A Nanoporous Carbon‐MXene Heterostructured Nanocomposite‐Based Epidermal Patch for Real‐Time Biopotentials and Sweat Glucose Monitoring

Despite substantial progress in the development of wearable and flexible monitoring systems that conform to the epidermis, most designs focus on either physiological signs such as the electrocardiogram (ECG) results, respiration rate, or metabolites, and ignore the dynamic fluctuations of pH and tem...

Full description

Saved in:
Bibliographic Details
Published inAdvanced functional materials Vol. 32; no. 49
Main Authors Zahed, Md Abu, Sharifuzzaman, Md, Yoon, Hyosang, Asaduzzaman, Md, Kim, Dong Kyun, Jeong, Seonghoon, Pradhan, Gagan Bahadur, Shin, Young Do, Yoon, Sang Hyuk, Sharma, Sudeep, Zhang, Shipeng, Park, Jae Yeong
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 01.12.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Despite substantial progress in the development of wearable and flexible monitoring systems that conform to the epidermis, most designs focus on either physiological signs such as the electrocardiogram (ECG) results, respiration rate, or metabolites, and ignore the dynamic fluctuations of pH and temperature in sweat during on‐body tests. An advanced butterfly‐inspired hybrid epidermal biosensing (bi‐HEB) patch is presented here, which is interfaced with a custom‐developed miniaturized monitoring system. The patch incorporates a novel transducing layer of nanoporous carbon and MXene (NPC@MXene) for sensitive and durable detection of biomarkers in sweat. The bi‐HEB patch is composed of a glucose biosensor accompanied by pH and temperature sensors to precisely quantify glucose as well as two biopotential electrodes, allowing real‐time recording of electrophysiological (EP) signals. The NPC@MXene‐based glucose biosensor demonstrates an excellent sensitivity of 100.85 µAmm−1 cm−2 within physiological levels (0.003−1.5 mm), and variations in pH and temperature during on‐body perspiration monitoring are calibrated by employing a correction approach. In parallel, the EP electrodes exhibit skin‐electrode contact impedance and biopotential signals similar to those of conventional Ag/AgCl electrodes. Finally, the bi‐HEB patch integrated wearable system is used to accurately monitor sweat glucose and ECG of human subjects participating in indoor physical activities. In‐depth investigations of electrophysiological parameters, ECG, EMG, EEG, and temperature, with precise glucose level determination using an integrated multimodal epidermal patch have been performed in this work. The NPC@MXene‐based electrochemical sensors exhibit high sensitivities and selectivity, including long‐term stabilities. As a portable smart healthcare monitoring device, the bi‐HEB patch is successfully paired with a miniaturized PCB to assess glucose leve and ECG of individuals.
AbstractList Despite substantial progress in the development of wearable and flexible monitoring systems that conform to the epidermis, most designs focus on either physiological signs such as the electrocardiogram (ECG) results, respiration rate, or metabolites, and ignore the dynamic fluctuations of pH and temperature in sweat during on‐body tests. An advanced butterfly‐inspired hybrid epidermal biosensing ( bi ‐HEB) patch is presented here, which is interfaced with a custom‐developed miniaturized monitoring system. The patch incorporates a novel transducing layer of nanoporous carbon and MXene (NPC@MXene) for sensitive and durable detection of biomarkers in sweat. The bi ‐HEB patch is composed of a glucose biosensor accompanied by pH and temperature sensors to precisely quantify glucose as well as two biopotential electrodes, allowing real‐time recording of electrophysiological (EP) signals. The NPC@MXene‐based glucose biosensor demonstrates an excellent sensitivity of 100.85 µAm m −1  cm −2 within physiological levels (0.003−1.5 m m ), and variations in pH and temperature during on‐body perspiration monitoring are calibrated by employing a correction approach. In parallel, the EP electrodes exhibit skin‐electrode contact impedance and biopotential signals similar to those of conventional Ag/AgCl electrodes. Finally, the bi ‐HEB patch integrated wearable system is used to accurately monitor sweat glucose and ECG of human subjects participating in indoor physical activities.
Despite substantial progress in the development of wearable and flexible monitoring systems that conform to the epidermis, most designs focus on either physiological signs such as the electrocardiogram (ECG) results, respiration rate, or metabolites, and ignore the dynamic fluctuations of pH and temperature in sweat during on‐body tests. An advanced butterfly‐inspired hybrid epidermal biosensing (bi‐HEB) patch is presented here, which is interfaced with a custom‐developed miniaturized monitoring system. The patch incorporates a novel transducing layer of nanoporous carbon and MXene (NPC@MXene) for sensitive and durable detection of biomarkers in sweat. The bi‐HEB patch is composed of a glucose biosensor accompanied by pH and temperature sensors to precisely quantify glucose as well as two biopotential electrodes, allowing real‐time recording of electrophysiological (EP) signals. The NPC@MXene‐based glucose biosensor demonstrates an excellent sensitivity of 100.85 µAmm−1 cm−2 within physiological levels (0.003−1.5 mm), and variations in pH and temperature during on‐body perspiration monitoring are calibrated by employing a correction approach. In parallel, the EP electrodes exhibit skin‐electrode contact impedance and biopotential signals similar to those of conventional Ag/AgCl electrodes. Finally, the bi‐HEB patch integrated wearable system is used to accurately monitor sweat glucose and ECG of human subjects participating in indoor physical activities. In‐depth investigations of electrophysiological parameters, ECG, EMG, EEG, and temperature, with precise glucose level determination using an integrated multimodal epidermal patch have been performed in this work. The NPC@MXene‐based electrochemical sensors exhibit high sensitivities and selectivity, including long‐term stabilities. As a portable smart healthcare monitoring device, the bi‐HEB patch is successfully paired with a miniaturized PCB to assess glucose leve and ECG of individuals.
Despite substantial progress in the development of wearable and flexible monitoring systems that conform to the epidermis, most designs focus on either physiological signs such as the electrocardiogram (ECG) results, respiration rate, or metabolites, and ignore the dynamic fluctuations of pH and temperature in sweat during on‐body tests. An advanced butterfly‐inspired hybrid epidermal biosensing (bi‐HEB) patch is presented here, which is interfaced with a custom‐developed miniaturized monitoring system. The patch incorporates a novel transducing layer of nanoporous carbon and MXene (NPC@MXene) for sensitive and durable detection of biomarkers in sweat. The bi‐HEB patch is composed of a glucose biosensor accompanied by pH and temperature sensors to precisely quantify glucose as well as two biopotential electrodes, allowing real‐time recording of electrophysiological (EP) signals. The NPC@MXene‐based glucose biosensor demonstrates an excellent sensitivity of 100.85 µAmm−1 cm−2 within physiological levels (0.003−1.5 mm), and variations in pH and temperature during on‐body perspiration monitoring are calibrated by employing a correction approach. In parallel, the EP electrodes exhibit skin‐electrode contact impedance and biopotential signals similar to those of conventional Ag/AgCl electrodes. Finally, the bi‐HEB patch integrated wearable system is used to accurately monitor sweat glucose and ECG of human subjects participating in indoor physical activities.
Author Sharifuzzaman, Md
Zahed, Md Abu
Asaduzzaman, Md
Shin, Young Do
Zhang, Shipeng
Pradhan, Gagan Bahadur
Sharma, Sudeep
Yoon, Sang Hyuk
Park, Jae Yeong
Yoon, Hyosang
Kim, Dong Kyun
Jeong, Seonghoon
Author_xml – sequence: 1
  givenname: Md Abu
  surname: Zahed
  fullname: Zahed, Md Abu
  organization: Kwangwoon University
– sequence: 2
  givenname: Md
  surname: Sharifuzzaman
  fullname: Sharifuzzaman, Md
  organization: Kwangwoon University
– sequence: 3
  givenname: Hyosang
  surname: Yoon
  fullname: Yoon, Hyosang
  organization: Kwangwoon University
– sequence: 4
  givenname: Md
  surname: Asaduzzaman
  fullname: Asaduzzaman, Md
  organization: Kwangwoon University
– sequence: 5
  givenname: Dong Kyun
  surname: Kim
  fullname: Kim, Dong Kyun
  organization: Kwangwoon University
– sequence: 6
  givenname: Seonghoon
  surname: Jeong
  fullname: Jeong, Seonghoon
  organization: Kwangwoon University
– sequence: 7
  givenname: Gagan Bahadur
  surname: Pradhan
  fullname: Pradhan, Gagan Bahadur
  organization: Kwangwoon University
– sequence: 8
  givenname: Young Do
  surname: Shin
  fullname: Shin, Young Do
  organization: Kwangwoon University
– sequence: 9
  givenname: Sang Hyuk
  surname: Yoon
  fullname: Yoon, Sang Hyuk
  organization: Kwangwoon University
– sequence: 10
  givenname: Sudeep
  surname: Sharma
  fullname: Sharma, Sudeep
  organization: Kwangwoon University
– sequence: 11
  givenname: Shipeng
  surname: Zhang
  fullname: Zhang, Shipeng
  organization: Kwangwoon University
– sequence: 12
  givenname: Jae Yeong
  orcidid: 0000-0002-2056-5151
  surname: Park
  fullname: Park, Jae Yeong
  email: jaepark@kw.ac.kr
  organization: Kwangwoon University
BookMark eNqFkMtKJDEUhsOgMN62sw647jaXqkp62ba2CrYO6oC7Ip2c0khVUiYpxJ0vMDDP6JMYbVEQZFYJyff9h_NvojXnHSD0i5IxJYTtKdN0Y0YYI5IXxQ-0QStajThhcu3jTq9_os0Y7wihQvBiA_2d4jPlfO-DHyKeqbD07vnp3-IaHOBjSBB8TGHQaQhg3lDtu95HmyBj-yrm18PeGgidavFvlfQtbnzAF6DaDFzZDvC-zfkJXLKqjVg5gy8fQCV81A7aR8AL72zywbqbbbTeZAZ23s8t9Gd-eDU7Hp2eH53MpqcjzfNuo7KZCEG0IWIpl5pOCqgqKUrFgJuSUykrpWWzNJxTAYQYlr9oyaAkRgpRcb6Fdle5ffD3A8RU3_khuDyyZqIoKiIrOslUsaJ0LiEGaGptk0rWuxSUbWtK6tfi69fi64_iszb-ovXBdio8fi9MVsKDbeHxP3Q9PZgvPt0XyEic7A
CitedBy_id crossref_primary_10_1002_smll_202309357
crossref_primary_10_1126_sciadv_adu3146
crossref_primary_10_1002_slct_202401553
crossref_primary_10_3390_molecules28124617
crossref_primary_10_1039_D4TB00790E
crossref_primary_10_1002_advs_202410702
crossref_primary_10_1016_j_apsusc_2024_160355
crossref_primary_10_1021_acssensors_3c00148
crossref_primary_10_3390_molecules29010172
crossref_primary_10_3390_mi15080936
crossref_primary_10_1021_acs_analchem_3c00361
crossref_primary_10_1038_s41598_024_75623_7
crossref_primary_10_1002_adfm_202313824
crossref_primary_10_1002_adfm_202309704
crossref_primary_10_1021_acsami_3c12910
crossref_primary_10_1007_s00604_024_06312_5
crossref_primary_10_1016_j_cej_2024_155714
crossref_primary_10_1038_s43246_024_00557_6
crossref_primary_10_1002_adfm_202504481
crossref_primary_10_1016_j_snb_2024_136403
crossref_primary_10_1038_s41528_024_00312_4
crossref_primary_10_1016_j_apsusc_2023_157155
crossref_primary_10_1007_s00449_023_02930_0
crossref_primary_10_1002_adma_202409071
crossref_primary_10_1016_j_cej_2023_145836
crossref_primary_10_1021_acssensors_4c02141
crossref_primary_10_1002_adfm_202401404
crossref_primary_10_1002_smll_202206868
crossref_primary_10_1007_s12598_024_03012_0
crossref_primary_10_1002_adfm_202311637
crossref_primary_10_1021_acsanm_3c01959
crossref_primary_10_3390_bios13030313
crossref_primary_10_1002_adfm_202303313
crossref_primary_10_1002_adfm_202411588
crossref_primary_10_1002_adhm_202404454
crossref_primary_10_1038_s41528_023_00285_w
crossref_primary_10_3389_fmats_2024_1354635
crossref_primary_10_3390_polym15061365
crossref_primary_10_1002_adfm_202405651
crossref_primary_10_1039_D4CC06078D
crossref_primary_10_1002_smll_202303301
crossref_primary_10_1126_sciadv_adj5389
crossref_primary_10_3390_bios13050508
Cites_doi 10.1002/smll.202002517
10.1007/s00604-019-3814-x
10.1021/nn800244k
10.1038/s41467-020-18503-8
10.1002/smll.201602790
10.1109/RBME.2010.2084078
10.1038/ncomms2664
10.1038/ncomms11650
10.1016/j.bios.2015.07.039
10.1016/S0165-0173(98)00056-3
10.1002/smll.201904255
10.2337/diacare.20.3.433
10.1016/j.nanoen.2021.106759
10.1021/acs.jchemed.7b00361
10.1002/adma.201804327
10.1002/adfm.202107653
10.1021/acsnano.0c08689
10.1039/C5NR01816A
10.1021/acsnano.6b04005
10.1002/admt.202000325
10.1016/j.ccr.2020.213222
10.1039/C7LC00914C
10.1038/nature16521
10.1039/C6TA00324A
10.1039/C8TA04214D
10.1002/adfm.201907297
10.1039/C9TC02715G
10.1088/1674-4926/42/10/101602
10.1109/ACCESS.2020.2977172
10.1016/j.ijhydene.2020.08.075
10.1126/sciadv.1601314
10.1016/j.bios.2020.112637
10.1021/accountsmr.1c00002
10.1016/j.bios.2019.01.043
10.1038/s41467-018-07882-8
10.1038/s41928-018-0043-y
10.1126/scitranslmed.abf8629
10.1021/acsami.8b03342
10.1021/acsami.6b05025
10.1038/s41598-016-0005-4
10.1016/j.bios.2021.113685
10.1002/adfm.202009018
10.1021/acsnano.0c00906
10.1021/acs.analchem.0c02211
10.1038/s41587-019-0045-y
10.1016/j.carbon.2020.04.031
10.1038/s41528-021-00107-x
10.1016/j.bios.2020.112038
10.1016/j.ccr.2019.213149
10.1039/C9RA02389E
10.1002/adfm.201804351
10.1038/nnano.2016.38
10.1016/S1385-8947(20)32895-3
10.1126/sciadv.1701629
10.1039/C4RA10572A
10.1016/j.bios.2020.112220
10.1021/acsnano.1c00248
10.1088/2515-7639/ab8f78
10.1038/srep45030
10.1002/admt.201700322
10.1002/smtd.201900005
10.1038/s41551-021-00685-1
ContentType Journal Article
Copyright 2022 Wiley‐VCH GmbH
Copyright_xml – notice: 2022 Wiley‐VCH GmbH
DBID AAYXX
CITATION
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/adfm.202208344
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList CrossRef

Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1616-3028
EndPage n/a
ExternalDocumentID 10_1002_adfm_202208344
ADFM202208344
Genre article
GrantInformation_xml – fundername: Technology Innovation Program
  funderid: RS‐2022‐00154983
– fundername: Ministry of Trade, Industry & Energy
– fundername: Kwangwoon University
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OC
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
.Y3
31~
AANHP
AASGY
AAYXX
ACBWZ
ACRPL
ACYXJ
ADMLS
ADNMO
AEYWJ
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
HF~
HVGLF
LW6
1OB
7SP
7SR
7U5
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
L7M
ID FETCH-LOGICAL-c3834-5f9770cd07b8bc194e66875a2e3d531886ac8fbd3317e00d25a2152e50d877633
IEDL.DBID DR2
ISSN 1616-301X
IngestDate Thu Aug 07 15:31:07 EDT 2025
Thu Apr 24 22:56:20 EDT 2025
Tue Jul 01 00:30:34 EDT 2025
Wed Jan 22 16:26:23 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 49
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3834-5f9770cd07b8bc194e66875a2e3d531886ac8fbd3317e00d25a2152e50d877633
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2056-5151
PQID 2744608619
PQPubID 2045204
PageCount 17
ParticipantIDs proquest_journals_2744608619
crossref_citationtrail_10_1002_adfm_202208344
crossref_primary_10_1002_adfm_202208344
wiley_primary_10_1002_adfm_202208344_ADFM202208344
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-12-01
PublicationDateYYYYMMDD 2022-12-01
PublicationDate_xml – month: 12
  year: 2022
  text: 2022-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Advanced functional materials
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 7
2013; 4
2017; 3
2020; 165
2019; 10
2015; 74
2019; 15
2020; 160
2020; 401
2020; 16
2020; 14
2020; 11
2020; 169
2008; 2
2020; 406
2020; 8
2018; 6
2020; 5
2018; 3
2021; 31
2020; 3
2014; 4
2018; 1
2020; 92
2018; 30
2020; 45
2022; 32
2020; 410
2010; 3
2019; 7
2018; 28
2019; 9
2021; 5
2022; 196
2021; 42
2019; 3
2019; 5
2021; 2
2022; 92
1997; 20
2020; 187
1999; 29
2019; 37
2016; 529
2016; 10
2015; 7
2016; 11
2016; 4
2021; 13
2018; 18
2016; 6
2016; 7
2021; 15
2020; 30
2020; 153
2017; 13
2018; 95
2019; 130
2018; 10
2016; 8
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_64_1
e_1_2_8_62_1
e_1_2_8_1_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_51_1
e_1_2_8_30_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
He W. (e_1_2_8_2_1) 2019; 5
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_63_1
e_1_2_8_40_1
e_1_2_8_61_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_58_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_56_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_52_1
e_1_2_8_50_1
References_xml – volume: 20
  start-page: 433
  year: 1997
  publication-title: Diabetes Care
– volume: 14
  start-page: 5798
  year: 2020
  publication-title: ACS Nano
– volume: 401
  year: 2020
  publication-title: Chem. Eng. J.
– volume: 11
  start-page: 566
  year: 2016
  publication-title: Nat. Nanotechnol.
– volume: 7
  year: 2019
  publication-title: J. Mater. Chem. C
– volume: 32
  year: 2022
  publication-title: Adv. Funct. Mater.
– volume: 7
  start-page: 9927
  year: 2015
  publication-title: Nanoscale
– volume: 42
  year: 2021
  publication-title: J. Semicond.
– volume: 406
  year: 2020
  publication-title: Coord. Chem. Rev.
– volume: 29
  start-page: 169
  year: 1999
  publication-title: Brain Res. Rev.
– volume: 8
  year: 2020
  publication-title: IEEE Access
– volume: 410
  year: 2020
  publication-title: Coord. Chem. Rev.
– volume: 7
  year: 2017
  publication-title: Sci. Rep.
– volume: 153
  year: 2020
  publication-title: Biosens. Bioelectron.
– volume: 529
  start-page: 509
  year: 2016
  publication-title: Nature
– volume: 13
  year: 2021
  publication-title: Sci. Transl. Med.
– volume: 2
  start-page: 184
  year: 2021
  publication-title: Acc Mater Res
– volume: 92
  year: 2020
  publication-title: Anal. Chem.
– volume: 16
  year: 2020
  publication-title: Small
– volume: 10
  start-page: 7216
  year: 2016
  publication-title: ACS Nano
– volume: 30
  year: 2020
  publication-title: Adv. Funct. Mater.
– volume: 6
  start-page: 2
  year: 2016
  publication-title: Sci. Rep.
– volume: 9
  year: 2019
  publication-title: RSC Adv.
– volume: 3
  year: 2017
  publication-title: Sci. Adv.
– volume: 28
  year: 2018
  publication-title: Adv. Funct. Mater.
– volume: 3
  start-page: 106
  year: 2010
  publication-title: IEEE Rev Biomed Eng
– volume: 5
  start-page: 737
  year: 2021
  publication-title: Nat. Biomed. Eng.
– volume: 187
  start-page: 198
  year: 2020
  publication-title: Microchim. Acta
– volume: 3
  year: 2018
  publication-title: Adv. Mater. Technol.
– volume: 15
  start-page: 2800
  year: 2021
  publication-title: ACS Nano
– volume: 6
  year: 2018
  publication-title: J. Mater. Chem. A
– volume: 74
  start-page: 1061
  year: 2015
  publication-title: Biosens. Bioelectron.
– volume: 169
  year: 2020
  publication-title: Biosens. Bioelectron.
– volume: 165
  start-page: 26
  year: 2020
  publication-title: Carbon.
– volume: 37
  start-page: 389
  year: 2019
  publication-title: Nat. Biotechnol.
– volume: 1
  start-page: 160
  year: 2018
  publication-title: Nat. Electron.
– volume: 7
  year: 2016
  publication-title: Nat. Commun.
– volume: 5
  year: 2020
  publication-title: Adv. Mater. Technol.
– volume: 5
  start-page: 9
  year: 2021
  publication-title: npj Flexible Electron.
– volume: 160
  year: 2020
  publication-title: Biosens. Bioelectron.
– volume: 11
  start-page: 4683
  year: 2020
  publication-title: Nat. Commun.
– volume: 15
  year: 2019
  publication-title: Small
– volume: 95
  start-page: 197
  year: 2018
  publication-title: J. Chem. Educ.
– volume: 4
  start-page: 1716
  year: 2013
  publication-title: Nat. Commun.
– volume: 4
  year: 2014
  publication-title: RSC Adv.
– volume: 3
  year: 2019
  publication-title: Small Methods
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 130
  start-page: 315
  year: 2019
  publication-title: Biosens. Bioelectron.
– volume: 8
  year: 2016
  publication-title: ACS Appl. Mater. Interfaces
– volume: 4
  start-page: 5247
  year: 2016
  publication-title: J. Mater. Chem. A
– volume: 92
  year: 2022
  publication-title: Nano Energy
– volume: 31
  year: 2021
  publication-title: Adv. Funct. Mater.
– volume: 18
  start-page: 217
  year: 2018
  publication-title: Lab Chip
– volume: 5
  year: 2019
  publication-title: Sci. Adv.
– volume: 10
  start-page: 1
  year: 2019
  publication-title: Nat. Commun.
– volume: 15
  start-page: 3996
  year: 2021
  publication-title: ACS Nano
– volume: 2
  start-page: 1825
  year: 2008
  publication-title: ACS Nano
– volume: 10
  year: 2018
  publication-title: ACS Appl. Mater. Interfaces
– volume: 13
  year: 2017
  publication-title: Small
– volume: 3
  year: 2020
  publication-title: JPhys Mater.
– volume: 45
  year: 2020
  publication-title: Int. J. Hydrogen Energy
– volume: 196
  year: 2022
  publication-title: Biosens. Bioelectron.
– ident: e_1_2_8_64_1
  doi: 10.1002/smll.202002517
– ident: e_1_2_8_48_1
  doi: 10.1007/s00604-019-3814-x
– ident: e_1_2_8_53_1
  doi: 10.1021/nn800244k
– ident: e_1_2_8_60_1
  doi: 10.1038/s41467-020-18503-8
– ident: e_1_2_8_1_1
  doi: 10.1002/smll.201602790
– ident: e_1_2_8_7_1
  doi: 10.1109/RBME.2010.2084078
– ident: e_1_2_8_46_1
  doi: 10.1038/ncomms2664
– ident: e_1_2_8_11_1
  doi: 10.1038/ncomms11650
– ident: e_1_2_8_5_1
  doi: 10.1016/j.bios.2015.07.039
– ident: e_1_2_8_61_1
  doi: 10.1016/S0165-0173(98)00056-3
– ident: e_1_2_8_34_1
  doi: 10.1002/smll.201904255
– ident: e_1_2_8_63_1
  doi: 10.2337/diacare.20.3.433
– volume: 5
  year: 2019
  ident: e_1_2_8_2_1
  publication-title: Sci. Adv.
– ident: e_1_2_8_37_1
  doi: 10.1016/j.nanoen.2021.106759
– ident: e_1_2_8_54_1
  doi: 10.1021/acs.jchemed.7b00361
– ident: e_1_2_8_21_1
  doi: 10.1002/adma.201804327
– ident: e_1_2_8_10_1
  doi: 10.1002/adfm.202107653
– ident: e_1_2_8_14_1
  doi: 10.1021/acsnano.0c08689
– ident: e_1_2_8_43_1
  doi: 10.1039/C5NR01816A
– ident: e_1_2_8_8_1
  doi: 10.1021/acsnano.6b04005
– ident: e_1_2_8_57_1
  doi: 10.1002/admt.202000325
– ident: e_1_2_8_31_1
  doi: 10.1016/j.ccr.2020.213222
– ident: e_1_2_8_23_1
  doi: 10.1039/C7LC00914C
– ident: e_1_2_8_26_1
  doi: 10.1038/nature16521
– ident: e_1_2_8_33_1
  doi: 10.1039/C6TA00324A
– ident: e_1_2_8_47_1
  doi: 10.1039/C8TA04214D
– ident: e_1_2_8_50_1
  doi: 10.1002/adfm.201907297
– ident: e_1_2_8_38_1
  doi: 10.1039/C9TC02715G
– ident: e_1_2_8_15_1
  doi: 10.1088/1674-4926/42/10/101602
– ident: e_1_2_8_59_1
  doi: 10.1109/ACCESS.2020.2977172
– ident: e_1_2_8_41_1
  doi: 10.1016/j.ijhydene.2020.08.075
– ident: e_1_2_8_4_1
  doi: 10.1126/sciadv.1601314
– ident: e_1_2_8_29_1
  doi: 10.1016/j.bios.2020.112637
– ident: e_1_2_8_24_1
  doi: 10.1021/accountsmr.1c00002
– ident: e_1_2_8_36_1
  doi: 10.1016/j.bios.2019.01.043
– ident: e_1_2_8_51_1
  doi: 10.1038/s41467-018-07882-8
– ident: e_1_2_8_9_1
  doi: 10.1038/s41928-018-0043-y
– ident: e_1_2_8_58_1
  doi: 10.1126/scitranslmed.abf8629
– ident: e_1_2_8_35_1
  doi: 10.1038/s41467-018-07882-8
– ident: e_1_2_8_56_1
  doi: 10.1021/acsami.8b03342
– ident: e_1_2_8_22_1
  doi: 10.1021/acsami.6b05025
– ident: e_1_2_8_55_1
  doi: 10.1038/s41598-016-0005-4
– ident: e_1_2_8_13_1
  doi: 10.1016/j.bios.2021.113685
– ident: e_1_2_8_18_1
  doi: 10.1002/adfm.202009018
– ident: e_1_2_8_20_1
  doi: 10.1021/acsnano.0c00906
– ident: e_1_2_8_28_1
  doi: 10.1021/acs.analchem.0c02211
– ident: e_1_2_8_3_1
  doi: 10.1038/s41587-019-0045-y
– ident: e_1_2_8_19_1
  doi: 10.1016/j.carbon.2020.04.031
– ident: e_1_2_8_6_1
  doi: 10.1038/s41528-021-00107-x
– ident: e_1_2_8_25_1
  doi: 10.1016/j.bios.2020.112038
– ident: e_1_2_8_32_1
  doi: 10.1016/j.ccr.2019.213149
– ident: e_1_2_8_45_1
  doi: 10.1039/C9RA02389E
– ident: e_1_2_8_17_1
  doi: 10.1002/adfm.201804351
– ident: e_1_2_8_27_1
  doi: 10.1038/nnano.2016.38
– ident: e_1_2_8_30_1
  doi: 10.1016/S1385-8947(20)32895-3
– ident: e_1_2_8_62_1
  doi: 10.1126/sciadv.1701629
– ident: e_1_2_8_49_1
  doi: 10.1039/C4RA10572A
– ident: e_1_2_8_52_1
  doi: 10.1016/j.bios.2020.112220
– ident: e_1_2_8_39_1
  doi: 10.1021/acsnano.1c00248
– ident: e_1_2_8_40_1
  doi: 10.1088/2515-7639/ab8f78
– ident: e_1_2_8_44_1
  doi: 10.1038/srep45030
– ident: e_1_2_8_16_1
  doi: 10.1002/admt.201700322
– ident: e_1_2_8_42_1
  doi: 10.1002/smtd.201900005
– ident: e_1_2_8_12_1
  doi: 10.1038/s41551-021-00685-1
SSID ssj0017734
Score 2.6224601
Snippet Despite substantial progress in the development of wearable and flexible monitoring systems that conform to the epidermis, most designs focus on either...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Biomarkers
biopotential
Biosensors
Carbon
Electrocardiography
Electrodes
Epidermis
Glucose
Materials science
Metabolites
Monitoring
MXenes
Nanocomposites
nanoporous carbons
Perspiration
Physiology
Sweat
Temperature sensors
Wearable technology
Title A Nanoporous Carbon‐MXene Heterostructured Nanocomposite‐Based Epidermal Patch for Real‐Time Biopotentials and Sweat Glucose Monitoring
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202208344
https://www.proquest.com/docview/2744608619
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LSsNAFB2kbnThW6xWmYXgKm0yzctlH9YiRkQtdBcyLxRLIrZFcOUPCH6jX-K9mTRWQQTdhITcCZOZufeeSc6cIeSQK8zqAbOU0MJyZeBZXCs4uBp_qoWJzD-4RRd-f-CeDb3h3Cp-ow9RfnBDz8jjNTp4wseNT9HQRGpcSc6YjVtFQBBGwhaioqtSP8oJAvNb2XeQ4OUMZ6qNNmt8Lf41K31CzXnAmmec3ipJZnU1RJP7-nTC6-L5m4zjf15mjawUcJS2zPhZJwsq3SDLcyKFm-S1RSEEZ4DTs-mYdpJHnqXvL2_REKIk7SObJjMitNNHJXNTpKkjF0yBWRuypKQnuA8tpIARvYTQf0sBKdMrgKhggGtQaPsOnj9B4hJ4A01SSa-fIEnQU0OopybyYH22yKB3ctPpW8UmDpaAya9reRoQpi2kHfCQC-fYVb4Pc6SEqaYE_w9DPxGh5rIJQEbZtmRwCzCF8mwZBhD8mtukkmap2iHUZRrmX8JzdBACioPEKkKlOIxCR0otRZVYs06MRaFwjhttjGKjzcxibOa4bOYqOSrtH4y2x4-WtdmYiAsfH8eorejDjNA5rhKWd-4vT4lb3V5UXu3-pdAeWcJzw6epkQp0r9oHVDThB2Sx1Y3Orw9yD_gA5W4Kdw
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3JTtxAEC0BOUAO2QBlEpY-JMrJYPd4yyGHgWEYAoMQizQ3494EYmRHzIxQOPEDkfIr-ZV8Al9Clds2i4QiIXHIZSSPyy2ru6rfq3b1a4BPQhOqR9zR0kjHV1HgCKPxxzf0US1OVbHg1tsNu0f-937Qn4A_1V4Yqw9RL7hRZBTzNQU4LUiv3qqGpsrQVnLOXToroqyr3NY_LzBrG37bauMQf-a8s3G43nXKgwUciQmZ7wQGWY8rlRuJWEhM43UYIm9PuW4q9Mk4DlMZG6GaCK7adRXHW4hzOnBVHGFANrHdSXhBx4iTXH97v1as8qLIfsgOPSop8_qVTqTLV--_730cvCW3dylygXGd1_C36h1b2nK2Mh6JFXn5QDjyv-q-N_CqZNysZUPkLUzo7B28vKPDOAu_WgxRJsdUJB8P2Xp6LvLs-up3r49AwLpUMJRbnd3xuVaFKVXiU7mbRrM1JAKKbdBRu4hyA7aH6HbCMBlg-8jC0YC22bC1U2x_RLVZGPAszRQ7uEAcZJt2zwCzkyu9zxwcPUt_zMNUlmf6PTCfG0wxZeCZKEaiitxBxloLDDRPKaNkA5zKaxJZirjTWSKDxMpP84SGNamHtQFfavsfVr7kUcuFygmTchobJiQfGWLS631tAC-86R-tJK12p1dffXjKQ8sw3T3s7SQ7W7vbH2GG_rflQwswhUOtF5EEjsRSEXYMjp_bUW8AXWFkAQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9tAEB6lVKraA6UvkfLoHlr1ZLA3fnHoIc8GaBCCIuXmel-iKrIRSYTg1D-AxE_pX-lf6C9hxmsbqFQhVeLAJVLiycrandnvG3v2G4D3QhOqR9zR0kjHV1HgCKPxwzf0Ui1OVfHAbbQTDg_8rXEwbsCv6iyM1YeoH7hRZBT7NQX4sTLr16KhqTJ0kpxzl1pFlGWV2_rsFJO2yafNHq7wB84H_a_doVP2FXAk5mO-ExgkPa5UbiRiITGL12GItD3luqXQJeM4TGVshGohtmrXVRwvIczpwFVxhPHYwnEfwWM_dDeoWURvrxas8qLIvscOPaoo88aVTKTL12_f720YvOa2NxlyAXGD5_C7mhxb2fJjbTYVa_L8L93IhzR7CzBf8m3WtgHyAho6ewnPbqgwvoKLNkOMyTERyWcT1k1PRJ79-Xk5GiMMsCGVC-VWZXd2olVhSnX4VOym0ayDNECxPjXaRYw7YruIbYcMUwG2hxwcDeiQDet8x_GnVJmF4c7STLH9U0RB9tmeGGB2a6X7eQ0H9zIfb2AuyzO9CMznBhNMGXgmipGmInOQsdYCw8xTyijZBKdymkSWEu7USeQoseLTPKFlTeplbcLH2v7Yipf803K58sGk3MQmCYlHhpjyehtN4IUz3TFK0u4NRvW3t__zp3fwZLc3SL5s7mwvwVP62dYOLcMcrrReQQY4FatF0DH4dt9-egWxomKw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Nanoporous+Carbon%E2%80%90MXene+Heterostructured+Nanocomposite%E2%80%90Based+Epidermal+Patch+for+Real%E2%80%90Time+Biopotentials+and+Sweat+Glucose+Monitoring&rft.jtitle=Advanced+functional+materials&rft.au=Zahed%2C+Md+Abu&rft.au=Sharifuzzaman%2C+Md&rft.au=Yoon%2C+Hyosang&rft.au=Asaduzzaman%2C+Md&rft.date=2022-12-01&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=32&rft.issue=49&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadfm.202208344&rft.externalDBID=10.1002%252Fadfm.202208344&rft.externalDocID=ADFM202208344
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon