Co/CoP Heterojunction on Hierarchically Ordered Porous Carbon as a Highly Efficient Electrocatalyst for Hydrogen and Oxygen Evolution

Designing non‐precious electrocatalysts to synergistically achieve a facilitated mass/electron transfer and exposure of abundant active sites is highly desired but remains a significant challenge. Herein, a composite electrocatalyst consisting of highly dispersed Co/CoP heterojunction embedded withi...

Full description

Saved in:
Bibliographic Details
Published inAdvanced energy materials Vol. 11; no. 42
Main Authors Li, Wei, Liu, Jing, Guo, Peifang, Li, Haozhe, Fei, Ben, Guo, Yanhui, Pan, Hongge, Sun, Dalin, Fang, Fang, Wu, Renbing
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 01.11.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Designing non‐precious electrocatalysts to synergistically achieve a facilitated mass/electron transfer and exposure of abundant active sites is highly desired but remains a significant challenge. Herein, a composite electrocatalyst consisting of highly dispersed Co/CoP heterojunction embedded within a hierarchically ordered macroporous‐mesoporous‐microporous carbon matrix (Co/CoP@HOMC) is rationally designed through the pyrolysis of polystyrene sphere‐templated zeolite imidazolate framework‐67 (ZIF‐67) assemblies. The combined experimental and theoretical calculations reveal that Co/CoP interfaces not only provide richly exposed active sites but also optimize hydrogen/water absorption free energy via electronic coupling, while the interconnected macroporous structure enables a superior mass transfer to all accessible active sites. As a result, the as‐developed Co/CoP@HOMC composites exhibit outstanding catalytic activity with overpotentials of only 120 and 260 mV at 10 mA cm−2 for the hydrogen evolution reaction and oxygen evolution reaction in 1.0 m KOH, respectively. Moreover, an alkaline electrolyzer constructed by Co/CoP@HOMC requires an ultralow cell voltage of 1.54 V to achieve 10 mA cm−2, outperforming that of the Pt@C||IrO2@C couple (1.64 V). Hierarchically ordered porous carbon‐supported heterostructured Co/CoP nanoparticles (Co/CoP@HOMC) are rationally designed. Owing to the synergistic coupling effect, highly exposed active sites, and enhanced mass transfer, the Co/CoP@HOMC exhibits an exceptional catalytic activity for both the hydrogen evolution reaction and the oxygen evolution reaction.
AbstractList Designing non‐precious electrocatalysts to synergistically achieve a facilitated mass/electron transfer and exposure of abundant active sites is highly desired but remains a significant challenge. Herein, a composite electrocatalyst consisting of highly dispersed Co/CoP heterojunction embedded within a hierarchically ordered macroporous‐mesoporous‐microporous carbon matrix (Co/CoP@HOMC) is rationally designed through the pyrolysis of polystyrene sphere‐templated zeolite imidazolate framework‐67 (ZIF‐67) assemblies. The combined experimental and theoretical calculations reveal that Co/CoP interfaces not only provide richly exposed active sites but also optimize hydrogen/water absorption free energy via electronic coupling, while the interconnected macroporous structure enables a superior mass transfer to all accessible active sites. As a result, the as‐developed Co/CoP@HOMC composites exhibit outstanding catalytic activity with overpotentials of only 120 and 260 mV at 10 mA cm −2 for the hydrogen evolution reaction and oxygen evolution reaction in 1.0 m KOH, respectively. Moreover, an alkaline electrolyzer constructed by Co/CoP@HOMC requires an ultralow cell voltage of 1.54 V to achieve 10 mA cm −2 , outperforming that of the Pt@C||IrO 2 @C couple (1.64 V).
Designing non‐precious electrocatalysts to synergistically achieve a facilitated mass/electron transfer and exposure of abundant active sites is highly desired but remains a significant challenge. Herein, a composite electrocatalyst consisting of highly dispersed Co/CoP heterojunction embedded within a hierarchically ordered macroporous‐mesoporous‐microporous carbon matrix (Co/CoP@HOMC) is rationally designed through the pyrolysis of polystyrene sphere‐templated zeolite imidazolate framework‐67 (ZIF‐67) assemblies. The combined experimental and theoretical calculations reveal that Co/CoP interfaces not only provide richly exposed active sites but also optimize hydrogen/water absorption free energy via electronic coupling, while the interconnected macroporous structure enables a superior mass transfer to all accessible active sites. As a result, the as‐developed Co/CoP@HOMC composites exhibit outstanding catalytic activity with overpotentials of only 120 and 260 mV at 10 mA cm−2 for the hydrogen evolution reaction and oxygen evolution reaction in 1.0 m KOH, respectively. Moreover, an alkaline electrolyzer constructed by Co/CoP@HOMC requires an ultralow cell voltage of 1.54 V to achieve 10 mA cm−2, outperforming that of the Pt@C||IrO2@C couple (1.64 V).
Designing non‐precious electrocatalysts to synergistically achieve a facilitated mass/electron transfer and exposure of abundant active sites is highly desired but remains a significant challenge. Herein, a composite electrocatalyst consisting of highly dispersed Co/CoP heterojunction embedded within a hierarchically ordered macroporous‐mesoporous‐microporous carbon matrix (Co/CoP@HOMC) is rationally designed through the pyrolysis of polystyrene sphere‐templated zeolite imidazolate framework‐67 (ZIF‐67) assemblies. The combined experimental and theoretical calculations reveal that Co/CoP interfaces not only provide richly exposed active sites but also optimize hydrogen/water absorption free energy via electronic coupling, while the interconnected macroporous structure enables a superior mass transfer to all accessible active sites. As a result, the as‐developed Co/CoP@HOMC composites exhibit outstanding catalytic activity with overpotentials of only 120 and 260 mV at 10 mA cm−2 for the hydrogen evolution reaction and oxygen evolution reaction in 1.0 m KOH, respectively. Moreover, an alkaline electrolyzer constructed by Co/CoP@HOMC requires an ultralow cell voltage of 1.54 V to achieve 10 mA cm−2, outperforming that of the Pt@C||IrO2@C couple (1.64 V). Hierarchically ordered porous carbon‐supported heterostructured Co/CoP nanoparticles (Co/CoP@HOMC) are rationally designed. Owing to the synergistic coupling effect, highly exposed active sites, and enhanced mass transfer, the Co/CoP@HOMC exhibits an exceptional catalytic activity for both the hydrogen evolution reaction and the oxygen evolution reaction.
Author Li, Haozhe
Fang, Fang
Liu, Jing
Guo, Yanhui
Pan, Hongge
Sun, Dalin
Li, Wei
Guo, Peifang
Fei, Ben
Wu, Renbing
Author_xml – sequence: 1
  givenname: Wei
  surname: Li
  fullname: Li, Wei
  organization: Fudan University
– sequence: 2
  givenname: Jing
  surname: Liu
  fullname: Liu, Jing
  organization: Fudan University
– sequence: 3
  givenname: Peifang
  surname: Guo
  fullname: Guo, Peifang
  organization: Fudan University
– sequence: 4
  givenname: Haozhe
  surname: Li
  fullname: Li, Haozhe
  organization: Fudan University
– sequence: 5
  givenname: Ben
  surname: Fei
  fullname: Fei, Ben
  organization: Fudan University
– sequence: 6
  givenname: Yanhui
  surname: Guo
  fullname: Guo, Yanhui
  email: gyh@fudan.edu.cn
  organization: Fudan University
– sequence: 7
  givenname: Hongge
  surname: Pan
  fullname: Pan, Hongge
  organization: Xi'an Technological University
– sequence: 8
  givenname: Dalin
  surname: Sun
  fullname: Sun, Dalin
  organization: Fudan University
– sequence: 9
  givenname: Fang
  surname: Fang
  fullname: Fang, Fang
  email: f_fang@fudan.edu.cn
  organization: Yiwu Research Institute of Fudan University
– sequence: 10
  givenname: Renbing
  orcidid: 0000-0003-2815-2797
  surname: Wu
  fullname: Wu, Renbing
  email: rbwu@fudan.edu.cn
  organization: Fudan University
BookMark eNqFkF9LwzAUxYMoOOdefQ74vC1_2q55HKU6YTof9LlkabpldI3epGo_gN_blMkEQbxcbu7D-d1DzgU6bWyjEbqiZEIJYVOpm_2EEUZD8-gEDWhCo3GSRuT0uHN2jkbO7UioSFDC-QB9Znaa2Ue80F6D3bWN8sY2OPTCaJCgtkbJuu7wCkoNusSPFmzrcCZhHUTSYRmUm21Q5FVllNGNx3mtlQerpJd15zyuLOBFV4Ld6IA0JV59dP2av9m67f0u0Vkla6dH3-8QPd_kT9livFzd3mXz5VjxlEdjFQuernW6VjyZxakWKat4zAgnJVfxjIbJS6EkoSUtWRXzpGJRIhIVr5WUJOFDdH24-wL2tdXOFzvbQhMsCxaLOE2EoCKoJgeVAusc6Kp4AbOX0BWUFH3aRZ92cUw7ANEvQBkv-495kKb-GxMH7N3UuvvHpJjnD_c_7Bc1rpeX
CitedBy_id crossref_primary_10_1007_s40843_021_1929_5
crossref_primary_10_1021_acs_cgd_2c00698
crossref_primary_10_1016_j_surfin_2023_103368
crossref_primary_10_1002_eem2_12740
crossref_primary_10_1016_j_jechem_2023_06_017
crossref_primary_10_1016_j_jcis_2024_04_084
crossref_primary_10_1016_j_jallcom_2023_170847
crossref_primary_10_1016_j_carbpol_2023_120942
crossref_primary_10_1039_D2DT03083G
crossref_primary_10_1016_j_jcis_2023_04_089
crossref_primary_10_1016_j_microc_2024_111877
crossref_primary_10_1002_adfm_202303300
crossref_primary_10_1016_j_cej_2024_153212
crossref_primary_10_1016_j_mtener_2022_101142
crossref_primary_10_12677_ms_2024_144043
crossref_primary_10_1002_adma_202109605
crossref_primary_10_1039_D3NR01411H
crossref_primary_10_1016_j_pecs_2024_101175
crossref_primary_10_1002_adfm_202402298
crossref_primary_10_1016_j_cej_2022_137490
crossref_primary_10_1016_j_jallcom_2022_165940
crossref_primary_10_1016_j_jcis_2023_08_128
crossref_primary_10_1016_j_ijhydene_2023_07_179
crossref_primary_10_1016_j_cej_2022_139796
crossref_primary_10_1039_D2RA00968D
crossref_primary_10_1016_j_enchem_2023_100099
crossref_primary_10_1002_adfm_202301075
crossref_primary_10_1021_acs_energyfuels_4c00976
crossref_primary_10_1002_anie_202405438
crossref_primary_10_1002_cey2_485
crossref_primary_10_1016_j_cej_2022_138225
crossref_primary_10_1016_j_microc_2024_111642
crossref_primary_10_1016_j_seppur_2024_128136
crossref_primary_10_1016_j_ces_2024_120818
crossref_primary_10_1002_adfm_202314541
crossref_primary_10_1016_j_fuel_2024_134044
crossref_primary_10_1021_acsaem_2c01489
crossref_primary_10_1007_s12274_022_5222_5
crossref_primary_10_1016_j_colsurfa_2022_129695
crossref_primary_10_1039_D3CY00708A
crossref_primary_10_1039_D2TA08366C
crossref_primary_10_1039_D2DT00138A
crossref_primary_10_1002_adfm_202422734
crossref_primary_10_1016_j_cej_2023_142538
crossref_primary_10_1016_j_jallcom_2022_168342
crossref_primary_10_1016_j_jallcom_2023_169357
crossref_primary_10_1021_acsnano_2c04090
crossref_primary_10_1002_smll_202311335
crossref_primary_10_1021_acscatal_2c00408
crossref_primary_10_1016_j_jallcom_2023_172730
crossref_primary_10_1039_D3MH00644A
crossref_primary_10_1016_j_jallcom_2022_165072
crossref_primary_10_1016_j_jelechem_2023_117897
crossref_primary_10_1039_D3GC02075D
crossref_primary_10_1002_aenm_202300978
crossref_primary_10_1016_j_ccr_2023_215639
crossref_primary_10_1016_j_est_2023_107146
crossref_primary_10_1021_acssuschemeng_3c00322
crossref_primary_10_1002_adfm_202303803
crossref_primary_10_1016_j_cej_2023_146172
crossref_primary_10_1016_j_jallcom_2022_165508
crossref_primary_10_1021_acsnano_3c07375
crossref_primary_10_1039_D2SC00377E
crossref_primary_10_1002_advs_202402916
crossref_primary_10_1007_s42114_022_00455_w
crossref_primary_10_1016_j_cej_2023_141672
crossref_primary_10_1016_j_jcis_2023_07_180
crossref_primary_10_1016_j_cej_2023_141674
crossref_primary_10_1016_j_cej_2023_143059
crossref_primary_10_1039_D2DT03865J
crossref_primary_10_1002_adfm_202408613
crossref_primary_10_1021_acsaem_3c01129
crossref_primary_10_1016_j_mtcata_2023_100002
crossref_primary_10_1021_acsami_3c11947
crossref_primary_10_1039_D4TA05681G
crossref_primary_10_1016_j_apsusc_2022_152957
crossref_primary_10_1016_j_enchem_2024_100137
crossref_primary_10_1016_j_fuel_2022_126368
crossref_primary_10_1021_acscatal_4c00290
crossref_primary_10_1002_advs_202300094
crossref_primary_10_1002_aenm_202402839
crossref_primary_10_1002_cplu_202200338
crossref_primary_10_1002_sstr_202300192
crossref_primary_10_1016_j_ijhydene_2025_01_014
crossref_primary_10_1016_j_ijhydene_2022_07_247
crossref_primary_10_1016_j_cej_2024_152973
crossref_primary_10_1002_phmt_14
crossref_primary_10_1002_aenm_202301492
crossref_primary_10_1016_j_nanoen_2022_107753
crossref_primary_10_1039_D4TA00772G
crossref_primary_10_1016_j_apcatb_2022_121667
crossref_primary_10_1016_j_jece_2023_109718
crossref_primary_10_1002_smll_202308956
crossref_primary_10_1016_j_ijhydene_2022_10_178
crossref_primary_10_1002_adma_202301894
crossref_primary_10_1039_D3QI00902E
crossref_primary_10_1063_5_0100999
crossref_primary_10_1002_smll_202400783
crossref_primary_10_1016_j_jcis_2024_12_036
crossref_primary_10_1002_adfm_202316709
crossref_primary_10_1016_j_ccr_2023_215464
crossref_primary_10_1016_j_ijhydene_2024_12_398
crossref_primary_10_1039_D4QI02213K
crossref_primary_10_1002_cey2_273
crossref_primary_10_1021_acsami_3c19548
crossref_primary_10_1016_j_apsusc_2023_156906
crossref_primary_10_1002_aenm_202300837
crossref_primary_10_1002_ange_202405438
crossref_primary_10_1063_5_0160416
crossref_primary_10_1016_j_cis_2024_103279
crossref_primary_10_1039_D4RA02063D
crossref_primary_10_1016_j_jallcom_2021_162614
crossref_primary_10_1039_D4TA00696H
crossref_primary_10_1002_adma_202404658
crossref_primary_10_1016_j_jcis_2023_05_083
crossref_primary_10_1021_acsmaterialslett_4c00716
crossref_primary_10_1039_D3TA05613A
crossref_primary_10_1016_j_jallcom_2023_173092
crossref_primary_10_1039_D3QI00519D
crossref_primary_10_1002_smll_202304294
crossref_primary_10_1002_adfm_202419775
crossref_primary_10_1016_j_diamond_2023_109843
crossref_primary_10_1016_j_mcat_2022_112568
crossref_primary_10_1021_acsanm_3c02677
crossref_primary_10_1016_j_ccr_2025_216560
crossref_primary_10_1016_j_cej_2023_143717
crossref_primary_10_1016_j_pmatsci_2024_101294
crossref_primary_10_1016_S1872_5805_22_60575_4
crossref_primary_10_1002_cnma_202200509
crossref_primary_10_1021_acssuschemeng_3c01084
crossref_primary_10_1039_D3TA02218H
crossref_primary_10_1016_j_jcis_2023_12_044
crossref_primary_10_1002_aesr_202200204
crossref_primary_10_1039_D4TA04554H
crossref_primary_10_1039_D4TA07747D
crossref_primary_10_1002_adfm_202504272
crossref_primary_10_1002_slct_202401274
crossref_primary_10_1016_j_ijhydene_2024_11_249
crossref_primary_10_1007_s12598_024_02950_z
crossref_primary_10_1016_j_ijhydene_2023_09_191
crossref_primary_10_1016_j_jcis_2023_11_094
crossref_primary_10_1002_smsc_202200030
crossref_primary_10_1007_s12598_022_02224_6
crossref_primary_10_1021_acsami_2c09909
crossref_primary_10_1021_acsanm_3c02346
crossref_primary_10_1021_acssuschemeng_2c06655
crossref_primary_10_3390_catal15010098
crossref_primary_10_1002_smll_202200950
crossref_primary_10_1016_j_electacta_2022_141721
crossref_primary_10_1016_j_jcis_2022_10_165
crossref_primary_10_1002_sstr_202200235
crossref_primary_10_1016_j_ijhydene_2024_03_094
crossref_primary_10_1002_adma_202401926
crossref_primary_10_1021_acsami_3c17349
crossref_primary_10_1016_j_cej_2024_152301
crossref_primary_10_1016_j_ijhydene_2023_04_175
crossref_primary_10_1039_D2DT02002E
crossref_primary_10_1016_j_ijhydene_2022_01_120
crossref_primary_10_1021_acs_inorgchem_4c03664
crossref_primary_10_1016_j_ijhydene_2024_04_174
crossref_primary_10_1016_j_ijhydene_2022_09_307
crossref_primary_10_1016_j_nanoen_2023_108415
crossref_primary_10_1016_j_cej_2024_149121
crossref_primary_10_1016_j_pmatsci_2024_101408
crossref_primary_10_1039_D3DT01020A
crossref_primary_10_1039_D3TA05647C
crossref_primary_10_1002_chem_202301252
crossref_primary_10_1016_j_ccr_2024_215996
crossref_primary_10_1016_j_jallcom_2022_165721
crossref_primary_10_1039_D3EE04543A
crossref_primary_10_1016_j_ccr_2023_215452
crossref_primary_10_1021_acsanm_4c01074
crossref_primary_10_1039_D1QI01646F
crossref_primary_10_1016_j_jcis_2022_10_057
crossref_primary_10_1021_acssuschemeng_3c04053
crossref_primary_10_1039_D2CC01946A
crossref_primary_10_1002_cey2_188
crossref_primary_10_1002_adma_202210975
crossref_primary_10_1016_j_micromeso_2022_111916
crossref_primary_10_1002_sstr_202300394
crossref_primary_10_1021_acsanm_4c03408
crossref_primary_10_1016_j_jcis_2023_11_149
crossref_primary_10_1016_j_fuel_2023_127719
crossref_primary_10_1039_D2NR04657A
crossref_primary_10_1016_j_nanoen_2024_109413
crossref_primary_10_1039_D3CY00456B
crossref_primary_10_1016_j_ijhydene_2023_10_311
crossref_primary_10_1002_smll_202301324
Cites_doi 10.1038/ncomms4519
10.1002/smtd.202000988
10.1038/s41427-019-0112-3
10.1016/j.cej.2019.04.067
10.1002/anie.201914123
10.1002/aenm.201902714
10.1016/j.apcatb.2019.118404
10.1039/C4CC07143C
10.1039/C9NR05061B
10.1016/j.pmatsci.2019.100618
10.1039/C6CS00629A
10.1002/advs.201800949
10.1039/C5CC05541E
10.1016/j.apcatb.2019.118240
10.1021/acsnano.9b08458
10.1021/acs.langmuir.9b03810
10.1002/adma.202006965
10.1002/aenm.202001963
10.1002/adfm.201805298
10.1016/j.isci.2019.05.006
10.1021/acsaem.9b00337
10.1016/j.scib.2020.09.014
10.1002/aenm.201901213
10.1126/science.aao3403
10.1021/acsami.7b18858
10.1039/C7TA09958D
10.1002/advs.201903195
10.1002/adfm.201807086
10.1002/inf2.12078
10.1016/j.cej.2020.125160
10.1021/ja806565t
10.1016/S0360-0564(02)45013-4
10.1039/C0JM01921F
10.1039/D0EE03160G
10.1016/j.nanoen.2019.104371
10.1039/C6TA06434E
10.1002/anie.201804349
10.1002/adma.202003649
10.1002/inf2.12118
10.1021/acsami.8b12321
10.1016/j.nanoen.2020.104685
10.1016/j.electacta.2019.03.208
10.1021/jacs.7b12420
10.1186/s11671-019-3237-y
10.1002/aenm.202002592
10.1016/j.apcatb.2019.118012
10.1039/C8EE00927A
10.1021/acsnano.0c01456
10.1016/j.mtcomm.2020.101257
10.1016/j.jechem.2020.12.007
ContentType Journal Article
Copyright 2021 Wiley‐VCH GmbH
Copyright_xml – notice: 2021 Wiley‐VCH GmbH
DBID AAYXX
CITATION
7SP
7TB
8FD
F28
FR3
H8D
L7M
DOI 10.1002/aenm.202102134
DatabaseName CrossRef
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList CrossRef
Aerospace Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1614-6840
EndPage n/a
ExternalDocumentID 10_1002_aenm_202102134
AENM202102134
Genre article
GrantInformation_xml – fundername: Science & Technology Commission of Shanghai Municipality
  funderid: 20XD1420600
– fundername: National Natural Science Foundation of China
  funderid: 52071084; 51871060; 51922031; 52071083; 51831009
– fundername: National Key R&D Program of China
  funderid: 2020YFA0406204
– fundername: Zhuhai Fudan Innovation Institute
– fundername: Shanghai Education Development Foundation and Shanghai Municipal Education Commission
  funderid: 20SG03
GroupedDBID 05W
0R~
1OC
33P
4.4
50Y
5VS
8-0
8-1
A00
AAESR
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AAXRX
AAYCA
AAZKR
ABCUV
ABJNI
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADKYN
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFWVQ
AFZJQ
AHBTC
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
AZVAB
BDRZF
BFHJK
BMXJE
BRXPI
D-A
DCZOG
EBS
G-S
HGLYW
HZ~
KBYEO
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MY.
