A Nanoporous Carbon‐MXene Heterostructured Nanocomposite‐Based Epidermal Patch for Real‐Time Biopotentials and Sweat Glucose Monitoring
Despite substantial progress in the development of wearable and flexible monitoring systems that conform to the epidermis, most designs focus on either physiological signs such as the electrocardiogram (ECG) results, respiration rate, or metabolites, and ignore the dynamic fluctuations of pH and tem...
Saved in:
Published in | Advanced functional materials Vol. 32; no. 49 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc
01.12.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Despite substantial progress in the development of wearable and flexible monitoring systems that conform to the epidermis, most designs focus on either physiological signs such as the electrocardiogram (ECG) results, respiration rate, or metabolites, and ignore the dynamic fluctuations of pH and temperature in sweat during on‐body tests. An advanced butterfly‐inspired hybrid epidermal biosensing (bi‐HEB) patch is presented here, which is interfaced with a custom‐developed miniaturized monitoring system. The patch incorporates a novel transducing layer of nanoporous carbon and MXene (NPC@MXene) for sensitive and durable detection of biomarkers in sweat. The bi‐HEB patch is composed of a glucose biosensor accompanied by pH and temperature sensors to precisely quantify glucose as well as two biopotential electrodes, allowing real‐time recording of electrophysiological (EP) signals. The NPC@MXene‐based glucose biosensor demonstrates an excellent sensitivity of 100.85 µAmm−1 cm−2 within physiological levels (0.003−1.5 mm), and variations in pH and temperature during on‐body perspiration monitoring are calibrated by employing a correction approach. In parallel, the EP electrodes exhibit skin‐electrode contact impedance and biopotential signals similar to those of conventional Ag/AgCl electrodes. Finally, the bi‐HEB patch integrated wearable system is used to accurately monitor sweat glucose and ECG of human subjects participating in indoor physical activities.
In‐depth investigations of electrophysiological parameters, ECG, EMG, EEG, and temperature, with precise glucose level determination using an integrated multimodal epidermal patch have been performed in this work. The NPC@MXene‐based electrochemical sensors exhibit high sensitivities and selectivity, including long‐term stabilities. As a portable smart healthcare monitoring device, the bi‐HEB patch is successfully paired with a miniaturized PCB to assess glucose leve and ECG of individuals. |
---|---|
AbstractList | Despite substantial progress in the development of wearable and flexible monitoring systems that conform to the epidermis, most designs focus on either physiological signs such as the electrocardiogram (ECG) results, respiration rate, or metabolites, and ignore the dynamic fluctuations of pH and temperature in sweat during on‐body tests. An advanced butterfly‐inspired hybrid epidermal biosensing (
bi
‐HEB) patch is presented here, which is interfaced with a custom‐developed miniaturized monitoring system. The patch incorporates a novel transducing layer of nanoporous carbon and MXene (NPC@MXene) for sensitive and durable detection of biomarkers in sweat. The
bi
‐HEB patch is composed of a glucose biosensor accompanied by pH and temperature sensors to precisely quantify glucose as well as two biopotential electrodes, allowing real‐time recording of electrophysiological (EP) signals. The NPC@MXene‐based glucose biosensor demonstrates an excellent sensitivity of 100.85 µAm
m
−1
cm
−2
within physiological levels (0.003−1.5 m
m
), and variations in pH and temperature during on‐body perspiration monitoring are calibrated by employing a correction approach. In parallel, the EP electrodes exhibit skin‐electrode contact impedance and biopotential signals similar to those of conventional Ag/AgCl electrodes. Finally, the
bi
‐HEB patch integrated wearable system is used to accurately monitor sweat glucose and ECG of human subjects participating in indoor physical activities. Despite substantial progress in the development of wearable and flexible monitoring systems that conform to the epidermis, most designs focus on either physiological signs such as the electrocardiogram (ECG) results, respiration rate, or metabolites, and ignore the dynamic fluctuations of pH and temperature in sweat during on‐body tests. An advanced butterfly‐inspired hybrid epidermal biosensing (bi‐HEB) patch is presented here, which is interfaced with a custom‐developed miniaturized monitoring system. The patch incorporates a novel transducing layer of nanoporous carbon and MXene (NPC@MXene) for sensitive and durable detection of biomarkers in sweat. The bi‐HEB patch is composed of a glucose biosensor accompanied by pH and temperature sensors to precisely quantify glucose as well as two biopotential electrodes, allowing real‐time recording of electrophysiological (EP) signals. The NPC@MXene‐based glucose biosensor demonstrates an excellent sensitivity of 100.85 µAmm−1 cm−2 within physiological levels (0.003−1.5 mm), and variations in pH and temperature during on‐body perspiration monitoring are calibrated by employing a correction approach. In parallel, the EP electrodes exhibit skin‐electrode contact impedance and biopotential signals similar to those of conventional Ag/AgCl electrodes. Finally, the bi‐HEB patch integrated wearable system is used to accurately monitor sweat glucose and ECG of human subjects participating in indoor physical activities. In‐depth investigations of electrophysiological parameters, ECG, EMG, EEG, and temperature, with precise glucose level determination using an integrated multimodal epidermal patch have been performed in this work. The NPC@MXene‐based electrochemical sensors exhibit high sensitivities and selectivity, including long‐term stabilities. As a portable smart healthcare monitoring device, the bi‐HEB patch is successfully paired with a miniaturized PCB to assess glucose leve and ECG of individuals. Despite substantial progress in the development of wearable and flexible monitoring systems that conform to the epidermis, most designs focus on either physiological signs such as the electrocardiogram (ECG) results, respiration rate, or metabolites, and ignore the dynamic fluctuations of pH and temperature in sweat during on‐body tests. An advanced butterfly‐inspired hybrid epidermal biosensing (bi‐HEB) patch is presented here, which is interfaced with a custom‐developed miniaturized monitoring system. The patch incorporates a novel transducing layer of nanoporous carbon and MXene (NPC@MXene) for sensitive and durable detection of biomarkers in sweat. The bi‐HEB patch is composed of a glucose biosensor