Dual‐Tube Helmholtz Resonator‐Based Triboelectric Nanogenerator for Highly Efficient Harvesting of Acoustic Energy

An acoustic wave is a type of energy that is clean and abundant but almost totally unused because of its very low density. This study investigates a novel dual‐tube Helmholtz resonator‐based triboelectric nanogenerator (HR‐TENG) for highly efficient harvesting of acoustic energy. This HR‐TENG is com...

Full description

Saved in:
Bibliographic Details
Published inAdvanced energy materials Vol. 9; no. 46
Main Authors Zhao, Hongfa, Xiao, Xiu, Xu, Peng, Zhao, Tiancong, Song, Liguo, Pan, Xinxiang, Mi, Jianchun, Xu, Minyi, Wang, Zhong Lin
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 01.12.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract An acoustic wave is a type of energy that is clean and abundant but almost totally unused because of its very low density. This study investigates a novel dual‐tube Helmholtz resonator‐based triboelectric nanogenerator (HR‐TENG) for highly efficient harvesting of acoustic energy. This HR‐TENG is composed of a Helmholtz resonant cavity, a metal film with evenly distributed acoustic holes, and a dielectric soft film with one side ink‐printed for electrode. Effects of resonant cavity structure, acoustic conditions, and film tension on the HR‐TENG performance are investigated systematically. By coupling the mechanisms of triboelectric nanogenerator and acoustic propagation, a theoretical guideline is provided for improving energy output and broadening the frequency band. Specifically, the present HR‐TENG generates the maximum acoustic sensitivity per unit area of 1.23 VPa−1 cm−2 and the maximum power density per unit sound pressure of 1.82 WPa−1 m−2, which are higher than the best results from the literature by 60 and 20%, respectively. In addition, the HR‐TENG may also serve as a self‐powered acoustic sensor. A dual‐tube Helmholtz resonator‐based triboelectric nanogenerator (HR‐TENG) for highly efficient harvesting of acoustic energy is designed. The present HR‐TENG generates the maximum acoustic sensitivity per unit area of 1.23 VPa−1 cm−2 and the maximum power density per unit sound pressure of 1.82 WPa−1 m−2, which are higher than the best results from the literature by 60 and 20%, respectively.
AbstractList An acoustic wave is a type of energy that is clean and abundant but almost totally unused because of its very low density. This study investigates a novel dual‐tube Helmholtz resonator‐based triboelectric nanogenerator (HR‐TENG) for highly efficient harvesting of acoustic energy. This HR‐TENG is composed of a Helmholtz resonant cavity, a metal film with evenly distributed acoustic holes, and a dielectric soft film with one side ink‐printed for electrode. Effects of resonant cavity structure, acoustic conditions, and film tension on the HR‐TENG performance are investigated systematically. By coupling the mechanisms of triboelectric nanogenerator and acoustic propagation, a theoretical guideline is provided for improving energy output and broadening the frequency band. Specifically, the present HR‐TENG generates the maximum acoustic sensitivity per unit area of 1.23 VPa−1 cm−2 and the maximum power density per unit sound pressure of 1.82 WPa−1 m−2, which are higher than the best results from the literature by 60 and 20%, respectively. In addition, the HR‐TENG may also serve as a self‐powered acoustic sensor. A dual‐tube Helmholtz resonator‐based triboelectric nanogenerator (HR‐TENG) for highly efficient harvesting of acoustic energy is designed. The present HR‐TENG generates the maximum acoustic sensitivity per unit area of 1.23 VPa−1 cm−2 and the maximum power density per unit sound pressure of 1.82 WPa−1 m−2, which are higher than the best results from the literature by 60 and 20%, respectively.
An acoustic wave is a type of energy that is clean and abundant but almost totally unused because of its very low density. This study investigates a novel dual‐tube Helmholtz resonator‐based triboelectric nanogenerator (HR‐TENG) for highly efficient harvesting of acoustic energy. This HR‐TENG is composed of a Helmholtz resonant cavity, a metal film with evenly distributed acoustic holes, and a dielectric soft film with one side ink‐printed for electrode. Effects of resonant cavity structure, acoustic conditions, and film tension on the HR‐TENG performance are investigated systematically. By coupling the mechanisms of triboelectric nanogenerator and acoustic propagation, a theoretical guideline is provided for improving energy output and broadening the frequency band. Specifically, the present HR‐TENG generates the maximum acoustic sensitivity per unit area of 1.23 VPa−1 cm−2 and the maximum power density per unit sound pressure of 1.82 WPa−1 m−2, which are higher than the best results from the literature by 60 and 20%, respectively. In addition, the HR‐TENG may also serve as a self‐powered acoustic sensor.
An acoustic wave is a type of energy that is clean and abundant but almost totally unused because of its very low density. This study investigates a novel dual‐tube Helmholtz resonator‐based triboelectric nanogenerator (HR‐TENG) for highly efficient harvesting of acoustic energy. This HR‐TENG is composed of a Helmholtz resonant cavity, a metal film with evenly distributed acoustic holes, and a dielectric soft film with one side ink‐printed for electrode. Effects of resonant cavity structure, acoustic conditions, and film tension on the HR‐TENG performance are investigated systematically. By coupling the mechanisms of triboelectric nanogenerator and acoustic propagation, a theoretical guideline is provided for improving energy output and broadening the frequency band. Specifically, the present HR‐TENG generates the maximum acoustic sensitivity per unit area of 1.23 VPa −1  cm −2 and the maximum power density per unit sound pressure of 1.82 WPa −1  m −2 , which are higher than the best results from the literature by 60 and 20%, respectively. In addition, the HR‐TENG may also serve as a self‐powered acoustic sensor.
Author Xu, Peng
Xiao, Xiu
Song, Liguo
Pan, Xinxiang
Zhao, Tiancong
Xu, Minyi
Mi, Jianchun
Wang, Zhong Lin
Zhao, Hongfa
Author_xml – sequence: 1
  givenname: Hongfa
  surname: Zhao
  fullname: Zhao, Hongfa
  organization: Dalian Maritime University
– sequence: 2
  givenname: Xiu
  surname: Xiao
  fullname: Xiao, Xiu
  organization: Dalian Maritime University
– sequence: 3
  givenname: Peng
  surname: Xu
  fullname: Xu, Peng
  organization: Dalian Maritime University
– sequence: 4
  givenname: Tiancong
  surname: Zhao
  fullname: Zhao, Tiancong
  organization: Dalian Maritime University
– sequence: 5
  givenname: Liguo
  surname: Song
  fullname: Song, Liguo
  organization: Dalian Maritime University
– sequence: 6
  givenname: Xinxiang
  surname: Pan
  fullname: Pan, Xinxiang
  organization: Guangdong Ocean University
– sequence: 7
  givenname: Jianchun
  surname: Mi
  fullname: Mi, Jianchun
  organization: Peking University
– sequence: 8
  givenname: Minyi
  orcidid: 0000-0002-3772-8340
  surname: Xu
  fullname: Xu, Minyi
  email: xuminyi@dlmu.edu.cn
  organization: Dalian Maritime University
– sequence: 9
  givenname: Zhong Lin
  surname: Wang
  fullname: Wang, Zhong Lin
  email: zlwang@gatech.edu
  organization: Georgia Institute of Technology
BookMark eNqFkM9Kw0AQxhdRsNZePS94bt1_SZpjrdEKtYLUc9hsJu2WdLdukko8-Qg-o0_ilkoFQVwYdob5fjPDd4aOjTWA0AUlA0oIu5Jg1gNGaEzYkIkj1KEhFf1wKMjxIefsFPWqakX8EzElnHfQ9qaR5ef7x7zJAE-gXC9tWb_hJ6iskbV1vnUtK8jx3OnMQgmqdlrhmTR2AQbcToMLHxO9WJYtTopCKw2mxhPptlDV2iywLfBI2cYXCiceWrTn6KSQZQW977-Lnm-T-XjSnz7e3Y9H077iQy76OeW0yHjAcyogJiERLAIlGVdZlOWhyIgIsyiMAsijKI44YSRgQ5nzMFRR7MkuutzP3Tj70vhz0pVtnPErU8ZZQL0_ceBVg71KOVtVDop04_RaujalJN3Zm-7sTQ_2ekD8ApSuZa2tqZ3U5d9YvMdedQntP0vSUTJ7-GG_AKFxlD4
CitedBy_id crossref_primary_10_1016_j_nanoen_2025_110874
crossref_primary_10_1002_admt_202101098
crossref_primary_10_3389_fenrg_2022_1014983
crossref_primary_10_1016_j_nanoen_2024_110117
crossref_primary_10_1021_acsami_3c00566
crossref_primary_10_1016_j_ijheatmasstransfer_2021_121661
crossref_primary_10_1016_j_nanoen_2020_105281
crossref_primary_10_2139_ssrn_4165508
crossref_primary_10_2139_ssrn_4193787
crossref_primary_10_1088_1361_6528_acb94c
crossref_primary_10_1002_aenm_202103185
crossref_primary_10_1088_1361_665X_acf422
crossref_primary_10_1016_j_nanoen_2021_105962
crossref_primary_10_3390_mi13030444
crossref_primary_10_1016_j_nanoen_2021_106656
crossref_primary_10_1093_nsr_nwab133
crossref_primary_10_1002_advs_202410379
crossref_primary_10_1002_msd2_12058
crossref_primary_10_1016_j_nanoen_2022_107348
crossref_primary_10_1007_s40820_022_00834_4
crossref_primary_10_1016_j_nwnano_2024_100064
crossref_primary_10_1002_aenm_202101170
crossref_primary_10_1016_j_mtphys_2022_100951
crossref_primary_10_1016_j_nanoen_2025_110765
crossref_primary_10_1002_adfm_202300666
crossref_primary_10_1002_admt_202101485
crossref_primary_10_1039_D1TA03739K
crossref_primary_10_3390_s24103007
crossref_primary_10_3390_molecules28237894
crossref_primary_10_1002_admt_202301551
crossref_primary_10_1016_j_nanoen_2020_105279
crossref_primary_10_1016_j_nanoen_2021_106304
crossref_primary_10_3390_app12052402
crossref_primary_10_1016_j_nanoen_2022_106926
crossref_primary_10_1016_j_nanoen_2024_109913
crossref_primary_10_1016_j_jallcom_2024_176941
crossref_primary_10_21595_jve_2021_21979
crossref_primary_10_1016_j_nanoen_2023_108322
crossref_primary_10_1016_j_nanoen_2021_105851
crossref_primary_10_1016_j_nanoen_2022_107210
crossref_primary_10_1016_j_xcrp_2022_101168
crossref_primary_10_1021_acsnano_1c05127
crossref_primary_10_1016_j_mattod_2023_02_030
crossref_primary_10_1103_PhysRevApplied_22_024023
crossref_primary_10_1021_acsomega_2c01743
crossref_primary_10_2139_ssrn_4054477
crossref_primary_10_1016_j_nanoen_2020_104456
crossref_primary_10_1103_PhysRevApplied_20_010501
crossref_primary_10_3389_fmats_2022_896953
crossref_primary_10_1002_sstr_202200034
crossref_primary_10_1016_j_nanoen_2020_104736
crossref_primary_10_1016_j_nanoen_2021_106077
crossref_primary_10_1021_acsami_1c04489
crossref_primary_10_1080_02533839_2023_2204930
crossref_primary_10_1515_ntrev_2023_0144
crossref_primary_10_3390_nano11081908
crossref_primary_10_1016_j_nanoen_2023_108182
crossref_primary_10_1016_j_ultsonch_2021_105718
crossref_primary_10_1039_D3EE04143C
crossref_primary_10_1007_s40544_020_0390_3
crossref_primary_10_1002_adfm_202112155
crossref_primary_10_1016_j_nanoen_2021_106523
crossref_primary_10_1016_j_nanoen_2020_105414
crossref_primary_10_1016_j_sna_2025_116451
crossref_primary_10_1016_j_nanoen_2022_107879
crossref_primary_10_3390_jmse10040455
crossref_primary_10_1016_j_nanoen_2022_107633
crossref_primary_10_1016_j_nanoen_2025_110738
crossref_primary_10_1021_acsnano_0c10840
crossref_primary_10_1016_j_nanoen_2023_108983
crossref_primary_10_3390_s20247275
crossref_primary_10_1016_j_nanoen_2024_110039
crossref_primary_10_1002_aenm_202000426
crossref_primary_10_1021_acsaelm_3c00996
crossref_primary_10_1021_acsnano_0c09015
crossref_primary_10_1016_j_nanoen_2021_105920
crossref_primary_10_1002_inf2_12534
crossref_primary_10_1016_j_nanoen_2020_105403
crossref_primary_10_1016_j_nanoen_2021_106618
crossref_primary_10_3390_ma16196405
crossref_primary_10_1002_aenm_202201132
crossref_primary_10_1088_1361_665X_acae4d
crossref_primary_10_1016_j_nanoen_2023_108237
crossref_primary_10_1016_j_sna_2021_112642
crossref_primary_10_1016_j_nanoen_2024_109328
crossref_primary_10_3390_nano13101676
crossref_primary_10_1021_acs_inorgchem_0c02946
crossref_primary_10_35848_1347_4065_acc0b7
crossref_primary_10_1002_adsu_202300658
crossref_primary_10_1016_j_nanoen_2020_105244
crossref_primary_10_1007_s40857_022_00275_4
crossref_primary_10_1177_09574565211030702
crossref_primary_10_1016_j_matdes_2022_111005
crossref_primary_10_1002_smll_202404637
crossref_primary_10_1002_smll_202201331
crossref_primary_10_3390_mi12020218
crossref_primary_10_1002_smll_202402452
crossref_primary_10_1063_5_0158079
crossref_primary_10_1002_admt_202001270
crossref_primary_10_1038_s41598_024_79568_9
crossref_primary_10_1021_acsaem_4c02348
crossref_primary_10_1021_acsnano_2c12458
crossref_primary_10_1007_s42765_021_00095_7
crossref_primary_10_1016_j_nanoen_2023_108248
crossref_primary_10_1038_s41467_022_31042_8
crossref_primary_10_1002_aelm_202100206
crossref_primary_10_1016_j_nanoen_2023_108764
crossref_primary_10_1016_j_nanoen_2024_109951
crossref_primary_10_1016_j_nanoen_2022_107773
crossref_primary_10_1002_advs_202205141
crossref_primary_10_1126_sciadv_adc9230
crossref_primary_10_3390_nanoenergyadv2040017
crossref_primary_10_1021_acsnano_1c10755
crossref_primary_10_1016_j_measurement_2024_116309
crossref_primary_10_1016_j_mtphys_2022_100784
crossref_primary_10_1016_j_device_2023_100050
crossref_primary_10_1021_acsami_3c03729
crossref_primary_10_3390_jmse10101348
crossref_primary_10_1016_j_nanoen_2023_108534
crossref_primary_10_1016_j_mtener_2022_100991
crossref_primary_10_1360_SSC_2022_0100
crossref_primary_10_1002_adfm_202103081
crossref_primary_10_1016_j_nanoen_2022_108134
crossref_primary_10_3390_nano12040721
crossref_primary_10_1016_j_nanoen_2020_105740
crossref_primary_10_1063_5_0060305
crossref_primary_10_1016_j_jsamd_2024_100805
crossref_primary_10_1016_j_nanoen_2023_109195
crossref_primary_10_3390_nano11123431
crossref_primary_10_1002_aenm_202400585
crossref_primary_10_1016_j_mtnano_2023_100391
crossref_primary_10_1088_2631_7990_ad94b8
crossref_primary_10_1088_2631_8695_ad87ac
crossref_primary_10_1002_adem_202402442
crossref_primary_10_2139_ssrn_4116317
crossref_primary_10_1016_j_nanoen_2024_109816
crossref_primary_10_1016_j_watres_2024_121185
crossref_primary_10_1007_s12274_021_3828_7
crossref_primary_10_3390_s24123817
crossref_primary_10_1155_2023_5568046
crossref_primary_10_1016_j_nanoen_2024_109257
Cites_doi 10.1016/j.mattod.2016.12.001
10.1016/j.nanoen.2018.04.025
10.1109/58.265820
10.1088/0964-1726/22/5/055013
10.1016/j.nanoen.2017.06.035
10.1021/acsami.6b06866
10.1007/s12541-013-0220-x
10.1007/s12206-016-0119-4
10.1063/1.4954987
10.1121/1.1370524
10.1038/s41528-017-0007-8
10.1016/j.sna.2013.10.003
10.1039/C5NR09087C
10.1126/scirobotics.aat2516
10.1021/acsnano.5b00618
10.1021/nn4063616
10.1021/acsnano.8b09798
10.1021/nn404614z
10.1016/j.sna.2012.05.009
10.1038/454816a
10.1016/j.nanoen.2018.11.041
10.1051/epjap/2011110140
10.1016/j.nanoen.2018.12.041
10.1016/j.nanoen.2018.03.062
10.1002/aenm.201601821
10.1016/j.sna.2011.03.003
10.1002/adma.201001169
10.7567/APEX.6.127101
10.1038/ncomms5929
10.1002/aenm.201301322
10.1002/aenm.201802159
10.2514/3.14282
10.1016/j.nanoen.2015.04.008
10.1007/s12541-014-0422-x
10.1002/aenm.201702432
10.1016/j.jsv.2009.11.008
ContentType Journal Article
Copyright 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
DBID AAYXX
CITATION
7SP
7TB
8FD
F28
FR3
H8D
L7M
DOI 10.1002/aenm.201902824
DatabaseName CrossRef
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList
Aerospace Database
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1614-6840
EndPage n/a
ExternalDocumentID 10_1002_aenm_201902824
AENM201902824
Genre article
GrantInformation_xml – fundername: Fundamental Research Funds for the Central Universities
  funderid: 3132019037; 3132019197; 3132019196; 3132019331
– fundername: National Key Research and Development Program of China
  funderid: 2016YFA0202704
– fundername: Projects for Dalian Youth Star of Science and Technology
  funderid: 2018RQ12
– fundername: National Natural Science Foundation of China
  funderid: 51879022; 51979045; 51906029
GroupedDBID 05W
0R~
1OC
33P
4.4
50Y
5VS
8-0
8-1
A00
AAESR
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ABJNI
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADKYN
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFWVQ
AFZJQ
AHBTC
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
AZVAB
BDRZF
BFHJK
BMXJE
BRXPI
D-A
DCZOG
EBS
G-S
HGLYW
HZ~
KBYEO
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MY.
MY~
O9-
P2W
P4E
RNS
ROL
RX1
SUPJJ
WBKPD
WOHZO
WXSBR
WYJ
ZZTAW
~S-
31~
AANHP
AAYXX
ACBWZ
ACRPL
ACYXJ
ADMLS
ADNMO
AEYWJ
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
GODZA
HVGLF
7SP
7TB
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
F28
FR3
H8D
L7M
ID FETCH-LOGICAL-c3834-d131fb353d14e9060427eca23cb7bd64b046b7675ed77973020528ad366c79fb3
ISSN 1614-6832
IngestDate Fri Jul 25 12:10:16 EDT 2025
Tue Jul 01 01:43:32 EDT 2025
Thu Apr 24 22:51:41 EDT 2025
Wed Jan 22 16:38:10 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 46
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c3834-d131fb353d14e9060427eca23cb7bd64b046b7675ed77973020528ad366c79fb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3772-8340
PQID 2325184095
PQPubID 886389
PageCount 10
ParticipantIDs proquest_journals_2325184095
crossref_primary_10_1002_aenm_201902824
crossref_citationtrail_10_1002_aenm_201902824
wiley_primary_10_1002_aenm_201902824_AENM201902824
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-12-01
PublicationDateYYYYMMDD 2019-12-01
PublicationDate_xml – month: 12
  year: 2019
  text: 2019-12-01
  day: 01
PublicationDecade 2010
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Advanced energy materials
PublicationYear 2019
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 7
2017; 20
2015; 15
2017; 1
2010; 329
2013; 1
2013; 22
2016; 108
2019; 57
2019; 13
2019; 56
2012; 182
2016; 30
2013; 7
2015; 9
2012; 57
2013; 6
1994; 41
2018; 48
2014; 206
2001; 110
2010; 22
2018; 8
2014; 5
2018; 3
2014; 4
2013; 14
2017; 39
2012; 8347
1999; 37
2019
2014; 15
2017
2008; 454
2014; 8
2016; 8
2011; 167
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
Khan F. U. (e_1_2_7_36_1) 2013; 1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_1_1
e_1_2_7_14_1
e_1_2_7_13_1
e_1_2_7_12_1
e_1_2_7_11_1
e_1_2_7_10_1
e_1_2_7_26_1
e_1_2_7_27_1
e_1_2_7_28_1
Gyekenyesi A. L. (e_1_2_7_17_1) 2012; 8347
e_1_2_7_30_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_22_1
Wang Z. L. (e_1_2_7_29_1) 2019
e_1_2_7_34_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_20_1
e_1_2_7_37_1
e_1_2_7_38_1
e_1_2_7_39_1
References_xml – volume: 206
  start-page: 178
  year: 2014
  publication-title: Sens. Actuators, A
– volume: 41
  start-page: 53
  year: 1994
  publication-title: IEEE Trans. Ultrason., Ferroelectr. Freq. Control
– volume: 8347
  year: 2012
  publication-title: Proc. SPIE
– volume: 182
  start-page: 106
  year: 2012
  publication-title: Sens. Actuators, A
– volume: 3
  year: 2018
  publication-title: Sci. Rob.
– volume: 37
  start-page: 1017
  year: 1999
  publication-title: AIAA J.
– volume: 110
  start-page: 289
  year: 2001
  publication-title: J. Acoust. Soc. Am.
– volume: 454
  start-page: 816
  year: 2008
  publication-title: Nature
– volume: 22
  start-page: 4726
  year: 2010
  publication-title: Adv. Mater.
– volume: 6
  year: 2013
  publication-title: Appl. Phys. Express
– volume: 56
  start-page: 241
  year: 2019
  publication-title: Nano Energy
– volume: 30
  start-page: 653
  year: 2016
  publication-title: J. Mech. Sci. Technol.
– volume: 329
  start-page: 1348
  year: 2010
  publication-title: J. Sound Vib.
– volume: 108
  year: 2016
  publication-title: Appl. Phys. Lett.
– volume: 57
  year: 2012
  publication-title: Eur. Phys. J. Appl. Phys.
– volume: 8
  start-page: 4938
  year: 2016
  publication-title: Nanoscale
– year: 2019
  publication-title: Mater. Today
– volume: 8
  start-page: 2649
  year: 2014
  publication-title: ACS Nano
– volume: 15
  start-page: 321
  year: 2015
  publication-title: Nano Energy
– volume: 8
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 14
  start-page: 1629
  year: 2013
  publication-title: Int. J. Precis. Eng. Manuf.
– volume: 48
  start-page: 421
  year: 2018
  publication-title: Nano Energy
– volume: 20
  start-page: 74
  year: 2017
  publication-title: Mater. Today
– volume: 1
  start-page: 72
  year: 2013
  publication-title: Int. J. Mater. Sci. Eng.
– volume: 7
  year: 2017
  publication-title: Adv. Energy Mater.
– volume: 57
  start-page: 574
  year: 2019
  publication-title: Nano Energy
– volume: 8
  year: 2016
  publication-title: ACS Appl. Mater. Interfaces
– volume: 167
  start-page: 449
  year: 2011
  publication-title: Sens. Actuators, A
– volume: 7
  start-page: 9533
  year: 2013
  publication-title: ACS Nano
– volume: 1
  start-page: 10
  year: 2017
  publication-title: NPJ Flexible Electron.
– volume: 5
  start-page: 4929
  year: 2014
  publication-title: Nat. Commun.
– volume: 4
  year: 2014
  publication-title: Adv. Energy Mater.
– volume: 48
  start-page: 607
  year: 2018
  publication-title: Nano Energy
– volume: 22
  year: 2013
  publication-title: Smart Mater. Struct.
– volume: 15
  start-page: 949
  year: 2014
  publication-title: Int. J. Precis. Eng. Manuf.
– year: 2017
– volume: 39
  start-page: 9
  year: 2017
  publication-title: Nano Energy
– volume: 9
  start-page: 4236
  year: 2015
  publication-title: ACS Nano
– volume: 13
  start-page: 1932
  year: 2019
  publication-title: ACS Nano
– ident: e_1_2_7_4_1
  doi: 10.1016/j.mattod.2016.12.001
– ident: e_1_2_7_30_1
  doi: 10.1016/j.nanoen.2018.04.025
– ident: e_1_2_7_14_1
  doi: 10.1109/58.265820
– ident: e_1_2_7_39_1
  doi: 10.1088/0964-1726/22/5/055013
– ident: e_1_2_7_11_1
  doi: 10.1016/j.nanoen.2017.06.035
– ident: e_1_2_7_8_1
  doi: 10.1021/acsami.6b06866
– volume: 1
  start-page: 72
  year: 2013
  ident: e_1_2_7_36_1
  publication-title: Int. J. Mater. Sci. Eng.
– ident: e_1_2_7_31_1
  doi: 10.1007/s12541-013-0220-x
– ident: e_1_2_7_34_1
  doi: 10.1007/s12206-016-0119-4
– ident: e_1_2_7_37_1
  doi: 10.1063/1.4954987
– ident: e_1_2_7_32_1
  doi: 10.1121/1.1370524
– ident: e_1_2_7_13_1
  doi: 10.1038/s41528-017-0007-8
– year: 2019
  ident: e_1_2_7_29_1
  publication-title: Mater. Today
– ident: e_1_2_7_18_1
  doi: 10.1016/j.sna.2013.10.003
– ident: e_1_2_7_27_1
  doi: 10.1039/C5NR09087C
– ident: e_1_2_7_41_1
  doi: 10.1126/scirobotics.aat2516
– ident: e_1_2_7_15_1
  doi: 10.1021/acsnano.5b00618
– ident: e_1_2_7_24_1
  doi: 10.1021/nn4063616
– ident: e_1_2_7_6_1
  doi: 10.1021/acsnano.8b09798
– ident: e_1_2_7_10_1
  doi: 10.1021/nn404614z
– ident: e_1_2_7_20_1
  doi: 10.1016/j.sna.2012.05.009
– ident: e_1_2_7_1_1
  doi: 10.1038/454816a
– ident: e_1_2_7_28_1
  doi: 10.1016/j.nanoen.2018.11.041
– ident: e_1_2_7_16_1
  doi: 10.1051/epjap/2011110140
– ident: e_1_2_7_5_1
  doi: 10.1016/j.nanoen.2018.12.041
– volume: 8347
  year: 2012
  ident: e_1_2_7_17_1
  publication-title: Proc. SPIE
– ident: e_1_2_7_3_1
  doi: 10.1016/j.nanoen.2018.03.062
– ident: e_1_2_7_2_1
  doi: 10.1002/aenm.201601821
– ident: e_1_2_7_19_1
  doi: 10.1016/j.sna.2011.03.003
– ident: e_1_2_7_21_1
– ident: e_1_2_7_38_1
  doi: 10.1002/adma.201001169
– ident: e_1_2_7_40_1
  doi: 10.7567/APEX.6.127101
– ident: e_1_2_7_9_1
  doi: 10.1038/ncomms5929
– ident: e_1_2_7_25_1
  doi: 10.1002/aenm.201301322
– ident: e_1_2_7_12_1
  doi: 10.1002/aenm.201802159
– ident: e_1_2_7_35_1
  doi: 10.2514/3.14282
– ident: e_1_2_7_26_1
  doi: 10.1016/j.nanoen.2015.04.008
– ident: e_1_2_7_33_1
  doi: 10.1007/s12541-014-0422-x
– ident: e_1_2_7_7_1
  doi: 10.1002/aenm.201702432
– ident: e_1_2_7_23_1
– ident: e_1_2_7_22_1
  doi: 10.1016/j.jsv.2009.11.008
SSID ssj0000491033
Score 2.5924876
Snippet An acoustic wave is a type of energy that is clean and abundant but almost totally unused because of its very low density. This study investigates a novel...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms acoustic energy
Acoustic propagation
Acoustic waves
Acoustics
Clean energy
dual‐tube Helmholtz resonator
Electric power generation
Energy harvesting
Frequencies
Helmholtz resonators
Maximum power density
Nanogenerators
self‐powered sensor
Sound pressure
triboelectric nanogenerator
Title Dual‐Tube Helmholtz Resonator‐Based Triboelectric Nanogenerator for Highly Efficient Harvesting of Acoustic Energy
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faenm.201902824
https://www.proquest.com/docview/2325184095
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLfKdoED4lMUNuQDEocpkNhxPo5hK6oQ3YVO6i2KHWeqVBIEDRI7cdt1fyN_Ce_ZiZvAEINL1L7YaZP3i9-H3vuZkBeCV-Ao-MJLywqzVanCIoDCi5ivpF9ESRFgv_PiNJqfhe9WYjWZXA6qltqtfKUuru0r-R-tggz0il2y_6BZd1EQwGfQLxxBw3C8kY5P2mLjqhWWrdRoRT7Cera9MHn5GiNqN-ANGKzyCKlCGrv5zVrh4tqcG-ZpGGlKDrHwY_MNd1xem15JbPMxVBy2OjpTjdn_62hmmgaHvm3WlxNo208IvrB9CIPktEnMzpv6vHLmYLW20tW6daLWlg53VnUwdYk5mKaTd8mKIB0Uftj1FbwBL0q6lKYeyixrU78opwPs2Rzlb2u95Y4tdI2EAgGy0Nhu7DGp9i_GzpUgWrpmluP83M2_RfYZxBuwYO5nJ4v3H1y6DgKpwOemXaO_hZ4C1Gevx39i7OLs4pZh9GPcl-U9creLO2hmQXSfTHT9gNwZsFE-JF8RTj--XyGQqAMSdUCCUwZCdAQhOoIQBQhRCyHqIER3EKJNRXsIUQuhR-Ts7Wx5PPe6bTk8xRMeemXAg0pywcsg1CmSL7FYq4JxJWNZRqH0w0giR5Au4zgFC8J8wZKi5FGk4hRmPiZ7dVPrJ4QGhUp1KLhIyhJcxSQpVIx8Q5KzigeRnBKvf5K56jjrceuUTX69-qbkpRv_ybK1_HHkQa-YvHujv-QQXQiT8RBTwoyy_nKVPJudLty3pzf-9Wfk9u7tOCB728-tPgTndiufd8D7CYL8orU
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dual%E2%80%90Tube+Helmholtz+Resonator%E2%80%90Based+Triboelectric+Nanogenerator+for+Highly+Efficient+Harvesting+of+Acoustic+Energy&rft.jtitle=Advanced+energy+materials&rft.au=Zhao%2C+Hongfa&rft.au=Xiao%2C+Xiu&rft.au=Xu%2C+Peng&rft.au=Zhao%2C+Tiancong&rft.date=2019-12-01&rft.issn=1614-6832&rft.eissn=1614-6840&rft.volume=9&rft.issue=46&rft_id=info:doi/10.1002%2Faenm.201902824&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_aenm_201902824
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1614-6832&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1614-6832&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1614-6832&client=summon