  publication-title: Cardiovasc Eng Technol
– volume: 11
  start-page: 1085
  issue: 7
  year: 2012
  end-page: 1096
  article-title: Computational assessment of bicuspid aortic valve wall‐shear stress: implications for calcific aortic valve disease
  publication-title: Biomech Model Mechanobiol
– volume: 86
  start-page: 131
  year: 2018
  end-page: 142
  article-title: Impact of annular and supra‐annular CoreValve deployment locations on aortic and coronary artery hemodynamics
  publication-title: J Mech Behav Biomed Mater
– volume: 33
  issue: 9
  year: 2017
  article-title: A novel approach to the quantification of aortic root in vivo structural mechanics
  publication-title: Int J Numer Method Biomed Eng
– volume: 127
  start-page: 159
  issue: 1
  year: 2021
  end-page: 174
  article-title: Bioprosthetic valve size selection to optimize aortic valve replacement surgical outcome: a fluid‐structure interaction modeling study
  publication-title: Comput Model Eng Sci
– volume: 22
  start-page: 837
  year: 2023
  end-page: 850
  article-title: Fluid‐structure interaction modeling of compliant aortic valves using the lattice Boltzmann CFD and FEM methods
  publication-title: Biomech Model Mechanobiol
– volume: 3
  start-page: 15
  issue: 6
  year: 2006
  end-page: 35
  article-title: Hyperelastic modelling of arterial layers with distributed collagen fibre orientations
  publication-title: J R Soc Interface
– start-page: 195
  year: 2022
  end-page: 206
– volume: 297
  start-page: H208
  issue: 1
  year: 2009
  end-page: H222
  article-title: Validation of a one‐dimensional model of the systemic arterial tree
  publication-title: Am J Physiol Heart Circ Physiol
– volume: 170
  start-page: 426
  issue: 3
  year: 2014
  end-page: 433
  article-title: Blood flow characteristics in the ascending aorta after aortic valve replacement—a pilot study using 4D‐flow MRI
  publication-title: Int J Cardiol
– year: 2022
– volume: 14
  issue: 1
  year: 2019
  article-title: Numerical and in‐vitro experimental assessment of the performance of a novel designed expanded‐polytetrafluoroethylene stentless bi‐leaflet valve for aortic valve replacement
  publication-title: PLoS One
– volume: 19
  start-page: 13172
  issue: 12
  year: 2022
  end-page: 13192
  article-title: Fluid‐structure interaction simulation of calcified aortic valve stenosis
  publication-title: Math Biosci Eng
– volume: 49
  start-page: 2513
  issue: 12
  year: 2016
  end-page: 2519
  article-title: Prediction of patient‐specific post‐operative outcomes of TAVI procedure: the impact of the positioning strategy on valve performance
  publication-title: J Biomech
– volume: 19
  start-page: 733
  issue: 7
  year: 2016
  end-page: 744
  article-title: Assessing the impact of including leaflets in the simulation of TAVI deployment into a patient‐specific aortic root
  publication-title: Comput Methods Biomech Biomed Engin
– volume: 50
  start-page: 1
  year: 2023
  end-page: 4
  article-title: An approach for designing patient‐specific prosthetic aortic valves based on CT images using fluid‐structure interaction (FSI) method
  publication-title: 2023 Comput Cardiol Conference (CinC)
– volume: 11
  year: 2020
  article-title: Turbulent systolic flow downstream of a bioprosthetic aortic valve: velocity spectra, wall shear stresses, and turbulent dissipation rates
  publication-title: Front Physiol
– volume: 51
  start-page: 927
  issue: 5
  year: 2017
  end-page: 935
  article-title: Valve thrombosis following transcatheter aortic valve replacement: significance of blood stasis on the leaflets
  publication-title: Eur J Cardiothorac Surg
– volume: 100
  start-page: 1591
  issue: 6
  year: 2012
  end-page: 1599
  article-title: Biomechanical characterization of aortic valve tissue in humans and common animal models
  publication-title: J Biomed Mater Res A
– volume: 22
  start-page: 29
  issue: 1
  year: 2020
  article-title: 4D flow cardiovascular magnetic resonance for monitoring of aortic valve repair in bicuspid aortic valve disease
  publication-title: J Cardiovasc Magn Reson
– volume: 12
  year: 2021
  article-title: A fluid‐structure interaction study of different bicuspid aortic valve phenotypes throughout the cardiac cycle
  publication-title: Front Physiol
– volume: 227
  start-page: 107410
  year: 2022
  article-title: Fluid–structure interaction methods for the progressive anatomical and artificial aortic valve stenosis
  publication-title: Int J Mech Sci
– volume: 36
  start-page: 473
  issue: 4
  year: 2013
  end-page: 486
  article-title: The influence of leaflet skin friction and stiffness on the performance of bioprosthetic aortic valves
  publication-title: Australas Phys Eng Sci Med
– volume: 22
  start-page: 103
  year: 2020
  end-page: 126
  article-title: 4D flow with MRI
  publication-title: Annu Rev Biomed Eng
– volume: 49
  start-page: 3310
  issue: 12
  year: 2021
  end-page: 3322
  article-title: Progressive calcification in bicuspid valves: a coupled hemodynamics and multiscale structural computations
  publication-title: Ann Biomed Eng
– volume: 3
  start-page: 296
  issue: 3
  year: 2010
  end-page: 304
  article-title: Echo/Doppler evaluation of hemodynamics after aortic valve replacement: principles of interrogation and evaluation of high gradients
  publication-title: JACC Cardiovasc Imaging
– volume: 37
  issue: 4
  year: 2021
  article-title: Modeling of aortic valve stenosis using fluid‐structure interaction method
  publication-title: Perfusion
– volume: 78
  start-page: 52
  year: 2018
  end-page: 69
  article-title: Fluid‐structure interaction simulation of artificial textile reinforced aortic heart valve: validation with an in‐vitro test
  publication-title: J Biomech
– volume: 7
  start-page: 374
  issue: 4
  year: 2016
  end-page: 388
  article-title: Fluid‐structure interaction study of transcatheter aortic valve dynamics using smoothed particle hydrodynamics
  publication-title: Cardiovasc Eng Technol
– volume: 1‐9
  start-page: 375
  year: 2020
  end-page: 383
  article-title: The impact of calcification patterns in transcatheter aortic valve performance: a fluid‐structure interaction analysis
  publication-title: Comput Methods Biomech Biomed Engin
– volume: 166
  start-page: 11
  issue: 1
  year: 2021
  end-page: 21
  article-title: Geometry and flow in ascending aortic aneurysms are influenced by left ventricular outflow tract orientation: detecting increased wall shear stress on the outer curve of proximal aortic aneurysms
  publication-title: J Thorac Cardiovasc Surg
– volume: 20
  start-page: 1031
  issue: 3
  year: 2021
  end-page: 1046
  article-title: Subject‐specific multiscale modeling of aortic valve biomechanics
  publication-title: Biomech Model Mechanobiol
– volume: 49
  start-page: 441
  issue: 1
  year: 2021
  end-page: 454
  article-title: Structural responses of integrated parametric aortic valve in an electro‐mechanical full heart model
  publication-title: Ann Biomed Eng
– volume: 19
  start-page: 1725
  year: 2020
  end-page: 1740
  article-title: Numerical evaluation of transcatheter aortic valve performance during heart beating and its post‐deployment fluid‐structure interaction analysis
  publication-title: Biomech Model Mechanobiol
– year: 2007
– volume: 33
  issue: 5
  year: 2017
  article-title: Machine learning‐based 3‐D geometry reconstruction and modeling of aortic valve deformation using 3‐D computed tomography images
  publication-title: Int J Numer Method Biomed Eng
– volume: 31
  start-page: 405
  issue: 4
  year: 2018
  end-page: 433
  article-title: Echocardiographic imaging for transcatheter aortic valve replacement
  publication-title: J Am Soc Echocardiogr
– volume: 377
  start-page: 79
  year: 1998
  end-page: 83
  article-title: Overcoming of barrier between CAD and CFD by modified finite volume method
  publication-title: Am Soc Mech Eng Press Vessels Pip Div (Publ) PVP
– volume: 10
  issue: 6
  year: 2022
  article-title: The Haemodynamic and pathophysiological mechanisms of calcific aortic valve disease
  publication-title: Biomedicine
– volume: 61
  start-page: 1
  issue: 1–3
  year: 2000
  end-page: 48
  article-title: A new constitutive framework for arterial wall mechanics and a comparative study of material models
  publication-title: J Elast Phys Sci Solids
– volume: 117
  start-page: 2818
  issue: 21
  year: 2008
  end-page: 2819
  article-title: Images in cardiovascular medicine. Evaluation of bicuspid aortic valve and aortic coarctation with 4D flow magnetic resonance imaging
  publication-title: Circulation
– volume: 326
  start-page: 565
  issue: 1567
  year: 1972
  end-page: 584
  article-title: Large deformation isotropic elasticity–on the correlation of theory and experiment for incompressible rubberlike solids
  publication-title: Proc R Soc Lond A Math Phys Sci
– volume: 12
  start-page: 252
  issue: 2
  year: 2019
  end-page: 266
  article-title: The role of imaging of flow patterns by 4D flow MRI in aortic stenosis
  publication-title: JACC Cardiovasc Imaging
– volume: 51
  start-page: 189
  year: 2022
  end-page: 199
  article-title: Semi‐automated construction of patient‐specific aortic valves from computed tomography images
  publication-title: Ann Biomed Eng
– volume: 58
  start-page: 815
  issue: 4
  year: 2020
  end-page: 829
  article-title: Simulation study of transcatheter heart valve implantation in patients with stenotic bicuspid aortic valve
  publication-title: Med Biol Eng Comput
– volume: 60
  start-page: 15
  year: 2017
  end-page: 21
  article-title: On the choice of outlet boundary conditions for patient‐specific analysis of aortic flow using computational fluid dynamics
  publication-title: J Biomech
– volume: 47
  start-page: 131
  issue: 2
  year: 2009
  end-page: 141
  article-title: The arterial Windkessel
  publication-title: Med Biol Eng Comput
– volume: 137
  year: 2023
  article-title: A low dimensional surrogate model for a fast estimation of strain in the thrombus during a thrombectomy procedure
  publication-title: J Mech Behav Biomed Mater
– volume: 9
  start-page: 123
  issue: 2
  year: 2021
  end-page: 136
  article-title: Effect of non‐linear leaflet material properties on aortic valve dynamics ‐ a coupled fluid‐structure approach
  publication-title: Eng Solid Mech
– year: 2020
– volume: 80
  start-page: 332
  year: 2018
  end-page: 349
  article-title: A computational study of the three‐dimensional fluid–structure interaction of aortic valve
  publication-title: J Fluids Struct
– volume: 9
  start-page: 21
  year: 2016
  article-title: The role of imaging in aortic valve disease
  publication-title: Curr Cardiovasc Imaging Rep
– volume: 334
  start-page: 88
  year: 2021
  end-page: 95
  article-title: Porcine and bovine aortic valve comparison for surgical optimization: a fluid‐structure interaction modeling study
  publication-title: Int J Cardiol
– volume: 43
  start-page: 3085
  issue: 16
  year: 2010
  end-page: 3090
  article-title: Simulated elliptical bioprosthetic valve deformation: implications for asymmetric transcatheter valve deployment
  publication-title: J Biomech
– volume: 140
  year: 2021
  article-title: Evaluation and verification of patient‐specific modelling of type B aortic dissection
  publication-title: Comput Biol Med
– volume: 6
  issue: 6
  year: 2021
  article-title: Fluid flow characteristics of healthy and calcified aortic valves using three‐dimensional Lagrangian coherent structures analysis
  publication-title: Fluids
– volume: 6
  issue: 8
  year: 2021
  article-title: Computational analysis of wall shear stress patterns on calcified and bicuspid aortic valves: focus on radial and Coaptation patterns
  publication-title: Fluids
– volume: 7
  year: 2020
  article-title: Hemodynamic modeling of biological aortic valve replacement using preoperative data only
  publication-title: Front Cardiovasc Med
– volume: 1‐1
  start-page: 3411
  year: 2019
  end-page: 3419
  article-title: 4D flow MRI‐based computational analysis of blood flow in patient‐specific aortic dissection
  publication-title: IEEE Transac Biomed Eng
– volume: 172
  year: 2021
  article-title: Patient‐Specific Analysis of Bicuspid Aortic Valve Hemodynamics Using a Fully Coupled Fluid‐Structure Interaction (FSI) Model
  publication-title: Comput Biol Med
– volume: 22
  start-page: 987
  issue: 3
  year: 2023
  end-page: 1002
  article-title: A parametric geometry model of the aortic valve for subject‐specific blood flow simulations using a resistive approach
  publication-title: Biomech Model Mechanobiol
– volume: 45
  start-page: 2392
  issue: 14
  year: 2012
  end-page: 2397
  article-title: A general three‐dimensional parametric geometry of the native aortic valve and root for biomechanical modeling
  publication-title: J Biomech
– ident: e_1_2_10_67_1
  doi: 10.3390/math11020428
– volume-title: The Aortic Valve
  year: 1990
  ident: e_1_2_10_70_1
– volume-title: The Finite Element Method: its Basis and Fundamentals
  year: 2005
  ident: e_1_2_10_44_1
– ident: e_1_2_10_75_1
– volume: 377
  start-page: 79
  year: 1998
  ident: e_1_2_10_41_1
  article-title: Overcoming of barrier between CAD and CFD by modified finite volume method
  publication-title: Am Soc Mech Eng Press Vessels Pip Div (Publ) PVP
– ident: e_1_2_10_79_1
  doi: 10.1007/s10237-020-01304-9
– ident: e_1_2_10_80_1
  doi: 10.1007/978-3-030-91103-4_11
– ident: e_1_2_10_21_1
  doi: 10.1016/j.jmbbm.2018.06.032
– ident: e_1_2_10_35_1
– ident: e_1_2_10_40_1
  doi: 10.1016/j.jbiomech.2012.07.017
– ident: e_1_2_10_31_1
  doi: 10.1007/s10237-021-01429-5
– ident: e_1_2_10_77_1
  doi: 10.1007/s13239-016-0285-7
– ident: e_1_2_10_76_1
  doi: 10.1016/j.jbiomech.2010.08.010
– volume: 50
  start-page: 1
  year: 2023
  ident: e_1_2_10_36_1
  article-title: An approach for designing patient‐specific prosthetic aortic valves based on CT images using fluid‐structure interaction (FSI) method
  publication-title: 2023 Comput Cardiol Conference (CinC)
– ident: e_1_2_10_53_1
  doi: 10.1002/cnm.2598
– ident: e_1_2_10_69_1
  doi: 10.1007/s00466-014-1059-4
– ident: e_1_2_10_37_1
  doi: 10.1007/s10237-023-01695-5
– ident: e_1_2_10_15_1
  doi: 10.1007/s10439-021-02877-x
– ident: e_1_2_10_10_1
  doi: 10.3390/fluids6060203
– volume: 61
  start-page: 1
  issue: 1
  year: 2000
  ident: e_1_2_10_73_1
  article-title: A new constitutive framework for arterial wall mechanics and a comparative study of material models
  publication-title: J Elast Phys Sci Solids
– ident: e_1_2_10_17_1
  doi: 10.1016/j.compbiomed.2024.108191
– ident: e_1_2_10_25_1
  doi: 10.1007/s11517-020-02138-4
– ident: e_1_2_10_18_1
  doi: 10.3390/fluids6080287
– ident: e_1_2_10_62_1
  doi: 10.1007/s13239-021-00536-9
– ident: e_1_2_10_6_1
  doi: 10.1161/CIRCULATIONAHA.107.760124
– ident: e_1_2_10_33_1
  doi: 10.1002/cnm.2827
– ident: e_1_2_10_46_1
  doi: 10.1002/jbm.a.34099
– ident: e_1_2_10_22_1
  doi: 10.1016/j.jbiomech.2018.07.018
– ident: e_1_2_10_74_1
  doi: 10.1098/rsif.2005.0073
– volume-title: Molding Aortic Valve Hemodynamics Using a Novel Immersed Boundary Method
  year: 2022
  ident: e_1_2_10_38_1
– ident: e_1_2_10_42_1
– ident: e_1_2_10_5_1
  doi: 10.1146/annurev-bioeng-100219-110055
– ident: e_1_2_10_51_1
  doi: 10.1007/s11517-008-0359-2
– ident: e_1_2_10_39_1
  doi: 10.1016/j.cmpb.2024.108270
– ident: e_1_2_10_58_1
  doi: 10.3389/fcvm.2020.593709
– volume: 21
  year: 2024
  ident: e_1_2_10_50_1
  article-title: Fish swim bladders as valve leaflets enhance the durability of transcatheter aortic valve replacement devices
  publication-title: Acta Biomater
– volume-title: Computational Assessment of Aortic Valve Function and Mechanics under Hypertension
  year: 2020
  ident: e_1_2_10_65_1
– ident: e_1_2_10_34_1
  doi: 10.1007/s10439-020-02575-0
– ident: e_1_2_10_29_1
  doi: 10.1007/s10237-022-01684-0
– ident: e_1_2_10_32_1
  doi: 10.1002/cnm.2849
– ident: e_1_2_10_48_1
  doi: 10.1007/s13246-013-0230-0
– ident: e_1_2_10_59_1
  doi: 10.3390/fluids4030119
– ident: e_1_2_10_24_1
  doi: 10.1016/j.jbiomech.2015.10.048
– ident: e_1_2_10_56_1
  doi: 10.1016/j.jtcvs.2021.06.014
– ident: e_1_2_10_61_1
  doi: 10.1016/j.compbiomed.2021.105053
– ident: e_1_2_10_68_1
  doi: 10.5267/j.esm.2021.1.001
– ident: e_1_2_10_13_1
  doi: 10.1007/s10439-020-02571-4
– ident: e_1_2_10_64_1
  doi: 10.1016/j.jfluidstructs.2018.04.009
– ident: e_1_2_10_66_1
  doi: 10.1016/j.ijmecsci.2022.107410
– volume: 37
  issue: 4
  year: 2021
  ident: e_1_2_10_14_1
  article-title: Modeling of aortic valve stenosis using fluid‐structure interaction method
  publication-title: Perfusion
– ident: e_1_2_10_30_1
  doi: 10.1007/s13239-018-00391-1
– volume: 10
  issue: 6
  year: 2022
  ident: e_1_2_10_57_1
  article-title: The Haemodynamic and pathophysiological mechanisms of calcific aortic valve disease
  publication-title: Biomedicine
– ident: e_1_2_10_12_1
  doi: 10.1007/s10237-012-0375-x
– volume-title: Concepts and Applications of Finite Element Analysis
  year: 2007
  ident: e_1_2_10_43_1
– ident: e_1_2_10_72_1
  doi: 10.1080/10255842.2016.1244266
– volume: 51
  start-page: 927
  issue: 5
  year: 2017
  ident: e_1_2_10_27_1
  article-title: Valve thrombosis following transcatheter aortic valve replacement: significance of blood stasis on the leaflets
  publication-title: Eur J Cardiothorac Surg
– ident: e_1_2_10_63_1
  doi: 10.3934/mbe.2022616
– ident: e_1_2_10_4_1
  doi: 10.1016/j.echo.2017.10.022
– volume: 15
  start-page: 601
  issue: 5
  year: 2006
  ident: e_1_2_10_55_1
  article-title: What do you mean by aortic valve area: geometric orifice area, effective orifice area, or gorlin area?
  publication-title: Journal of Heart Valve Disease
– ident: e_1_2_10_28_1
  doi: 10.32604/cmes.2021.014580
– ident: e_1_2_10_52_1
  doi: 10.1016/j.jbiomech.2017.06.005
– ident: e_1_2_10_7_1
  doi: 10.1016/j.ijcard.2013.11.034
– ident: e_1_2_10_19_1
  doi: 10.3389/fphys.2021.716015
– ident: e_1_2_10_26_1
  doi: 10.1016/j.medengphy.2012.04.009
– ident: e_1_2_10_54_1
  doi: 10.1152/ajpheart.00037.2009
– ident: e_1_2_10_23_1
  doi: 10.1371/journal.pone.0210780
– ident: e_1_2_10_20_1
  doi: 10.3389/fphys.2020.577188
– ident: e_1_2_10_78_1
  doi: 10.1007/s10439-022-03075-z
– volume: 1
  start-page: 375
  year: 2020
  ident: e_1_2_10_16_1
  article-title: The impact of calcification patterns in transcatheter aortic valve performance: a fluid‐structure interaction analysis
  publication-title: Comput Methods Biomech Biomed Engin
– ident: e_1_2_10_3_1
  doi: 10.1007/s12410-016-9383-z
– ident: e_1_2_10_47_1
  doi: 10.1080/10255842.2015.1058928
– ident: e_1_2_10_11_1
  doi: 10.1016/j.jbiomech.2016.11.024
– ident: e_1_2_10_71_1
  doi: 10.1016/j.ijcard.2021.04.051
– ident: e_1_2_10_2_1
  doi: 10.1016/j.jcmg.2009.11.009
– ident: e_1_2_10_45_1
  doi: 10.1098/rspa.1972.0026
– ident: e_1_2_10_9_1
  doi: 10.1186/s12968-020-00608-0
– ident: e_1_2_10_60_1
  doi: 10.1109/TBME.2019.2904885
– ident: e_1_2_10_8_1
  doi: 10.1016/j.jcmg.2018.10.034
– ident: e_1_2_10_49_1
  doi: 10.1016/j.jmbbm.2022.105577
SSID ssj0000299973
Score 2.4016097
Snippet The opening and closing dynamics of the aortic valve (AV) has a strong influence on haemodynamics in the aortic root, and both play a pivotal role in...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e3865
SubjectTerms Aorta
Aortic valve
Aortic Valve - diagnostic imaging
Aortic Valve - physiology
Boundary conditions
Computer Simulation
Fluid-structure interaction
haemodynamics
Heart valves
Hemodynamics
Hemodynamics - physiology
Humans
Image acquisition
Image reconstruction
Isotropic material
Magnetic Resonance Imaging
Models, Cardiovascular
Shear stress
Stress, Mechanical
Stroke volume
Valve leaflets
wall shear stress
Wall shear stresses
Workflow
Title Fluid–structure interaction analysis of a healthy aortic valve and its surrounding haemodynamics
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcnm.3865
https://www.ncbi.nlm.nih.gov/pubmed/39209425
https://www.proquest.com/docview/3125060319
https://www.proquest.com/docview/3099801970
Volume 40
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA7qyYvvx_oiguipazdpd5ujiIsIioiC4KEkaYKLbivbraAn_4P_0F_iTNNWfIF4aQ-dJm2SmfmmzXxDyI4Vmgve0R4ICC-AoxdZEXoGvKXhkQl6PUwUPj3rHl8FJ9fhdbWrEnNhHD9E88ENNaO016jgUuX7H6ShOh22sWAlmF_cqoV46II1n1d8MLOi_L_Myj1zgouaetZn-_W9n53RN4T5GbCWHqc_S27qZ3UbTe7axVi19fMXGsf_vcwcmamAKD1wK2eeTJh0gcxWoJRWKp8vEtW_LwbJ28urY5otRoYixcTIJURQWZGa0MxSSV1W5ROVGTZLYRU_GhBJ6GCc07wYjbCIEzhLeivNMEueUjkc6HyJXPWPLg-Pvaowg6choA09ZjXjBiKTSKtAMe1bpSKjIj9QXam1r6RVTFrGOjy0zMpQGYiSeACGVfoi6fFlMpVmqVklFJOqmQwtx9BOca6iTleCjQBDpLtJErbIXj1Dsa5Yy7F4xn3s-JZZDEMX49C1yHYj-eCYOn6Q2agnOa50NY85YDwfi20LaKK5DFqGv05karICZABIgy8XPb9FVtziaDoBhAkxMoPGd8sp_rX3-PDsFM9rfxVcJ9MMMJRLfdwgUzDPZhMw0FhtkUkWnG-Va_4dxOAGBg
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFL0qZQEbWt4DBYzEY5Wpx05m4kUXVdvRlHZmgVqpu2A7thjRSdBkAhpW_AOfwa_0K_olvY6TVOUhsemCTbLIlfPwvcfHju-5AK-s0Fzwng7QQAQhHoPYiigwOFoaHptwMHCJwuNJf3QcvjuJTlbgZ5ML4_Uh2gU3FxkVXrsAdwvSm5eqoTqbdV3FynpH5YFZfsX5WrG1v4ud-5qx4d7RziioSwoEGqdiUcCsZtwgp461ChXT1CoVGxXTUPWl1lRJq5i0jPV4ZJmVkTLI73mIkCCpSAcc270BN10BcSfUv_uetQs6FIFdVH-0WbVLT3DRiN1Sttk87NXh7zdOe5UiV2PccA3Omq_jt7Z86pYL1dXffhGO_E8-3zrcqbk22fbBcRdWTHYP1mreTWpUK-6DGp6W0_T8-w8vplvODXEqGnOf80FkrdtCcksk8YmjSyJz1yzBQP1i0CQl00VBinI-d3WqkA-Qj9LM8nSZydlUFw_g-Fre9CGsZnlmHgNxeeNMRpa72aviXMW9vkQYRKzV_TSNOvC2cYlE18Lsrj7IaeIlpVmCXZW4rurAy9bysxcj-YPNRuNVSQ1HRcKRxlJXT1xgE-1lBBL3d0hmJi_RBucKSFfEgHbgkffG9iZIoqlAdO_Am8qn_nr3ZGcyducn_2r4Am6NjsaHyeH-5OAp3GZIGX2m5wasYp-bZ0j5Fup5FWoEPly3c14Aa4dk2Q
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NTtwwEB5RkKpe-CkUll8jUTiFzdrJbnzggIAVFFhxAIlbaju2WIlN0IYF7Y136Fv0sfokHcdJEAIkLlySQ0Z25PHMfP6ZbwC2DFeMs5byUIB7AT69yPDQ0xgtNYt00OnYROHzXvv4Kvh1HV5PwN8qF8bxQ9QbbtYyCn9tDfwuMc1n0lCVDnZtwcryQuWpHj_ici3fOzlE3f6ktHt0eXDslRUFPIUrsdCjRlGmEVJHSgaSKt9IGWkZ-YFsC6V8KYykwlDaYqGhRoRSI7xnAXoE4fOkw7DdLzBlzxbt9TEaXNT7OT76dV4caNPikh5nvOK69Wmz-tmX0e8VpH2JkIsQ152F6RKbkn03meZgQqffYabEqaT0Avk8yO7tqJ_8e_rjyGdHQ00s68TQ5UgQUfKckMwQQVyi5ZiIzDZLcGI_aBRJSP8-J_loOLR1nTB-khuhB1kyTsWgr_IFuPqUkf0Bk2mW6iUgNs-aitAwu9qTjMmo1RboNtA3qXaShA3YqcYwViWRua2ncRs7CmYa42jHdrQbsFlL3jnyjjdkVis1xKX55jFD2Ofb-tscm6g_o-HZ0xSR6myEMoitMbzzjt-ARae-uhMEnbhsptj4dqHPd3uPD3rn9r38UcEN-Hpx2I3PTnqnK_CNIsJyiZGrMIkq12uIkO7lejE1Cfz-bFv4DwDvIuw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fluid%E2%80%93structure+interaction+analysis+of+a+healthy+aortic+valve+and+its+surrounding+haemodynamics&rft.jtitle=International+journal+for+numerical+methods+in+biomedical+engineering&rft.au=Yin%2C+Zhongjie&rft.au=Armour%2C+Chl%C3%B6e&rft.au=Kandail%2C+Harkamaljot&rft.au=O%27Regan%2C+Declan+P.&rft.date=2024-11-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=2040-7939&rft.eissn=2040-7947&rft.volume=40&rft.issue=11&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fcnm.3865&rft.externalDBID=10.1002%252Fcnm.3865&rft.externalDocID=CNM3865
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2040-7939&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2040-7939&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2040-7939&client=summon