Molecular Engineering of Mesogenic Constituents Within Liquid Crystalline Elastomers to Sharpen Thermotropic Actuation

Liquid crystalline elastomers (LCE) are stimuli‐responsive materials with a distinguished mechanical response. LCE have been subject to numerous recent functional examinations in robotics, health sciences, and optics. The liquid crystallinity of the elastomeric polymer networks of LCE are largely de...

Full description

Saved in:
Bibliographic Details
Published inAdvanced functional materials Vol. 31; no. 16
Main Authors McCracken, Joselle M., Donovan, Brian R., Lynch, Kelsey M., White, Timothy J.
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 01.04.2021
Subjects
Online AccessGet full text
ISSN1616-301X
1616-3028
DOI10.1002/adfm.202100564

Cover

Loading…
Abstract Liquid crystalline elastomers (LCE) are stimuli‐responsive materials with a distinguished mechanical response. LCE have been subject to numerous recent functional examinations in robotics, health sciences, and optics. The liquid crystallinity of the elastomeric polymer networks of LCE are largely derived from liquid crystalline monomer precursors. Recent reports have utilized commercially available liquid crystalline diacrylate monomers in chain extension reactions to prepare LCE. These reactions have been largely based on monomeric precursors originally to enhance the and thermal stability of optical films. Here, it is demonstrated that preparing LCE via a liquid crystalline diacrylate with reduced mesogen–mesogen interaction enhances and sharpens the thermotropic actuation of these materials. Robust composition‐response correlations are demonstrated in LCE prepared by three common synthetic methods. The enhanced thermotropic response of LCE prepared from this precursor increases the thermomechanical efficiency by sixfold. Accordingly, this work addresses important limitations in utilizing the thermal response of LCE in robotics, health care, and consumer goods. Numerous reports document liquid crystalline elastomers (LCE) based on commercially available liquid crystalline monomers containing three phenyl rings that demonstrate exceptional stimuli‐induced mechanical response in functional applications in robotics, health care, aerospace, and consumer goods. Here, a LCE monomer with reduced intermolecular coupling is incorporated to lower actuation onset temperature and enhance the thermomechanical efficiency of LCE sixfold.
AbstractList Liquid crystalline elastomers (LCE) are stimuli‐responsive materials with a distinguished mechanical response. LCE have been subject to numerous recent functional examinations in robotics, health sciences, and optics. The liquid crystallinity of the elastomeric polymer networks of LCE are largely derived from liquid crystalline monomer precursors. Recent reports have utilized commercially available liquid crystalline diacrylate monomers in chain extension reactions to prepare LCE. These reactions have been largely based on monomeric precursors originally to enhance the and thermal stability of optical films. Here, it is demonstrated that preparing LCE via a liquid crystalline diacrylate with reduced mesogen–mesogen interaction enhances and sharpens the thermotropic actuation of these materials. Robust composition‐response correlations are demonstrated in LCE prepared by three common synthetic methods. The enhanced thermotropic response of LCE prepared from this precursor increases the thermomechanical efficiency by sixfold. Accordingly, this work addresses important limitations in utilizing the thermal response of LCE in robotics, health care, and consumer goods.
Liquid crystalline elastomers (LCE) are stimuli‐responsive materials with a distinguished mechanical response. LCE have been subject to numerous recent functional examinations in robotics, health sciences, and optics. The liquid crystallinity of the elastomeric polymer networks of LCE are largely derived from liquid crystalline monomer precursors. Recent reports have utilized commercially available liquid crystalline diacrylate monomers in chain extension reactions to prepare LCE. These reactions have been largely based on monomeric precursors originally to enhance the and thermal stability of optical films. Here, it is demonstrated that preparing LCE via a liquid crystalline diacrylate with reduced mesogen–mesogen interaction enhances and sharpens the thermotropic actuation of these materials. Robust composition‐response correlations are demonstrated in LCE prepared by three common synthetic methods. The enhanced thermotropic response of LCE prepared from this precursor increases the thermomechanical efficiency by sixfold. Accordingly, this work addresses important limitations in utilizing the thermal response of LCE in robotics, health care, and consumer goods. Numerous reports document liquid crystalline elastomers (LCE) based on commercially available liquid crystalline monomers containing three phenyl rings that demonstrate exceptional stimuli‐induced mechanical response in functional applications in robotics, health care, aerospace, and consumer goods. Here, a LCE monomer with reduced intermolecular coupling is incorporated to lower actuation onset temperature and enhance the thermomechanical efficiency of LCE sixfold.
Author Donovan, Brian R.
McCracken, Joselle M.
Lynch, Kelsey M.
White, Timothy J.
Author_xml – sequence: 1
  givenname: Joselle M.
  surname: McCracken
  fullname: McCracken, Joselle M.
  organization: University of Colorado
– sequence: 2
  givenname: Brian R.
  surname: Donovan
  fullname: Donovan, Brian R.
  organization: University of Colorado
– sequence: 3
  givenname: Kelsey M.
  surname: Lynch
  fullname: Lynch, Kelsey M.
  organization: University of Colorado
– sequence: 4
  givenname: Timothy J.
  orcidid: 0000-0001-8006-7173
  surname: White
  fullname: White, Timothy J.
  email: timothy.j.white@colorado.edu
  organization: University of Colorado
BookMark eNqFkM1LAzEQxYMo2KpXzwHPrckmm2SPpdYPaPFgRW9Lms62KdukTbJK_3tXKxUE8TQz8H5vHq-Ljp13gNAlJX1KSHat59W6n5GsPXLBj1CHCip6jGTq-LDT11PUjXFFCJWS8Q56m_gaTFPrgEduYR1AsG6BfYUnEP0CnDV46F1MNjXgUsQvNi2tw2O7bewcD8MuJl3XLYhHtY7JryFEnDx-WuqwAYenSwhrn4LftE4DkxqdrHfn6KTSdYSL73mGnm9H0-F9b_x49zAcjHuGKcZ7asaFzBQhTNKCzHOmCsILyA0hwlAqJOHznIsZmxGpVKULkEZkTFUF5SALYGfoau-7CX7bQEzlyjfBtS_LLKeZUEJJ2qr4XmWCjzFAVRqbvnKmoG1dUlJ-Nlx-NlweGm6x_i9sE-xah93fQLEH3m0Nu3_U5eDmdvLDfgCfmpFL
CitedBy_id crossref_primary_10_1063_5_0075471
crossref_primary_10_1002_adma_202104390
crossref_primary_10_1039_D4CC02698E
crossref_primary_10_1021_acsaom_4c00404
crossref_primary_10_1002_smll_202400786
crossref_primary_10_1002_adma_202401140
crossref_primary_10_1002_anie_202319698
crossref_primary_10_1002_admt_202202067
crossref_primary_10_1021_acs_macromol_3c01869
crossref_primary_10_1002_adhm_202402881
crossref_primary_10_1016_j_matdes_2023_112101
crossref_primary_10_1021_acs_macromol_4c01713
crossref_primary_10_1103_PhysRevLett_131_148202
crossref_primary_10_1021_acsapm_4c01072
crossref_primary_10_1021_acs_macromol_1c00686
crossref_primary_10_1021_acs_macromol_2c02194
crossref_primary_10_1021_acs_macromol_4c02423
crossref_primary_10_1038_s41467_023_42594_8
crossref_primary_10_1016_j_matt_2024_01_006
crossref_primary_10_1002_app_53970
crossref_primary_10_1002_admt_202400512
crossref_primary_10_1039_D1PY00028D
crossref_primary_10_1002_sus2_171
crossref_primary_10_1021_acs_macromol_3c01465
crossref_primary_10_1002_anie_202202577
crossref_primary_10_1016_j_celbio_2025_100022
crossref_primary_10_1016_j_jmps_2024_105718
crossref_primary_10_1126_sciadv_adt7613
crossref_primary_10_1002_adfm_202308828
crossref_primary_10_1021_acs_macromol_1c00437
crossref_primary_10_1021_acsami_3c18367
crossref_primary_10_1039_D2PY00256F
crossref_primary_10_1021_acsmacrolett_2c00754
crossref_primary_10_1002_smll_202500899
crossref_primary_10_1007_s40843_021_1966_6
crossref_primary_10_1002_admt_202100944
crossref_primary_10_1002_ange_202202577
crossref_primary_10_1002_ange_202319698
crossref_primary_10_1016_j_mattod_2022_08_020
crossref_primary_10_1021_acsami_5c01140
crossref_primary_10_1002_adma_202313745
crossref_primary_10_1021_acsami_3c17068
crossref_primary_10_1016_j_pmatsci_2024_101406
crossref_primary_10_1002_admt_202300967
crossref_primary_10_1007_s40843_023_2635_4
crossref_primary_10_1080_21680396_2025_2472163
crossref_primary_10_1002_mame_202200187
crossref_primary_10_1021_acs_chemmater_4c02271
crossref_primary_10_1039_D2SM00480A
crossref_primary_10_1021_acsapm_3c02862
crossref_primary_10_1021_acsami_3c08390
crossref_primary_10_1016_j_progpolymsci_2024_101829
crossref_primary_10_1002_adma_202310743
crossref_primary_10_1021_acsami_2c18993
crossref_primary_10_1002_adma_202106787
crossref_primary_10_1021_acsami_1c21096
crossref_primary_10_1021_acs_macromol_4c01944
crossref_primary_10_1002_smll_202303106
Cites_doi 10.1002/marc.1980.030010107
10.1021/acsmacrolett.7b00822
10.1039/c2sc20045g
10.1021/acs.jcim.0c00507
10.1007/12_2010_103
10.1002/anie.201205964
10.1021/acs.macromol.9b01218
10.1039/C5RA01039J
10.1039/c0jm03691a
10.1002/9783527671403
10.1016/0032-3861(91)90398-3
10.1002/macp.1989.021900103
10.1126/science.1261019
10.1098/rspa.2010.0135
10.1002/pen.760310902
10.1201/b10525
10.1021/acs.macromol.7b02514
10.1002/macp.1982.021830519
10.1002/macp.1989.021901218
10.1038/s41467-018-04911-4
10.1039/c3tc30272e
10.1002/adfm.201806412
10.1098/rspa.2010.0352
10.1039/C6CC00081A
10.1002/adhm.201801489
10.1021/ja00170a016
10.1038/378467a0
10.1021/ma300443g
10.1103/PhysRevE.77.021706
10.1002/adma.201905144
10.1002/macp.1989.021900926
10.1002/adma.201301891
ContentType Journal Article
Copyright 2021 Wiley‐VCH GmbH
Copyright_xml – notice: 2021 Wiley‐VCH GmbH
DBID AAYXX
CITATION
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/adfm.202100564
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList Materials Research Database

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1616-3028
EndPage n/a
ExternalDocumentID 10_1002_adfm_202100564
ADFM202100564
Genre reviewArticle
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OC
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
.Y3
31~
AANHP
AASGY
AAYXX
ACBWZ
ACRPL
ACYXJ
ADMLS
ADNMO
AEYWJ
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
HF~
HVGLF
LW6
7SP
7SR
7U5
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
L7M
ID FETCH-LOGICAL-c3834-8b467280037190d5389049e5c006c116704d546b3b0788fa9e7c6238f914e79e3
IEDL.DBID DR2
ISSN 1616-301X
IngestDate Mon Jul 14 08:52:14 EDT 2025
Tue Jul 01 04:12:24 EDT 2025
Thu Apr 24 23:01:28 EDT 2025
Wed Jan 22 16:29:28 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 16
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3834-8b467280037190d5389049e5c006c116704d546b3b0788fa9e7c6238f914e79e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8006-7173
PQID 2512686871
PQPubID 2045204
PageCount 10
ParticipantIDs proquest_journals_2512686871
crossref_citationtrail_10_1002_adfm_202100564
crossref_primary_10_1002_adfm_202100564
wiley_primary_10_1002_adfm_202100564_ADFM202100564
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-04-01
PublicationDateYYYYMMDD 2021-04-01
PublicationDate_xml – month: 04
  year: 2021
  text: 2021-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Advanced functional materials
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2019; 8
2017; 6
2015; 5
2013; 25
2013; 1
1991; 12
2015; 347
2011
2019; 52
1991; 32
2010
2019; 32
2020; 60
2010; 466
1991; 31
2016; 52
1995; 378
2008; 77
1982; 183
1998; 24
2012; 51
2014; 1
2011; 467
2018; 9
2012; 3
1980; 1
2019; 29
2011; 21
2018; 51
1989; 190
2001; 1
1990; 112
2012; 45
2016; 472
e_1_2_8_28_1
e_1_2_8_29_1
e_1_2_8_24_1
e_1_2_8_25_1
e_1_2_8_26_1
e_1_2_8_27_1
Wermter H. (e_1_2_8_12_1) 2001; 1
e_1_2_8_3_1
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_4_1
e_1_2_8_7_1
e_1_2_8_9_1
Mostajeran C. (e_1_2_8_16_1) 2016; 472
e_1_2_8_8_1
Lebar A. (e_1_2_8_32_1) 2010
e_1_2_8_22_1
e_1_2_8_23_1
e_1_2_8_1_1
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_19_1
Goodby J. W. (e_1_2_8_20_1) 2014
e_1_2_8_36_1
e_1_2_8_14_1
e_1_2_8_35_1
Kupfer J. (e_1_2_8_13_1) 1991; 12
e_1_2_8_15_1
e_1_2_8_37_1
Goodby J. W. (e_1_2_8_21_1) 2014
Haaren J. V. (e_1_2_8_6_1) 1998; 24
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_33_1
e_1_2_8_30_1
References_xml – year: 2011
– volume: 21
  start-page: 8427
  year: 2011
  publication-title: J. Mater. Chem.
– volume: 5
  year: 2015
  publication-title: RSC Adv.
– volume: 6
  start-page: 1290
  year: 2017
  publication-title: ACS Macro Lett.
– volume: 347
  start-page: 982
  year: 2015
  publication-title: Science
– volume: 60
  start-page: 4856
  year: 2020
  publication-title: J. Chem. Inf. Model.
– volume: 31
  start-page: 625
  year: 1991
  publication-title: Polym. Eng. Sci.
– volume: 9
  start-page: 2531
  year: 2018
  publication-title: Nat. Commun.
– volume: 45
  start-page: 4092
  year: 2012
  publication-title: Macromolecules
– volume: 472
  year: 2016
  publication-title: Proc. R. Soc. A Math. Phys. Eng. Sci.
– volume: 190
  start-page: 2255
  year: 1989
  publication-title: Makromol. Chem.
– volume: 32
  start-page: 1627
  year: 1991
  publication-title: Polymer
– volume: 1
  year: 2001
  publication-title: e‐Polym.
– volume: 12
  start-page: 717
  year: 1991
  publication-title: Macromol. Chem. Phys.
– volume: 190
  start-page: 19
  year: 1989
  publication-title: Makromol. Chem.
– volume: 378
  start-page: 1994
  year: 1995
  publication-title: Nature
– volume: 466
  start-page: 2975
  year: 2010
  publication-title: Proc. R. Soc. A
– volume: 77
  year: 2008
  publication-title: Phys. Rev. E
– volume: 112
  start-page: 5525
  year: 1990
  publication-title: J. Am. Chem. Soc.
– volume: 1
  start-page: 5885
  year: 2013
  publication-title: J. Mater. Chem. C
– volume: 25
  start-page: 5880
  year: 2013
  publication-title: Adv. Mater.
– volume: 8
  year: 2019
  publication-title: Adv. Healthcare Mater.
– volume: 51
  year: 2012
  publication-title: Angew. Chem., Int. Ed.
– volume: 190
  start-page: 3201
  year: 1989
  publication-title: Makromol. Chem.
– volume: 29
  year: 2019
  publication-title: Adv. Funct. Mater.
– volume: 183
  start-page: 1245
  year: 1982
  publication-title: Makromol. Chem.
– volume: 24
  start-page: 1017
  year: 1998
  publication-title: Chem. Ind.
– volume: 52
  start-page: 4313
  year: 2016
  publication-title: Chem. Commun.
– volume: 3
  start-page: 2191
  year: 2012
  publication-title: Chem. Sci.
– volume: 51
  start-page: 1141
  year: 2018
  publication-title: Macromolecules
– volume: 32
  year: 2019
  publication-title: Adv. Mater.
– volume: 1
  start-page: 8
  year: 2014
– volume: 467
  start-page: 1121
  year: 2011
  publication-title: Proc. R. Soc. A
– volume: 1
  start-page: 31
  year: 1980
  publication-title: Makromol. Chem., Rapid Commun.
– volume: 52
  start-page: 6878
  year: 2019
  publication-title: Macromolecules
– start-page: 147
  year: 2010
  end-page: 185
– volume: 1
  start-page: 6
  year: 2014
– ident: e_1_2_8_11_1
  doi: 10.1002/marc.1980.030010107
– ident: e_1_2_8_17_1
  doi: 10.1021/acsmacrolett.7b00822
– ident: e_1_2_8_23_1
  doi: 10.1039/c2sc20045g
– ident: e_1_2_8_24_1
  doi: 10.1021/acs.jcim.0c00507
– start-page: 147
  volume-title: Liquid Crystal Elastomers: Materials and Applications
  year: 2010
  ident: e_1_2_8_32_1
  doi: 10.1007/12_2010_103
– ident: e_1_2_8_35_1
  doi: 10.1002/anie.201205964
– ident: e_1_2_8_31_1
  doi: 10.1021/acs.macromol.9b01218
– volume: 472
  year: 2016
  ident: e_1_2_8_16_1
  publication-title: Proc. R. Soc. A Math. Phys. Eng. Sci.
– ident: e_1_2_8_15_1
  doi: 10.1039/C5RA01039J
– ident: e_1_2_8_26_1
  doi: 10.1039/c0jm03691a
– start-page: 8
  volume-title: Handbook of Liquid Crystals: Fundamentals of Liquid Crystals
  year: 2014
  ident: e_1_2_8_21_1
  doi: 10.1002/9783527671403
– ident: e_1_2_8_10_1
  doi: 10.1016/0032-3861(91)90398-3
– volume: 12
  start-page: 717
  year: 1991
  ident: e_1_2_8_13_1
  publication-title: Macromol. Chem. Phys.
– ident: e_1_2_8_3_1
  doi: 10.1002/macp.1989.021900103
– volume: 1
  start-page: 21974586
  year: 2001
  ident: e_1_2_8_12_1
  publication-title: e‐Polym.
– ident: e_1_2_8_14_1
  doi: 10.1126/science.1261019
– ident: e_1_2_8_33_1
  doi: 10.1098/rspa.2010.0135
– ident: e_1_2_8_8_1
  doi: 10.1002/pen.760310902
– ident: e_1_2_8_19_1
  doi: 10.1201/b10525
– ident: e_1_2_8_30_1
  doi: 10.1021/acs.macromol.7b02514
– ident: e_1_2_8_2_1
  doi: 10.1002/macp.1982.021830519
– ident: e_1_2_8_5_1
  doi: 10.1002/macp.1989.021901218
– ident: e_1_2_8_18_1
  doi: 10.1038/s41467-018-04911-4
– ident: e_1_2_8_28_1
  doi: 10.1039/c3tc30272e
– ident: e_1_2_8_25_1
  doi: 10.1002/adfm.201806412
– ident: e_1_2_8_34_1
  doi: 10.1098/rspa.2010.0352
– ident: e_1_2_8_27_1
  doi: 10.1039/C6CC00081A
– volume: 24
  start-page: 1017
  year: 1998
  ident: e_1_2_8_6_1
  publication-title: Chem. Ind.
– ident: e_1_2_8_9_1
  doi: 10.1002/adhm.201801489
– ident: e_1_2_8_22_1
  doi: 10.1021/ja00170a016
– ident: e_1_2_8_7_1
  doi: 10.1038/378467a0
– start-page: 6
  volume-title: Handbook of Liquid Crystals: Fundamentals of Liquid Crystals
  year: 2014
  ident: e_1_2_8_20_1
  doi: 10.1002/9783527671403
– ident: e_1_2_8_37_1
  doi: 10.1021/ma300443g
– ident: e_1_2_8_29_1
  doi: 10.1103/PhysRevE.77.021706
– ident: e_1_2_8_1_1
  doi: 10.1002/adma.201905144
– ident: e_1_2_8_4_1
  doi: 10.1002/macp.1989.021900926
– ident: e_1_2_8_36_1
  doi: 10.1002/adma.201301891
SSID ssj0017734
Score 2.5622501
Snippet Liquid crystalline elastomers (LCE) are stimuli‐responsive materials with a distinguished mechanical response. LCE have been subject to numerous recent...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Actuation
Consumer goods
Crystal structure
Crystallinity
Elastomers
liquid crystalline elastomers
Liquid crystals
materials chemistry
Materials science
Mechanical analysis
Monomers
Precursors
Robotics
soft robotics
Thermal response
Thermal stability
Thin films
Title Molecular Engineering of Mesogenic Constituents Within Liquid Crystalline Elastomers to Sharpen Thermotropic Actuation
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202100564
https://www.proquest.com/docview/2512686871
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFA-ykx78FqdTchA8detHmjTHMTeGOA_icLfSjxSL0s6uE_Sv97127TpBBL21JQlN3nvJ7yUvv0fIlW2JKLJ4qEkR2hpj0tSk4zPNE1YohbR9Xmy4Te75eMpuZ_ascYu_5IeoN9zQMor5Gg3c8xe9NWmoF0Z4kxxcFljDkRAUA7YQFT3U_FGGEOWxMjcwwMuYVayNutnbrL65Kq2hZhOwFivOaI941b-WgSYv3WXud4PPbzSO_-nMPtldwVHaL_XngGyp5JDsNEgKj8j7pMqgSxvfaRrRiVqkoH9xQDHtJ8YcYFQGfYrz5zihd_HbMg7pIPsAAIrM34oOAarnKe6U0zylyBU9VwkFTc1AYbJ0Di318UILKssxmY6Gj4OxtsrWoAXg5TINJMwx1xVyAEo9hIlUgveh7ADsOsDTHp2FNuO-5QMqcSJPKhEA9nIiaTAlpLJOSCtJE3VKaKiEMALfihzPZFzZEnMEeR6zlC6hVd4mWiUtN1hRmWNGjVe3JGE2XRxPtx7PNrmuy89LEo8fS3Yq4bsrY164CAG5w8G1bBOzkOIvrbj9m9Gkfjv7S6Vzso3PZYxQh7TybKkuAP7k_mWh4l-I7fs5
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT4QwEJ74OKgH38b12YOJJ3SB0tLjRt2sungwGr0RHiUSDawra6K_3hlYcDUxJnqkoQ10ZtpvptNvAA4cWyaJLWJDydgxOFeWodyQG4G0YyWVE4oy4OZdid4tv7h36mxCugtT8UM0ATeyjHK9JgOngPTxJ2toECd0lRx9FtzE-TTMUlnv0qu6bhikTCmrg2VhUoqXeV_zNrat46_9v-5Ln2BzErKWe053CcL6a6tUk8ejUREeRe_fiBz_9TvLsDhGpKxTqdAKTOlsFRYmeArX4NWri-iyiXaWJ8zTLzmqYBoxqvxJaQeUmMHu0uIhzVg_fR6lMTsZviEGJfJvzc4QrRc5BctZkTOiix7ojKGyDlFnhvkAR-rQnRbSl3W47Z7dnPSMccEGI0JHlxsoZEHlrogGULVjXEsVOiDaidC0IzrwafPY4SK0QwQmbhIoLSOEX26iTK6l0vYGzGR5pjeBxVpKMwrtxA0sLrSjqExQEHBbtxWOKlpg1OLyozGbORXVePIrHmbLp_n0m_lswWHz_qDi8fjxzZ1a-v7Ynl98QoHCFehdtsAqxfjLKH7ntOs1T1t_6bQPc70br-_3z68ut2Ge2quUoR2YKYYjvYtoqAj3Sn3_AESk_1Q
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4VKiF6oE_ULbT1oVJPgTwcOz6uWFa03V1VVVH3FiWxIyJQEkIWqfx6ZvJiQaoqwTGWbTmeGfsbe_wNwBffk2nqCW0pqX2Lc-VaKoi5FUlPK6n8WDQHbvOFODnl35f-cu0Vf8sPMRy4kWU06zUZeKnTwzvS0Ein9JIcXRbcw_kGPOfCDkivJ78GAilHyvZeWTgU4eUse9pG2z283_7-tnSHNdcRa7PlTF9C1A-2jTQ5P1jV8UFy84DH8Sl_8wp2OjzKxq0CvYZnJn8DL9ZYCt_C9bxPocvWylmRsrm5KlABs4RR3k8KOqCwDPYnq8-ynM2yy1Wm2VH1FxEoUX8bdoxYvS7oqJzVBSOy6NLkDFW1Qo2pihJ7GtOLFtKWd3A6Pf59dGJ16RqsBN1cbqGIBSW7IhJAZWtcSRW6H8ZP0LATuu6xufa5iL0YYUmQRsrIBMFXkCqHG6mMtwubeZGb98C0kdJJYi8NIpcL4ytKEhRF3DO2wl7FCKxeWmHScZlTSo2LsGVhdkOaz3CYzxF8HeqXLYvHP2vu98IPO2u-CgkDikCgbzkCt5Hif3oJx5PpfPj68JhGn2Hr52Qazr4tfuzBNhW38UL7sFlXK_MRoVAdf2q0_RZaRP4M
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Molecular+Engineering+of+Mesogenic+Constituents+Within+Liquid+Crystalline+Elastomers+to+Sharpen+Thermotropic+Actuation&rft.jtitle=Advanced+functional+materials&rft.au=McCracken%2C+Joselle+M&rft.au=Donovan%2C+Brian+R&rft.au=Lynch%2C+Kelsey+M&rft.au=White%2C+Timothy+J&rft.date=2021-04-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=31&rft.issue=16&rft_id=info:doi/10.1002%2Fadfm.202100564&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon