Dual‐Tube Helmholtz Resonator‐Based Triboelectric Nanogenerator for Highly Efficient Harvesting of Acoustic Energy
An acoustic wave is a type of energy that is clean and abundant but almost totally unused because of its very low density. This study investigates a novel dual‐tube Helmholtz resonator‐based triboelectric nanogenerator (HR‐TENG) for highly efficient harvesting of acoustic energy. This HR‐TENG is com...
Saved in:
Published in | Advanced energy materials Vol. 9; no. 46 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
01.12.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | An acoustic wave is a type of energy that is clean and abundant but almost totally unused because of its very low density. This study investigates a novel dual‐tube Helmholtz resonator‐based triboelectric nanogenerator (HR‐TENG) for highly efficient harvesting of acoustic energy. This HR‐TENG is composed of a Helmholtz resonant cavity, a metal film with evenly distributed acoustic holes, and a dielectric soft film with one side ink‐printed for electrode. Effects of resonant cavity structure, acoustic conditions, and film tension on the HR‐TENG performance are investigated systematically. By coupling the mechanisms of triboelectric nanogenerator and acoustic propagation, a theoretical guideline is provided for improving energy output and broadening the frequency band. Specifically, the present HR‐TENG generates the maximum acoustic sensitivity per unit area of 1.23 VPa−1 cm−2 and the maximum power density per unit sound pressure of 1.82 WPa−1 m−2, which are higher than the best results from the literature by 60 and 20%, respectively. In addition, the HR‐TENG may also serve as a self‐powered acoustic sensor.
A dual‐tube Helmholtz resonator‐based triboelectric nanogenerator (HR‐TENG) for highly efficient harvesting of acoustic energy is designed. The present HR‐TENG generates the maximum acoustic sensitivity per unit area of 1.23 VPa−1 cm−2 and the maximum power density per unit sound pressure of 1.82 WPa−1 m−2, which are higher than the best results from the literature by 60 and 20%, respectively. |
---|---|
AbstractList | An acoustic wave is a type of energy that is clean and abundant but almost totally unused because of its very low density. This study investigates a novel dual‐tube Helmholtz resonator‐based triboelectric nanogenerator (HR‐TENG) for highly efficient harvesting of acoustic energy. This HR‐TENG is composed of a Helmholtz resonant cavity, a metal film with evenly distributed acoustic holes, and a dielectric soft film with one side ink‐printed for electrode. Effects of resonant cavity structure, acoustic conditions, and film tension on the HR‐TENG performance are investigated systematically. By coupling the mechanisms of triboelectric nanogenerator and acoustic propagation, a theoretical guideline is provided for improving energy output and broadening the frequency band. Specifically, the present HR‐TENG generates the maximum acoustic sensitivity per unit area of 1.23 VPa−1 cm−2 and the maximum power density per unit sound pressure of 1.82 WPa−1 m−2, which are higher than the best results from the literature by 60 and 20%, respectively. In addition, the HR‐TENG may also serve as a self‐powered acoustic sensor.
A dual‐tube Helmholtz resonator‐based triboelectric nanogenerator (HR‐TENG) for highly efficient harvesting of acoustic energy is designed. The present HR‐TENG generates the maximum acoustic sensitivity per unit area of 1.23 VPa−1 cm−2 and the maximum power density per unit sound pressure of 1.82 WPa−1 m−2, which are higher than the best results from the literature by 60 and 20%, respectively. An acoustic wave is a type of energy that is clean and abundant but almost totally unused because of its very low density. This study investigates a novel dual‐tube Helmholtz resonator‐based triboelectric nanogenerator (HR‐TENG) for highly efficient harvesting of acoustic energy. This HR‐TENG is composed of a Helmholtz resonant cavity, a metal film with evenly distributed acoustic holes, and a dielectric soft film with one side ink‐printed for electrode. Effects of resonant cavity structure, acoustic conditions, and film tension on the HR‐TENG performance are investigated systematically. By coupling the mechanisms of triboelectric nanogenerator and acoustic propagation, a theoretical guideline is provided for improving energy output and broadening the frequency band. Specifically, the present HR‐TENG generates the maximum acoustic sensitivity per unit area of 1.23 VPa−1 cm−2 and the maximum power density per unit sound pressure of 1.82 WPa−1 m−2, which are higher than the best results from the literature by 60 and 20%, respectively. In addition, the HR‐TENG may also serve as a self‐powered acoustic sensor. An acoustic wave is a type of energy that is clean and abundant but almost totally unused because of its very low density. This study investigates a novel dual‐tube Helmholtz resonator‐based triboelectric nanogenerator (HR‐TENG) for highly efficient harvesting of acoustic energy. This HR‐TENG is composed of a Helmholtz resonant cavity, a metal film with evenly distributed acoustic holes, and a dielectric soft film with one side ink‐printed for electrode. Effects of resonant cavity structure, acoustic conditions, and film tension on the HR‐TENG performance are investigated systematically. By coupling the mechanisms of triboelectric nanogenerator and acoustic propagation, a theoretical guideline is provided for improving energy output and broadening the frequency band. Specifically, the present HR‐TENG generates the maximum acoustic sensitivity per unit area of 1.23 VPa −1 cm −2 and the maximum power density per unit sound pressure of 1.82 WPa −1 m −2 , which are higher than the best results from the literature by 60 and 20%, respectively. In addition, the HR‐TENG may also serve as a self‐powered acoustic sensor. |
Author | Xu, Peng Xiao, Xiu Song, Liguo Pan, Xinxiang Zhao, Tiancong Xu, Minyi Mi, Jianchun Wang, Zhong Lin Zhao, Hongfa |
Author_xml | – sequence: 1 givenname: Hongfa surname: Zhao fullname: Zhao, Hongfa organization: Dalian Maritime University – sequence: 2 givenname: Xiu surname: Xiao fullname: Xiao, Xiu organization: Dalian Maritime University – sequence: 3 givenname: Peng surname: Xu fullname: Xu, Peng organization: Dalian Maritime University – sequence: 4 givenname: Tiancong surname: Zhao fullname: Zhao, Tiancong organization: Dalian Maritime University – sequence: 5 givenname: Liguo surname: Song fullname: Song, Liguo organization: Dalian Maritime University – sequence: 6 givenname: Xinxiang surname: Pan fullname: Pan, Xinxiang organization: Guangdong Ocean University – sequence: 7 givenname: Jianchun surname: Mi fullname: Mi, Jianchun organization: Peking University – sequence: 8 givenname: Minyi orcidid: 0000-0002-3772-8340 surname: Xu fullname: Xu, Minyi email: xuminyi@dlmu.edu.cn organization: Dalian Maritime University – sequence: 9 givenname: Zhong Lin surname: Wang fullname: Wang, Zhong Lin email: zlwang@gatech.edu organization: Georgia Institute of Technology |
BookMark | eNqFkM9Kw0AQxhdRsNZePS94bt1_SZpjrdEKtYLUc9hsJu2WdLdukko8-Qg-o0_ilkoFQVwYdob5fjPDd4aOjTWA0AUlA0oIu5Jg1gNGaEzYkIkj1KEhFf1wKMjxIefsFPWqakX8EzElnHfQ9qaR5ef7x7zJAE-gXC9tWb_hJ6iskbV1vnUtK8jx3OnMQgmqdlrhmTR2AQbcToMLHxO9WJYtTopCKw2mxhPptlDV2iywLfBI2cYXCiceWrTn6KSQZQW977-Lnm-T-XjSnz7e3Y9H077iQy76OeW0yHjAcyogJiERLAIlGVdZlOWhyIgIsyiMAsijKI44YSRgQ5nzMFRR7MkuutzP3Tj70vhz0pVtnPErU8ZZQL0_ceBVg71KOVtVDop04_RaujalJN3Zm-7sTQ_2ekD8ApSuZa2tqZ3U5d9YvMdedQntP0vSUTJ7-GG_AKFxlD4 |
CitedBy_id | crossref_primary_10_1016_j_nanoen_2025_110874 crossref_primary_10_1002_admt_202101098 crossref_primary_10_3389_fenrg_2022_1014983 crossref_primary_10_1016_j_nanoen_2024_110117 crossref_primary_10_1021_acsami_3c00566 crossref_primary_10_1016_j_ijheatmasstransfer_2021_121661 crossref_primary_10_1016_j_nanoen_2020_105281 crossref_primary_10_2139_ssrn_4165508 crossref_primary_10_2139_ssrn_4193787 crossref_primary_10_1088_1361_6528_acb94c crossref_primary_10_1002_aenm_202103185 crossref_primary_10_1088_1361_665X_acf422 crossref_primary_10_1016_j_nanoen_2021_105962 crossref_primary_10_3390_mi13030444 crossref_primary_10_1016_j_nanoen_2021_106656 crossref_primary_10_1093_nsr_nwab133 crossref_primary_10_1002_advs_202410379 crossref_primary_10_1002_msd2_12058 crossref_primary_10_1016_j_nanoen_2022_107348 crossref_primary_10_1007_s40820_022_00834_4 crossref_primary_10_1016_j_nwnano_2024_100064 crossref_primary_10_1002_aenm_202101170 crossref_primary_10_1016_j_mtphys_2022_100951 crossref_primary_10_1016_j_nanoen_2025_110765 crossref_primary_10_1002_adfm_202300666 crossref_primary_10_1002_admt_202101485 crossref_primary_10_1039_D1TA03739K crossref_primary_10_3390_s24103007 crossref_primary_10_3390_molecules28237894 crossref_primary_10_1002_admt_202301551 crossref_primary_10_1016_j_nanoen_2020_105279 crossref_primary_10_1016_j_nanoen_2021_106304 crossref_primary_10_3390_app12052402 crossref_primary_10_1016_j_nanoen_2022_106926 crossref_primary_10_1016_j_nanoen_2024_109913 crossref_primary_10_1016_j_jallcom_2024_176941 crossref_primary_10_21595_jve_2021_21979 crossref_primary_10_1016_j_nanoen_2023_108322 crossref_primary_10_1016_j_nanoen_2021_105851 crossref_primary_10_1016_j_nanoen_2022_107210 crossref_primary_10_1016_j_xcrp_2022_101168 crossref_primary_10_1021_acsnano_1c05127 crossref_primary_10_1016_j_mattod_2023_02_030 crossref_primary_10_1103_PhysRevApplied_22_024023 crossref_primary_10_1021_acsomega_2c01743 crossref_primary_10_2139_ssrn_4054477 crossref_primary_10_1016_j_nanoen_2020_104456 crossref_primary_10_1103_PhysRevApplied_20_010501 crossref_primary_10_3389_fmats_2022_896953 crossref_primary_10_1002_sstr_202200034 crossref_primary_10_1016_j_nanoen_2020_104736 crossref_primary_10_1016_j_nanoen_2021_106077 crossref_primary_10_1021_acsami_1c04489 crossref_primary_10_1080_02533839_2023_2204930 crossref_primary_10_1515_ntrev_2023_0144 crossref_primary_10_3390_nano11081908 crossref_primary_10_1016_j_nanoen_2023_108182 crossref_primary_10_1016_j_ultsonch_2021_105718 crossref_primary_10_1039_D3EE04143C crossref_primary_10_1007_s40544_020_0390_3 crossref_primary_10_1002_adfm_202112155 crossref_primary_10_1016_j_nanoen_2021_106523 crossref_primary_10_1016_j_nanoen_2020_105414 crossref_primary_10_1016_j_sna_2025_116451 crossref_primary_10_1016_j_nanoen_2022_107879 crossref_primary_10_3390_jmse10040455 crossref_primary_10_1016_j_nanoen_2022_107633 crossref_primary_10_1016_j_nanoen_2025_110738 crossref_primary_10_1021_acsnano_0c10840 crossref_primary_10_1016_j_nanoen_2023_108983 crossref_primary_10_3390_s20247275 crossref_primary_10_1016_j_nanoen_2024_110039 crossref_primary_10_1002_aenm_202000426 crossref_primary_10_1021_acsaelm_3c00996 crossref_primary_10_1021_acsnano_0c09015 crossref_primary_10_1016_j_nanoen_2021_105920 crossref_primary_10_1002_inf2_12534 crossref_primary_10_1016_j_nanoen_2020_105403 crossref_primary_10_1016_j_nanoen_2021_106618 crossref_primary_10_3390_ma16196405 crossref_primary_10_1002_aenm_202201132 crossref_primary_10_1088_1361_665X_acae4d crossref_primary_10_1016_j_nanoen_2023_108237 crossref_primary_10_1016_j_sna_2021_112642 crossref_primary_10_1016_j_nanoen_2024_109328 crossref_primary_10_3390_nano13101676 crossref_primary_10_1021_acs_inorgchem_0c02946 crossref_primary_10_35848_1347_4065_acc0b7 crossref_primary_10_1002_adsu_202300658 crossref_primary_10_1016_j_nanoen_2020_105244 crossref_primary_10_1007_s40857_022_00275_4 crossref_primary_10_1177_09574565211030702 crossref_primary_10_1016_j_matdes_2022_111005 crossref_primary_10_1002_smll_202404637 crossref_primary_10_1002_smll_202201331 crossref_primary_10_3390_mi12020218 crossref_primary_10_1002_smll_202402452 crossref_primary_10_1063_5_0158079 crossref_primary_10_1002_admt_202001270 crossref_primary_10_1038_s41598_024_79568_9 crossref_primary_10_1021_acsaem_4c02348 crossref_primary_10_1021_acsnano_2c12458 crossref_primary_10_1007_s42765_021_00095_7 crossref_primary_10_1016_j_nanoen_2023_108248 crossref_primary_10_1038_s41467_022_31042_8 crossref_primary_10_1002_aelm_202100206 crossref_primary_10_1016_j_nanoen_2023_108764 crossref_primary_10_1016_j_nanoen_2024_109951 crossref_primary_10_1016_j_nanoen_2022_107773 crossref_primary_10_1002_advs_202205141 crossref_primary_10_1126_sciadv_adc9230 crossref_primary_10_3390_nanoenergyadv2040017 crossref_primary_10_1021_acsnano_1c10755 crossref_primary_10_1016_j_measurement_2024_116309 crossref_primary_10_1016_j_mtphys_2022_100784 crossref_primary_10_1016_j_device_2023_100050 crossref_primary_10_1021_acsami_3c03729 crossref_primary_10_3390_jmse10101348 crossref_primary_10_1016_j_nanoen_2023_108534 crossref_primary_10_1016_j_mtener_2022_100991 crossref_primary_10_1360_SSC_2022_0100 crossref_primary_10_1002_adfm_202103081 crossref_primary_10_1016_j_nanoen_2022_108134 crossref_primary_10_3390_nano12040721 crossref_primary_10_1016_j_nanoen_2020_105740 crossref_primary_10_1063_5_0060305 crossref_primary_10_1016_j_jsamd_2024_100805 crossref_primary_10_1016_j_nanoen_2023_109195 crossref_primary_10_3390_nano11123431 crossref_primary_10_1002_aenm_202400585 crossref_primary_10_1016_j_mtnano_2023_100391 crossref_primary_10_1088_2631_7990_ad94b8 crossref_primary_10_1088_2631_8695_ad87ac crossref_primary_10_1002_adem_202402442 crossref_primary_10_2139_ssrn_4116317 crossref_primary_10_1016_j_nanoen_2024_109816 crossref_primary_10_1016_j_watres_2024_121185 crossref_primary_10_1007_s12274_021_3828_7 crossref_primary_10_3390_s24123817 crossref_primary_10_1155_2023_5568046 crossref_primary_10_1016_j_nanoen_2024_109257 |
Cites_doi | 10.1016/j.mattod.2016.12.001 10.1016/j.nanoen.2018.04.025 10.1109/58.265820 10.1088/0964-1726/22/5/055013 10.1016/j.nanoen.2017.06.035 10.1021/acsami.6b06866 10.1007/s12541-013-0220-x 10.1007/s12206-016-0119-4 10.1063/1.4954987 10.1121/1.1370524 10.1038/s41528-017-0007-8 10.1016/j.sna.2013.10.003 10.1039/C5NR09087C 10.1126/scirobotics.aat2516 10.1021/acsnano.5b00618 10.1021/nn4063616 10.1021/acsnano.8b09798 10.1021/nn404614z 10.1016/j.sna.2012.05.009 10.1038/454816a 10.1016/j.nanoen.2018.11.041 10.1051/epjap/2011110140 10.1016/j.nanoen.2018.12.041 10.1016/j.nanoen.2018.03.062 10.1002/aenm.201601821 10.1016/j.sna.2011.03.003 10.1002/adma.201001169 10.7567/APEX.6.127101 10.1038/ncomms5929 10.1002/aenm.201301322 10.1002/aenm.201802159 10.2514/3.14282 10.1016/j.nanoen.2015.04.008 10.1007/s12541-014-0422-x 10.1002/aenm.201702432 10.1016/j.jsv.2009.11.008 |
ContentType | Journal Article |
Copyright | 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | AAYXX CITATION 7SP 7TB 8FD F28 FR3 H8D L7M |
DOI | 10.1002/aenm.201902824 |
DatabaseName | CrossRef Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering |
DatabaseTitleList | Aerospace Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1614-6840 |
EndPage | n/a |
ExternalDocumentID | 10_1002_aenm_201902824 AENM201902824 |
Genre | article |
GrantInformation_xml | – fundername: Fundamental Research Funds for the Central Universities funderid: 3132019037; 3132019197; 3132019196; 3132019331 – fundername: National Key Research and Development Program of China funderid: 2016YFA0202704 – fundername: Projects for Dalian Youth Star of Science and Technology funderid: 2018RQ12 – fundername: National Natural Science Foundation of China funderid: 51879022; 51979045; 51906029 |
GroupedDBID | 05W 0R~ 1OC 33P 4.4 50Y 5VS 8-0 8-1 A00 AAESR AAHHS AAHQN AAIHA AAMNL AANLZ AASGY AAXRX AAYCA AAZKR ABCUV ABJNI ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADKYN ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AENEX AEQDE AEUYR AFBPY AFFPM AFWVQ AFZJQ AHBTC AIACR AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB AZVAB BDRZF BFHJK BMXJE BRXPI D-A DCZOG EBS G-S HGLYW HZ~ KBYEO LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MY. MY~ O9- P2W P4E RNS ROL RX1 SUPJJ WBKPD WOHZO WXSBR WYJ ZZTAW ~S- 31~ AANHP AAYXX ACBWZ ACRPL ACYXJ ADMLS ADNMO AEYWJ AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION EJD FEDTE GODZA HVGLF 7SP 7TB 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY F28 FR3 H8D L7M |
ID | FETCH-LOGICAL-c3834-d131fb353d14e9060427eca23cb7bd64b046b7675ed77973020528ad366c79fb3 |
ISSN | 1614-6832 |
IngestDate | Fri Jul 25 12:10:16 EDT 2025 Tue Jul 01 01:43:32 EDT 2025 Thu Apr 24 22:51:41 EDT 2025 Wed Jan 22 16:38:10 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 46 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c3834-d131fb353d14e9060427eca23cb7bd64b046b7675ed77973020528ad366c79fb3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-3772-8340 |
PQID | 2325184095 |
PQPubID | 886389 |
PageCount | 10 |
ParticipantIDs | proquest_journals_2325184095 crossref_primary_10_1002_aenm_201902824 crossref_citationtrail_10_1002_aenm_201902824 wiley_primary_10_1002_aenm_201902824_AENM201902824 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-12-01 |
PublicationDateYYYYMMDD | 2019-12-01 |
PublicationDate_xml | – month: 12 year: 2019 text: 2019-12-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Advanced energy materials |
PublicationYear | 2019 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017; 7 2017; 20 2015; 15 2017; 1 2010; 329 2013; 1 2013; 22 2016; 108 2019; 57 2019; 13 2019; 56 2012; 182 2016; 30 2013; 7 2015; 9 2012; 57 2013; 6 1994; 41 2018; 48 2014; 206 2001; 110 2010; 22 2018; 8 2014; 5 2018; 3 2014; 4 2013; 14 2017; 39 2012; 8347 1999; 37 2019 2014; 15 2017 2008; 454 2014; 8 2016; 8 2011; 167 e_1_2_7_6_1 e_1_2_7_5_1 e_1_2_7_4_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_8_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_18_1 Khan F. U. (e_1_2_7_36_1) 2013; 1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_1_1 e_1_2_7_14_1 e_1_2_7_13_1 e_1_2_7_12_1 e_1_2_7_11_1 e_1_2_7_10_1 e_1_2_7_26_1 e_1_2_7_27_1 e_1_2_7_28_1 Gyekenyesi A. L. (e_1_2_7_17_1) 2012; 8347 e_1_2_7_30_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_22_1 Wang Z. L. (e_1_2_7_29_1) 2019 e_1_2_7_34_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_20_1 e_1_2_7_37_1 e_1_2_7_38_1 e_1_2_7_39_1 |
References_xml | – volume: 206 start-page: 178 year: 2014 publication-title: Sens. Actuators, A – volume: 41 start-page: 53 year: 1994 publication-title: IEEE Trans. Ultrason., Ferroelectr. Freq. Control – volume: 8347 year: 2012 publication-title: Proc. SPIE – volume: 182 start-page: 106 year: 2012 publication-title: Sens. Actuators, A – volume: 3 year: 2018 publication-title: Sci. Rob. – volume: 37 start-page: 1017 year: 1999 publication-title: AIAA J. – volume: 110 start-page: 289 year: 2001 publication-title: J. Acoust. Soc. Am. – volume: 454 start-page: 816 year: 2008 publication-title: Nature – volume: 22 start-page: 4726 year: 2010 publication-title: Adv. Mater. – volume: 6 year: 2013 publication-title: Appl. Phys. Express – volume: 56 start-page: 241 year: 2019 publication-title: Nano Energy – volume: 30 start-page: 653 year: 2016 publication-title: J. Mech. Sci. Technol. – volume: 329 start-page: 1348 year: 2010 publication-title: J. Sound Vib. – volume: 108 year: 2016 publication-title: Appl. Phys. Lett. – volume: 57 year: 2012 publication-title: Eur. Phys. J. Appl. Phys. – volume: 8 start-page: 4938 year: 2016 publication-title: Nanoscale – year: 2019 publication-title: Mater. Today – volume: 8 start-page: 2649 year: 2014 publication-title: ACS Nano – volume: 15 start-page: 321 year: 2015 publication-title: Nano Energy – volume: 8 year: 2018 publication-title: Adv. Energy Mater. – volume: 14 start-page: 1629 year: 2013 publication-title: Int. J. Precis. Eng. Manuf. – volume: 48 start-page: 421 year: 2018 publication-title: Nano Energy – volume: 20 start-page: 74 year: 2017 publication-title: Mater. Today – volume: 1 start-page: 72 year: 2013 publication-title: Int. J. Mater. Sci. Eng. – volume: 7 year: 2017 publication-title: Adv. Energy Mater. – volume: 57 start-page: 574 year: 2019 publication-title: Nano Energy – volume: 8 year: 2016 publication-title: ACS Appl. Mater. Interfaces – volume: 167 start-page: 449 year: 2011 publication-title: Sens. Actuators, A – volume: 7 start-page: 9533 year: 2013 publication-title: ACS Nano – volume: 1 start-page: 10 year: 2017 publication-title: NPJ Flexible Electron. – volume: 5 start-page: 4929 year: 2014 publication-title: Nat. Commun. – volume: 4 year: 2014 publication-title: Adv. Energy Mater. – volume: 48 start-page: 607 year: 2018 publication-title: Nano Energy – volume: 22 year: 2013 publication-title: Smart Mater. Struct. – volume: 15 start-page: 949 year: 2014 publication-title: Int. J. Precis. Eng. Manuf. – year: 2017 – volume: 39 start-page: 9 year: 2017 publication-title: Nano Energy – volume: 9 start-page: 4236 year: 2015 publication-title: ACS Nano – volume: 13 start-page: 1932 year: 2019 publication-title: ACS Nano – ident: e_1_2_7_4_1 doi: 10.1016/j.mattod.2016.12.001 – ident: e_1_2_7_30_1 doi: 10.1016/j.nanoen.2018.04.025 – ident: e_1_2_7_14_1 doi: 10.1109/58.265820 – ident: e_1_2_7_39_1 doi: 10.1088/0964-1726/22/5/055013 – ident: e_1_2_7_11_1 doi: 10.1016/j.nanoen.2017.06.035 – ident: e_1_2_7_8_1 doi: 10.1021/acsami.6b06866 – volume: 1 start-page: 72 year: 2013 ident: e_1_2_7_36_1 publication-title: Int. J. Mater. Sci. Eng. – ident: e_1_2_7_31_1 doi: 10.1007/s12541-013-0220-x – ident: e_1_2_7_34_1 doi: 10.1007/s12206-016-0119-4 – ident: e_1_2_7_37_1 doi: 10.1063/1.4954987 – ident: e_1_2_7_32_1 doi: 10.1121/1.1370524 – ident: e_1_2_7_13_1 doi: 10.1038/s41528-017-0007-8 – year: 2019 ident: e_1_2_7_29_1 publication-title: Mater. Today – ident: e_1_2_7_18_1 doi: 10.1016/j.sna.2013.10.003 – ident: e_1_2_7_27_1 doi: 10.1039/C5NR09087C – ident: e_1_2_7_41_1 doi: 10.1126/scirobotics.aat2516 – ident: e_1_2_7_15_1 doi: 10.1021/acsnano.5b00618 – ident: e_1_2_7_24_1 doi: 10.1021/nn4063616 – ident: e_1_2_7_6_1 doi: 10.1021/acsnano.8b09798 – ident: e_1_2_7_10_1 doi: 10.1021/nn404614z – ident: e_1_2_7_20_1 doi: 10.1016/j.sna.2012.05.009 – ident: e_1_2_7_1_1 doi: 10.1038/454816a – ident: e_1_2_7_28_1 doi: 10.1016/j.nanoen.2018.11.041 – ident: e_1_2_7_16_1 doi: 10.1051/epjap/2011110140 – ident: e_1_2_7_5_1 doi: 10.1016/j.nanoen.2018.12.041 – volume: 8347 year: 2012 ident: e_1_2_7_17_1 publication-title: Proc. SPIE – ident: e_1_2_7_3_1 doi: 10.1016/j.nanoen.2018.03.062 – ident: e_1_2_7_2_1 doi: 10.1002/aenm.201601821 – ident: e_1_2_7_19_1 doi: 10.1016/j.sna.2011.03.003 – ident: e_1_2_7_21_1 – ident: e_1_2_7_38_1 doi: 10.1002/adma.201001169 – ident: e_1_2_7_40_1 doi: 10.7567/APEX.6.127101 – ident: e_1_2_7_9_1 doi: 10.1038/ncomms5929 – ident: e_1_2_7_25_1 doi: 10.1002/aenm.201301322 – ident: e_1_2_7_12_1 doi: 10.1002/aenm.201802159 – ident: e_1_2_7_35_1 doi: 10.2514/3.14282 – ident: e_1_2_7_26_1 doi: 10.1016/j.nanoen.2015.04.008 – ident: e_1_2_7_33_1 doi: 10.1007/s12541-014-0422-x – ident: e_1_2_7_7_1 doi: 10.1002/aenm.201702432 – ident: e_1_2_7_23_1 – ident: e_1_2_7_22_1 doi: 10.1016/j.jsv.2009.11.008 |
SSID | ssj0000491033 |
Score | 2.5924876 |
Snippet | An acoustic wave is a type of energy that is clean and abundant but almost totally unused because of its very low density. This study investigates a novel... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | acoustic energy Acoustic propagation Acoustic waves Acoustics Clean energy dual‐tube Helmholtz resonator Electric power generation Energy harvesting Frequencies Helmholtz resonators Maximum power density Nanogenerators self‐powered sensor Sound pressure triboelectric nanogenerator |
Title | Dual‐Tube Helmholtz Resonator‐Based Triboelectric Nanogenerator for Highly Efficient Harvesting of Acoustic Energy |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faenm.201902824 https://www.proquest.com/docview/2325184095 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLfKdoED4lMUNuQDEocpkNhxPo5hK6oQ3YVO6i2KHWeqVBIEDRI7cdt1fyN_Ce_ZiZvAEINL1L7YaZP3i9-H3vuZkBeCV-Ao-MJLywqzVanCIoDCi5ivpF9ESRFgv_PiNJqfhe9WYjWZXA6qltqtfKUuru0r-R-tggz0il2y_6BZd1EQwGfQLxxBw3C8kY5P2mLjqhWWrdRoRT7Cera9MHn5GiNqN-ANGKzyCKlCGrv5zVrh4tqcG-ZpGGlKDrHwY_MNd1xem15JbPMxVBy2OjpTjdn_62hmmgaHvm3WlxNo208IvrB9CIPktEnMzpv6vHLmYLW20tW6daLWlg53VnUwdYk5mKaTd8mKIB0Uftj1FbwBL0q6lKYeyixrU78opwPs2Rzlb2u95Y4tdI2EAgGy0Nhu7DGp9i_GzpUgWrpmluP83M2_RfYZxBuwYO5nJ4v3H1y6DgKpwOemXaO_hZ4C1Gevx39i7OLs4pZh9GPcl-U9creLO2hmQXSfTHT9gNwZsFE-JF8RTj--XyGQqAMSdUCCUwZCdAQhOoIQBQhRCyHqIER3EKJNRXsIUQuhR-Ts7Wx5PPe6bTk8xRMeemXAg0pywcsg1CmSL7FYq4JxJWNZRqH0w0giR5Au4zgFC8J8wZKi5FGk4hRmPiZ7dVPrJ4QGhUp1KLhIyhJcxSQpVIx8Q5KzigeRnBKvf5K56jjrceuUTX69-qbkpRv_ybK1_HHkQa-YvHujv-QQXQiT8RBTwoyy_nKVPJudLty3pzf-9Wfk9u7tOCB728-tPgTndiufd8D7CYL8orU |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dual%E2%80%90Tube+Helmholtz+Resonator%E2%80%90Based+Triboelectric+Nanogenerator+for+Highly+Efficient+Harvesting+of+Acoustic+Energy&rft.jtitle=Advanced+energy+materials&rft.au=Zhao%2C+Hongfa&rft.au=Xiao%2C+Xiu&rft.au=Xu%2C+Peng&rft.au=Zhao%2C+Tiancong&rft.date=2019-12-01&rft.issn=1614-6832&rft.eissn=1614-6840&rft.volume=9&rft.issue=46&rft_id=info:doi/10.1002%2Faenm.201902824&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_aenm_201902824 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1614-6832&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1614-6832&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1614-6832&client=summon |