MY~
O9-
P2W
P4E
RNS
ROL
RX1
SUPJJ
WBKPD
WOHZO
WXSBR
WYJ
ZZTAW
~S-
31~
AANHP
AASGY
AAYXX
ACBWZ
ACRPL
ACYXJ
ADMLS
ADNMO
AEYWJ
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
GODZA
HVGLF
7SP
7TB
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
F28
FR3
H8D
L7M
ID FETCH-LOGICAL-c3834-c5938be8bc36758e982f352030d3c571d3c3d9ca01d1d2f536f24696c5bcaa063
ISSN 1614-6832
IngestDate Fri Jul 25 12:00:13 EDT 2025
Thu Apr 24 22:59:28 EDT 2025
Tue Jul 01 01:43:41 EDT 2025
Wed Jan 22 16:28:46 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 42
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c3834-c5938be8bc36758e982f352030d3c571d3c3d9ca01d1d2f536f24696c5bcaa063
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2815-2797
PQID 2595869919
PQPubID 886389
PageCount 10
ParticipantIDs proquest_journals_2595869919
crossref_primary_10_1002_aenm_202102134
crossref_citationtrail_10_1002_aenm_202102134
wiley_primary_10_1002_aenm_202102134_AENM202102134
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-11-01
PublicationDateYYYYMMDD 2021-11-01
PublicationDate_xml – month: 11
  year: 2021
  text: 2021-11-01
  day: 01
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Advanced energy materials
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2018; 28
2019; 9
2021; 5
2018; 140
2021; 66
2019; 11
2019; 2
2015; 51
2000; 45
2017; 46
2019; 15
2020; 161
2020; 59
2020; 15
2020; 14
2020; 36
2019; 307
2020; 268
2009; 131
2020; 10
2020; 32
2020; 108
2021; 14
2016; 4
2018; 6
2020; 7
2021; 59
2014; 5
2020; 2
2018; 5
2021; 33
2018; 359
2021
2020; 395
2020; 72
2019; 258
2011; 21
2019; 29
2020; 25
2020; 68
2019; 371
2018; 11
2018; 10
2014; 50
2018; 57
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_49_1
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_1_1
e_1_2_8_41_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_32_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_51_1
e_1_2_8_30_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_2_1
e_1_2_8_4_1
Mei J. (e_1_2_8_26_1) 2021
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_40_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_50_1
References_xml – volume: 10
  year: 2020
  publication-title: Adv. Energy Mater.
– volume: 36
  start-page: 1916
  year: 2020
  publication-title: Langmuir
– volume: 11
  start-page: 2858
  year: 2018
  publication-title: Energy Environ. Sci.
– volume: 66
  start-page: 85
  year: 2021
  publication-title: Sci. Bull.
– volume: 25
  year: 2020
  publication-title: Mater. Today Commun.
– volume: 14
  start-page: 1971
  year: 2020
  publication-title: ACS Nano
– volume: 108
  year: 2020
  publication-title: Prog. Mater. Sci.
– volume: 371
  start-page: 433
  year: 2019
  publication-title: Chem. Eng. J.
– volume: 51
  year: 2015
  publication-title: Chem. Commun.
– volume: 131
  start-page: 1862
  year: 2009
  publication-title: J. Am. Chem. Soc.
– volume: 140
  start-page: 2610
  year: 2018
  publication-title: J. Am. Chem. Soc.
– volume: 59
  start-page: 748
  year: 2021
  publication-title: J. Energy Chem.
– volume: 7
  year: 2020
  publication-title: Adv. Sci.
– volume: 15
  start-page: 514
  year: 2019
  publication-title: iScience
– volume: 258
  year: 2019
  publication-title: Appl. Catal., B
– volume: 33
  year: 2021
  publication-title: Adv. Mater.
– volume: 29
  year: 2019
  publication-title: Adv. Funct. Mater.
– volume: 15
  start-page: 1
  year: 2020
  publication-title: Nanoscale Res. Lett.
– volume: 28
  year: 2018
  publication-title: Adv. Funct. Mater.
– volume: 11
  year: 2019
  publication-title: Nanoscale
– volume: 5
  start-page: 3519
  year: 2014
  publication-title: Nat. Commun.
– volume: 6
  start-page: 1443
  year: 2018
  publication-title: J. Mater. Chem. A
– volume: 395
  year: 2020
  publication-title: Chem. Eng. J.
– volume: 359
  start-page: 206
  year: 2018
  publication-title: Science
– volume: 21
  start-page: 4743
  year: 2011
  publication-title: J. Mater. Chem.
– volume: 4
  year: 2016
  publication-title: J. Mater. Chem. A
– volume: 10
  start-page: 7134
  year: 2018
  publication-title: ACS Appl. Mater. Interfaces
– volume: 72
  year: 2020
  publication-title: Nano Energy
– volume: 45
  start-page: 71
  year: 2000
  publication-title: Adv. Catal.
– year: 2021
  publication-title: Energy Environ. Mater.
– volume: 11
  start-page: 12
  year: 2019
  publication-title: NPG Asia Mater
– volume: 5
  year: 2018
  publication-title: Adv. Sci.
– volume: 14
  start-page: 2302
  year: 2021
  publication-title: Energy Environ. Sci.
– volume: 14
  start-page: 6968
  year: 2020
  publication-title: ACS Nano
– volume: 46
  start-page: 816
  year: 2017
  publication-title: Chem. Soc. Rev.
– volume: 2
  start-page: 4737
  year: 2019
  publication-title: ACS Appl. Energy Mater.
– volume: 161
  year: 2020
  publication-title: Appl. Catal.
– volume: 50
  year: 2014
  publication-title: Chem. Commun.
– volume: 9
  year: 2019
  publication-title: Adv. Energy Mater.
– volume: 2
  start-page: 950
  year: 2020
  publication-title: InfoMat
– volume: 59
  start-page: 2688
  year: 2020
  publication-title: Angew. Chem., Int. Ed.
– volume: 57
  start-page: 8614
  year: 2018
  publication-title: Angew. Chem., Int. Ed.
– volume: 68
  year: 2020
  publication-title: Nano Energy
– volume: 5
  year: 2021
  publication-title: Small Methods
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 268
  year: 2020
  publication-title: Appl. Catal., B
– volume: 307
  start-page: 543
  year: 2019
  publication-title: Electrochim. Acta
– volume: 10
  year: 2018
  publication-title: ACS Appl. Mater. Interfaces
– volume: 2
  start-page: 1057
  year: 2020
  publication-title: InfoMat
– ident: e_1_2_8_3_1
  doi: 10.1038/ncomms4519
– ident: e_1_2_8_25_1
  doi: 10.1002/smtd.202000988
– ident: e_1_2_8_31_1
  doi: 10.1038/s41427-019-0112-3
– ident: e_1_2_8_37_1
  doi: 10.1016/j.cej.2019.04.067
– ident: e_1_2_8_35_1
  doi: 10.1002/anie.201914123
– ident: e_1_2_8_8_1
  doi: 10.1002/aenm.201902714
– ident: e_1_2_8_19_1
  doi: 10.1016/j.apcatb.2019.118404
– ident: e_1_2_8_43_1
  doi: 10.1039/C4CC07143C
– ident: e_1_2_8_39_1
  doi: 10.1039/C9NR05061B
– ident: e_1_2_8_10_1
  doi: 10.1016/j.pmatsci.2019.100618
– ident: e_1_2_8_18_1
  doi: 10.1039/C6CS00629A
– ident: e_1_2_8_41_1
  doi: 10.1002/advs.201800949
– ident: e_1_2_8_49_1
  doi: 10.1039/C5CC05541E
– ident: e_1_2_8_5_1
  doi: 10.1016/j.apcatb.2019.118240
– ident: e_1_2_8_16_1
  doi: 10.1021/acsnano.9b08458
– ident: e_1_2_8_28_1
  doi: 10.1021/acs.langmuir.9b03810
– ident: e_1_2_8_7_1
  doi: 10.1002/adma.202006965
– ident: e_1_2_8_15_1
  doi: 10.1002/aenm.202001963
– ident: e_1_2_8_21_1
  doi: 10.1002/adfm.201805298
– ident: e_1_2_8_32_1
  doi: 10.1016/j.isci.2019.05.006
– ident: e_1_2_8_38_1
  doi: 10.1021/acsaem.9b00337
– ident: e_1_2_8_6_1
  doi: 10.1016/j.scib.2020.09.014
– ident: e_1_2_8_50_1
  doi: 10.1002/aenm.201901213
– ident: e_1_2_8_33_1
  doi: 10.1126/science.aao3403
– ident: e_1_2_8_36_1
  doi: 10.1021/acsami.7b18858
– ident: e_1_2_8_17_1
  doi: 10.1039/C7TA09958D
– ident: e_1_2_8_30_1
  doi: 10.1002/advs.201903195
– ident: e_1_2_8_22_1
  doi: 10.1002/adfm.201807086
– ident: e_1_2_8_13_1
  doi: 10.1002/inf2.12078
– ident: e_1_2_8_27_1
  doi: 10.1016/j.cej.2020.125160
– ident: e_1_2_8_1_1
  doi: 10.1021/ja806565t
– ident: e_1_2_8_51_1
  doi: 10.1016/S0360-0564(02)45013-4
– ident: e_1_2_8_2_1
  doi: 10.1039/C0JM01921F
– ident: e_1_2_8_4_1
  doi: 10.1039/D0EE03160G
– ident: e_1_2_8_14_1
  doi: 10.1016/j.nanoen.2019.104371
– ident: e_1_2_8_40_1
  doi: 10.1039/C6TA06434E
– ident: e_1_2_8_45_1
  doi: 10.1002/anie.201804349
– ident: e_1_2_8_44_1
  doi: 10.1002/adma.202003649
– ident: e_1_2_8_12_1
  doi: 10.1002/inf2.12118
– ident: e_1_2_8_20_1
  doi: 10.1021/acsami.8b12321
– ident: e_1_2_8_34_1
  doi: 10.1016/j.nanoen.2020.104685
– ident: e_1_2_8_47_1
  doi: 10.1016/j.electacta.2019.03.208
– ident: e_1_2_8_29_1
  doi: 10.1021/jacs.7b12420
– ident: e_1_2_8_46_1
  doi: 10.1186/s11671-019-3237-y
– ident: e_1_2_8_9_1
  doi: 10.1002/aenm.202002592
– ident: e_1_2_8_23_1
  doi: 10.1016/j.apcatb.2019.118012
– ident: e_1_2_8_11_1
  doi: 10.1039/C8EE00927A
– year: 2021
  ident: e_1_2_8_26_1
  publication-title: Energy Environ. Mater.
– ident: e_1_2_8_42_1
  doi: 10.1021/acsnano.0c01456
– ident: e_1_2_8_48_1
  doi: 10.1016/j.mtcomm.2020.101257
– ident: e_1_2_8_24_1
  doi: 10.1016/j.jechem.2020.12.007
SSID ssj0000491033
Score 2.6687822
Snippet Designing non‐precious electrocatalysts to synergistically achieve a facilitated mass/electron transfer and exposure of abundant active sites is highly desired...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Carbon
Catalytic activity
Electrocatalysts
Electron transfer
Free energy
Heterojunctions
hydrogen evolution reaction
Hydrogen evolution reactions
Mass transfer
oxygen evolution reaction
Oxygen evolution reactions
Polystyrene resins
Pyrolysis
Water absorption
water splitting
Title Co/CoP Heterojunction on Hierarchically Ordered Porous Carbon as a Highly Efficient Electrocatalyst for Hydrogen and Oxygen Evolution
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faenm.202102134
https://www.proquest.com/docview/2595869919
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZK9wIPiKsoG8gPSDxUYY2di_NYlaAIsYvEJvYWOY4jOlUJSlu07h2Jn83xJbcxxECqrNSyc_H5Yp_jfP6M0Bs3Y0KJwDgR48zxKJcOcwVxeBECAnghXa7ZFsdBcu59vPAvRqOfPdbSdpO9E9e3riv5H6tCHthVrZL9B8u2J4UMOAb7QgoWhvRONl5USt62OoXBA5qnuoQxyjiA5TRZqpXFeqOT1Wo3Pan1ppzT06pWnNcFrzNFQ15PuWZ6QIlYa0koZkBsdsbREzu79UYTEZNdXldwH_pbw8nVTh3G3-3D9R3cecMpkGZRITjEpiVa5o-mD3yRyy5jq6HUjKGKDLStDHd4WfAu19RMeHX9VfYnK4hrV-11_St4A07A7JSm7OcZ1aa2U3Z74DP6W7919kY8lstSKQqo0NW186IDVe0bo13LQTR6zSRV9dO2_j20RyDgIGO0N39_9OlzO18HkZQ7o3q9RvMMjQbojBwOb2Lo43SBSz_80f7L2SP00AYeeG5Q9BiNZPkEPejJUT5FPxbVIaAJD9GE4TdEE7ZowgZN2KAJ8zXm2KAJt2jCN9CEAU24QRMGNGGDJtyi6Rk6_xCfLRLHbtPhCMqo5wg_oiyTLBNURZ8yYqQAtx5Gj5wKP3QhpXkk-MzN3ZwUPg0K4gVRIPxMcA4u8nM0LqtSvkCY5qFXEM7Bgci8QkY8DDwueRSq790QaUyQ0zRsKqyGvdpKZZXebs0JetuW_2bUW_5Y8qCxU2rf8HVK_MhnAURQ0QQRbbu_nCWdx8dH7b-Xd776PrrfvS0HaLypt_IVOLub7LXF4S9gkqjO
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Co%2FCoP+Heterojunction+on+Hierarchically+Ordered+Porous+Carbon+as+a+Highly+Efficient+Electrocatalyst+for+Hydrogen+and+Oxygen+Evolution&rft.jtitle=Advanced+energy+materials&rft.au=Li%2C+Wei&rft.au=Liu%2C+Jing&rft.au=Guo%2C+Peifang&rft.au=Li%2C+Haozhe&rft.date=2021-11-01&rft.issn=1614-6832&rft.eissn=1614-6840&rft.volume=11&rft.issue=42&rft_id=info:doi/10.1002%2Faenm.202102134&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_aenm_202102134
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1614-6832&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1614-6832&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1614-6832&client=summon