Prognostic models with competing risks: methods and application to coronary risk prediction

Clinical decision-making often relies on a subject's absolute risk of a disease event of interest. However, in a frail population, competing risk events may preclude the occurrence of the event of interest. We review competing-risk regression models with a view toward predictive modeling. We sh...

Full description

Saved in:
Bibliographic Details
Published inEpidemiology (Cambridge, Mass.) Vol. 20; no. 4; p. 555
Main Authors Wolbers, Marcel, Koller, Michael T, Witteman, Jacqueline C M, Steyerberg, Ewout W
Format Journal Article
LanguageEnglish
Published United States 01.07.2009
Subjects
Online AccessGet more information

Cover

Loading…
Abstract Clinical decision-making often relies on a subject's absolute risk of a disease event of interest. However, in a frail population, competing risk events may preclude the occurrence of the event of interest. We review competing-risk regression models with a view toward predictive modeling. We show how measures of prognostic performance (such as calibration and discrimination) can be adapted to the competing-risks setting. An example of coronary heart disease (CHD) prediction in women aged 55-90 years in the Rotterdam study is used to illustrate the proposed methods, and to compare the Fine and Gray regression model to 2 alternative approaches: (1) a standard Cox survival model, which ignores the competing risk of non-CHD death, and (2) a cause-specific hazards model, which combines proportional hazards models for the event of interest and the competing event. The Fine and Gray model and the cause-specific hazards model perform similarly. However, the standard Cox model substantially overestimates 10-year risk of CHD; it classifies 18% of the individuals as high risk (>20%), compared with only 8% according to the Fine and Gray model. We conclude that competing risks have to be considered explicitly in frail populations such as the elderly.
AbstractList Clinical decision-making often relies on a subject's absolute risk of a disease event of interest. However, in a frail population, competing risk events may preclude the occurrence of the event of interest. We review competing-risk regression models with a view toward predictive modeling. We show how measures of prognostic performance (such as calibration and discrimination) can be adapted to the competing-risks setting. An example of coronary heart disease (CHD) prediction in women aged 55-90 years in the Rotterdam study is used to illustrate the proposed methods, and to compare the Fine and Gray regression model to 2 alternative approaches: (1) a standard Cox survival model, which ignores the competing risk of non-CHD death, and (2) a cause-specific hazards model, which combines proportional hazards models for the event of interest and the competing event. The Fine and Gray model and the cause-specific hazards model perform similarly. However, the standard Cox model substantially overestimates 10-year risk of CHD; it classifies 18% of the individuals as high risk (>20%), compared with only 8% according to the Fine and Gray model. We conclude that competing risks have to be considered explicitly in frail populations such as the elderly.
Author Koller, Michael T
Wolbers, Marcel
Steyerberg, Ewout W
Witteman, Jacqueline C M
Author_xml – sequence: 1
  givenname: Marcel
  surname: Wolbers
  fullname: Wolbers, Marcel
  email: mwolbers@oucru.org
  organization: Basel Institute for Clinical Epidemiology and Biostatistics, University Hospital Basel, Basel, Switzerland. mwolbers@oucru.org
– sequence: 2
  givenname: Michael T
  surname: Koller
  fullname: Koller, Michael T
– sequence: 3
  givenname: Jacqueline C M
  surname: Witteman
  fullname: Witteman, Jacqueline C M
– sequence: 4
  givenname: Ewout W
  surname: Steyerberg
  fullname: Steyerberg, Ewout W
BackLink https://www.ncbi.nlm.nih.gov/pubmed/19367167$$D View this record in MEDLINE/PubMed
BookMark eNo1j8lOwzAYhC0Eogu8AUJ-gRT_XmKbGyphkSrBAU4cKsc2rSGxIzsI9e0p22kO8-nTzAwdxhQ9QmdAFkC0vGiumwVpCTDPQIFhmoj6AE1BMKgEV3KCZqW8EQKSgThGE9CsllDLKXp5zGkTUxmDxX1yviv4M4xbbFM_-DHEDc6hvJdL3Ptxm1zBJjpshqEL1owhRTymPZtTNHn3g-Ihexfsd3eCjl5NV_zpX87R803ztLyrVg-398urVWWZYryiQisLlEJLa-OclUpRbcDZFoiVphZeMkWY4aCdrX0ruVSWc9N6AG00oXN0_usdPtreu_WQQ7-fs_5_Sb8AJW9W1g
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
DOI 10.1097/EDE.0b013e3181a39056
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
DatabaseTitleList MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Public Health
EISSN 1531-5487
ExternalDocumentID 19367167
Genre Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations Netherlands
GeographicLocations_xml – name: Netherlands
GroupedDBID ---
.-D
.55
.Z2
01R
0R~
1J1
40H
4Q1
4Q2
4Q3
53G
5GY
5VS
71W
77Y
7O~
8L-
AAAAV
AAAXR
AACGO
AAGIX
AAHPQ
AAIKC
AAIQE
AAMNW
AAMOA
AAMTA
AANCE
AAQKA
AARTV
AASCR
AASOK
AAXQO
AAYEP
ABASU
ABBHK
ABBUW
ABDIG
ABJNI
ABPLY
ABTLG
ABVCZ
ABXSQ
ABXVJ
ABZAD
ACCJW
ACDDN
ACEWG
ACGFO
ACGFS
ACHQT
ACILI
ACLDA
ACWDW
ACWRI
ACXJB
ACXNZ
ADACV
ADFPA
ADGGA
ADHPY
ADNKB
ADULT
AE3
AE6
AEETU
AENEX
AEUPB
AEXZC
AFDTB
AFFNX
AFUWQ
AGINI
AHOMT
AHQNM
AHVBC
AIJEX
AINUH
AJIOK
AJNWD
AJNYG
AJZMW
AKULP
ALMA_UNASSIGNED_HOLDINGS
ALMTX
AMJPA
AMKUR
AMNEI
ANHSF
AOHHW
AQVQM
AWKKM
BOYCO
BQLVK
BS7
C45
CGR
CS3
CUY
CVF
DCCCD
DIWNM
DOOOF
DU5
DUNZO
E.X
EBS
ECM
EEVPB
EIF
EJD
EQZMY
ERAAH
EX3
F2M
F2N
F5P
FCALG
FL-
FW0
GNXGY
GQDEL
H0~
HGD
HLJTE
HQ3
HTVGU
HZ~
IKREB
IKYAY
IN~
IPNFZ
IPSME
JAAYA
JBMMH
JENOY
JF9
JG8
JHFFW
JK3
JK8
JKQEH
JLS
JLXEF
JPM
JSG
JSODD
JST
K8S
KD2
L-C
N9A
NPM
N~7
N~B
N~M
O9-
OAG
OAH
OCUKA
ODA
OJAPA
OLG
OLH
OLU
OLW
OLY
OPUJH
ORVUJ
OUVQU
OVD
OVDNE
OVIDH
OVLEI
OWU
OWV
OWW
OWX
OWY
OWZ
OXXIT
P-K
P2P
R58
RIG
RLZ
S4R
S4S
SA0
T8P
TEORI
TSPGW
V2I
VVN
W3M
WOQ
WOW
X3V
X3W
X7M
XXN
XYM
YCJ
YOC
ZFV
ZGI
ZZMQN
ID FETCH-LOGICAL-c3834-2598c1221b26addc78829a1dcb10c7a65e73803a419dc6eb7478c44abe119a902
IngestDate Tue Oct 15 23:37:00 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c3834-2598c1221b26addc78829a1dcb10c7a65e73803a419dc6eb7478c44abe119a902
PMID 19367167
ParticipantIDs pubmed_primary_19367167
PublicationCentury 2000
PublicationDate 2009-July
PublicationDateYYYYMMDD 2009-07-01
PublicationDate_xml – month: 07
  year: 2009
  text: 2009-July
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Epidemiology (Cambridge, Mass.)
PublicationTitleAlternate Epidemiology
PublicationYear 2009
SSID ssj0017315
Score 2.533989
Snippet Clinical decision-making often relies on a subject's absolute risk of a disease event of interest. However, in a frail population, competing risk events may...
SourceID pubmed
SourceType Index Database
StartPage 555
SubjectTerms Aged
Aged, 80 and over
Coronary Artery Disease - epidemiology
Female
Humans
Middle Aged
Netherlands - epidemiology
Prognosis
Proportional Hazards Models
Risk Assessment - statistics & numerical data
Title Prognostic models with competing risks: methods and application to coronary risk prediction
URI https://www.ncbi.nlm.nih.gov/pubmed/19367167
Volume 20
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5avQgivt-yB6-p2bzjTbRSFIuHlhY8lOxmCx5sShMR_EH-Tmd282qt-LiEkg1LyXyZ134zQ8i5Z4INZrZjyNiThiPGgcHBUBou4COOTTeKFeX_oet1-s7d0B02Gh811tJrxlvifWldyX-kCvdArlgl-wfJlpvCDfgN8oUrSBiuv5Lx4yxBnhz2XFUTbdKCSY6-MOYAkDiuOG96ULTux1w7s0bPU2APA-TOKZb5dIYnN6W0ipx9NUdWsQPKSi9d7pOmrVpGYZBg36w0rwQSsuRw3CdF3WFO1q8Y2oPnDBtK60KRSICxUu7v3LhjCdFByUZ7Qz71YC5nEZb8VjA5hZ5lBgZLdUVsmTXAOTWt6upOvl-0ve4i3L5pV-lcFtmhqVuV1wAwfVEIAGfVg_jQ_3l1oQd3sdQkTT9AbdrFnFB-VuXbzC2KMkP_YtnfUa1p9RYL4YtyY3qbZCOPP-iVBtMWacjJNlnXyVuqa9J2yFMFLKqBRRFYtAQWVcC6pDmsKMCK1mBFs4QWsFKP0gpWu6R_2-5dd4x8Coch7AA-YoiPA8Esi3HLA2MofIjJwojFgjNT-JHnSt8OTDtyWBgLT3IcyCAcJ-KSsTAKTWuPrEySiTwg1HTHzlj6lsvBCnDB4DnpwR4h5wKLeQ_Jvn43o6lutTIq3trRtyvHZK1C2AlZHcO3LU_BUcz4mZLTJ0kGaYQ
link.rule.ids 783
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prognostic+models+with+competing+risks%3A+methods+and+application+to+coronary+risk+prediction&rft.jtitle=Epidemiology+%28Cambridge%2C+Mass.%29&rft.au=Wolbers%2C+Marcel&rft.au=Koller%2C+Michael+T&rft.au=Witteman%2C+Jacqueline+C+M&rft.au=Steyerberg%2C+Ewout+W&rft.date=2009-07-01&rft.eissn=1531-5487&rft.volume=20&rft.issue=4&rft.spage=555&rft_id=info:doi/10.1097%2FEDE.0b013e3181a39056&rft_id=info%3Apmid%2F19367167&rft_id=info%3Apmid%2F19367167&rft.externalDocID=19367167