Sustained Release of Nitric Oxide and Cascade Generation of Reactive Nitrogen/Oxygen Species via an Injectable Hydrogel for Tumor Synergistic Therapy

Reactive nitrogen species (RNS) generated via the reaction of nitric oxide (NO) with reactive oxygen species (ROS) are more lethal than ROS, and thus RNS‐mediated therapy has great potential in cancer treatment, yet it is still largely unexploited. Herein, a novel, injectable and NO‐releasing hydrog...

Full description

Saved in:
Bibliographic Details
Published inAdvanced functional materials Vol. 32; no. 36
Main Authors Wang, Yaoben, Yang, Xiaowei, Chen, Xiaobin, Wang, Xin, Wang, Yang, Wang, Hancheng, Chen, Zhiyong, Cao, Dinglingge, Yu, Lin, Ding, Jiandong
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 01.09.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Reactive nitrogen species (RNS) generated via the reaction of nitric oxide (NO) with reactive oxygen species (ROS) are more lethal than ROS, and thus RNS‐mediated therapy has great potential in cancer treatment, yet it is still largely unexploited. Herein, a novel, injectable and NO‐releasing hydrogel (NO‐Gel) composed of α‐(nitrate ester) acetic acid‐modified amphiphilic copolymers is developed. To further convert released NO to RNS, glutathione (GSH)‐sensitive CuCys nanoparticles (NPs) and β‐lapachone (Lapa) are co‐loaded into the NO‐Gel. This hydrogel system possesses a temperature‐induced sol‐gel transition and can continuously liberate Lapa, CuCys NPs, and NO in vitro for up to 3 weeks. The sustained supply of Lapa can efficiently boost hydrogen peroxide (H2O2) concentration in cancer cells, and intracellular GSH can induce the rapid release of NO and the reduction of CuCys NPs. With elevating H2O2 levels and producing highly reactive Cu(I), the Cu(I)‐catalyzed Fenton‐like reaction is dramatically enhanced, resulting in the generation of abundant hydroxyl radicals (·OH), and the subsequent cascade reactions among ·OH, H2O2, and NO cause more lethal RNS pool. After a single peritumoral injection of the hydrogel system, the cascade generation of ROS and RNS plus the substantial depletion of GSH can significantly suppress tumor growth. An injectable thermosensitive hydrogel with inherent long‐acting NO‐releasing capacity (NO‐Gel) is developed. After loading β‐lapachone and CuCys nanoparticles into the NO‐Gel, the hydrogel system (Lapa/CuCys@NO‐Gel) can elevate intracellular reactive oxygen species and reactive nitrogen species levels and deplete glutathione through cascade reactions. A synergistic antitumor efficacy is achieved after a single peritumoral injection of the hydrogel system.
AbstractList Reactive nitrogen species (RNS) generated via the reaction of nitric oxide (NO) with reactive oxygen species (ROS) are more lethal than ROS, and thus RNS‐mediated therapy has great potential in cancer treatment, yet it is still largely unexploited. Herein, a novel, injectable and NO‐releasing hydrogel (NO‐Gel) composed of α‐(nitrate ester) acetic acid‐modified amphiphilic copolymers is developed. To further convert released NO to RNS, glutathione (GSH)‐sensitive CuCys nanoparticles (NPs) and β‐lapachone (Lapa) are co‐loaded into the NO‐Gel. This hydrogel system possesses a temperature‐induced sol‐gel transition and can continuously liberate Lapa, CuCys NPs, and NO in vitro for up to 3 weeks. The sustained supply of Lapa can efficiently boost hydrogen peroxide (H 2 O 2 ) concentration in cancer cells, and intracellular GSH can induce the rapid release of NO and the reduction of CuCys NPs. With elevating H 2 O 2 levels and producing highly reactive Cu(I), the Cu(I)‐catalyzed Fenton‐like reaction is dramatically enhanced, resulting in the generation of abundant hydroxyl radicals (·OH), and the subsequent cascade reactions among ·OH, H 2 O 2, and NO cause more lethal RNS pool. After a single peritumoral injection of the hydrogel system, the cascade generation of ROS and RNS plus the substantial depletion of GSH can significantly suppress tumor growth.
Reactive nitrogen species (RNS) generated via the reaction of nitric oxide (NO) with reactive oxygen species (ROS) are more lethal than ROS, and thus RNS‐mediated therapy has great potential in cancer treatment, yet it is still largely unexploited. Herein, a novel, injectable and NO‐releasing hydrogel (NO‐Gel) composed of α‐(nitrate ester) acetic acid‐modified amphiphilic copolymers is developed. To further convert released NO to RNS, glutathione (GSH)‐sensitive CuCys nanoparticles (NPs) and β‐lapachone (Lapa) are co‐loaded into the NO‐Gel. This hydrogel system possesses a temperature‐induced sol‐gel transition and can continuously liberate Lapa, CuCys NPs, and NO in vitro for up to 3 weeks. The sustained supply of Lapa can efficiently boost hydrogen peroxide (H2O2) concentration in cancer cells, and intracellular GSH can induce the rapid release of NO and the reduction of CuCys NPs. With elevating H2O2 levels and producing highly reactive Cu(I), the Cu(I)‐catalyzed Fenton‐like reaction is dramatically enhanced, resulting in the generation of abundant hydroxyl radicals (·OH), and the subsequent cascade reactions among ·OH, H2O2, and NO cause more lethal RNS pool. After a single peritumoral injection of the hydrogel system, the cascade generation of ROS and RNS plus the substantial depletion of GSH can significantly suppress tumor growth.
Reactive nitrogen species (RNS) generated via the reaction of nitric oxide (NO) with reactive oxygen species (ROS) are more lethal than ROS, and thus RNS‐mediated therapy has great potential in cancer treatment, yet it is still largely unexploited. Herein, a novel, injectable and NO‐releasing hydrogel (NO‐Gel) composed of α‐(nitrate ester) acetic acid‐modified amphiphilic copolymers is developed. To further convert released NO to RNS, glutathione (GSH)‐sensitive CuCys nanoparticles (NPs) and β‐lapachone (Lapa) are co‐loaded into the NO‐Gel. This hydrogel system possesses a temperature‐induced sol‐gel transition and can continuously liberate Lapa, CuCys NPs, and NO in vitro for up to 3 weeks. The sustained supply of Lapa can efficiently boost hydrogen peroxide (H2O2) concentration in cancer cells, and intracellular GSH can induce the rapid release of NO and the reduction of CuCys NPs. With elevating H2O2 levels and producing highly reactive Cu(I), the Cu(I)‐catalyzed Fenton‐like reaction is dramatically enhanced, resulting in the generation of abundant hydroxyl radicals (·OH), and the subsequent cascade reactions among ·OH, H2O2, and NO cause more lethal RNS pool. After a single peritumoral injection of the hydrogel system, the cascade generation of ROS and RNS plus the substantial depletion of GSH can significantly suppress tumor growth. An injectable thermosensitive hydrogel with inherent long‐acting NO‐releasing capacity (NO‐Gel) is developed. After loading β‐lapachone and CuCys nanoparticles into the NO‐Gel, the hydrogel system (Lapa/CuCys@NO‐Gel) can elevate intracellular reactive oxygen species and reactive nitrogen species levels and deplete glutathione through cascade reactions. A synergistic antitumor efficacy is achieved after a single peritumoral injection of the hydrogel system.
Author Wang, Yang
Yang, Xiaowei
Ding, Jiandong
Chen, Xiaobin
Cao, Dinglingge
Wang, Xin
Wang, Yaoben
Chen, Zhiyong
Yu, Lin
Wang, Hancheng
Author_xml – sequence: 1
  givenname: Yaoben
  surname: Wang
  fullname: Wang, Yaoben
  organization: Fudan University
– sequence: 2
  givenname: Xiaowei
  surname: Yang
  fullname: Yang, Xiaowei
  organization: Fudan University
– sequence: 3
  givenname: Xiaobin
  surname: Chen
  fullname: Chen, Xiaobin
  organization: Fudan University
– sequence: 4
  givenname: Xin
  surname: Wang
  fullname: Wang, Xin
  organization: Fudan University
– sequence: 5
  givenname: Yang
  surname: Wang
  fullname: Wang, Yang
  organization: Fudan University
– sequence: 6
  givenname: Hancheng
  surname: Wang
  fullname: Wang, Hancheng
  organization: Fudan University
– sequence: 7
  givenname: Zhiyong
  surname: Chen
  fullname: Chen, Zhiyong
  organization: Fudan University
– sequence: 8
  givenname: Dinglingge
  surname: Cao
  fullname: Cao, Dinglingge
  organization: Fudan University
– sequence: 9
  givenname: Lin
  orcidid: 0000-0001-7660-3367
  surname: Yu
  fullname: Yu, Lin
  email: yu_lin@fudan.edu.cn
  organization: Fudan University
– sequence: 10
  givenname: Jiandong
  surname: Ding
  fullname: Ding, Jiandong
  organization: Fudan University
BookMark eNqFkU1rGzEQhkVJoPnotWdBz3YkrVarPQY3X5DGELvQ2zLWjlKZtdaR5CT7Q_J_I8clgUDoRTOH53kH9B6SPd97JOQ7Z2POmDiB1q7GggnBVFnKL-SAK65GBRN6723nf76SwxiXjPGqKuQBeZ5tYgLnsaW32CFEpL2lNy4FZ-j0ybVIwbd0AtFA3i_QY4Dker_FbhFMcg_4yvd36E-mT0MedLZG4zDSBwdZp1d-iSbBokN6ObRbsqO2D3S-WeV3NuTMOxdTvjj_m-PXwzHZt9BF_PZvHpHf52fzyeXoenpxNTm9HplCF3JkldbMAtdaSwm8EIuWKckVM1UtmOYGmVpgiaoEblndYotQyqosoNZgVVEckR-73HXo7zcYU7PsN8Hnk42oWF1xKUSVKbmjTOhjDGgb49LrJ6QArms4a7YFNNsCmrcCsjb-oK2DW0EYPhfqnfDoOhz-QzenP89_vbsv76aciA
CitedBy_id crossref_primary_10_1039_D3TB00332A
crossref_primary_10_1016_j_cej_2023_143128
crossref_primary_10_1021_acs_biomac_3c01285
crossref_primary_10_1021_acs_macromol_2c02309
crossref_primary_10_1016_j_ijpharm_2022_122484
crossref_primary_10_34133_bmr_0117
crossref_primary_10_1186_s12951_024_02306_w
crossref_primary_10_1002_smtd_202301349
crossref_primary_10_1016_j_ijbiomac_2023_126371
crossref_primary_10_1021_acsami_4c05836
crossref_primary_10_1002_adfm_202405966
crossref_primary_10_1038_s41467_024_45072_x
crossref_primary_10_1016_j_eurpolymj_2023_112214
crossref_primary_10_1016_j_cej_2023_147437
crossref_primary_10_1002_adhm_202401551
crossref_primary_10_1093_rb_rbae137
crossref_primary_10_1021_acsanm_4c04121
crossref_primary_10_1039_D2PY01574A
crossref_primary_10_3390_bios13080815
crossref_primary_10_1002_adfm_202304394
crossref_primary_10_1016_j_jconrel_2023_08_038
crossref_primary_10_1002_adhm_202302315
crossref_primary_10_1039_D4BM00593G
crossref_primary_10_1002_jbm_a_37754
crossref_primary_10_1021_acsabm_4c00947
crossref_primary_10_1002_adfm_202211664
crossref_primary_10_1186_s40824_022_00316_z
crossref_primary_10_1021_acsami_4c21695
crossref_primary_10_1016_j_cej_2024_151566
crossref_primary_10_1016_j_ejpb_2024_114348
crossref_primary_10_1016_j_ijbiomac_2025_140528
crossref_primary_10_1002_advs_202308229
crossref_primary_10_1016_j_ica_2024_122058
crossref_primary_10_1002_adma_202211637
crossref_primary_10_1039_D2BM01833K
crossref_primary_10_1093_rb_rbac098
crossref_primary_10_1021_acsnano_4c16329
crossref_primary_10_1021_acsnano_3c05790
crossref_primary_10_1021_acsami_3c03149
crossref_primary_10_1016_j_matdes_2022_111429
crossref_primary_10_1016_j_matdes_2023_112535
crossref_primary_10_1021_acsabm_4c00128
crossref_primary_10_1021_acsanm_2c04321
crossref_primary_10_1002_smll_202310957
crossref_primary_10_1186_s12951_024_02929_z
crossref_primary_10_1002_adhm_202301641
crossref_primary_10_1002_adhm_202300431
crossref_primary_10_1021_acsami_3c18306
crossref_primary_10_1016_j_bioadv_2024_214046
crossref_primary_10_1016_j_jconrel_2022_10_012
crossref_primary_10_1002_adma_202305287
Cites_doi 10.1002/adma.202101701
10.1093/rb/rbab060
10.1126/sciadv.abc3513
10.1021/acsami.6b03737
10.1021/acsnano.9b05493
10.1002/adfm.201907954
10.1002/adma.202107009
10.1002/anie.201504536
10.1016/j.apmt.2020.100906
10.1002/adfm.201606398
10.1016/j.biomaterials.2019.119338
10.1016/j.jconrel.2018.04.005
10.1021/acsami.1c12646
10.1016/j.ccell.2016.08.004
10.1021/acsami.1c20585
10.1016/j.yexmp.2006.06.007
10.1016/j.bioactmat.2021.05.013
10.1016/j.cej.2020.125320
10.1021/acs.nanolett.8b00495
10.1021/acsami.7b11998
10.1021/acsnano.9b05976
10.1093/rb/rbab073
10.1016/j.actbio.2017.03.011
10.1021/acs.macromol.1c00959
10.1002/anie.201805664
10.1016/j.biomaterials.2018.03.046
10.1016/j.biomaterials.2020.119999
10.1002/adma.202104223
10.1002/anie.201908997
10.1002/adma.201805818
10.1002/adfm.202008507
10.1002/adma.201801527
10.1016/j.jconrel.2015.12.015
10.1038/s41565-019-0570-3
10.1016/j.jconrel.2020.07.031
10.1016/j.biomaterials.2018.09.004
10.1021/cr000040l
10.1016/j.bioactmat.2017.08.003
10.1038/nature13165
10.1002/smtd.202000310
10.1038/s41467-021-24804-3
10.1002/adfm.202111148
10.1002/adma.202008089
10.1093/rb/rbab038
10.3389/fonc.2020.01399
10.1016/j.jconrel.2015.09.019
10.1021/acsami.9b10346
10.1002/adhm.202102654
10.1002/adhm.202100814
10.1016/j.biomaterials.2020.120642
10.1016/j.bioactmat.2021.09.035
10.1002/adma.201702342
10.1021/jacs.8b08714
10.1093/rb/rbab047
10.1002/adfm.202100349
10.1186/s13045-021-01187-y
10.1021/acs.macromol.8b01014
10.1039/C7NR00231A
10.1021/acs.nanolett.9b01093
10.1016/j.actbio.2017.03.042
10.1039/D0NR03147J
10.1002/smll.201903045
10.1021/acs.biomac.9b01096
10.1002/adfm.202011170
10.1021/acsnano.1c00698
10.1016/j.biomaterials.2018.09.043
10.1038/srep31593
10.7150/thno.36514
10.1016/j.actbio.2021.04.009
10.1002/anie.201610682
10.1158/0008-5472.CAN-09-3995
10.1016/j.biomaterials.2018.03.023
10.1039/D0TB02360D
10.1002/adma.202006892
10.1002/adfm.202100243
10.1021/acsami.5b12212
10.1016/j.jconrel.2017.10.022
10.1002/adfm.202104650
ContentType Journal Article
Copyright 2022 Wiley‐VCH GmbH
Copyright_xml – notice: 2022 Wiley‐VCH GmbH
DBID AAYXX
CITATION
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/adfm.202206554
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList CrossRef
Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1616-3028
EndPage n/a
ExternalDocumentID 10_1002_adfm_202206554
ADFM202206554
Genre article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 21975045
– fundername: National Key R&D Program of China
  funderid: 2020YFC1107102
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OC
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
.Y3
31~
AANHP
AASGY
AAYXX
ACBWZ
ACRPL
ACYXJ
ADMLS
ADNMO
AEYWJ
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
HF~
HVGLF
LW6
7SP
7SR
7U5
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
L7M
ID FETCH-LOGICAL-c3834-f6880fa188844a132bd064160c792081ce06be5e65a1f09dedea54753a98af633
IEDL.DBID DR2
ISSN 1616-301X
IngestDate Fri Jul 25 07:58:10 EDT 2025
Thu Apr 24 22:53:59 EDT 2025
Tue Jul 01 00:30:32 EDT 2025
Wed Jan 22 16:22:24 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 36
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3834-f6880fa188844a132bd064160c792081ce06be5e65a1f09dedea54753a98af633
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7660-3367
PQID 2709714227
PQPubID 2045204
PageCount 17
ParticipantIDs proquest_journals_2709714227
crossref_citationtrail_10_1002_adfm_202206554
crossref_primary_10_1002_adfm_202206554
wiley_primary_10_1002_adfm_202206554_ADFM202206554
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-09-01
PublicationDateYYYYMMDD 2022-09-01
PublicationDate_xml – month: 09
  year: 2022
  text: 2022-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Advanced functional materials
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2021; 22
2019; 11
2018; 168
2021; 128
2018; 167
2019; 14
2019; 58
2020; 16
2016; 30
2019; 19
2020; 14
2020; 326
2020; 12
2020; 246
2020; 10
2017; 9
2020; 6
2018; 3
2020; 4
2021; 31
2021; 33
2002; 102
2022; 34
2018; 30
2015; 217
2010; 70
2021; 9
2018; 185
2021; 8
2018; 187
2021; 6
2019; 9
2021; 269
2017; 27
2015; 54
2017; 29
2020; 32
2019; 141
2016; 240
2021; 14
2021; 13
2018; 18
2016; 6
2021; 15
2021; 10
2021; 54
2014; 508
2021; 12
2022
2020; 30
2020; 396
2018; 278
2017; 55
2017; 54
2017; 56
2022; 12
2022; 14
2019; 218
2007; 82
2018; 51
2020; 21
2022; 11
2017; 268
2016; 8
e_1_2_9_75_1
e_1_2_9_31_1
e_1_2_9_52_1
e_1_2_9_50_1
e_1_2_9_73_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_56_1
e_1_2_9_77_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_54_1
e_1_2_9_71_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_58_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_64_1
e_1_2_9_20_1
e_1_2_9_62_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_68_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_66_1
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_4_1
e_1_2_9_60_1
e_1_2_9_2_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_74_1
e_1_2_9_51_1
e_1_2_9_72_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_78_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_55_1
e_1_2_9_76_1
e_1_2_9_70_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_59_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_63_1
e_1_2_9_40_1
e_1_2_9_61_1
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_67_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_65_1
e_1_2_9_7_1
e_1_2_9_5_1
e_1_2_9_3_1
e_1_2_9_1_1
e_1_2_9_9_1
e_1_2_9_25_1
e_1_2_9_27_1
e_1_2_9_48_1
e_1_2_9_69_1
e_1_2_9_29_1
References_xml – volume: 27
  year: 2017
  publication-title: Adv. Funct. Mater.
– volume: 14
  start-page: 1468
  year: 2020
  publication-title: ACS Nano
– volume: 14
  start-page: 1160
  year: 2019
  publication-title: Nat. Nanotechnol.
– volume: 13
  year: 2021
  publication-title: ACS Appl. Mater. Interfaces
– volume: 54
  start-page: 7421
  year: 2021
  publication-title: Macromolecules
– volume: 9
  start-page: 3637
  year: 2017
  publication-title: Nanoscale
– volume: 396
  year: 2020
  publication-title: Chem. Eng. J.
– volume: 56
  start-page: 1229
  year: 2017
  publication-title: Angew. Chem., Int. Ed.
– volume: 14
  start-page: 173
  year: 2021
  publication-title: J. Hematol. Oncol.
– volume: 14
  start-page: 347
  year: 2020
  publication-title: ACS Nano
– volume: 278
  start-page: 127
  year: 2018
  publication-title: J. Controlled Release
– volume: 218
  year: 2019
  publication-title: Biomaterials
– volume: 508
  start-page: 55
  year: 2014
  publication-title: Nature
– volume: 268
  start-page: 176
  year: 2017
  publication-title: J. Controlled Release
– volume: 34
  year: 2022
  publication-title: Adv. Mater.
– volume: 16
  year: 2020
  publication-title: Small
– volume: 33
  year: 2021
  publication-title: Adv. Mater.
– volume: 30
  year: 2020
  publication-title: Adv. Funct. Mater.
– volume: 217
  start-page: 256
  year: 2015
  publication-title: J. Controlled Release
– volume: 10
  year: 2021
  publication-title: Adv. Healthcare Mater.
– volume: 54
  start-page: 128
  year: 2017
  publication-title: Acta Biomater.
– volume: 58
  year: 2019
  publication-title: Angew. Chem., Int. Ed.
– volume: 12
  start-page: 4501
  year: 2021
  publication-title: Nat. Commun.
– volume: 269
  year: 2021
  publication-title: Biomaterials
– volume: 55
  start-page: 396
  year: 2017
  publication-title: Acta Biomater.
– volume: 185
  start-page: 51
  year: 2018
  publication-title: Biomaterials
– volume: 12
  start-page: 303
  year: 2022
  publication-title: Bioact. Mater.
– volume: 168
  start-page: 64
  year: 2018
  publication-title: Biomaterials
– volume: 14
  start-page: 3773
  year: 2022
  publication-title: ACS Appl. Mater. Interfaces
– volume: 187
  start-page: 55
  year: 2018
  publication-title: Biomaterials
– volume: 102
  start-page: 1091
  year: 2002
  publication-title: Chem. Rev.
– volume: 141
  start-page: 849
  year: 2019
  publication-title: J. Am. Chem. Soc.
– volume: 51
  start-page: 6405
  year: 2018
  publication-title: Macromolecules
– volume: 22
  year: 2021
  publication-title: Appl. Mater. Today
– volume: 10
  start-page: 1399
  year: 2020
  publication-title: Front. Oncol.
– volume: 128
  start-page: 42
  year: 2021
  publication-title: Acta Biomater.
– volume: 9
  start-page: 250
  year: 2021
  publication-title: J. Mater. Chem. B
– volume: 3
  start-page: 118
  year: 2018
  publication-title: Bioact. Mater.
– year: 2022
  publication-title: Adv. Funct. Mater.
– volume: 19
  start-page: 2731
  year: 2019
  publication-title: Nano Lett.
– volume: 58
  start-page: 946
  year: 2019
  publication-title: Angew. Chem., Int. Ed.
– volume: 29
  year: 2017
  publication-title: Adv. Mater.
– volume: 6
  year: 2020
  publication-title: Sci. Adv.
– volume: 54
  year: 2015
  publication-title: Angew. Chem., Int. Ed.
– volume: 8
  year: 2021
  publication-title: Regen. Biomater.
– volume: 12
  year: 2020
  publication-title: Nanoscale
– volume: 246
  year: 2020
  publication-title: Biomaterials
– volume: 240
  start-page: 191
  year: 2016
  publication-title: J. Controlled Release
– volume: 9
  start-page: 6080
  year: 2019
  publication-title: Theranostics
– volume: 70
  start-page: 3896
  year: 2010
  publication-title: Cancer Res.
– volume: 30
  start-page: 377
  year: 2016
  publication-title: Cancer Cell
– volume: 15
  start-page: 8663
  year: 2021
  publication-title: ACS Nano
– volume: 11
  year: 2019
  publication-title: ACS Appl. Mater. Interfaces
– volume: 9
  year: 2017
  publication-title: ACS Appl. Mater. Interfaces
– volume: 8
  start-page: 5148
  year: 2016
  publication-title: ACS Appl. Mater. Interfaces
– volume: 21
  start-page: 143
  year: 2020
  publication-title: Biomacromolecules
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 326
  start-page: 419
  year: 2020
  publication-title: J. Controlled Release
– volume: 4
  year: 2020
  publication-title: Small Methods
– volume: 8
  year: 2016
  publication-title: ACS Appl. Mater. Interfaces
– volume: 167
  start-page: 143
  year: 2018
  publication-title: Biomaterials
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 31
  year: 2021
  publication-title: Adv. Funct. Mater.
– volume: 82
  start-page: 12
  year: 2007
  publication-title: Exp. Mol. Pathol.
– volume: 6
  start-page: 4717
  year: 2021
  publication-title: Bioact. Mater.
– volume: 18
  start-page: 2637
  year: 2018
  publication-title: Nano Lett.
– volume: 6
  year: 2016
  publication-title: Sci. Rep.
– volume: 11
  year: 2022
  publication-title: Adv. Healthcare Mater.
– ident: e_1_2_9_25_1
  doi: 10.1002/adma.202101701
– ident: e_1_2_9_37_1
  doi: 10.1093/rb/rbab060
– ident: e_1_2_9_7_1
  doi: 10.1126/sciadv.abc3513
– ident: e_1_2_9_27_1
  doi: 10.1021/acsami.6b03737
– ident: e_1_2_9_6_1
  doi: 10.1021/acsnano.9b05493
– ident: e_1_2_9_55_1
  doi: 10.1002/adfm.201907954
– ident: e_1_2_9_56_1
  doi: 10.1002/adma.202107009
– ident: e_1_2_9_14_1
  doi: 10.1002/anie.201504536
– ident: e_1_2_9_39_1
  doi: 10.1016/j.apmt.2020.100906
– ident: e_1_2_9_12_1
  doi: 10.1002/adfm.201606398
– ident: e_1_2_9_35_1
  doi: 10.1016/j.biomaterials.2019.119338
– ident: e_1_2_9_26_1
  doi: 10.1016/j.jconrel.2018.04.005
– ident: e_1_2_9_31_1
  doi: 10.1021/acsami.1c12646
– ident: e_1_2_9_4_1
  doi: 10.1016/j.ccell.2016.08.004
– ident: e_1_2_9_34_1
  doi: 10.1021/acsami.1c20585
– ident: e_1_2_9_76_1
  doi: 10.1016/j.yexmp.2006.06.007
– ident: e_1_2_9_69_1
  doi: 10.1016/j.bioactmat.2021.05.013
– ident: e_1_2_9_65_1
  doi: 10.1016/j.cej.2020.125320
– ident: e_1_2_9_32_1
  doi: 10.1021/acs.nanolett.8b00495
– ident: e_1_2_9_67_1
  doi: 10.1021/acsami.7b11998
– ident: e_1_2_9_13_1
  doi: 10.1021/acsnano.9b05976
– ident: e_1_2_9_38_1
  doi: 10.1093/rb/rbab073
– ident: e_1_2_9_5_1
  doi: 10.1016/j.actbio.2017.03.011
– ident: e_1_2_9_52_1
  doi: 10.1021/acs.macromol.1c00959
– ident: e_1_2_9_58_1
  doi: 10.1002/anie.201805664
– ident: e_1_2_9_29_1
  doi: 10.1016/j.biomaterials.2018.03.046
– ident: e_1_2_9_28_1
  doi: 10.1016/j.biomaterials.2020.119999
– ident: e_1_2_9_57_1
  doi: 10.1002/adma.202104223
– ident: e_1_2_9_61_1
  doi: 10.1002/anie.201908997
– ident: e_1_2_9_9_1
  doi: 10.1002/adma.201805818
– ident: e_1_2_9_19_1
  doi: 10.1002/adfm.202008507
– ident: e_1_2_9_43_1
  doi: 10.1002/adma.201801527
– ident: e_1_2_9_45_1
  doi: 10.1016/j.jconrel.2015.12.015
– ident: e_1_2_9_18_1
  doi: 10.1038/s41565-019-0570-3
– ident: e_1_2_9_48_1
  doi: 10.1016/j.jconrel.2020.07.031
– ident: e_1_2_9_15_1
  doi: 10.1016/j.biomaterials.2018.09.004
– ident: e_1_2_9_24_1
  doi: 10.1021/cr000040l
– ident: e_1_2_9_41_1
  doi: 10.1016/j.bioactmat.2017.08.003
– ident: e_1_2_9_1_1
  doi: 10.1038/nature13165
– ident: e_1_2_9_70_1
  doi: 10.1002/smtd.202000310
– ident: e_1_2_9_3_1
  doi: 10.1038/s41467-021-24804-3
– ident: e_1_2_9_8_1
  doi: 10.1002/adfm.202111148
– ident: e_1_2_9_21_1
  doi: 10.1002/adma.202008089
– ident: e_1_2_9_71_1
  doi: 10.1093/rb/rbab038
– ident: e_1_2_9_75_1
  doi: 10.3389/fonc.2020.01399
– ident: e_1_2_9_11_1
  doi: 10.1016/j.jconrel.2015.09.019
– ident: e_1_2_9_40_1
  doi: 10.1021/acsami.9b10346
– ident: e_1_2_9_49_1
  doi: 10.1002/adhm.202102654
– ident: e_1_2_9_42_1
  doi: 10.1002/adhm.202100814
– ident: e_1_2_9_30_1
  doi: 10.1016/j.biomaterials.2020.120642
– ident: e_1_2_9_16_1
  doi: 10.1016/j.bioactmat.2021.09.035
– ident: e_1_2_9_62_1
  doi: 10.1002/adma.201702342
– ident: e_1_2_9_63_1
  doi: 10.1021/jacs.8b08714
– ident: e_1_2_9_72_1
  doi: 10.1093/rb/rbab047
– ident: e_1_2_9_46_1
  doi: 10.1002/adfm.202100349
– ident: e_1_2_9_74_1
  doi: 10.1186/s13045-021-01187-y
– ident: e_1_2_9_64_1
  doi: 10.1021/acs.macromol.8b01014
– ident: e_1_2_9_10_1
  doi: 10.1039/C7NR00231A
– ident: e_1_2_9_22_1
  doi: 10.1021/acs.nanolett.9b01093
– ident: e_1_2_9_51_1
  doi: 10.1016/j.actbio.2017.03.042
– ident: e_1_2_9_47_1
  doi: 10.1039/D0NR03147J
– ident: e_1_2_9_54_1
  doi: 10.1002/smll.201903045
– ident: e_1_2_9_33_1
  doi: 10.1021/acs.biomac.9b01096
– ident: e_1_2_9_50_1
  doi: 10.1002/adfm.202011170
– ident: e_1_2_9_23_1
  doi: 10.1021/acsnano.1c00698
– ident: e_1_2_9_17_1
  doi: 10.1016/j.biomaterials.2018.09.043
– ident: e_1_2_9_66_1
  doi: 10.1038/srep31593
– ident: e_1_2_9_78_1
  doi: 10.7150/thno.36514
– ident: e_1_2_9_53_1
  doi: 10.1016/j.actbio.2021.04.009
– ident: e_1_2_9_20_1
  doi: 10.1002/anie.201610682
– ident: e_1_2_9_77_1
  doi: 10.1158/0008-5472.CAN-09-3995
– ident: e_1_2_9_2_1
  doi: 10.1016/j.biomaterials.2018.03.023
– ident: e_1_2_9_60_1
  doi: 10.1039/D0TB02360D
– ident: e_1_2_9_68_1
  doi: 10.1002/adma.202006892
– ident: e_1_2_9_59_1
  doi: 10.1002/adfm.202100243
– ident: e_1_2_9_36_1
  doi: 10.1021/acsami.5b12212
– ident: e_1_2_9_44_1
  doi: 10.1016/j.jconrel.2017.10.022
– ident: e_1_2_9_73_1
  doi: 10.1002/adfm.202104650
SSID ssj0017734
Score 2.6243093
Snippet Reactive nitrogen species (RNS) generated via the reaction of nitric oxide (NO) with reactive oxygen species (ROS) are more lethal than ROS, and thus...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Acetic acid
Cancer
Cascade chemical reactions
chemodynamic therapy
Copolymers
Depletion
Glutathione
Hydrogels
Hydrogen peroxide
Hydroxyl radicals
injectable hydrogels
Materials science
Nanoparticles
Nitric oxide
Oxygen
reactive nitrogen species
Sol-gel processes
Sustained release
Tumors
Title Sustained Release of Nitric Oxide and Cascade Generation of Reactive Nitrogen/Oxygen Species via an Injectable Hydrogel for Tumor Synergistic Therapy
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202206554
https://www.proquest.com/docview/2709714227
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF6kXvTgW6yPsgfBU9pks0maY1FLFVuhrdBb2OwDipqKbcX6P_y_zmTbWAUR9JIHmQ1Jdmbnm83Mt4ScRorXtRtIJzAmdbhkwhGGxw7nQvlMGckkViO3O2Hrjl8PgsFSFb_lhygm3NAy8vEaDVyk49onaahQBivJGQMnGiAhKCZsISrqFvxRXhTZ38qhhwle3mDB2uiy2tfmX73SJ9RcBqy5x2luErF4Vptocl-dTtKqfPtG4_ifl9kiG3M4ShtWf7bJis52yPoSSeEuee_ZGiutaBd8FHg9OjK0M0Rqf3r7OlSaikzRczHGVHtqeayxu1Gsq0U-oObyI1DW2u3rDHY0X_dej-nLUEBzepXhfBCWcdHWTKHkAwU4TfvTR9j2ZlihmFNK076lQdgjd83L_nnLmS_m4EgIgrljQhgpjPAg4gY9gBg4VYCGvNCVUcwAl0jthqkOdBgIz7ix0kqLgEMwJeK6MKHv75NSNsr0AaHCVyb2VJzCJV5HCRP5gYfBT6zrOiwTZ9GZiZwzneOCGw-J5WhmCX7upPjcZXJWyD9Zjo8fJY8XupHMbX2csAh5uDhjUZmwvJN_uUvSuGi2i7PDvzQ6Imt4bJPdjklp8jzVJ4COJmmFrDYu2je9Sm4JH4lKCcQ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtNAEB5V5QAcyr9IKbAHECc39mZtxwcOVUOU0CaVklTKzaz3R4ponapJaNP34EF4FZ6IGa_ttkgICakHLrZsj63V7vx75xuAd7EWbeOHygutzTyhuPSkFYknhNQtrq3iiqqRB8Oodyw-T8PpBvyoamEcPkSdcCPJKPQ1CTglpJvXqKFSWyol5xytaCjKfZUHZn2BUdviY7-DS_ye8-6nyX7PKxsLeAoDMuHZCLnWygCjPxwTxmOZRsscRL6KE442Uhk_ykxoolAG1k-00UaGAh17mbSljSgHilr_HrURJ7j-zqhGrAri2P3IjgLaUhZMK5xInzdvj_e2Hbx2bm-6yIWN6z6Cn9XsuK0tX3dXy2xXXf0GHPlfTd9j2Co9brbnROQJbJj8KTy8gcP4DL6PXRmZ0WyEZhgNO5tbNpxR9wJ2dDnThslcs325oGoC5qC6iaOJbGRkYTMK-jnKY_Poco0nNj4zqDgX7NtM4uusn1PKiyrVWG-tifKEYcTAJqtTPI7XVIRZoGaziUN6eA7HdzIvL2Azn-fmJTDZ0jYJdJLhI9EmChu3woDiu8S0TdQAr-KeVJVg7tRT5CR1MNQ8peVN6-VtwIea_szBmPyRcqdixrRUZ4uUxwQ1JjiPG8ALrvrLV9K9TndQX23_y0tv4X5vMjhMD_vDg1fwgO67vX07sLk8X5nX6AwuszeF-DH4ctcM-wtVIGRc
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtNAEB5VrYTgwD8ipcAeQJzc2Ju1HR96qBqihNIUJamUm1nvjxRRnKhJ2ob34D14Fd6IGa_ttkgICakHLrZsj63V7vyuZ74BeBNr0TZ-qLzQ2swTiktPWpF4Qkjd4toqrqga-WgQ9U7Eh0k42YAfVS2Mw4eoN9xIMgp9TQI-17Z5BRoqtaVKcs7RiIaiTKs8NOsLDNoWe_0OrvBbzrvvxwc9r-wr4CmMx4RnI2RaKwMM_nBIGI5lGg1zEPkqTjiaSGX8KDOhiUIZWD_RRhsZCvTrZdKWNqItUFT6WyLyE2oW0RnWgFVBHLv_2FFAGWXBpIKJ9Hnz5nhvmsEr3_a6h1yYuO4D-FlNjsts-bK7Wma76ttvuJH_0-w9hPulv832nYA8gg2TP4Z711AYn8D3kSsiM5oN0QijWWczywZT6l3Aji-n2jCZa3YgF1RLwBxQN_EzkQ2NLCxGQT9DaWweX67xxEZzg2pzwc6nEl9n_Zw2vKhOjfXWmihPGcYLbLz6isfRmkowC8xsNnY4D0_h5Fbm5Rls5rPcPAcmW9omgU4yfCTaRGHjVhhQdJeYtoka4FXMk6oSyp06ipymDoSap7S8ab28DXhX088diMkfKXcqXkxLZbZIeUxAY4LzuAG8YKq_fCXd73SP6qvtf3npNdz51OmmH_uDwxdwl267xL4d2FyercxL9ASX2atC-Bh8vm1-_QWgYGML
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sustained+Release+of+Nitric+Oxide+and+Cascade+Generation+of+Reactive+Nitrogen%2FOxygen+Species+via+an+Injectable+Hydrogel+for+Tumor+Synergistic+Therapy&rft.jtitle=Advanced+functional+materials&rft.au=Wang%2C+Yaoben&rft.au=Yang%2C+Xiaowei&rft.au=Chen%2C+Xiaobin&rft.au=Wang%2C+Xin&rft.date=2022-09-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=32&rft.issue=36&rft_id=info:doi/10.1002%2Fadfm.202206554&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon