Sustained Release of Nitric Oxide and Cascade Generation of Reactive Nitrogen/Oxygen Species via an Injectable Hydrogel for Tumor Synergistic Therapy
Reactive nitrogen species (RNS) generated via the reaction of nitric oxide (NO) with reactive oxygen species (ROS) are more lethal than ROS, and thus RNS‐mediated therapy has great potential in cancer treatment, yet it is still largely unexploited. Herein, a novel, injectable and NO‐releasing hydrog...
Saved in:
Published in | Advanced functional materials Vol. 32; no. 36 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc
01.09.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Reactive nitrogen species (RNS) generated via the reaction of nitric oxide (NO) with reactive oxygen species (ROS) are more lethal than ROS, and thus RNS‐mediated therapy has great potential in cancer treatment, yet it is still largely unexploited. Herein, a novel, injectable and NO‐releasing hydrogel (NO‐Gel) composed of α‐(nitrate ester) acetic acid‐modified amphiphilic copolymers is developed. To further convert released NO to RNS, glutathione (GSH)‐sensitive CuCys nanoparticles (NPs) and β‐lapachone (Lapa) are co‐loaded into the NO‐Gel. This hydrogel system possesses a temperature‐induced sol‐gel transition and can continuously liberate Lapa, CuCys NPs, and NO in vitro for up to 3 weeks. The sustained supply of Lapa can efficiently boost hydrogen peroxide (H2O2) concentration in cancer cells, and intracellular GSH can induce the rapid release of NO and the reduction of CuCys NPs. With elevating H2O2 levels and producing highly reactive Cu(I), the Cu(I)‐catalyzed Fenton‐like reaction is dramatically enhanced, resulting in the generation of abundant hydroxyl radicals (·OH), and the subsequent cascade reactions among ·OH, H2O2, and NO cause more lethal RNS pool. After a single peritumoral injection of the hydrogel system, the cascade generation of ROS and RNS plus the substantial depletion of GSH can significantly suppress tumor growth.
An injectable thermosensitive hydrogel with inherent long‐acting NO‐releasing capacity (NO‐Gel) is developed. After loading β‐lapachone and CuCys nanoparticles into the NO‐Gel, the hydrogel system (Lapa/CuCys@NO‐Gel) can elevate intracellular reactive oxygen species and reactive nitrogen species levels and deplete glutathione through cascade reactions. A synergistic antitumor efficacy is achieved after a single peritumoral injection of the hydrogel system. |
---|---|
AbstractList | Reactive nitrogen species (RNS) generated via the reaction of nitric oxide (NO) with reactive oxygen species (ROS) are more lethal than ROS, and thus RNS‐mediated therapy has great potential in cancer treatment, yet it is still largely unexploited. Herein, a novel, injectable and NO‐releasing hydrogel (NO‐Gel) composed of α‐(nitrate ester) acetic acid‐modified amphiphilic copolymers is developed. To further convert released NO to RNS, glutathione (GSH)‐sensitive CuCys nanoparticles (NPs) and β‐lapachone (Lapa) are co‐loaded into the NO‐Gel. This hydrogel system possesses a temperature‐induced sol‐gel transition and can continuously liberate Lapa, CuCys NPs, and NO in vitro for up to 3 weeks. The sustained supply of Lapa can efficiently boost hydrogen peroxide (H
2
O
2
) concentration in cancer cells, and intracellular GSH can induce the rapid release of NO and the reduction of CuCys NPs. With elevating H
2
O
2
levels and producing highly reactive Cu(I), the Cu(I)‐catalyzed Fenton‐like reaction is dramatically enhanced, resulting in the generation of abundant hydroxyl radicals (·OH), and the subsequent cascade reactions among ·OH, H
2
O
2,
and NO cause more lethal RNS pool. After a single peritumoral injection of the hydrogel system, the cascade generation of ROS and RNS plus the substantial depletion of GSH can significantly suppress tumor growth. Reactive nitrogen species (RNS) generated via the reaction of nitric oxide (NO) with reactive oxygen species (ROS) are more lethal than ROS, and thus RNS‐mediated therapy has great potential in cancer treatment, yet it is still largely unexploited. Herein, a novel, injectable and NO‐releasing hydrogel (NO‐Gel) composed of α‐(nitrate ester) acetic acid‐modified amphiphilic copolymers is developed. To further convert released NO to RNS, glutathione (GSH)‐sensitive CuCys nanoparticles (NPs) and β‐lapachone (Lapa) are co‐loaded into the NO‐Gel. This hydrogel system possesses a temperature‐induced sol‐gel transition and can continuously liberate Lapa, CuCys NPs, and NO in vitro for up to 3 weeks. The sustained supply of Lapa can efficiently boost hydrogen peroxide (H2O2) concentration in cancer cells, and intracellular GSH can induce the rapid release of NO and the reduction of CuCys NPs. With elevating H2O2 levels and producing highly reactive Cu(I), the Cu(I)‐catalyzed Fenton‐like reaction is dramatically enhanced, resulting in the generation of abundant hydroxyl radicals (·OH), and the subsequent cascade reactions among ·OH, H2O2, and NO cause more lethal RNS pool. After a single peritumoral injection of the hydrogel system, the cascade generation of ROS and RNS plus the substantial depletion of GSH can significantly suppress tumor growth. Reactive nitrogen species (RNS) generated via the reaction of nitric oxide (NO) with reactive oxygen species (ROS) are more lethal than ROS, and thus RNS‐mediated therapy has great potential in cancer treatment, yet it is still largely unexploited. Herein, a novel, injectable and NO‐releasing hydrogel (NO‐Gel) composed of α‐(nitrate ester) acetic acid‐modified amphiphilic copolymers is developed. To further convert released NO to RNS, glutathione (GSH)‐sensitive CuCys nanoparticles (NPs) and β‐lapachone (Lapa) are co‐loaded into the NO‐Gel. This hydrogel system possesses a temperature‐induced sol‐gel transition and can continuously liberate Lapa, CuCys NPs, and NO in vitro for up to 3 weeks. The sustained supply of Lapa can efficiently boost hydrogen peroxide (H2O2) concentration in cancer cells, and intracellular GSH can induce the rapid release of NO and the reduction of CuCys NPs. With elevating H2O2 levels and producing highly reactive Cu(I), the Cu(I)‐catalyzed Fenton‐like reaction is dramatically enhanced, resulting in the generation of abundant hydroxyl radicals (·OH), and the subsequent cascade reactions among ·OH, H2O2, and NO cause more lethal RNS pool. After a single peritumoral injection of the hydrogel system, the cascade generation of ROS and RNS plus the substantial depletion of GSH can significantly suppress tumor growth. An injectable thermosensitive hydrogel with inherent long‐acting NO‐releasing capacity (NO‐Gel) is developed. After loading β‐lapachone and CuCys nanoparticles into the NO‐Gel, the hydrogel system (Lapa/CuCys@NO‐Gel) can elevate intracellular reactive oxygen species and reactive nitrogen species levels and deplete glutathione through cascade reactions. A synergistic antitumor efficacy is achieved after a single peritumoral injection of the hydrogel system. |
Author | Wang, Yang Yang, Xiaowei Ding, Jiandong Chen, Xiaobin Cao, Dinglingge Wang, Xin Wang, Yaoben Chen, Zhiyong Yu, Lin Wang, Hancheng |
Author_xml | – sequence: 1 givenname: Yaoben surname: Wang fullname: Wang, Yaoben organization: Fudan University – sequence: 2 givenname: Xiaowei surname: Yang fullname: Yang, Xiaowei organization: Fudan University – sequence: 3 givenname: Xiaobin surname: Chen fullname: Chen, Xiaobin organization: Fudan University – sequence: 4 givenname: Xin surname: Wang fullname: Wang, Xin organization: Fudan University – sequence: 5 givenname: Yang surname: Wang fullname: Wang, Yang organization: Fudan University – sequence: 6 givenname: Hancheng surname: Wang fullname: Wang, Hancheng organization: Fudan University – sequence: 7 givenname: Zhiyong surname: Chen fullname: Chen, Zhiyong organization: Fudan University – sequence: 8 givenname: Dinglingge surname: Cao fullname: Cao, Dinglingge organization: Fudan University – sequence: 9 givenname: Lin orcidid: 0000-0001-7660-3367 surname: Yu fullname: Yu, Lin email: yu_lin@fudan.edu.cn organization: Fudan University – sequence: 10 givenname: Jiandong surname: Ding fullname: Ding, Jiandong organization: Fudan University |
BookMark | eNqFkU1rGzEQhkVJoPnotWdBz3YkrVarPQY3X5DGELvQ2zLWjlKZtdaR5CT7Q_J_I8clgUDoRTOH53kH9B6SPd97JOQ7Z2POmDiB1q7GggnBVFnKL-SAK65GBRN6723nf76SwxiXjPGqKuQBeZ5tYgLnsaW32CFEpL2lNy4FZ-j0ybVIwbd0AtFA3i_QY4Dker_FbhFMcg_4yvd36E-mT0MedLZG4zDSBwdZp1d-iSbBokN6ObRbsqO2D3S-WeV3NuTMOxdTvjj_m-PXwzHZt9BF_PZvHpHf52fzyeXoenpxNTm9HplCF3JkldbMAtdaSwm8EIuWKckVM1UtmOYGmVpgiaoEblndYotQyqosoNZgVVEckR-73HXo7zcYU7PsN8Hnk42oWF1xKUSVKbmjTOhjDGgb49LrJ6QArms4a7YFNNsCmrcCsjb-oK2DW0EYPhfqnfDoOhz-QzenP89_vbsv76aciA |
CitedBy_id | crossref_primary_10_1039_D3TB00332A crossref_primary_10_1016_j_cej_2023_143128 crossref_primary_10_1021_acs_biomac_3c01285 crossref_primary_10_1021_acs_macromol_2c02309 crossref_primary_10_1016_j_ijpharm_2022_122484 crossref_primary_10_34133_bmr_0117 crossref_primary_10_1186_s12951_024_02306_w crossref_primary_10_1002_smtd_202301349 crossref_primary_10_1016_j_ijbiomac_2023_126371 crossref_primary_10_1021_acsami_4c05836 crossref_primary_10_1002_adfm_202405966 crossref_primary_10_1038_s41467_024_45072_x crossref_primary_10_1016_j_eurpolymj_2023_112214 crossref_primary_10_1016_j_cej_2023_147437 crossref_primary_10_1002_adhm_202401551 crossref_primary_10_1093_rb_rbae137 crossref_primary_10_1021_acsanm_4c04121 crossref_primary_10_1039_D2PY01574A crossref_primary_10_3390_bios13080815 crossref_primary_10_1002_adfm_202304394 crossref_primary_10_1016_j_jconrel_2023_08_038 crossref_primary_10_1002_adhm_202302315 crossref_primary_10_1039_D4BM00593G crossref_primary_10_1002_jbm_a_37754 crossref_primary_10_1021_acsabm_4c00947 crossref_primary_10_1002_adfm_202211664 crossref_primary_10_1186_s40824_022_00316_z crossref_primary_10_1021_acsami_4c21695 crossref_primary_10_1016_j_cej_2024_151566 crossref_primary_10_1016_j_ejpb_2024_114348 crossref_primary_10_1016_j_ijbiomac_2025_140528 crossref_primary_10_1002_advs_202308229 crossref_primary_10_1016_j_ica_2024_122058 crossref_primary_10_1002_adma_202211637 crossref_primary_10_1039_D2BM01833K crossref_primary_10_1093_rb_rbac098 crossref_primary_10_1021_acsnano_4c16329 crossref_primary_10_1021_acsnano_3c05790 crossref_primary_10_1021_acsami_3c03149 crossref_primary_10_1016_j_matdes_2022_111429 crossref_primary_10_1016_j_matdes_2023_112535 crossref_primary_10_1021_acsabm_4c00128 crossref_primary_10_1021_acsanm_2c04321 crossref_primary_10_1002_smll_202310957 crossref_primary_10_1186_s12951_024_02929_z crossref_primary_10_1002_adhm_202301641 crossref_primary_10_1002_adhm_202300431 crossref_primary_10_1021_acsami_3c18306 crossref_primary_10_1016_j_bioadv_2024_214046 crossref_primary_10_1016_j_jconrel_2022_10_012 crossref_primary_10_1002_adma_202305287 |
Cites_doi | 10.1002/adma.202101701 10.1093/rb/rbab060 10.1126/sciadv.abc3513 10.1021/acsami.6b03737 10.1021/acsnano.9b05493 10.1002/adfm.201907954 10.1002/adma.202107009 10.1002/anie.201504536 10.1016/j.apmt.2020.100906 10.1002/adfm.201606398 10.1016/j.biomaterials.2019.119338 10.1016/j.jconrel.2018.04.005 10.1021/acsami.1c12646 10.1016/j.ccell.2016.08.004 10.1021/acsami.1c20585 10.1016/j.yexmp.2006.06.007 10.1016/j.bioactmat.2021.05.013 10.1016/j.cej.2020.125320 10.1021/acs.nanolett.8b00495 10.1021/acsami.7b11998 10.1021/acsnano.9b05976 10.1093/rb/rbab073 10.1016/j.actbio.2017.03.011 10.1021/acs.macromol.1c00959 10.1002/anie.201805664 10.1016/j.biomaterials.2018.03.046 10.1016/j.biomaterials.2020.119999 10.1002/adma.202104223 10.1002/anie.201908997 10.1002/adma.201805818 10.1002/adfm.202008507 10.1002/adma.201801527 10.1016/j.jconrel.2015.12.015 10.1038/s41565-019-0570-3 10.1016/j.jconrel.2020.07.031 10.1016/j.biomaterials.2018.09.004 10.1021/cr000040l 10.1016/j.bioactmat.2017.08.003 10.1038/nature13165 10.1002/smtd.202000310 10.1038/s41467-021-24804-3 10.1002/adfm.202111148 10.1002/adma.202008089 10.1093/rb/rbab038 10.3389/fonc.2020.01399 10.1016/j.jconrel.2015.09.019 10.1021/acsami.9b10346 10.1002/adhm.202102654 10.1002/adhm.202100814 10.1016/j.biomaterials.2020.120642 10.1016/j.bioactmat.2021.09.035 10.1002/adma.201702342 10.1021/jacs.8b08714 10.1093/rb/rbab047 10.1002/adfm.202100349 10.1186/s13045-021-01187-y 10.1021/acs.macromol.8b01014 10.1039/C7NR00231A 10.1021/acs.nanolett.9b01093 10.1016/j.actbio.2017.03.042 10.1039/D0NR03147J 10.1002/smll.201903045 10.1021/acs.biomac.9b01096 10.1002/adfm.202011170 10.1021/acsnano.1c00698 10.1016/j.biomaterials.2018.09.043 10.1038/srep31593 10.7150/thno.36514 10.1016/j.actbio.2021.04.009 10.1002/anie.201610682 10.1158/0008-5472.CAN-09-3995 10.1016/j.biomaterials.2018.03.023 10.1039/D0TB02360D 10.1002/adma.202006892 10.1002/adfm.202100243 10.1021/acsami.5b12212 10.1016/j.jconrel.2017.10.022 10.1002/adfm.202104650 |
ContentType | Journal Article |
Copyright | 2022 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2022 Wiley‐VCH GmbH |
DBID | AAYXX CITATION 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1002/adfm.202206554 |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | CrossRef Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1616-3028 |
EndPage | n/a |
ExternalDocumentID | 10_1002_adfm_202206554 ADFM202206554 |
Genre | article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 21975045 – fundername: National Key R&D Program of China funderid: 2020YFC1107102 |
GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OC 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WFSAM WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ~IA ~WT .Y3 31~ AANHP AASGY AAYXX ACBWZ ACRPL ACYXJ ADMLS ADNMO AEYWJ AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION EJD FEDTE HF~ HVGLF LW6 7SP 7SR 7U5 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 L7M |
ID | FETCH-LOGICAL-c3834-f6880fa188844a132bd064160c792081ce06be5e65a1f09dedea54753a98af633 |
IEDL.DBID | DR2 |
ISSN | 1616-301X |
IngestDate | Fri Jul 25 07:58:10 EDT 2025 Thu Apr 24 22:53:59 EDT 2025 Tue Jul 01 00:30:32 EDT 2025 Wed Jan 22 16:22:24 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 36 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3834-f6880fa188844a132bd064160c792081ce06be5e65a1f09dedea54753a98af633 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-7660-3367 |
PQID | 2709714227 |
PQPubID | 2045204 |
PageCount | 17 |
ParticipantIDs | proquest_journals_2709714227 crossref_citationtrail_10_1002_adfm_202206554 crossref_primary_10_1002_adfm_202206554 wiley_primary_10_1002_adfm_202206554_ADFM202206554 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-09-01 |
PublicationDateYYYYMMDD | 2022-09-01 |
PublicationDate_xml | – month: 09 year: 2022 text: 2022-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | Advanced functional materials |
PublicationYear | 2022 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2021; 22 2019; 11 2018; 168 2021; 128 2018; 167 2019; 14 2019; 58 2020; 16 2016; 30 2019; 19 2020; 14 2020; 326 2020; 12 2020; 246 2020; 10 2017; 9 2020; 6 2018; 3 2020; 4 2021; 31 2021; 33 2002; 102 2022; 34 2018; 30 2015; 217 2010; 70 2021; 9 2018; 185 2021; 8 2018; 187 2021; 6 2019; 9 2021; 269 2017; 27 2015; 54 2017; 29 2020; 32 2019; 141 2016; 240 2021; 14 2021; 13 2018; 18 2016; 6 2021; 15 2021; 10 2021; 54 2014; 508 2021; 12 2022 2020; 30 2020; 396 2018; 278 2017; 55 2017; 54 2017; 56 2022; 12 2022; 14 2019; 218 2007; 82 2018; 51 2020; 21 2022; 11 2017; 268 2016; 8 e_1_2_9_75_1 e_1_2_9_31_1 e_1_2_9_52_1 e_1_2_9_50_1 e_1_2_9_73_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_56_1 e_1_2_9_77_1 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_54_1 e_1_2_9_71_1 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_58_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_64_1 e_1_2_9_20_1 e_1_2_9_62_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_68_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_66_1 e_1_2_9_8_1 e_1_2_9_6_1 e_1_2_9_4_1 e_1_2_9_60_1 e_1_2_9_2_1 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_28_1 e_1_2_9_47_1 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_74_1 e_1_2_9_51_1 e_1_2_9_72_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_57_1 e_1_2_9_78_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_55_1 e_1_2_9_76_1 e_1_2_9_70_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_59_1 e_1_2_9_19_1 e_1_2_9_42_1 e_1_2_9_63_1 e_1_2_9_40_1 e_1_2_9_61_1 e_1_2_9_21_1 e_1_2_9_46_1 e_1_2_9_67_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_65_1 e_1_2_9_7_1 e_1_2_9_5_1 e_1_2_9_3_1 e_1_2_9_1_1 e_1_2_9_9_1 e_1_2_9_25_1 e_1_2_9_27_1 e_1_2_9_48_1 e_1_2_9_69_1 e_1_2_9_29_1 |
References_xml | – volume: 27 year: 2017 publication-title: Adv. Funct. Mater. – volume: 14 start-page: 1468 year: 2020 publication-title: ACS Nano – volume: 14 start-page: 1160 year: 2019 publication-title: Nat. Nanotechnol. – volume: 13 year: 2021 publication-title: ACS Appl. Mater. Interfaces – volume: 54 start-page: 7421 year: 2021 publication-title: Macromolecules – volume: 9 start-page: 3637 year: 2017 publication-title: Nanoscale – volume: 396 year: 2020 publication-title: Chem. Eng. J. – volume: 56 start-page: 1229 year: 2017 publication-title: Angew. Chem., Int. Ed. – volume: 14 start-page: 173 year: 2021 publication-title: J. Hematol. Oncol. – volume: 14 start-page: 347 year: 2020 publication-title: ACS Nano – volume: 278 start-page: 127 year: 2018 publication-title: J. Controlled Release – volume: 218 year: 2019 publication-title: Biomaterials – volume: 508 start-page: 55 year: 2014 publication-title: Nature – volume: 268 start-page: 176 year: 2017 publication-title: J. Controlled Release – volume: 34 year: 2022 publication-title: Adv. Mater. – volume: 16 year: 2020 publication-title: Small – volume: 33 year: 2021 publication-title: Adv. Mater. – volume: 30 year: 2020 publication-title: Adv. Funct. Mater. – volume: 217 start-page: 256 year: 2015 publication-title: J. Controlled Release – volume: 10 year: 2021 publication-title: Adv. Healthcare Mater. – volume: 54 start-page: 128 year: 2017 publication-title: Acta Biomater. – volume: 58 year: 2019 publication-title: Angew. Chem., Int. Ed. – volume: 12 start-page: 4501 year: 2021 publication-title: Nat. Commun. – volume: 269 year: 2021 publication-title: Biomaterials – volume: 55 start-page: 396 year: 2017 publication-title: Acta Biomater. – volume: 185 start-page: 51 year: 2018 publication-title: Biomaterials – volume: 12 start-page: 303 year: 2022 publication-title: Bioact. Mater. – volume: 168 start-page: 64 year: 2018 publication-title: Biomaterials – volume: 14 start-page: 3773 year: 2022 publication-title: ACS Appl. Mater. Interfaces – volume: 187 start-page: 55 year: 2018 publication-title: Biomaterials – volume: 102 start-page: 1091 year: 2002 publication-title: Chem. Rev. – volume: 141 start-page: 849 year: 2019 publication-title: J. Am. Chem. Soc. – volume: 51 start-page: 6405 year: 2018 publication-title: Macromolecules – volume: 22 year: 2021 publication-title: Appl. Mater. Today – volume: 10 start-page: 1399 year: 2020 publication-title: Front. Oncol. – volume: 128 start-page: 42 year: 2021 publication-title: Acta Biomater. – volume: 9 start-page: 250 year: 2021 publication-title: J. Mater. Chem. B – volume: 3 start-page: 118 year: 2018 publication-title: Bioact. Mater. – year: 2022 publication-title: Adv. Funct. Mater. – volume: 19 start-page: 2731 year: 2019 publication-title: Nano Lett. – volume: 58 start-page: 946 year: 2019 publication-title: Angew. Chem., Int. Ed. – volume: 29 year: 2017 publication-title: Adv. Mater. – volume: 6 year: 2020 publication-title: Sci. Adv. – volume: 54 year: 2015 publication-title: Angew. Chem., Int. Ed. – volume: 8 year: 2021 publication-title: Regen. Biomater. – volume: 12 year: 2020 publication-title: Nanoscale – volume: 246 year: 2020 publication-title: Biomaterials – volume: 240 start-page: 191 year: 2016 publication-title: J. Controlled Release – volume: 9 start-page: 6080 year: 2019 publication-title: Theranostics – volume: 70 start-page: 3896 year: 2010 publication-title: Cancer Res. – volume: 30 start-page: 377 year: 2016 publication-title: Cancer Cell – volume: 15 start-page: 8663 year: 2021 publication-title: ACS Nano – volume: 11 year: 2019 publication-title: ACS Appl. Mater. Interfaces – volume: 9 year: 2017 publication-title: ACS Appl. Mater. Interfaces – volume: 8 start-page: 5148 year: 2016 publication-title: ACS Appl. Mater. Interfaces – volume: 21 start-page: 143 year: 2020 publication-title: Biomacromolecules – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 326 start-page: 419 year: 2020 publication-title: J. Controlled Release – volume: 4 year: 2020 publication-title: Small Methods – volume: 8 year: 2016 publication-title: ACS Appl. Mater. Interfaces – volume: 167 start-page: 143 year: 2018 publication-title: Biomaterials – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 31 year: 2021 publication-title: Adv. Funct. Mater. – volume: 82 start-page: 12 year: 2007 publication-title: Exp. Mol. Pathol. – volume: 6 start-page: 4717 year: 2021 publication-title: Bioact. Mater. – volume: 18 start-page: 2637 year: 2018 publication-title: Nano Lett. – volume: 6 year: 2016 publication-title: Sci. Rep. – volume: 11 year: 2022 publication-title: Adv. Healthcare Mater. – ident: e_1_2_9_25_1 doi: 10.1002/adma.202101701 – ident: e_1_2_9_37_1 doi: 10.1093/rb/rbab060 – ident: e_1_2_9_7_1 doi: 10.1126/sciadv.abc3513 – ident: e_1_2_9_27_1 doi: 10.1021/acsami.6b03737 – ident: e_1_2_9_6_1 doi: 10.1021/acsnano.9b05493 – ident: e_1_2_9_55_1 doi: 10.1002/adfm.201907954 – ident: e_1_2_9_56_1 doi: 10.1002/adma.202107009 – ident: e_1_2_9_14_1 doi: 10.1002/anie.201504536 – ident: e_1_2_9_39_1 doi: 10.1016/j.apmt.2020.100906 – ident: e_1_2_9_12_1 doi: 10.1002/adfm.201606398 – ident: e_1_2_9_35_1 doi: 10.1016/j.biomaterials.2019.119338 – ident: e_1_2_9_26_1 doi: 10.1016/j.jconrel.2018.04.005 – ident: e_1_2_9_31_1 doi: 10.1021/acsami.1c12646 – ident: e_1_2_9_4_1 doi: 10.1016/j.ccell.2016.08.004 – ident: e_1_2_9_34_1 doi: 10.1021/acsami.1c20585 – ident: e_1_2_9_76_1 doi: 10.1016/j.yexmp.2006.06.007 – ident: e_1_2_9_69_1 doi: 10.1016/j.bioactmat.2021.05.013 – ident: e_1_2_9_65_1 doi: 10.1016/j.cej.2020.125320 – ident: e_1_2_9_32_1 doi: 10.1021/acs.nanolett.8b00495 – ident: e_1_2_9_67_1 doi: 10.1021/acsami.7b11998 – ident: e_1_2_9_13_1 doi: 10.1021/acsnano.9b05976 – ident: e_1_2_9_38_1 doi: 10.1093/rb/rbab073 – ident: e_1_2_9_5_1 doi: 10.1016/j.actbio.2017.03.011 – ident: e_1_2_9_52_1 doi: 10.1021/acs.macromol.1c00959 – ident: e_1_2_9_58_1 doi: 10.1002/anie.201805664 – ident: e_1_2_9_29_1 doi: 10.1016/j.biomaterials.2018.03.046 – ident: e_1_2_9_28_1 doi: 10.1016/j.biomaterials.2020.119999 – ident: e_1_2_9_57_1 doi: 10.1002/adma.202104223 – ident: e_1_2_9_61_1 doi: 10.1002/anie.201908997 – ident: e_1_2_9_9_1 doi: 10.1002/adma.201805818 – ident: e_1_2_9_19_1 doi: 10.1002/adfm.202008507 – ident: e_1_2_9_43_1 doi: 10.1002/adma.201801527 – ident: e_1_2_9_45_1 doi: 10.1016/j.jconrel.2015.12.015 – ident: e_1_2_9_18_1 doi: 10.1038/s41565-019-0570-3 – ident: e_1_2_9_48_1 doi: 10.1016/j.jconrel.2020.07.031 – ident: e_1_2_9_15_1 doi: 10.1016/j.biomaterials.2018.09.004 – ident: e_1_2_9_24_1 doi: 10.1021/cr000040l – ident: e_1_2_9_41_1 doi: 10.1016/j.bioactmat.2017.08.003 – ident: e_1_2_9_1_1 doi: 10.1038/nature13165 – ident: e_1_2_9_70_1 doi: 10.1002/smtd.202000310 – ident: e_1_2_9_3_1 doi: 10.1038/s41467-021-24804-3 – ident: e_1_2_9_8_1 doi: 10.1002/adfm.202111148 – ident: e_1_2_9_21_1 doi: 10.1002/adma.202008089 – ident: e_1_2_9_71_1 doi: 10.1093/rb/rbab038 – ident: e_1_2_9_75_1 doi: 10.3389/fonc.2020.01399 – ident: e_1_2_9_11_1 doi: 10.1016/j.jconrel.2015.09.019 – ident: e_1_2_9_40_1 doi: 10.1021/acsami.9b10346 – ident: e_1_2_9_49_1 doi: 10.1002/adhm.202102654 – ident: e_1_2_9_42_1 doi: 10.1002/adhm.202100814 – ident: e_1_2_9_30_1 doi: 10.1016/j.biomaterials.2020.120642 – ident: e_1_2_9_16_1 doi: 10.1016/j.bioactmat.2021.09.035 – ident: e_1_2_9_62_1 doi: 10.1002/adma.201702342 – ident: e_1_2_9_63_1 doi: 10.1021/jacs.8b08714 – ident: e_1_2_9_72_1 doi: 10.1093/rb/rbab047 – ident: e_1_2_9_46_1 doi: 10.1002/adfm.202100349 – ident: e_1_2_9_74_1 doi: 10.1186/s13045-021-01187-y – ident: e_1_2_9_64_1 doi: 10.1021/acs.macromol.8b01014 – ident: e_1_2_9_10_1 doi: 10.1039/C7NR00231A – ident: e_1_2_9_22_1 doi: 10.1021/acs.nanolett.9b01093 – ident: e_1_2_9_51_1 doi: 10.1016/j.actbio.2017.03.042 – ident: e_1_2_9_47_1 doi: 10.1039/D0NR03147J – ident: e_1_2_9_54_1 doi: 10.1002/smll.201903045 – ident: e_1_2_9_33_1 doi: 10.1021/acs.biomac.9b01096 – ident: e_1_2_9_50_1 doi: 10.1002/adfm.202011170 – ident: e_1_2_9_23_1 doi: 10.1021/acsnano.1c00698 – ident: e_1_2_9_17_1 doi: 10.1016/j.biomaterials.2018.09.043 – ident: e_1_2_9_66_1 doi: 10.1038/srep31593 – ident: e_1_2_9_78_1 doi: 10.7150/thno.36514 – ident: e_1_2_9_53_1 doi: 10.1016/j.actbio.2021.04.009 – ident: e_1_2_9_20_1 doi: 10.1002/anie.201610682 – ident: e_1_2_9_77_1 doi: 10.1158/0008-5472.CAN-09-3995 – ident: e_1_2_9_2_1 doi: 10.1016/j.biomaterials.2018.03.023 – ident: e_1_2_9_60_1 doi: 10.1039/D0TB02360D – ident: e_1_2_9_68_1 doi: 10.1002/adma.202006892 – ident: e_1_2_9_59_1 doi: 10.1002/adfm.202100243 – ident: e_1_2_9_36_1 doi: 10.1021/acsami.5b12212 – ident: e_1_2_9_44_1 doi: 10.1016/j.jconrel.2017.10.022 – ident: e_1_2_9_73_1 doi: 10.1002/adfm.202104650 |
SSID | ssj0017734 |
Score | 2.6243093 |
Snippet | Reactive nitrogen species (RNS) generated via the reaction of nitric oxide (NO) with reactive oxygen species (ROS) are more lethal than ROS, and thus... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Acetic acid Cancer Cascade chemical reactions chemodynamic therapy Copolymers Depletion Glutathione Hydrogels Hydrogen peroxide Hydroxyl radicals injectable hydrogels Materials science Nanoparticles Nitric oxide Oxygen reactive nitrogen species Sol-gel processes Sustained release Tumors |
Title | Sustained Release of Nitric Oxide and Cascade Generation of Reactive Nitrogen/Oxygen Species via an Injectable Hydrogel for Tumor Synergistic Therapy |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202206554 https://www.proquest.com/docview/2709714227 |
Volume | 32 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF6kXvTgW6yPsgfBU9pks0maY1FLFVuhrdBb2OwDipqKbcX6P_y_zmTbWAUR9JIHmQ1Jdmbnm83Mt4ScRorXtRtIJzAmdbhkwhGGxw7nQvlMGckkViO3O2Hrjl8PgsFSFb_lhygm3NAy8vEaDVyk49onaahQBivJGQMnGiAhKCZsISrqFvxRXhTZ38qhhwle3mDB2uiy2tfmX73SJ9RcBqy5x2luErF4Vptocl-dTtKqfPtG4_ifl9kiG3M4ShtWf7bJis52yPoSSeEuee_ZGiutaBd8FHg9OjK0M0Rqf3r7OlSaikzRczHGVHtqeayxu1Gsq0U-oObyI1DW2u3rDHY0X_dej-nLUEBzepXhfBCWcdHWTKHkAwU4TfvTR9j2ZlihmFNK076lQdgjd83L_nnLmS_m4EgIgrljQhgpjPAg4gY9gBg4VYCGvNCVUcwAl0jthqkOdBgIz7ix0kqLgEMwJeK6MKHv75NSNsr0AaHCVyb2VJzCJV5HCRP5gYfBT6zrOiwTZ9GZiZwzneOCGw-J5WhmCX7upPjcZXJWyD9Zjo8fJY8XupHMbX2csAh5uDhjUZmwvJN_uUvSuGi2i7PDvzQ6Imt4bJPdjklp8jzVJ4COJmmFrDYu2je9Sm4JH4lKCcQ |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtNAEB5V5QAcyr9IKbAHECc39mZtxwcOVUOU0CaVklTKzaz3R4ponapJaNP34EF4FZ6IGa_ttkgICakHLrZsj63V7vx75xuAd7EWbeOHygutzTyhuPSkFYknhNQtrq3iiqqRB8Oodyw-T8PpBvyoamEcPkSdcCPJKPQ1CTglpJvXqKFSWyol5xytaCjKfZUHZn2BUdviY7-DS_ye8-6nyX7PKxsLeAoDMuHZCLnWygCjPxwTxmOZRsscRL6KE442Uhk_ykxoolAG1k-00UaGAh17mbSljSgHilr_HrURJ7j-zqhGrAri2P3IjgLaUhZMK5xInzdvj_e2Hbx2bm-6yIWN6z6Cn9XsuK0tX3dXy2xXXf0GHPlfTd9j2Co9brbnROQJbJj8KTy8gcP4DL6PXRmZ0WyEZhgNO5tbNpxR9wJ2dDnThslcs325oGoC5qC6iaOJbGRkYTMK-jnKY_Poco0nNj4zqDgX7NtM4uusn1PKiyrVWG-tifKEYcTAJqtTPI7XVIRZoGaziUN6eA7HdzIvL2Azn-fmJTDZ0jYJdJLhI9EmChu3woDiu8S0TdQAr-KeVJVg7tRT5CR1MNQ8peVN6-VtwIea_szBmPyRcqdixrRUZ4uUxwQ1JjiPG8ALrvrLV9K9TndQX23_y0tv4X5vMjhMD_vDg1fwgO67vX07sLk8X5nX6AwuszeF-DH4ctcM-wtVIGRc |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtNAEB5VrYTgwD8ipcAeQJzc2Ju1HR96qBqihNIUJamUm1nvjxRRnKhJ2ob34D14Fd6IGa_ttkgICakHLrZsj63V7vyuZ74BeBNr0TZ-qLzQ2swTiktPWpF4Qkjd4toqrqga-WgQ9U7Eh0k42YAfVS2Mw4eoN9xIMgp9TQI-17Z5BRoqtaVKcs7RiIaiTKs8NOsLDNoWe_0OrvBbzrvvxwc9r-wr4CmMx4RnI2RaKwMM_nBIGI5lGg1zEPkqTjiaSGX8KDOhiUIZWD_RRhsZCvTrZdKWNqItUFT6WyLyE2oW0RnWgFVBHLv_2FFAGWXBpIKJ9Hnz5nhvmsEr3_a6h1yYuO4D-FlNjsts-bK7Wma76ttvuJH_0-w9hPulv832nYA8gg2TP4Z711AYn8D3kSsiM5oN0QijWWczywZT6l3Aji-n2jCZa3YgF1RLwBxQN_EzkQ2NLCxGQT9DaWweX67xxEZzg2pzwc6nEl9n_Zw2vKhOjfXWmihPGcYLbLz6isfRmkowC8xsNnY4D0_h5Fbm5Rls5rPcPAcmW9omgU4yfCTaRGHjVhhQdJeYtoka4FXMk6oSyp06ipymDoSap7S8ab28DXhX088diMkfKXcqXkxLZbZIeUxAY4LzuAG8YKq_fCXd73SP6qvtf3npNdz51OmmH_uDwxdwl267xL4d2FyercxL9ASX2atC-Bh8vm1-_QWgYGML |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sustained+Release+of+Nitric+Oxide+and+Cascade+Generation+of+Reactive+Nitrogen%2FOxygen+Species+via+an+Injectable+Hydrogel+for+Tumor+Synergistic+Therapy&rft.jtitle=Advanced+functional+materials&rft.au=Wang%2C+Yaoben&rft.au=Yang%2C+Xiaowei&rft.au=Chen%2C+Xiaobin&rft.au=Wang%2C+Xin&rft.date=2022-09-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=32&rft.issue=36&rft_id=info:doi/10.1002%2Fadfm.202206554&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon |