Co/CoP Heterojunction on Hierarchically Ordered Porous Carbon as a Highly Efficient Electrocatalyst for Hydrogen and Oxygen Evolution
Designing non‐precious electrocatalysts to synergistically achieve a facilitated mass/electron transfer and exposure of abundant active sites is highly desired but remains a significant challenge. Herein, a composite electrocatalyst consisting of highly dispersed Co/CoP heterojunction embedded withi...
Saved in:
Published in | Advanced energy materials Vol. 11; no. 42 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
01.11.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Designing non‐precious electrocatalysts to synergistically achieve a facilitated mass/electron transfer and exposure of abundant active sites is highly desired but remains a significant challenge. Herein, a composite electrocatalyst consisting of highly dispersed Co/CoP heterojunction embedded within a hierarchically ordered macroporous‐mesoporous‐microporous carbon matrix (Co/CoP@HOMC) is rationally designed through the pyrolysis of polystyrene sphere‐templated zeolite imidazolate framework‐67 (ZIF‐67) assemblies. The combined experimental and theoretical calculations reveal that Co/CoP interfaces not only provide richly exposed active sites but also optimize hydrogen/water absorption free energy via electronic coupling, while the interconnected macroporous structure enables a superior mass transfer to all accessible active sites. As a result, the as‐developed Co/CoP@HOMC composites exhibit outstanding catalytic activity with overpotentials of only 120 and 260 mV at 10 mA cm−2 for the hydrogen evolution reaction and oxygen evolution reaction in 1.0 m KOH, respectively. Moreover, an alkaline electrolyzer constructed by Co/CoP@HOMC requires an ultralow cell voltage of 1.54 V to achieve 10 mA cm−2, outperforming that of the Pt@C||IrO2@C couple (1.64 V).
Hierarchically ordered porous carbon‐supported heterostructured Co/CoP nanoparticles (Co/CoP@HOMC) are rationally designed. Owing to the synergistic coupling effect, highly exposed active sites, and enhanced mass transfer, the Co/CoP@HOMC exhibits an exceptional catalytic activity for both the hydrogen evolution reaction and the oxygen evolution reaction. |
---|---|
AbstractList | Designing non‐precious electrocatalysts to synergistically achieve a facilitated mass/electron transfer and exposure of abundant active sites is highly desired but remains a significant challenge. Herein, a composite electrocatalyst consisting of highly dispersed Co/CoP heterojunction embedded within a hierarchically ordered macroporous‐mesoporous‐microporous carbon matrix (Co/CoP@HOMC) is rationally designed through the pyrolysis of polystyrene sphere‐templated zeolite imidazolate framework‐67 (ZIF‐67) assemblies. The combined experimental and theoretical calculations reveal that Co/CoP interfaces not only provide richly exposed active sites but also optimize hydrogen/water absorption free energy via electronic coupling, while the interconnected macroporous structure enables a superior mass transfer to all accessible active sites. As a result, the as‐developed Co/CoP@HOMC composites exhibit outstanding catalytic activity with overpotentials of only 120 and 260 mV at 10 mA cm
−2
for the hydrogen evolution reaction and oxygen evolution reaction in 1.0
m
KOH, respectively. Moreover, an alkaline electrolyzer constructed by Co/CoP@HOMC requires an ultralow cell voltage of 1.54 V to achieve 10 mA cm
−2
, outperforming that of the Pt@C||IrO
2
@C couple (1.64 V). Designing non‐precious electrocatalysts to synergistically achieve a facilitated mass/electron transfer and exposure of abundant active sites is highly desired but remains a significant challenge. Herein, a composite electrocatalyst consisting of highly dispersed Co/CoP heterojunction embedded within a hierarchically ordered macroporous‐mesoporous‐microporous carbon matrix (Co/CoP@HOMC) is rationally designed through the pyrolysis of polystyrene sphere‐templated zeolite imidazolate framework‐67 (ZIF‐67) assemblies. The combined experimental and theoretical calculations reveal that Co/CoP interfaces not only provide richly exposed active sites but also optimize hydrogen/water absorption free energy via electronic coupling, while the interconnected macroporous structure enables a superior mass transfer to all accessible active sites. As a result, the as‐developed Co/CoP@HOMC composites exhibit outstanding catalytic activity with overpotentials of only 120 and 260 mV at 10 mA cm−2 for the hydrogen evolution reaction and oxygen evolution reaction in 1.0 m KOH, respectively. Moreover, an alkaline electrolyzer constructed by Co/CoP@HOMC requires an ultralow cell voltage of 1.54 V to achieve 10 mA cm−2, outperforming that of the Pt@C||IrO2@C couple (1.64 V). Designing non‐precious electrocatalysts to synergistically achieve a facilitated mass/electron transfer and exposure of abundant active sites is highly desired but remains a significant challenge. Herein, a composite electrocatalyst consisting of highly dispersed Co/CoP heterojunction embedded within a hierarchically ordered macroporous‐mesoporous‐microporous carbon matrix (Co/CoP@HOMC) is rationally designed through the pyrolysis of polystyrene sphere‐templated zeolite imidazolate framework‐67 (ZIF‐67) assemblies. The combined experimental and theoretical calculations reveal that Co/CoP interfaces not only provide richly exposed active sites but also optimize hydrogen/water absorption free energy via electronic coupling, while the interconnected macroporous structure enables a superior mass transfer to all accessible active sites. As a result, the as‐developed Co/CoP@HOMC composites exhibit outstanding catalytic activity with overpotentials of only 120 and 260 mV at 10 mA cm−2 for the hydrogen evolution reaction and oxygen evolution reaction in 1.0 m KOH, respectively. Moreover, an alkaline electrolyzer constructed by Co/CoP@HOMC requires an ultralow cell voltage of 1.54 V to achieve 10 mA cm−2, outperforming that of the Pt@C||IrO2@C couple (1.64 V). Hierarchically ordered porous carbon‐supported heterostructured Co/CoP nanoparticles (Co/CoP@HOMC) are rationally designed. Owing to the synergistic coupling effect, highly exposed active sites, and enhanced mass transfer, the Co/CoP@HOMC exhibits an exceptional catalytic activity for both the hydrogen evolution reaction and the oxygen evolution reaction. |
Author | Li, Haozhe Fang, Fang Liu, Jing Guo, Yanhui Pan, Hongge Sun, Dalin Li, Wei Guo, Peifang Fei, Ben Wu, Renbing |
Author_xml | – sequence: 1 givenname: Wei surname: Li fullname: Li, Wei organization: Fudan University – sequence: 2 givenname: Jing surname: Liu fullname: Liu, Jing organization: Fudan University – sequence: 3 givenname: Peifang surname: Guo fullname: Guo, Peifang organization: Fudan University – sequence: 4 givenname: Haozhe surname: Li fullname: Li, Haozhe organization: Fudan University – sequence: 5 givenname: Ben surname: Fei fullname: Fei, Ben organization: Fudan University – sequence: 6 givenname: Yanhui surname: Guo fullname: Guo, Yanhui email: gyh@fudan.edu.cn organization: Fudan University – sequence: 7 givenname: Hongge surname: Pan fullname: Pan, Hongge organization: Xi'an Technological University – sequence: 8 givenname: Dalin surname: Sun fullname: Sun, Dalin organization: Fudan University – sequence: 9 givenname: Fang surname: Fang fullname: Fang, Fang email: f_fang@fudan.edu.cn organization: Yiwu Research Institute of Fudan University – sequence: 10 givenname: Renbing orcidid: 0000-0003-2815-2797 surname: Wu fullname: Wu, Renbing email: rbwu@fudan.edu.cn organization: Fudan University |
BookMark | eNqFkF9LwzAUxYMoOOdefQ74vC1_2q55HKU6YTof9LlkabpldI3epGo_gN_blMkEQbxcbu7D-d1DzgU6bWyjEbqiZEIJYVOpm_2EEUZD8-gEDWhCo3GSRuT0uHN2jkbO7UioSFDC-QB9Znaa2Ue80F6D3bWN8sY2OPTCaJCgtkbJuu7wCkoNusSPFmzrcCZhHUTSYRmUm21Q5FVllNGNx3mtlQerpJd15zyuLOBFV4Ld6IA0JV59dP2av9m67f0u0Vkla6dH3-8QPd_kT9livFzd3mXz5VjxlEdjFQuernW6VjyZxakWKat4zAgnJVfxjIbJS6EkoSUtWRXzpGJRIhIVr5WUJOFDdH24-wL2tdXOFzvbQhMsCxaLOE2EoCKoJgeVAusc6Kp4AbOX0BWUFH3aRZ92cUw7ANEvQBkv-495kKb-GxMH7N3UuvvHpJjnD_c_7Bc1rpeX |
CitedBy_id | crossref_primary_10_1007_s40843_021_1929_5 crossref_primary_10_1021_acs_cgd_2c00698 crossref_primary_10_1016_j_surfin_2023_103368 crossref_primary_10_1002_eem2_12740 crossref_primary_10_1016_j_jechem_2023_06_017 crossref_primary_10_1016_j_jcis_2024_04_084 crossref_primary_10_1016_j_jallcom_2023_170847 crossref_primary_10_1016_j_carbpol_2023_120942 crossref_primary_10_1039_D2DT03083G crossref_primary_10_1016_j_jcis_2023_04_089 crossref_primary_10_1016_j_microc_2024_111877 crossref_primary_10_1002_adfm_202303300 crossref_primary_10_1016_j_cej_2024_153212 crossref_primary_10_1016_j_mtener_2022_101142 crossref_primary_10_12677_ms_2024_144043 crossref_primary_10_1002_adma_202109605 crossref_primary_10_1039_D3NR01411H crossref_primary_10_1016_j_pecs_2024_101175 crossref_primary_10_1002_adfm_202402298 crossref_primary_10_1016_j_cej_2022_137490 crossref_primary_10_1016_j_jallcom_2022_165940 crossref_primary_10_1016_j_jcis_2023_08_128 crossref_primary_10_1016_j_ijhydene_2023_07_179 crossref_primary_10_1016_j_cej_2022_139796 crossref_primary_10_1039_D2RA00968D crossref_primary_10_1016_j_enchem_2023_100099 crossref_primary_10_1002_adfm_202301075 crossref_primary_10_1021_acs_energyfuels_4c00976 crossref_primary_10_1002_anie_202405438 crossref_primary_10_1002_cey2_485 crossref_primary_10_1016_j_cej_2022_138225 crossref_primary_10_1016_j_microc_2024_111642 crossref_primary_10_1016_j_seppur_2024_128136 crossref_primary_10_1016_j_ces_2024_120818 crossref_primary_10_1002_adfm_202314541 crossref_primary_10_1016_j_fuel_2024_134044 crossref_primary_10_1021_acsaem_2c01489 crossref_primary_10_1007_s12274_022_5222_5 crossref_primary_10_1016_j_colsurfa_2022_129695 crossref_primary_10_1039_D3CY00708A crossref_primary_10_1039_D2TA08366C crossref_primary_10_1039_D2DT00138A crossref_primary_10_1002_adfm_202422734 crossref_primary_10_1016_j_cej_2023_142538 crossref_primary_10_1016_j_jallcom_2022_168342 crossref_primary_10_1016_j_jallcom_2023_169357 crossref_primary_10_1021_acsnano_2c04090 crossref_primary_10_1002_smll_202311335 crossref_primary_10_1021_acscatal_2c00408 crossref_primary_10_1016_j_jallcom_2023_172730 crossref_primary_10_1039_D3MH00644A crossref_primary_10_1016_j_jallcom_2022_165072 crossref_primary_10_1016_j_jelechem_2023_117897 crossref_primary_10_1039_D3GC02075D crossref_primary_10_1002_aenm_202300978 crossref_primary_10_1016_j_ccr_2023_215639 crossref_primary_10_1016_j_est_2023_107146 crossref_primary_10_1021_acssuschemeng_3c00322 crossref_primary_10_1002_adfm_202303803 crossref_primary_10_1016_j_cej_2023_146172 crossref_primary_10_1016_j_jallcom_2022_165508 crossref_primary_10_1021_acsnano_3c07375 crossref_primary_10_1039_D2SC00377E crossref_primary_10_1002_advs_202402916 crossref_primary_10_1007_s42114_022_00455_w crossref_primary_10_1016_j_cej_2023_141672 crossref_primary_10_1016_j_jcis_2023_07_180 crossref_primary_10_1016_j_cej_2023_141674 crossref_primary_10_1016_j_cej_2023_143059 crossref_primary_10_1039_D2DT03865J crossref_primary_10_1002_adfm_202408613 crossref_primary_10_1021_acsaem_3c01129 crossref_primary_10_1016_j_mtcata_2023_100002 crossref_primary_10_1021_acsami_3c11947 crossref_primary_10_1039_D4TA05681G crossref_primary_10_1016_j_apsusc_2022_152957 crossref_primary_10_1016_j_enchem_2024_100137 crossref_primary_10_1016_j_fuel_2022_126368 crossref_primary_10_1021_acscatal_4c00290 crossref_primary_10_1002_advs_202300094 crossref_primary_10_1002_aenm_202402839 crossref_primary_10_1002_cplu_202200338 crossref_primary_10_1002_sstr_202300192 crossref_primary_10_1016_j_ijhydene_2025_01_014 crossref_primary_10_1016_j_ijhydene_2022_07_247 crossref_primary_10_1016_j_cej_2024_152973 crossref_primary_10_1002_phmt_14 crossref_primary_10_1002_aenm_202301492 crossref_primary_10_1016_j_nanoen_2022_107753 crossref_primary_10_1039_D4TA00772G crossref_primary_10_1016_j_apcatb_2022_121667 crossref_primary_10_1016_j_jece_2023_109718 crossref_primary_10_1002_smll_202308956 crossref_primary_10_1016_j_ijhydene_2022_10_178 crossref_primary_10_1002_adma_202301894 crossref_primary_10_1039_D3QI00902E crossref_primary_10_1063_5_0100999 crossref_primary_10_1002_smll_202400783 crossref_primary_10_1016_j_jcis_2024_12_036 crossref_primary_10_1002_adfm_202316709 crossref_primary_10_1016_j_ccr_2023_215464 crossref_primary_10_1016_j_ijhydene_2024_12_398 crossref_primary_10_1039_D4QI02213K crossref_primary_10_1002_cey2_273 crossref_primary_10_1021_acsami_3c19548 crossref_primary_10_1016_j_apsusc_2023_156906 crossref_primary_10_1002_aenm_202300837 crossref_primary_10_1002_ange_202405438 crossref_primary_10_1063_5_0160416 crossref_primary_10_1016_j_cis_2024_103279 crossref_primary_10_1039_D4RA02063D crossref_primary_10_1016_j_jallcom_2021_162614 crossref_primary_10_1039_D4TA00696H crossref_primary_10_1002_adma_202404658 crossref_primary_10_1016_j_jcis_2023_05_083 crossref_primary_10_1021_acsmaterialslett_4c00716 crossref_primary_10_1039_D3TA05613A crossref_primary_10_1016_j_jallcom_2023_173092 crossref_primary_10_1039_D3QI00519D crossref_primary_10_1002_smll_202304294 crossref_primary_10_1002_adfm_202419775 crossref_primary_10_1016_j_diamond_2023_109843 crossref_primary_10_1016_j_mcat_2022_112568 crossref_primary_10_1021_acsanm_3c02677 crossref_primary_10_1016_j_ccr_2025_216560 crossref_primary_10_1016_j_cej_2023_143717 crossref_primary_10_1016_j_pmatsci_2024_101294 crossref_primary_10_1016_S1872_5805_22_60575_4 crossref_primary_10_1002_cnma_202200509 crossref_primary_10_1021_acssuschemeng_3c01084 crossref_primary_10_1039_D3TA02218H crossref_primary_10_1016_j_jcis_2023_12_044 crossref_primary_10_1002_aesr_202200204 crossref_primary_10_1039_D4TA04554H crossref_primary_10_1039_D4TA07747D crossref_primary_10_1002_adfm_202504272 crossref_primary_10_1002_slct_202401274 crossref_primary_10_1016_j_ijhydene_2024_11_249 crossref_primary_10_1007_s12598_024_02950_z crossref_primary_10_1016_j_ijhydene_2023_09_191 crossref_primary_10_1016_j_jcis_2023_11_094 crossref_primary_10_1002_smsc_202200030 crossref_primary_10_1007_s12598_022_02224_6 crossref_primary_10_1021_acsami_2c09909 crossref_primary_10_1021_acsanm_3c02346 crossref_primary_10_1021_acssuschemeng_2c06655 crossref_primary_10_3390_catal15010098 crossref_primary_10_1002_smll_202200950 crossref_primary_10_1016_j_electacta_2022_141721 crossref_primary_10_1016_j_jcis_2022_10_165 crossref_primary_10_1002_sstr_202200235 crossref_primary_10_1016_j_ijhydene_2024_03_094 crossref_primary_10_1002_adma_202401926 crossref_primary_10_1021_acsami_3c17349 crossref_primary_10_1016_j_cej_2024_152301 crossref_primary_10_1016_j_ijhydene_2023_04_175 crossref_primary_10_1039_D2DT02002E crossref_primary_10_1016_j_ijhydene_2022_01_120 crossref_primary_10_1021_acs_inorgchem_4c03664 crossref_primary_10_1016_j_ijhydene_2024_04_174 crossref_primary_10_1016_j_ijhydene_2022_09_307 crossref_primary_10_1016_j_nanoen_2023_108415 crossref_primary_10_1016_j_cej_2024_149121 crossref_primary_10_1016_j_pmatsci_2024_101408 crossref_primary_10_1039_D3DT01020A crossref_primary_10_1039_D3TA05647C crossref_primary_10_1002_chem_202301252 crossref_primary_10_1016_j_ccr_2024_215996 crossref_primary_10_1016_j_jallcom_2022_165721 crossref_primary_10_1039_D3EE04543A crossref_primary_10_1016_j_ccr_2023_215452 crossref_primary_10_1021_acsanm_4c01074 crossref_primary_10_1039_D1QI01646F crossref_primary_10_1016_j_jcis_2022_10_057 crossref_primary_10_1021_acssuschemeng_3c04053 crossref_primary_10_1039_D2CC01946A crossref_primary_10_1002_cey2_188 crossref_primary_10_1002_adma_202210975 crossref_primary_10_1016_j_micromeso_2022_111916 crossref_primary_10_1002_sstr_202300394 crossref_primary_10_1021_acsanm_4c03408 crossref_primary_10_1016_j_jcis_2023_11_149 crossref_primary_10_1016_j_fuel_2023_127719 crossref_primary_10_1039_D2NR04657A crossref_primary_10_1016_j_nanoen_2024_109413 crossref_primary_10_1039_D3CY00456B crossref_primary_10_1016_j_ijhydene_2023_10_311 crossref_primary_10_1002_smll_202301324 |
Cites_doi | 10.1038/ncomms4519 10.1002/smtd.202000988 10.1038/s41427-019-0112-3 10.1016/j.cej.2019.04.067 10.1002/anie.201914123 10.1002/aenm.201902714 10.1016/j.apcatb.2019.118404 10.1039/C4CC07143C 10.1039/C9NR05061B 10.1016/j.pmatsci.2019.100618 10.1039/C6CS00629A 10.1002/advs.201800949 10.1039/C5CC05541E 10.1016/j.apcatb.2019.118240 10.1021/acsnano.9b08458 10.1021/acs.langmuir.9b03810 10.1002/adma.202006965 10.1002/aenm.202001963 10.1002/adfm.201805298 10.1016/j.isci.2019.05.006 10.1021/acsaem.9b00337 10.1016/j.scib.2020.09.014 10.1002/aenm.201901213 10.1126/science.aao3403 10.1021/acsami.7b18858 10.1039/C7TA09958D 10.1002/advs.201903195 10.1002/adfm.201807086 10.1002/inf2.12078 10.1016/j.cej.2020.125160 10.1021/ja806565t 10.1016/S0360-0564(02)45013-4 10.1039/C0JM01921F 10.1039/D0EE03160G 10.1016/j.nanoen.2019.104371 10.1039/C6TA06434E 10.1002/anie.201804349 10.1002/adma.202003649 10.1002/inf2.12118 10.1021/acsami.8b12321 10.1016/j.nanoen.2020.104685 10.1016/j.electacta.2019.03.208 10.1021/jacs.7b12420 10.1186/s11671-019-3237-y 10.1002/aenm.202002592 10.1016/j.apcatb.2019.118012 10.1039/C8EE00927A 10.1021/acsnano.0c01456 10.1016/j.mtcomm.2020.101257 10.1016/j.jechem.2020.12.007 |
ContentType | Journal Article |
Copyright | 2021 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2021 Wiley‐VCH GmbH |
DBID | AAYXX CITATION 7SP 7TB 8FD F28 FR3 H8D L7M |
DOI | 10.1002/aenm.202102134 |
DatabaseName | CrossRef Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering |
DatabaseTitleList | CrossRef Aerospace Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1614-6840 |
EndPage | n/a |
ExternalDocumentID | 10_1002_aenm_202102134 AENM202102134 |
Genre | article |
GrantInformation_xml | – fundername: Science & Technology Commission of Shanghai Municipality funderid: 20XD1420600 – fundername: National Natural Science Foundation of China funderid: 52071084; 51871060; 51922031; 52071083; 51831009 – fundername: National Key R&D Program of China funderid: 2020YFA0406204 – fundername: Zhuhai Fudan Innovation Institute – fundername: Shanghai Education Development Foundation and Shanghai Municipal Education Commission funderid: 20SG03 |
GroupedDBID | 05W 0R~ 1OC 33P 4.4 50Y 5VS 8-0 8-1 A00 AAESR AAHHS AAHQN AAIHA AAMNL AANLZ AAXRX AAYCA AAZKR ABCUV ABJNI ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADKYN ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AENEX AEQDE AEUYR AFBPY AFFPM AFWVQ AFZJQ AHBTC AIACR AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB AZVAB BDRZF BFHJK BMXJE BRXPI D-A DCZOG EBS G-S HGLYW HZ~ KBYEO LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MY. MY~ O9- P2W P4E RNS ROL RX1 SUPJJ WBKPD WOHZO WXSBR WYJ ZZTAW ~S- 31~ AANHP AASGY AAYXX ACBWZ ACRPL ACYXJ ADMLS ADNMO AEYWJ AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION EJD FEDTE GODZA HVGLF 7SP 7TB 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY F28 FR3 H8D L7M |
ID | FETCH-LOGICAL-c3834-c5938be8bc36758e982f352030d3c571d3c3d9ca01d1d2f536f24696c5bcaa063 |
ISSN | 1614-6832 |
IngestDate | Fri Jul 25 12:00:13 EDT 2025 Thu Apr 24 22:59:28 EDT 2025 Tue Jul 01 01:43:41 EDT 2025 Wed Jan 22 16:28:46 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 42 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c3834-c5938be8bc36758e982f352030d3c571d3c3d9ca01d1d2f536f24696c5bcaa063 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-2815-2797 |
PQID | 2595869919 |
PQPubID | 886389 |
PageCount | 10 |
ParticipantIDs | proquest_journals_2595869919 crossref_primary_10_1002_aenm_202102134 crossref_citationtrail_10_1002_aenm_202102134 wiley_primary_10_1002_aenm_202102134_AENM202102134 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-11-01 |
PublicationDateYYYYMMDD | 2021-11-01 |
PublicationDate_xml | – month: 11 year: 2021 text: 2021-11-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Advanced energy materials |
PublicationYear | 2021 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2018; 28 2019; 9 2021; 5 2018; 140 2021; 66 2019; 11 2019; 2 2015; 51 2000; 45 2017; 46 2019; 15 2020; 161 2020; 59 2020; 15 2020; 14 2020; 36 2019; 307 2020; 268 2009; 131 2020; 10 2020; 32 2020; 108 2021; 14 2016; 4 2018; 6 2020; 7 2021; 59 2014; 5 2020; 2 2018; 5 2021; 33 2018; 359 2021 2020; 395 2020; 72 2019; 258 2011; 21 2019; 29 2020; 25 2020; 68 2019; 371 2018; 11 2018; 10 2014; 50 2018; 57 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_49_1 e_1_2_8_3_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_1_1 e_1_2_8_41_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_32_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_51_1 e_1_2_8_30_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_48_1 e_1_2_8_2_1 e_1_2_8_4_1 Mei J. (e_1_2_8_26_1) 2021 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_40_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_50_1 |
References_xml | – volume: 10 year: 2020 publication-title: Adv. Energy Mater. – volume: 36 start-page: 1916 year: 2020 publication-title: Langmuir – volume: 11 start-page: 2858 year: 2018 publication-title: Energy Environ. Sci. – volume: 66 start-page: 85 year: 2021 publication-title: Sci. Bull. – volume: 25 year: 2020 publication-title: Mater. Today Commun. – volume: 14 start-page: 1971 year: 2020 publication-title: ACS Nano – volume: 108 year: 2020 publication-title: Prog. Mater. Sci. – volume: 371 start-page: 433 year: 2019 publication-title: Chem. Eng. J. – volume: 51 year: 2015 publication-title: Chem. Commun. – volume: 131 start-page: 1862 year: 2009 publication-title: J. Am. Chem. Soc. – volume: 140 start-page: 2610 year: 2018 publication-title: J. Am. Chem. Soc. – volume: 59 start-page: 748 year: 2021 publication-title: J. Energy Chem. – volume: 7 year: 2020 publication-title: Adv. Sci. – volume: 15 start-page: 514 year: 2019 publication-title: iScience – volume: 258 year: 2019 publication-title: Appl. Catal., B – volume: 33 year: 2021 publication-title: Adv. Mater. – volume: 29 year: 2019 publication-title: Adv. Funct. Mater. – volume: 15 start-page: 1 year: 2020 publication-title: Nanoscale Res. Lett. – volume: 28 year: 2018 publication-title: Adv. Funct. Mater. – volume: 11 year: 2019 publication-title: Nanoscale – volume: 5 start-page: 3519 year: 2014 publication-title: Nat. Commun. – volume: 6 start-page: 1443 year: 2018 publication-title: J. Mater. Chem. A – volume: 395 year: 2020 publication-title: Chem. Eng. J. – volume: 359 start-page: 206 year: 2018 publication-title: Science – volume: 21 start-page: 4743 year: 2011 publication-title: J. Mater. Chem. – volume: 4 year: 2016 publication-title: J. Mater. Chem. A – volume: 10 start-page: 7134 year: 2018 publication-title: ACS Appl. Mater. Interfaces – volume: 72 year: 2020 publication-title: Nano Energy – volume: 45 start-page: 71 year: 2000 publication-title: Adv. Catal. – year: 2021 publication-title: Energy Environ. Mater. – volume: 11 start-page: 12 year: 2019 publication-title: NPG Asia Mater – volume: 5 year: 2018 publication-title: Adv. Sci. – volume: 14 start-page: 2302 year: 2021 publication-title: Energy Environ. Sci. – volume: 14 start-page: 6968 year: 2020 publication-title: ACS Nano – volume: 46 start-page: 816 year: 2017 publication-title: Chem. Soc. Rev. – volume: 2 start-page: 4737 year: 2019 publication-title: ACS Appl. Energy Mater. – volume: 161 year: 2020 publication-title: Appl. Catal. – volume: 50 year: 2014 publication-title: Chem. Commun. – volume: 9 year: 2019 publication-title: Adv. Energy Mater. – volume: 2 start-page: 950 year: 2020 publication-title: InfoMat – volume: 59 start-page: 2688 year: 2020 publication-title: Angew. Chem., Int. Ed. – volume: 57 start-page: 8614 year: 2018 publication-title: Angew. Chem., Int. Ed. – volume: 68 year: 2020 publication-title: Nano Energy – volume: 5 year: 2021 publication-title: Small Methods – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 268 year: 2020 publication-title: Appl. Catal., B – volume: 307 start-page: 543 year: 2019 publication-title: Electrochim. Acta – volume: 10 year: 2018 publication-title: ACS Appl. Mater. Interfaces – volume: 2 start-page: 1057 year: 2020 publication-title: InfoMat – ident: e_1_2_8_3_1 doi: 10.1038/ncomms4519 – ident: e_1_2_8_25_1 doi: 10.1002/smtd.202000988 – ident: e_1_2_8_31_1 doi: 10.1038/s41427-019-0112-3 – ident: e_1_2_8_37_1 doi: 10.1016/j.cej.2019.04.067 – ident: e_1_2_8_35_1 doi: 10.1002/anie.201914123 – ident: e_1_2_8_8_1 doi: 10.1002/aenm.201902714 – ident: e_1_2_8_19_1 doi: 10.1016/j.apcatb.2019.118404 – ident: e_1_2_8_43_1 doi: 10.1039/C4CC07143C – ident: e_1_2_8_39_1 doi: 10.1039/C9NR05061B – ident: e_1_2_8_10_1 doi: 10.1016/j.pmatsci.2019.100618 – ident: e_1_2_8_18_1 doi: 10.1039/C6CS00629A – ident: e_1_2_8_41_1 doi: 10.1002/advs.201800949 – ident: e_1_2_8_49_1 doi: 10.1039/C5CC05541E – ident: e_1_2_8_5_1 doi: 10.1016/j.apcatb.2019.118240 – ident: e_1_2_8_16_1 doi: 10.1021/acsnano.9b08458 – ident: e_1_2_8_28_1 doi: 10.1021/acs.langmuir.9b03810 – ident: e_1_2_8_7_1 doi: 10.1002/adma.202006965 – ident: e_1_2_8_15_1 doi: 10.1002/aenm.202001963 – ident: e_1_2_8_21_1 doi: 10.1002/adfm.201805298 – ident: e_1_2_8_32_1 doi: 10.1016/j.isci.2019.05.006 – ident: e_1_2_8_38_1 doi: 10.1021/acsaem.9b00337 – ident: e_1_2_8_6_1 doi: 10.1016/j.scib.2020.09.014 – ident: e_1_2_8_50_1 doi: 10.1002/aenm.201901213 – ident: e_1_2_8_33_1 doi: 10.1126/science.aao3403 – ident: e_1_2_8_36_1 doi: 10.1021/acsami.7b18858 – ident: e_1_2_8_17_1 doi: 10.1039/C7TA09958D – ident: e_1_2_8_30_1 doi: 10.1002/advs.201903195 – ident: e_1_2_8_22_1 doi: 10.1002/adfm.201807086 – ident: e_1_2_8_13_1 doi: 10.1002/inf2.12078 – ident: e_1_2_8_27_1 doi: 10.1016/j.cej.2020.125160 – ident: e_1_2_8_1_1 doi: 10.1021/ja806565t – ident: e_1_2_8_51_1 doi: 10.1016/S0360-0564(02)45013-4 – ident: e_1_2_8_2_1 doi: 10.1039/C0JM01921F – ident: e_1_2_8_4_1 doi: 10.1039/D0EE03160G – ident: e_1_2_8_14_1 doi: 10.1016/j.nanoen.2019.104371 – ident: e_1_2_8_40_1 doi: 10.1039/C6TA06434E – ident: e_1_2_8_45_1 doi: 10.1002/anie.201804349 – ident: e_1_2_8_44_1 doi: 10.1002/adma.202003649 – ident: e_1_2_8_12_1 doi: 10.1002/inf2.12118 – ident: e_1_2_8_20_1 doi: 10.1021/acsami.8b12321 – ident: e_1_2_8_34_1 doi: 10.1016/j.nanoen.2020.104685 – ident: e_1_2_8_47_1 doi: 10.1016/j.electacta.2019.03.208 – ident: e_1_2_8_29_1 doi: 10.1021/jacs.7b12420 – ident: e_1_2_8_46_1 doi: 10.1186/s11671-019-3237-y – ident: e_1_2_8_9_1 doi: 10.1002/aenm.202002592 – ident: e_1_2_8_23_1 doi: 10.1016/j.apcatb.2019.118012 – ident: e_1_2_8_11_1 doi: 10.1039/C8EE00927A – year: 2021 ident: e_1_2_8_26_1 publication-title: Energy Environ. Mater. – ident: e_1_2_8_42_1 doi: 10.1021/acsnano.0c01456 – ident: e_1_2_8_48_1 doi: 10.1016/j.mtcomm.2020.101257 – ident: e_1_2_8_24_1 doi: 10.1016/j.jechem.2020.12.007 |
SSID | ssj0000491033 |
Score | 2.6687822 |
Snippet | Designing non‐precious electrocatalysts to synergistically achieve a facilitated mass/electron transfer and exposure of abundant active sites is highly desired... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Carbon Catalytic activity Electrocatalysts Electron transfer Free energy Heterojunctions hydrogen evolution reaction Hydrogen evolution reactions Mass transfer oxygen evolution reaction Oxygen evolution reactions Polystyrene resins Pyrolysis Water absorption water splitting |
Title | Co/CoP Heterojunction on Hierarchically Ordered Porous Carbon as a Highly Efficient Electrocatalyst for Hydrogen and Oxygen Evolution |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faenm.202102134 https://www.proquest.com/docview/2595869919 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZK9wIPiKsoG8gPSDxUYY2di_NYlaAIsYvEJvYWOY4jOlUJSlu07h2Jn83xJbcxxECqrNSyc_H5Yp_jfP6M0Bs3Y0KJwDgR48zxKJcOcwVxeBECAnghXa7ZFsdBcu59vPAvRqOfPdbSdpO9E9e3riv5H6tCHthVrZL9B8u2J4UMOAb7QgoWhvRONl5USt62OoXBA5qnuoQxyjiA5TRZqpXFeqOT1Wo3Pan1ppzT06pWnNcFrzNFQ15PuWZ6QIlYa0koZkBsdsbREzu79UYTEZNdXldwH_pbw8nVTh3G3-3D9R3cecMpkGZRITjEpiVa5o-mD3yRyy5jq6HUjKGKDLStDHd4WfAu19RMeHX9VfYnK4hrV-11_St4A07A7JSm7OcZ1aa2U3Z74DP6W7919kY8lstSKQqo0NW186IDVe0bo13LQTR6zSRV9dO2_j20RyDgIGO0N39_9OlzO18HkZQ7o3q9RvMMjQbojBwOb2Lo43SBSz_80f7L2SP00AYeeG5Q9BiNZPkEPejJUT5FPxbVIaAJD9GE4TdEE7ZowgZN2KAJ8zXm2KAJt2jCN9CEAU24QRMGNGGDJtyi6Rk6_xCfLRLHbtPhCMqo5wg_oiyTLBNURZ8yYqQAtx5Gj5wKP3QhpXkk-MzN3ZwUPg0K4gVRIPxMcA4u8nM0LqtSvkCY5qFXEM7Bgci8QkY8DDwueRSq790QaUyQ0zRsKqyGvdpKZZXebs0JetuW_2bUW_5Y8qCxU2rf8HVK_MhnAURQ0QQRbbu_nCWdx8dH7b-Xd776PrrfvS0HaLypt_IVOLub7LXF4S9gkqjO |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Co%2FCoP+Heterojunction+on+Hierarchically+Ordered+Porous+Carbon+as+a+Highly+Efficient+Electrocatalyst+for+Hydrogen+and+Oxygen+Evolution&rft.jtitle=Advanced+energy+materials&rft.au=Li%2C+Wei&rft.au=Liu%2C+Jing&rft.au=Guo%2C+Peifang&rft.au=Li%2C+Haozhe&rft.date=2021-11-01&rft.issn=1614-6832&rft.eissn=1614-6840&rft.volume=11&rft.issue=42&rft_id=info:doi/10.1002%2Faenm.202102134&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_aenm_202102134 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1614-6832&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1614-6832&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1614-6832&client=summon |