accompanied by pH and temperature sensors to precisely quantify glucose as well as two biopotential electrodes, allowing real‐time recording of electrophysiological (EP) signals. The NPC@MXene‐based glucose biosensor demonstrates an excellent sensitivity of 100.85 µAmm−1 cm−2 within physiological levels (0.003−1.5 mm), and variations in pH and temperature during on‐body perspiration monitoring are calibrated by employing a correction approach. In parallel, the EP electrodes exhibit skin‐electrode contact impedance and biopotential signals similar to those of conventional Ag/AgCl electrodes. Finally, the bi‐HEB patch integrated wearable system is used to accurately monitor sweat glucose and ECG of human subjects participating in indoor physical activities. |
Author | Sharifuzzaman, Md Zahed, Md Abu Asaduzzaman, Md Shin, Young Do Zhang, Shipeng Pradhan, Gagan Bahadur Sharma, Sudeep Yoon, Sang Hyuk Park, Jae Yeong Yoon, Hyosang Kim, Dong Kyun Jeong, Seonghoon |
Author_xml | – sequence: 1 givenname: Md Abu surname: Zahed fullname: Zahed, Md Abu organization: Kwangwoon University – sequence: 2 givenname: Md surname: Sharifuzzaman fullname: Sharifuzzaman, Md organization: Kwangwoon University – sequence: 3 givenname: Hyosang surname: Yoon fullname: Yoon, Hyosang organization: Kwangwoon University – sequence: 4 givenname: Md surname: Asaduzzaman fullname: Asaduzzaman, Md organization: Kwangwoon University – sequence: 5 givenname: Dong Kyun surname: Kim fullname: Kim, Dong Kyun organization: Kwangwoon University – sequence: 6 givenname: Seonghoon surname: Jeong fullname: Jeong, Seonghoon organization: Kwangwoon University – sequence: 7 givenname: Gagan Bahadur surname: Pradhan fullname: Pradhan, Gagan Bahadur organization: Kwangwoon University – sequence: 8 givenname: Young Do surname: Shin fullname: Shin, Young Do organization: Kwangwoon University – sequence: 9 givenname: Sang Hyuk surname: Yoon fullname: Yoon, Sang Hyuk organization: Kwangwoon University – sequence: 10 givenname: Sudeep surname: Sharma fullname: Sharma, Sudeep organization: Kwangwoon University – sequence: 11 givenname: Shipeng surname: Zhang fullname: Zhang, Shipeng organization: Kwangwoon University – sequence: 12 givenname: Jae Yeong orcidid: 0000-0002-2056-5151 surname: Park fullname: Park, Jae Yeong email: jaepark@kw.ac.kr organization: Kwangwoon University |
BookMark | eNqFkMtKJDEUhsOgMN62sw647jaXqkp62ba2CrYO6oC7Ip2c0khVUiYpxJ0vMDDP6JMYbVEQZFYJyff9h_NvojXnHSD0i5IxJYTtKdN0Y0YYI5IXxQ-0QStajThhcu3jTq9_os0Y7wihQvBiA_2d4jPlfO-DHyKeqbD07vnp3-IaHOBjSBB8TGHQaQhg3lDtu95HmyBj-yrm18PeGgidavFvlfQtbnzAF6DaDFzZDvC-zfkJXLKqjVg5gy8fQCV81A7aR8AL72zywbqbbbTeZAZ23s8t9Gd-eDU7Hp2eH53MpqcjzfNuo7KZCEG0IWIpl5pOCqgqKUrFgJuSUykrpWWzNJxTAYQYlr9oyaAkRgpRcb6Fdle5ffD3A8RU3_khuDyyZqIoKiIrOslUsaJ0LiEGaGptk0rWuxSUbWtK6tfi69fi64_iszb-ovXBdio8fi9MVsKDbeHxP3Q9PZgvPt0XyEic7A |
CitedBy_id | crossref_primary_10_1002_smll_202309357 crossref_primary_10_1126_sciadv_adu3146 crossref_primary_10_1002_slct_202401553 crossref_primary_10_3390_molecules28124617 crossref_primary_10_1039_D4TB00790E crossref_primary_10_1002_advs_202410702 crossref_primary_10_1016_j_apsusc_2024_160355 crossref_primary_10_1021_acssensors_3c00148 crossref_primary_10_3390_molecules29010172 crossref_primary_10_3390_mi15080936 crossref_primary_10_1021_acs_analchem_3c00361 crossref_primary_10_1038_s41598_024_75623_7 crossref_primary_10_1002_adfm_202313824 crossref_primary_10_1002_adfm_202309704 crossref_primary_10_1021_acsami_3c12910 crossref_primary_10_1007_s00604_024_06312_5 crossref_primary_10_1016_j_cej_2024_155714 crossref_primary_10_1038_s43246_024_00557_6 crossref_primary_10_1002_adfm_202504481 crossref_primary_10_1016_j_snb_2024_136403 crossref_primary_10_1038_s41528_024_00312_4 crossref_primary_10_1016_j_apsusc_2023_157155 crossref_primary_10_1007_s00449_023_02930_0 crossref_primary_10_1002_adma_202409071 crossref_primary_10_1016_j_cej_2023_145836 crossref_primary_10_1021_acssensors_4c02141 crossref_primary_10_1002_adfm_202401404 crossref_primary_10_1002_smll_202206868 crossref_primary_10_1007_s12598_024_03012_0 crossref_primary_10_1002_adfm_202311637 crossref_primary_10_1021_acsanm_3c01959 crossref_primary_10_3390_bios13030313 crossref_primary_10_1002_adfm_202303313 crossref_primary_10_1002_adfm_202411588 crossref_primary_10_1002_adhm_202404454 crossref_primary_10_1038_s41528_023_00285_w crossref_primary_10_3389_fmats_2024_1354635 crossref_primary_10_3390_polym15061365 crossref_primary_10_1002_adfm_202405651 crossref_primary_10_1039_D4CC06078D crossref_primary_10_1002_smll_202303301 crossref_primary_10_1126_sciadv_adj5389 crossref_primary_10_3390_bios13050508 |
Cites_doi | 10.1002/smll.202002517 10.1007/s00604-019-3814-x 10.1021/nn800244k 10.1038/s41467-020-18503-8 10.1002/smll.201602790 10.1109/RBME.2010.2084078 10.1038/ncomms2664 10.1038/ncomms11650 10.1016/j.bios.2015.07.039 10.1016/S0165-0173(98)00056-3 10.1002/smll.201904255 10.2337/diacare.20.3.433 10.1016/j.nanoen.2021.106759 10.1021/acs.jchemed.7b00361 10.1002/adma.201804327 10.1002/adfm.202107653 10.1021/acsnano.0c08689 10.1039/C5NR01816A 10.1021/acsnano.6b04005 10.1002/admt.202000325 10.1016/j.ccr.2020.213222 10.1039/C7LC00914C 10.1038/nature16521 10.1039/C6TA00324A 10.1039/C8TA04214D 10.1002/adfm.201907297 10.1039/C9TC02715G 10.1088/1674-4926/42/10/101602 10.1109/ACCESS.2020.2977172 10.1016/j.ijhydene.2020.08.075 10.1126/sciadv.1601314 10.1016/j.bios.2020.112637 10.1021/accountsmr.1c00002 10.1016/j.bios.2019.01.043 10.1038/s41467-018-07882-8 10.1038/s41928-018-0043-y 10.1126/scitranslmed.abf8629 10.1021/acsami.8b03342 10.1021/acsami.6b05025 10.1038/s41598-016-0005-4 10.1016/j.bios.2021.113685 10.1002/adfm.202009018 10.1021/acsnano.0c00906 10.1021/acs.analchem.0c02211 10.1038/s41587-019-0045-y 10.1016/j.carbon.2020.04.031 10.1038/s41528-021-00107-x 10.1016/j.bios.2020.112038 10.1016/j.ccr.2019.213149 10.1039/C9RA02389E 10.1002/adfm.201804351 10.1038/nnano.2016.38 10.1016/S1385-8947(20)32895-3 10.1126/sciadv.1701629 10.1039/C4RA10572A 10.1016/j.bios.2020.112220 10.1021/acsnano.1c00248 10.1088/2515-7639/ab8f78 10.1038/srep45030 10.1002/admt.201700322 10.1002/smtd.201900005 10.1038/s41551-021-00685-1 |
ContentType | Journal Article |
Copyright | 2022 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2022 Wiley‐VCH GmbH |
DBID | AAYXX CITATION 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1002/adfm.202208344 |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | CrossRef Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1616-3028 |
EndPage | n/a |
ExternalDocumentID | 10_1002_adfm_202208344 ADFM202208344 |
Genre | article |
GrantInformation_xml | – fundername: Technology Innovation Program funderid: RS‐2022‐00154983 – fundername: Ministry of Trade, Industry & Energy – fundername: Kwangwoon University |
GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OC 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WFSAM WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ~IA ~WT .Y3 31~ AANHP AASGY AAYXX ACBWZ ACRPL ACYXJ ADMLS ADNMO AEYWJ AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION EJD FEDTE HF~ HVGLF LW6 1OB 7SP 7SR 7U5 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 L7M |
ID | FETCH-LOGICAL-c3834-5f9770cd07b8bc194e66875a2e3d531886ac8fbd3317e00d25a2152e50d877633 |
IEDL.DBID | DR2 |
ISSN | 1616-301X |
IngestDate | Thu Aug 07 15:31:07 EDT 2025 Thu Apr 24 22:56:20 EDT 2025 Tue Jul 01 00:30:34 EDT 2025 Wed Jan 22 16:26:23 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 49 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3834-5f9770cd07b8bc194e66875a2e3d531886ac8fbd3317e00d25a2152e50d877633 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-2056-5151 |
PQID | 2744608619 |
PQPubID | 2045204 |
PageCount | 17 |
ParticipantIDs | proquest_journals_2744608619 crossref_citationtrail_10_1002_adfm_202208344 crossref_primary_10_1002_adfm_202208344 wiley_primary_10_1002_adfm_202208344_ADFM202208344 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-12-01 |
PublicationDateYYYYMMDD | 2022-12-01 |
PublicationDate_xml | – month: 12 year: 2022 text: 2022-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | Advanced functional materials |
PublicationYear | 2022 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017; 7 2013; 4 2017; 3 2020; 165 2019; 10 2015; 74 2019; 15 2020; 160 2020; 401 2020; 16 2020; 14 2020; 11 2020; 169 2008; 2 2020; 406 2020; 8 2018; 6 2020; 5 2018; 3 2021; 31 2020; 3 2014; 4 2018; 1 2020; 92 2018; 30 2020; 45 2022; 32 2020; 410 2010; 3 2019; 7 2018; 28 2019; 9 2021; 5 2022; 196 2021; 42 2019; 3 2019; 5 2021; 2 2022; 92 1997; 20 2020; 187 1999; 29 2019; 37 2016; 529 2016; 10 2015; 7 2016; 11 2016; 4 2021; 13 2018; 18 2016; 6 2016; 7 2021; 15 2020; 30 2020; 153 2017; 13 2018; 95 2019; 130 2018; 10 2016; 8 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_3_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_64_1 e_1_2_8_62_1 e_1_2_8_1_1 e_1_2_8_41_1 e_1_2_8_60_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_51_1 e_1_2_8_30_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_48_1 He W. (e_1_2_8_2_1) 2019; 5 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_63_1 e_1_2_8_40_1 e_1_2_8_61_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_58_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_56_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_54_1 e_1_2_8_52_1 e_1_2_8_50_1 |
References_xml | – volume: 20 start-page: 433 year: 1997 publication-title: Diabetes Care – volume: 14 start-page: 5798 year: 2020 publication-title: ACS Nano – volume: 401 year: 2020 publication-title: Chem. Eng. J. – volume: 11 start-page: 566 year: 2016 publication-title: Nat. Nanotechnol. – volume: 7 year: 2019 publication-title: J. Mater. Chem. C – volume: 32 year: 2022 publication-title: Adv. Funct. Mater. – volume: 7 start-page: 9927 year: 2015 publication-title: Nanoscale – volume: 42 year: 2021 publication-title: J. Semicond. – volume: 406 year: 2020 publication-title: Coord. Chem. Rev. – volume: 29 start-page: 169 year: 1999 publication-title: Brain Res. Rev. – volume: 8 year: 2020 publication-title: IEEE Access – volume: 410 year: 2020 publication-title: Coord. Chem. Rev. – volume: 7 year: 2017 publication-title: Sci. Rep. – volume: 153 year: 2020 publication-title: Biosens. Bioelectron. – volume: 529 start-page: 509 year: 2016 publication-title: Nature – volume: 13 year: 2021 publication-title: Sci. Transl. Med. – volume: 2 start-page: 184 year: 2021 publication-title: Acc Mater Res – volume: 92 year: 2020 publication-title: Anal. Chem. – volume: 16 year: 2020 publication-title: Small – volume: 10 start-page: 7216 year: 2016 publication-title: ACS Nano – volume: 30 year: 2020 publication-title: Adv. Funct. Mater. – volume: 6 start-page: 2 year: 2016 publication-title: Sci. Rep. – volume: 9 year: 2019 publication-title: RSC Adv. – volume: 3 year: 2017 publication-title: Sci. Adv. – volume: 28 year: 2018 publication-title: Adv. Funct. Mater. – volume: 3 start-page: 106 year: 2010 publication-title: IEEE Rev Biomed Eng – volume: 5 start-page: 737 year: 2021 publication-title: Nat. Biomed. Eng. – volume: 187 start-page: 198 year: 2020 publication-title: Microchim. Acta – volume: 3 year: 2018 publication-title: Adv. Mater. Technol. – volume: 15 start-page: 2800 year: 2021 publication-title: ACS Nano – volume: 6 year: 2018 publication-title: J. Mater. Chem. A – volume: 74 start-page: 1061 year: 2015 publication-title: Biosens. Bioelectron. – volume: 169 year: 2020 publication-title: Biosens. Bioelectron. – volume: 165 start-page: 26 year: 2020 publication-title: Carbon. – volume: 37 start-page: 389 year: 2019 publication-title: Nat. Biotechnol. – volume: 1 start-page: 160 year: 2018 publication-title: Nat. Electron. – volume: 7 year: 2016 publication-title: Nat. Commun. – volume: 5 year: 2020 publication-title: Adv. Mater. Technol. – volume: 5 start-page: 9 year: 2021 publication-title: npj Flexible Electron. – volume: 160 year: 2020 publication-title: Biosens. Bioelectron. – volume: 11 start-page: 4683 year: 2020 publication-title: Nat. Commun. – volume: 15 year: 2019 publication-title: Small – volume: 95 start-page: 197 year: 2018 publication-title: J. Chem. Educ. – volume: 4 start-page: 1716 year: 2013 publication-title: Nat. Commun. – volume: 4 year: 2014 publication-title: RSC Adv. – volume: 3 year: 2019 publication-title: Small Methods – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 130 start-page: 315 year: 2019 publication-title: Biosens. Bioelectron. – volume: 8 year: 2016 publication-title: ACS Appl. Mater. Interfaces – volume: 4 start-page: 5247 year: 2016 publication-title: J. Mater. Chem. A – volume: 92 year: 2022 publication-title: Nano Energy – volume: 31 year: 2021 publication-title: Adv. Funct. Mater. – volume: 18 start-page: 217 year: 2018 publication-title: Lab Chip – volume: 5 year: 2019 publication-title: Sci. Adv. – volume: 10 start-page: 1 year: 2019 publication-title: Nat. Commun. – volume: 15 start-page: 3996 year: 2021 publication-title: ACS Nano – volume: 2 start-page: 1825 year: 2008 publication-title: ACS Nano – volume: 10 year: 2018 publication-title: ACS Appl. Mater. Interfaces – volume: 13 year: 2017 publication-title: Small – volume: 3 year: 2020 publication-title: JPhys Mater. – volume: 45 year: 2020 publication-title: Int. J. Hydrogen Energy – volume: 196 year: 2022 publication-title: Biosens. Bioelectron. – ident: e_1_2_8_64_1 doi: 10.1002/smll.202002517 – ident: e_1_2_8_48_1 doi: 10.1007/s00604-019-3814-x – ident: e_1_2_8_53_1 doi: 10.1021/nn800244k – ident: e_1_2_8_60_1 doi: 10.1038/s41467-020-18503-8 – ident: e_1_2_8_1_1 doi: 10.1002/smll.201602790 – ident: e_1_2_8_7_1 doi: 10.1109/RBME.2010.2084078 – ident: e_1_2_8_46_1 doi: 10.1038/ncomms2664 – ident: e_1_2_8_11_1 doi: 10.1038/ncomms11650 – ident: e_1_2_8_5_1 doi: 10.1016/j.bios.2015.07.039 – ident: e_1_2_8_61_1 doi: 10.1016/S0165-0173(98)00056-3 – ident: e_1_2_8_34_1 doi: 10.1002/smll.201904255 – ident: e_1_2_8_63_1 doi: 10.2337/diacare.20.3.433 – volume: 5 year: 2019 ident: e_1_2_8_2_1 publication-title: Sci. Adv. – ident: e_1_2_8_37_1 doi: 10.1016/j.nanoen.2021.106759 – ident: e_1_2_8_54_1 doi: 10.1021/acs.jchemed.7b00361 – ident: e_1_2_8_21_1 doi: 10.1002/adma.201804327 – ident: e_1_2_8_10_1 doi: 10.1002/adfm.202107653 – ident: e_1_2_8_14_1 doi: 10.1021/acsnano.0c08689 – ident: e_1_2_8_43_1 doi: 10.1039/C5NR01816A – ident: e_1_2_8_8_1 doi: 10.1021/acsnano.6b04005 – ident: e_1_2_8_57_1 doi: 10.1002/admt.202000325 – ident: e_1_2_8_31_1 doi: 10.1016/j.ccr.2020.213222 – ident: e_1_2_8_23_1 doi: 10.1039/C7LC00914C – ident: e_1_2_8_26_1 doi: 10.1038/nature16521 – ident: e_1_2_8_33_1 doi: 10.1039/C6TA00324A – ident: e_1_2_8_47_1 doi: 10.1039/C8TA04214D – ident: e_1_2_8_50_1 doi: 10.1002/adfm.201907297 – ident: e_1_2_8_38_1 doi: 10.1039/C9TC02715G – ident: e_1_2_8_15_1 doi: 10.1088/1674-4926/42/10/101602 – ident: e_1_2_8_59_1 doi: 10.1109/ACCESS.2020.2977172 – ident: e_1_2_8_41_1 doi: 10.1016/j.ijhydene.2020.08.075 – ident: e_1_2_8_4_1 doi: 10.1126/sciadv.1601314 – ident: e_1_2_8_29_1 doi: 10.1016/j.bios.2020.112637 – ident: e_1_2_8_24_1 doi: 10.1021/accountsmr.1c00002 – ident: e_1_2_8_36_1 doi: 10.1016/j.bios.2019.01.043 – ident: e_1_2_8_51_1 doi: 10.1038/s41467-018-07882-8 – ident: e_1_2_8_9_1 doi: 10.1038/s41928-018-0043-y – ident: e_1_2_8_58_1 doi: 10.1126/scitranslmed.abf8629 – ident: e_1_2_8_35_1 doi: 10.1038/s41467-018-07882-8 – ident: e_1_2_8_56_1 doi: 10.1021/acsami.8b03342 – ident: e_1_2_8_22_1 doi: 10.1021/acsami.6b05025 – ident: e_1_2_8_55_1 doi: 10.1038/s41598-016-0005-4 – ident: e_1_2_8_13_1 doi: 10.1016/j.bios.2021.113685 – ident: e_1_2_8_18_1 doi: 10.1002/adfm.202009018 – ident: e_1_2_8_20_1 doi: 10.1021/acsnano.0c00906 – ident: e_1_2_8_28_1 doi: 10.1021/acs.analchem.0c02211 – ident: e_1_2_8_3_1 doi: 10.1038/s41587-019-0045-y – ident: e_1_2_8_19_1 doi: 10.1016/j.carbon.2020.04.031 – ident: e_1_2_8_6_1 doi: 10.1038/s41528-021-00107-x – ident: e_1_2_8_25_1 doi: 10.1016/j.bios.2020.112038 – ident: e_1_2_8_32_1 doi: 10.1016/j.ccr.2019.213149 – ident: e_1_2_8_45_1 doi: 10.1039/C9RA02389E – ident: e_1_2_8_17_1 doi: 10.1002/adfm.201804351 – ident: e_1_2_8_27_1 doi: 10.1038/nnano.2016.38 – ident: e_1_2_8_30_1 doi: 10.1016/S1385-8947(20)32895-3 – ident: e_1_2_8_62_1 doi: 10.1126/sciadv.1701629 – ident: e_1_2_8_49_1 doi: 10.1039/C4RA10572A – ident: e_1_2_8_52_1 doi: 10.1016/j.bios.2020.112220 – ident: e_1_2_8_39_1 doi: 10.1021/acsnano.1c00248 – ident: e_1_2_8_40_1 doi: 10.1088/2515-7639/ab8f78 – ident: e_1_2_8_44_1 doi: 10.1038/srep45030 – ident: e_1_2_8_16_1 doi: 10.1002/admt.201700322 – ident: e_1_2_8_42_1 doi: 10.1002/smtd.201900005 – ident: e_1_2_8_12_1 doi: 10.1038/s41551-021-00685-1 |
SSID | ssj0017734 |
Score | 2.6224601 |
Snippet | Despite substantial progress in the development of wearable and flexible monitoring systems that conform to the epidermis, most designs focus on either... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Biomarkers biopotential Biosensors Carbon Electrocardiography Electrodes Epidermis Glucose Materials science Metabolites Monitoring MXenes Nanocomposites nanoporous carbons Perspiration Physiology Sweat Temperature sensors Wearable technology |
Title | A Nanoporous Carbon‐MXene Heterostructured Nanocomposite‐Based Epidermal Patch for Real‐Time Biopotentials and Sweat Glucose Monitoring |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202208344 https://www.proquest.com/docview/2744608619 |
Volume | 32 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LSsNAFB2kbnThW6xWmYXgKm0yzctlH9YiRkQtdBcyLxRLIrZFcOUPCH6jX-K9mTRWQQTdhITcCZOZufeeSc6cIeSQK8zqAbOU0MJyZeBZXCs4uBp_qoWJzD-4RRd-f-CeDb3h3Cp-ow9RfnBDz8jjNTp4wseNT9HQRGpcSc6YjVtFQBBGwhaioqtSP8oJAvNb2XeQ4OUMZ6qNNmt8Lf41K31CzXnAmmec3ipJZnU1RJP7-nTC6-L5m4zjf15mjawUcJS2zPhZJwsq3SDLcyKFm-S1RSEEZ4DTs-mYdpJHnqXvL2_REKIk7SObJjMitNNHJXNTpKkjF0yBWRuypKQnuA8tpIARvYTQf0sBKdMrgKhggGtQaPsOnj9B4hJ4A01SSa-fIEnQU0OopybyYH22yKB3ctPpW8UmDpaAya9reRoQpi2kHfCQC-fYVb4Pc6SEqaYE_w9DPxGh5rIJQEbZtmRwCzCF8mwZBhD8mtukkmap2iHUZRrmX8JzdBACioPEKkKlOIxCR0otRZVYs06MRaFwjhttjGKjzcxibOa4bOYqOSrtH4y2x4-WtdmYiAsfH8eorejDjNA5rhKWd-4vT4lb3V5UXu3-pdAeWcJzw6epkQp0r9oHVDThB2Sx1Y3Orw9yD_gA5W4Kdw |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3JTtxAEC0BOUAO2QBlEpY-JMrJYPd4yyGHgWEYAoMQizQ3494EYmRHzIxQOPEDkfIr-ZV8Al9Clds2i4QiIXHIZSSPyy2ru6rfq3b1a4BPQhOqR9zR0kjHV1HgCKPxxzf0US1OVbHg1tsNu0f-937Qn4A_1V4Yqw9RL7hRZBTzNQU4LUiv3qqGpsrQVnLOXToroqyr3NY_LzBrG37bauMQf-a8s3G43nXKgwUciQmZ7wQGWY8rlRuJWEhM43UYIm9PuW4q9Mk4DlMZG6GaCK7adRXHW4hzOnBVHGFANrHdSXhBx4iTXH97v1as8qLIfsgOPSop8_qVTqTLV--_730cvCW3dylygXGd1_C36h1b2nK2Mh6JFXn5QDjyv-q-N_CqZNysZUPkLUzo7B28vKPDOAu_WgxRJsdUJB8P2Xp6LvLs-up3r49AwLpUMJRbnd3xuVaFKVXiU7mbRrM1JAKKbdBRu4hyA7aH6HbCMBlg-8jC0YC22bC1U2x_RLVZGPAszRQ7uEAcZJt2zwCzkyu9zxwcPUt_zMNUlmf6PTCfG0wxZeCZKEaiitxBxloLDDRPKaNkA5zKaxJZirjTWSKDxMpP84SGNamHtQFfavsfVr7kUcuFygmTchobJiQfGWLS631tAC-86R-tJK12p1dffXjKQ8sw3T3s7SQ7W7vbH2GG_rflQwswhUOtF5EEjsRSEXYMjp_bUW8AXWFkAQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9tAEB6lVKraA6UvkfLoHlr1ZLA3fnHoIc8GaBCCIuXmel-iKrIRSYTg1D-AxE_pX-lf6C9hxmsbqFQhVeLAJVLiycrandnvG3v2G4D3QhOqR9zR0kjHV1HgCKPxwzf0Ui1OVfHAbbQTDg_8rXEwbsCv6iyM1YeoH7hRZBT7NQX4sTLr16KhqTJ0kpxzl1pFlGWV2_rsFJO2yafNHq7wB84H_a_doVP2FXAk5mO-ExgkPa5UbiRiITGL12GItD3luqXQJeM4TGVshGohtmrXVRwvIczpwFVxhPHYwnEfwWM_dDeoWURvrxas8qLIvscOPaoo88aVTKTL12_f720YvOa2NxlyAXGD5_C7mhxb2fJjbTYVa_L8L93IhzR7CzBf8m3WtgHyAho6ewnPbqgwvoKLNkOMyTERyWcT1k1PRJ79-Xk5GiMMsCGVC-VWZXd2olVhSnX4VOym0ayDNECxPjXaRYw7YruIbYcMUwG2hxwcDeiQDet8x_GnVJmF4c7STLH9U0RB9tmeGGB2a6X7eQ0H9zIfb2AuyzO9CMznBhNMGXgmipGmInOQsdYCw8xTyijZBKdymkSWEu7USeQoseLTPKFlTeplbcLH2v7Yipf803K58sGk3MQmCYlHhpjyehtN4IUz3TFK0u4NRvW3t__zp3fwZLc3SL5s7mwvwVP62dYOLcMcrrReQQY4FatF0DH4dt9-egWxomKw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Nanoporous+Carbon%E2%80%90MXene+Heterostructured+Nanocomposite%E2%80%90Based+Epidermal+Patch+for+Real%E2%80%90Time+Biopotentials+and+Sweat+Glucose+Monitoring&rft.jtitle=Advanced+functional+materials&rft.au=Zahed%2C+Md+Abu&rft.au=Sharifuzzaman%2C+Md&rft.au=Yoon%2C+Hyosang&rft.au=Asaduzzaman%2C+Md&rft.date=2022-12-01&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=32&rft.issue=49&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadfm.202208344&rft.externalDBID=10.1002%252Fadfm.202208344&rft.externalDocID=ADFM202208344 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon |