Molecular Engineering of Mesogenic Constituents Within Liquid Crystalline Elastomers to Sharpen Thermotropic Actuation
Liquid crystalline elastomers (LCE) are stimuli‐responsive materials with a distinguished mechanical response. LCE have been subject to numerous recent functional examinations in robotics, health sciences, and optics. The liquid crystallinity of the elastomeric polymer networks of LCE are largely de...
Saved in:
Published in | Advanced functional materials Vol. 31; no. 16 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc
01.04.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 1616-301X 1616-3028 |
DOI | 10.1002/adfm.202100564 |
Cover
Loading…
Abstract | Liquid crystalline elastomers (LCE) are stimuli‐responsive materials with a distinguished mechanical response. LCE have been subject to numerous recent functional examinations in robotics, health sciences, and optics. The liquid crystallinity of the elastomeric polymer networks of LCE are largely derived from liquid crystalline monomer precursors. Recent reports have utilized commercially available liquid crystalline diacrylate monomers in chain extension reactions to prepare LCE. These reactions have been largely based on monomeric precursors originally to enhance the and thermal stability of optical films. Here, it is demonstrated that preparing LCE via a liquid crystalline diacrylate with reduced mesogen–mesogen interaction enhances and sharpens the thermotropic actuation of these materials. Robust composition‐response correlations are demonstrated in LCE prepared by three common synthetic methods. The enhanced thermotropic response of LCE prepared from this precursor increases the thermomechanical efficiency by sixfold. Accordingly, this work addresses important limitations in utilizing the thermal response of LCE in robotics, health care, and consumer goods.
Numerous reports document liquid crystalline elastomers (LCE) based on commercially available liquid crystalline monomers containing three phenyl rings that demonstrate exceptional stimuli‐induced mechanical response in functional applications in robotics, health care, aerospace, and consumer goods. Here, a LCE monomer with reduced intermolecular coupling is incorporated to lower actuation onset temperature and enhance the thermomechanical efficiency of LCE sixfold. |
---|---|
AbstractList | Liquid crystalline elastomers (LCE) are stimuli‐responsive materials with a distinguished mechanical response. LCE have been subject to numerous recent functional examinations in robotics, health sciences, and optics. The liquid crystallinity of the elastomeric polymer networks of LCE are largely derived from liquid crystalline monomer precursors. Recent reports have utilized commercially available liquid crystalline diacrylate monomers in chain extension reactions to prepare LCE. These reactions have been largely based on monomeric precursors originally to enhance the and thermal stability of optical films. Here, it is demonstrated that preparing LCE via a liquid crystalline diacrylate with reduced mesogen–mesogen interaction enhances and sharpens the thermotropic actuation of these materials. Robust composition‐response correlations are demonstrated in LCE prepared by three common synthetic methods. The enhanced thermotropic response of LCE prepared from this precursor increases the thermomechanical efficiency by sixfold. Accordingly, this work addresses important limitations in utilizing the thermal response of LCE in robotics, health care, and consumer goods. Liquid crystalline elastomers (LCE) are stimuli‐responsive materials with a distinguished mechanical response. LCE have been subject to numerous recent functional examinations in robotics, health sciences, and optics. The liquid crystallinity of the elastomeric polymer networks of LCE are largely derived from liquid crystalline monomer precursors. Recent reports have utilized commercially available liquid crystalline diacrylate monomers in chain extension reactions to prepare LCE. These reactions have been largely based on monomeric precursors originally to enhance the and thermal stability of optical films. Here, it is demonstrated that preparing LCE via a liquid crystalline diacrylate with reduced mesogen–mesogen interaction enhances and sharpens the thermotropic actuation of these materials. Robust composition‐response correlations are demonstrated in LCE prepared by three common synthetic methods. The enhanced thermotropic response of LCE prepared from this precursor increases the thermomechanical efficiency by sixfold. Accordingly, this work addresses important limitations in utilizing the thermal response of LCE in robotics, health care, and consumer goods. Numerous reports document liquid crystalline elastomers (LCE) based on commercially available liquid crystalline monomers containing three phenyl rings that demonstrate exceptional stimuli‐induced mechanical response in functional applications in robotics, health care, aerospace, and consumer goods. Here, a LCE monomer with reduced intermolecular coupling is incorporated to lower actuation onset temperature and enhance the thermomechanical efficiency of LCE sixfold. |
Author | Donovan, Brian R. McCracken, Joselle M. Lynch, Kelsey M. White, Timothy J. |
Author_xml | – sequence: 1 givenname: Joselle M. surname: McCracken fullname: McCracken, Joselle M. organization: University of Colorado – sequence: 2 givenname: Brian R. surname: Donovan fullname: Donovan, Brian R. organization: University of Colorado – sequence: 3 givenname: Kelsey M. surname: Lynch fullname: Lynch, Kelsey M. organization: University of Colorado – sequence: 4 givenname: Timothy J. orcidid: 0000-0001-8006-7173 surname: White fullname: White, Timothy J. email: timothy.j.white@colorado.edu organization: University of Colorado |
BookMark | eNqFkM1LAzEQxYMo2KpXzwHPrckmm2SPpdYPaPFgRW9Lms62KdukTbJK_3tXKxUE8TQz8H5vHq-Ljp13gNAlJX1KSHat59W6n5GsPXLBj1CHCip6jGTq-LDT11PUjXFFCJWS8Q56m_gaTFPrgEduYR1AsG6BfYUnEP0CnDV46F1MNjXgUsQvNi2tw2O7bewcD8MuJl3XLYhHtY7JryFEnDx-WuqwAYenSwhrn4LftE4DkxqdrHfn6KTSdYSL73mGnm9H0-F9b_x49zAcjHuGKcZ7asaFzBQhTNKCzHOmCsILyA0hwlAqJOHznIsZmxGpVKULkEZkTFUF5SALYGfoau-7CX7bQEzlyjfBtS_LLKeZUEJJ2qr4XmWCjzFAVRqbvnKmoG1dUlJ-Nlx-NlweGm6x_i9sE-xah93fQLEH3m0Nu3_U5eDmdvLDfgCfmpFL |
CitedBy_id | crossref_primary_10_1063_5_0075471 crossref_primary_10_1002_adma_202104390 crossref_primary_10_1039_D4CC02698E crossref_primary_10_1021_acsaom_4c00404 crossref_primary_10_1002_smll_202400786 crossref_primary_10_1002_adma_202401140 crossref_primary_10_1002_anie_202319698 crossref_primary_10_1002_admt_202202067 crossref_primary_10_1021_acs_macromol_3c01869 crossref_primary_10_1002_adhm_202402881 crossref_primary_10_1016_j_matdes_2023_112101 crossref_primary_10_1021_acs_macromol_4c01713 crossref_primary_10_1103_PhysRevLett_131_148202 crossref_primary_10_1021_acsapm_4c01072 crossref_primary_10_1021_acs_macromol_1c00686 crossref_primary_10_1021_acs_macromol_2c02194 crossref_primary_10_1021_acs_macromol_4c02423 crossref_primary_10_1038_s41467_023_42594_8 crossref_primary_10_1016_j_matt_2024_01_006 crossref_primary_10_1002_app_53970 crossref_primary_10_1002_admt_202400512 crossref_primary_10_1039_D1PY00028D crossref_primary_10_1002_sus2_171 crossref_primary_10_1021_acs_macromol_3c01465 crossref_primary_10_1002_anie_202202577 crossref_primary_10_1016_j_celbio_2025_100022 crossref_primary_10_1016_j_jmps_2024_105718 crossref_primary_10_1126_sciadv_adt7613 crossref_primary_10_1002_adfm_202308828 crossref_primary_10_1021_acs_macromol_1c00437 crossref_primary_10_1021_acsami_3c18367 crossref_primary_10_1039_D2PY00256F crossref_primary_10_1021_acsmacrolett_2c00754 crossref_primary_10_1002_smll_202500899 crossref_primary_10_1007_s40843_021_1966_6 crossref_primary_10_1002_admt_202100944 crossref_primary_10_1002_ange_202202577 crossref_primary_10_1002_ange_202319698 crossref_primary_10_1016_j_mattod_2022_08_020 crossref_primary_10_1021_acsami_5c01140 crossref_primary_10_1002_adma_202313745 crossref_primary_10_1021_acsami_3c17068 crossref_primary_10_1016_j_pmatsci_2024_101406 crossref_primary_10_1002_admt_202300967 crossref_primary_10_1007_s40843_023_2635_4 crossref_primary_10_1080_21680396_2025_2472163 crossref_primary_10_1002_mame_202200187 crossref_primary_10_1021_acs_chemmater_4c02271 crossref_primary_10_1039_D2SM00480A crossref_primary_10_1021_acsapm_3c02862 crossref_primary_10_1021_acsami_3c08390 crossref_primary_10_1016_j_progpolymsci_2024_101829 crossref_primary_10_1002_adma_202310743 crossref_primary_10_1021_acsami_2c18993 crossref_primary_10_1002_adma_202106787 crossref_primary_10_1021_acsami_1c21096 crossref_primary_10_1021_acs_macromol_4c01944 crossref_primary_10_1002_smll_202303106 |
Cites_doi | 10.1002/marc.1980.030010107 10.1021/acsmacrolett.7b00822 10.1039/c2sc20045g 10.1021/acs.jcim.0c00507 10.1007/12_2010_103 10.1002/anie.201205964 10.1021/acs.macromol.9b01218 10.1039/C5RA01039J 10.1039/c0jm03691a 10.1002/9783527671403 10.1016/0032-3861(91)90398-3 10.1002/macp.1989.021900103 10.1126/science.1261019 10.1098/rspa.2010.0135 10.1002/pen.760310902 10.1201/b10525 10.1021/acs.macromol.7b02514 10.1002/macp.1982.021830519 10.1002/macp.1989.021901218 10.1038/s41467-018-04911-4 10.1039/c3tc30272e 10.1002/adfm.201806412 10.1098/rspa.2010.0352 10.1039/C6CC00081A 10.1002/adhm.201801489 10.1021/ja00170a016 10.1038/378467a0 10.1021/ma300443g 10.1103/PhysRevE.77.021706 10.1002/adma.201905144 10.1002/macp.1989.021900926 10.1002/adma.201301891 |
ContentType | Journal Article |
Copyright | 2021 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2021 Wiley‐VCH GmbH |
DBID | AAYXX CITATION 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1002/adfm.202100564 |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | Materials Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1616-3028 |
EndPage | n/a |
ExternalDocumentID | 10_1002_adfm_202100564 ADFM202100564 |
Genre | reviewArticle |
GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OC 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WFSAM WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ~IA ~WT .Y3 31~ AANHP AASGY AAYXX ACBWZ ACRPL ACYXJ ADMLS ADNMO AEYWJ AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION EJD FEDTE HF~ HVGLF LW6 7SP 7SR 7U5 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 L7M |
ID | FETCH-LOGICAL-c3834-8b467280037190d5389049e5c006c116704d546b3b0788fa9e7c6238f914e79e3 |
IEDL.DBID | DR2 |
ISSN | 1616-301X |
IngestDate | Mon Jul 14 08:52:14 EDT 2025 Tue Jul 01 04:12:24 EDT 2025 Thu Apr 24 23:01:28 EDT 2025 Wed Jan 22 16:29:28 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 16 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3834-8b467280037190d5389049e5c006c116704d546b3b0788fa9e7c6238f914e79e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-8006-7173 |
PQID | 2512686871 |
PQPubID | 2045204 |
PageCount | 10 |
ParticipantIDs | proquest_journals_2512686871 crossref_citationtrail_10_1002_adfm_202100564 crossref_primary_10_1002_adfm_202100564 wiley_primary_10_1002_adfm_202100564_ADFM202100564 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-04-01 |
PublicationDateYYYYMMDD | 2021-04-01 |
PublicationDate_xml | – month: 04 year: 2021 text: 2021-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | Advanced functional materials |
PublicationYear | 2021 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2019; 8 2017; 6 2015; 5 2013; 25 2013; 1 1991; 12 2015; 347 2011 2019; 52 1991; 32 2010 2019; 32 2020; 60 2010; 466 1991; 31 2016; 52 1995; 378 2008; 77 1982; 183 1998; 24 2012; 51 2014; 1 2011; 467 2018; 9 2012; 3 1980; 1 2019; 29 2011; 21 2018; 51 1989; 190 2001; 1 1990; 112 2012; 45 2016; 472 e_1_2_8_28_1 e_1_2_8_29_1 e_1_2_8_24_1 e_1_2_8_25_1 e_1_2_8_26_1 e_1_2_8_27_1 Wermter H. (e_1_2_8_12_1) 2001; 1 e_1_2_8_3_1 e_1_2_8_2_1 e_1_2_8_5_1 e_1_2_8_4_1 e_1_2_8_7_1 e_1_2_8_9_1 Mostajeran C. (e_1_2_8_16_1) 2016; 472 e_1_2_8_8_1 Lebar A. (e_1_2_8_32_1) 2010 e_1_2_8_22_1 e_1_2_8_23_1 e_1_2_8_1_1 e_1_2_8_17_1 e_1_2_8_18_1 e_1_2_8_19_1 Goodby J. W. (e_1_2_8_20_1) 2014 e_1_2_8_36_1 e_1_2_8_14_1 e_1_2_8_35_1 Kupfer J. (e_1_2_8_13_1) 1991; 12 e_1_2_8_15_1 e_1_2_8_37_1 Goodby J. W. (e_1_2_8_21_1) 2014 Haaren J. V. (e_1_2_8_6_1) 1998; 24 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_33_1 e_1_2_8_30_1 |
References_xml | – year: 2011 – volume: 21 start-page: 8427 year: 2011 publication-title: J. Mater. Chem. – volume: 5 year: 2015 publication-title: RSC Adv. – volume: 6 start-page: 1290 year: 2017 publication-title: ACS Macro Lett. – volume: 347 start-page: 982 year: 2015 publication-title: Science – volume: 60 start-page: 4856 year: 2020 publication-title: J. Chem. Inf. Model. – volume: 31 start-page: 625 year: 1991 publication-title: Polym. Eng. Sci. – volume: 9 start-page: 2531 year: 2018 publication-title: Nat. Commun. – volume: 45 start-page: 4092 year: 2012 publication-title: Macromolecules – volume: 472 year: 2016 publication-title: Proc. R. Soc. A Math. Phys. Eng. Sci. – volume: 190 start-page: 2255 year: 1989 publication-title: Makromol. Chem. – volume: 32 start-page: 1627 year: 1991 publication-title: Polymer – volume: 1 year: 2001 publication-title: e‐Polym. – volume: 12 start-page: 717 year: 1991 publication-title: Macromol. Chem. Phys. – volume: 190 start-page: 19 year: 1989 publication-title: Makromol. Chem. – volume: 378 start-page: 1994 year: 1995 publication-title: Nature – volume: 466 start-page: 2975 year: 2010 publication-title: Proc. R. Soc. A – volume: 77 year: 2008 publication-title: Phys. Rev. E – volume: 112 start-page: 5525 year: 1990 publication-title: J. Am. Chem. Soc. – volume: 1 start-page: 5885 year: 2013 publication-title: J. Mater. Chem. C – volume: 25 start-page: 5880 year: 2013 publication-title: Adv. Mater. – volume: 8 year: 2019 publication-title: Adv. Healthcare Mater. – volume: 51 year: 2012 publication-title: Angew. Chem., Int. Ed. – volume: 190 start-page: 3201 year: 1989 publication-title: Makromol. Chem. – volume: 29 year: 2019 publication-title: Adv. Funct. Mater. – volume: 183 start-page: 1245 year: 1982 publication-title: Makromol. Chem. – volume: 24 start-page: 1017 year: 1998 publication-title: Chem. Ind. – volume: 52 start-page: 4313 year: 2016 publication-title: Chem. Commun. – volume: 3 start-page: 2191 year: 2012 publication-title: Chem. Sci. – volume: 51 start-page: 1141 year: 2018 publication-title: Macromolecules – volume: 32 year: 2019 publication-title: Adv. Mater. – volume: 1 start-page: 8 year: 2014 – volume: 467 start-page: 1121 year: 2011 publication-title: Proc. R. Soc. A – volume: 1 start-page: 31 year: 1980 publication-title: Makromol. Chem., Rapid Commun. – volume: 52 start-page: 6878 year: 2019 publication-title: Macromolecules – start-page: 147 year: 2010 end-page: 185 – volume: 1 start-page: 6 year: 2014 – ident: e_1_2_8_11_1 doi: 10.1002/marc.1980.030010107 – ident: e_1_2_8_17_1 doi: 10.1021/acsmacrolett.7b00822 – ident: e_1_2_8_23_1 doi: 10.1039/c2sc20045g – ident: e_1_2_8_24_1 doi: 10.1021/acs.jcim.0c00507 – start-page: 147 volume-title: Liquid Crystal Elastomers: Materials and Applications year: 2010 ident: e_1_2_8_32_1 doi: 10.1007/12_2010_103 – ident: e_1_2_8_35_1 doi: 10.1002/anie.201205964 – ident: e_1_2_8_31_1 doi: 10.1021/acs.macromol.9b01218 – volume: 472 year: 2016 ident: e_1_2_8_16_1 publication-title: Proc. R. Soc. A Math. Phys. Eng. Sci. – ident: e_1_2_8_15_1 doi: 10.1039/C5RA01039J – ident: e_1_2_8_26_1 doi: 10.1039/c0jm03691a – start-page: 8 volume-title: Handbook of Liquid Crystals: Fundamentals of Liquid Crystals year: 2014 ident: e_1_2_8_21_1 doi: 10.1002/9783527671403 – ident: e_1_2_8_10_1 doi: 10.1016/0032-3861(91)90398-3 – volume: 12 start-page: 717 year: 1991 ident: e_1_2_8_13_1 publication-title: Macromol. Chem. Phys. – ident: e_1_2_8_3_1 doi: 10.1002/macp.1989.021900103 – volume: 1 start-page: 21974586 year: 2001 ident: e_1_2_8_12_1 publication-title: e‐Polym. – ident: e_1_2_8_14_1 doi: 10.1126/science.1261019 – ident: e_1_2_8_33_1 doi: 10.1098/rspa.2010.0135 – ident: e_1_2_8_8_1 doi: 10.1002/pen.760310902 – ident: e_1_2_8_19_1 doi: 10.1201/b10525 – ident: e_1_2_8_30_1 doi: 10.1021/acs.macromol.7b02514 – ident: e_1_2_8_2_1 doi: 10.1002/macp.1982.021830519 – ident: e_1_2_8_5_1 doi: 10.1002/macp.1989.021901218 – ident: e_1_2_8_18_1 doi: 10.1038/s41467-018-04911-4 – ident: e_1_2_8_28_1 doi: 10.1039/c3tc30272e – ident: e_1_2_8_25_1 doi: 10.1002/adfm.201806412 – ident: e_1_2_8_34_1 doi: 10.1098/rspa.2010.0352 – ident: e_1_2_8_27_1 doi: 10.1039/C6CC00081A – volume: 24 start-page: 1017 year: 1998 ident: e_1_2_8_6_1 publication-title: Chem. Ind. – ident: e_1_2_8_9_1 doi: 10.1002/adhm.201801489 – ident: e_1_2_8_22_1 doi: 10.1021/ja00170a016 – ident: e_1_2_8_7_1 doi: 10.1038/378467a0 – start-page: 6 volume-title: Handbook of Liquid Crystals: Fundamentals of Liquid Crystals year: 2014 ident: e_1_2_8_20_1 doi: 10.1002/9783527671403 – ident: e_1_2_8_37_1 doi: 10.1021/ma300443g – ident: e_1_2_8_29_1 doi: 10.1103/PhysRevE.77.021706 – ident: e_1_2_8_1_1 doi: 10.1002/adma.201905144 – ident: e_1_2_8_4_1 doi: 10.1002/macp.1989.021900926 – ident: e_1_2_8_36_1 doi: 10.1002/adma.201301891 |
SSID | ssj0017734 |
Score | 2.5622501 |
Snippet | Liquid crystalline elastomers (LCE) are stimuli‐responsive materials with a distinguished mechanical response. LCE have been subject to numerous recent... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Actuation Consumer goods Crystal structure Crystallinity Elastomers liquid crystalline elastomers Liquid crystals materials chemistry Materials science Mechanical analysis Monomers Precursors Robotics soft robotics Thermal response Thermal stability Thin films |
Title | Molecular Engineering of Mesogenic Constituents Within Liquid Crystalline Elastomers to Sharpen Thermotropic Actuation |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202100564 https://www.proquest.com/docview/2512686871 |
Volume | 31 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFA-ykx78FqdTchA8detHmjTHMTeGOA_icLfSjxSL0s6uE_Sv97127TpBBL21JQlN3nvJ7yUvv0fIlW2JKLJ4qEkR2hpj0tSk4zPNE1YohbR9Xmy4Te75eMpuZ_ascYu_5IeoN9zQMor5Gg3c8xe9NWmoF0Z4kxxcFljDkRAUA7YQFT3U_FGGEOWxMjcwwMuYVayNutnbrL65Kq2hZhOwFivOaI941b-WgSYv3WXud4PPbzSO_-nMPtldwVHaL_XngGyp5JDsNEgKj8j7pMqgSxvfaRrRiVqkoH9xQDHtJ8YcYFQGfYrz5zihd_HbMg7pIPsAAIrM34oOAarnKe6U0zylyBU9VwkFTc1AYbJ0Di318UILKssxmY6Gj4OxtsrWoAXg5TINJMwx1xVyAEo9hIlUgveh7ADsOsDTHp2FNuO-5QMqcSJPKhEA9nIiaTAlpLJOSCtJE3VKaKiEMALfihzPZFzZEnMEeR6zlC6hVd4mWiUtN1hRmWNGjVe3JGE2XRxPtx7PNrmuy89LEo8fS3Yq4bsrY164CAG5w8G1bBOzkOIvrbj9m9Gkfjv7S6Vzso3PZYxQh7TybKkuAP7k_mWh4l-I7fs5 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT4QwEJ74OKgH38b12YOJJ3SB0tLjRt2sungwGr0RHiUSDawra6K_3hlYcDUxJnqkoQ10ZtpvptNvAA4cWyaJLWJDydgxOFeWodyQG4G0YyWVE4oy4OZdid4tv7h36mxCugtT8UM0ATeyjHK9JgOngPTxJ2toECd0lRx9FtzE-TTMUlnv0qu6bhikTCmrg2VhUoqXeV_zNrat46_9v-5Ln2BzErKWe053CcL6a6tUk8ejUREeRe_fiBz_9TvLsDhGpKxTqdAKTOlsFRYmeArX4NWri-iyiXaWJ8zTLzmqYBoxqvxJaQeUmMHu0uIhzVg_fR6lMTsZviEGJfJvzc4QrRc5BctZkTOiix7ojKGyDlFnhvkAR-rQnRbSl3W47Z7dnPSMccEGI0JHlxsoZEHlrogGULVjXEsVOiDaidC0IzrwafPY4SK0QwQmbhIoLSOEX26iTK6l0vYGzGR5pjeBxVpKMwrtxA0sLrSjqExQEHBbtxWOKlpg1OLyozGbORXVePIrHmbLp_n0m_lswWHz_qDi8fjxzZ1a-v7Ynl98QoHCFehdtsAqxfjLKH7ntOs1T1t_6bQPc70br-_3z68ut2Ge2quUoR2YKYYjvYtoqAj3Sn3_AESk_1Q |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4VKiF6oE_ULbT1oVJPgTwcOz6uWFa03V1VVVH3FiWxIyJQEkIWqfx6ZvJiQaoqwTGWbTmeGfsbe_wNwBffk2nqCW0pqX2Lc-VaKoi5FUlPK6n8WDQHbvOFODnl35f-cu0Vf8sPMRy4kWU06zUZeKnTwzvS0Ein9JIcXRbcw_kGPOfCDkivJ78GAilHyvZeWTgU4eUse9pG2z283_7-tnSHNdcRa7PlTF9C1A-2jTQ5P1jV8UFy84DH8Sl_8wp2OjzKxq0CvYZnJn8DL9ZYCt_C9bxPocvWylmRsrm5KlABs4RR3k8KOqCwDPYnq8-ynM2yy1Wm2VH1FxEoUX8bdoxYvS7oqJzVBSOy6NLkDFW1Qo2pihJ7GtOLFtKWd3A6Pf59dGJ16RqsBN1cbqGIBSW7IhJAZWtcSRW6H8ZP0LATuu6xufa5iL0YYUmQRsrIBMFXkCqHG6mMtwubeZGb98C0kdJJYi8NIpcL4ytKEhRF3DO2wl7FCKxeWmHScZlTSo2LsGVhdkOaz3CYzxF8HeqXLYvHP2vu98IPO2u-CgkDikCgbzkCt5Hif3oJx5PpfPj68JhGn2Hr52Qazr4tfuzBNhW38UL7sFlXK_MRoVAdf2q0_RZaRP4M |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Molecular+Engineering+of+Mesogenic+Constituents+Within+Liquid+Crystalline+Elastomers+to+Sharpen+Thermotropic+Actuation&rft.jtitle=Advanced+functional+materials&rft.au=McCracken%2C+Joselle+M&rft.au=Donovan%2C+Brian+R&rft.au=Lynch%2C+Kelsey+M&rft.au=White%2C+Timothy+J&rft.date=2021-04-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=31&rft.issue=16&rft_id=info:doi/10.1002%2Fadfm.202100564&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon |