Making Polyisoprene Self‐Healable through Microstructure Regulation by Rare‐Earth Catalysts
The creation of self‐healing polymers from commodity olefins is of great interest and importance but has remained a challenge to date. We report here for the first time the synthesis of self‐healing polymers by catalyst‐controlled polymerization of a simple commodity diene, isoprene. We found that p...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 61; no. 42; pp. e202210023 - n/a |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
17.10.2022
|
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The creation of self‐healing polymers from commodity olefins is of great interest and importance but has remained a challenge to date. We report here for the first time the synthesis of self‐healing polymers by catalyst‐controlled polymerization of a simple commodity diene, isoprene. We found that polyisoprenes having an appropriate mixture (ca. 70/30) of 3,4‐ and cis‐1,4‐microstructures synthesized by using a half‐sandwich scandium catalyst could act as excellent self‐healing elastomers without any external intervention. The unprecedented self‐healability could be ascribed to nanoscale heterogeneities formed by microphase separation of the relatively hard 3,4‐segments from a flexible cis‐1,4‐segment matrix. The hydrogenated polyisoprenes (without C=C bonds) with the analogous microstructures also exhibited excellent mechanical and self‐healing properties, further demonstrating that even simple polyolefins can be made self‐healable if the microstructures are appropriately regulated.
Polyisoprenes with an appropriate mixture of 3,4‐ and cis‐1,4‐microstructures were synthesized by scandium catalyst‐controlled polymerization of isoprene. The polyisoprenes exhibited excellent elasticity and self‐healability without any external intervention, which is a result of microphase separation of the relatively hard 3,4‐segments from a highly flexible cis‐1,4‐segment matrix at the nanoscale. |
---|---|
AbstractList | The creation of self‐healing polymers from commodity olefins is of great interest and importance but has remained a challenge to date. We report here for the first time the synthesis of self‐healing polymers by catalyst‐controlled polymerization of a simple commodity diene, isoprene. We found that polyisoprenes having an appropriate mixture (ca. 70/30) of 3,4‐ and cis‐1,4‐microstructures synthesized by using a half‐sandwich scandium catalyst could act as excellent self‐healing elastomers without any external intervention. The unprecedented self‐healability could be ascribed to nanoscale heterogeneities formed by microphase separation of the relatively hard 3,4‐segments from a flexible cis‐1,4‐segment matrix. The hydrogenated polyisoprenes (without C=C bonds) with the analogous microstructures also exhibited excellent mechanical and self‐healing properties, further demonstrating that even simple polyolefins can be made self‐healable if the microstructures are appropriately regulated. The creation of self‐healing polymers from commodity olefins is of great interest and importance but has remained a challenge to date. We report here for the first time the synthesis of self‐healing polymers by catalyst‐controlled polymerization of a simple commodity diene, isoprene. We found that polyisoprenes having an appropriate mixture (ca. 70/30) of 3,4‐ and cis‐1,4‐microstructures synthesized by using a half‐sandwich scandium catalyst could act as excellent self‐healing elastomers without any external intervention. The unprecedented self‐healability could be ascribed to nanoscale heterogeneities formed by microphase separation of the relatively hard 3,4‐segments from a flexible cis‐1,4‐segment matrix. The hydrogenated polyisoprenes (without C=C bonds) with the analogous microstructures also exhibited excellent mechanical and self‐healing properties, further demonstrating that even simple polyolefins can be made self‐healable if the microstructures are appropriately regulated. Polyisoprenes with an appropriate mixture of 3,4‐ and cis‐1,4‐microstructures were synthesized by scandium catalyst‐controlled polymerization of isoprene. The polyisoprenes exhibited excellent elasticity and self‐healability without any external intervention, which is a result of microphase separation of the relatively hard 3,4‐segments from a highly flexible cis‐1,4‐segment matrix at the nanoscale. The creation of self‐healing polymers from commodity olefins is of great interest and importance but has remained a challenge to date. We report here for the first time the synthesis of self‐healing polymers by catalyst‐controlled polymerization of a simple commodity diene, isoprene. We found that polyisoprenes having an appropriate mixture (ca. 70/30) of 3,4‐ and cis ‐1,4‐microstructures synthesized by using a half‐sandwich scandium catalyst could act as excellent self‐healing elastomers without any external intervention. The unprecedented self‐healability could be ascribed to nanoscale heterogeneities formed by microphase separation of the relatively hard 3,4‐segments from a flexible cis ‐1,4‐segment matrix. The hydrogenated polyisoprenes (without C=C bonds) with the analogous microstructures also exhibited excellent mechanical and self‐healing properties, further demonstrating that even simple polyolefins can be made self‐healable if the microstructures are appropriately regulated. The creation of self-healing polymers from commodity olefins is of great interest and importance but has remained a challenge to date. We report here for the first time the synthesis of self-healing polymers by catalyst-controlled polymerization of a simple commodity diene, isoprene. We found that polyisoprenes having an appropriate mixture (ca. 70/30) of 3,4- and cis-1,4-microstructures synthesized by using a half-sandwich scandium catalyst could act as excellent self-healing elastomers without any external intervention. The unprecedented self-healability could be ascribed to nanoscale heterogeneities formed by microphase separation of the relatively hard 3,4-segments from a flexible cis-1,4-segment matrix. The hydrogenated polyisoprenes (without C=C bonds) with the analogous microstructures also exhibited excellent mechanical and self-healing properties, further demonstrating that even simple polyolefins can be made self-healable if the microstructures are appropriately regulated.The creation of self-healing polymers from commodity olefins is of great interest and importance but has remained a challenge to date. We report here for the first time the synthesis of self-healing polymers by catalyst-controlled polymerization of a simple commodity diene, isoprene. We found that polyisoprenes having an appropriate mixture (ca. 70/30) of 3,4- and cis-1,4-microstructures synthesized by using a half-sandwich scandium catalyst could act as excellent self-healing elastomers without any external intervention. The unprecedented self-healability could be ascribed to nanoscale heterogeneities formed by microphase separation of the relatively hard 3,4-segments from a flexible cis-1,4-segment matrix. The hydrogenated polyisoprenes (without C=C bonds) with the analogous microstructures also exhibited excellent mechanical and self-healing properties, further demonstrating that even simple polyolefins can be made self-healable if the microstructures are appropriately regulated. |
Author | Nishiyama, Yusuke Hong, You‐lee Higaki, Yuji Nishiura, Masayoshi Hou, Zhaomin Yang, Yang Wang, Haobing |
Author_xml | – sequence: 1 givenname: Haobing orcidid: 0000-0002-9104-1726 surname: Wang fullname: Wang, Haobing organization: RIKEN Center for Sustainable Resource Science – sequence: 2 givenname: Yang orcidid: 0000-0002-3041-8593 surname: Yang fullname: Yang, Yang organization: RIKEN Center for Sustainable Resource Science – sequence: 3 givenname: Masayoshi orcidid: 0000-0003-2748-9814 surname: Nishiura fullname: Nishiura, Masayoshi organization: RIKEN Cluster for Pioneering Research – sequence: 4 givenname: You‐lee surname: Hong fullname: Hong, You‐lee organization: RIKEN-JEOL Collaboration Center – sequence: 5 givenname: Yusuke orcidid: 0000-0001-7136-1127 surname: Nishiyama fullname: Nishiyama, Yusuke organization: JEOL RESONANCE Inc – sequence: 6 givenname: Yuji orcidid: 0000-0002-1032-4661 surname: Higaki fullname: Higaki, Yuji organization: Oita University – sequence: 7 givenname: Zhaomin orcidid: 0000-0003-2841-5120 surname: Hou fullname: Hou, Zhaomin email: houz@riken.jp organization: RIKEN Cluster for Pioneering Research |
BookMark | eNqFkctKJDEUhoM44GVm67rAjZtuc6lUJUtp2gt4GRz3IZ0-6Y7GSpukkNr5CPOM8ySmbVEQBlcnB77vcHL-PbTdhQ4QOiB4TDCmx7pzMKaY0nXHttAu4ZSMWNuy7fKuGRu1gpMdtJfSfSGEwM0uUlf6wXWL6nfwg0thFaGD6g94--_l7zlor2ceqryMoV8sqytnYkg59ib3EapbWPReZxe6ajZUtzpCkaY65mU10Vn7IeX0E_2w2if49V730d3p9G5yPrq8ObuYnFyODBNlM4u5EBxMbQkDiWcg2jnFgovGzltjay0pn9dWcosZIwYsF3hmydw0RhPTsH10tBm7iuGph5TVo0sGvNcdhD4pKgiRbS0x_x5tscSkaSQt6OEX9D70sSv_KBRltOWSkULVG2p9nBTBKuPy21ly1M4rgtU6EbXOR33kU7TxF20V3aOOw_8FuRGenYfhG1qdXF9MP91X422nWw |
CitedBy_id | crossref_primary_10_1080_1536383X_2024_2320803 crossref_primary_10_1002_ange_202502665 crossref_primary_10_1002_anie_202502665 crossref_primary_10_1039_D4DT02659D crossref_primary_10_1016_j_dyepig_2024_112560 crossref_primary_10_1016_j_apsusc_2023_159136 crossref_primary_10_1016_j_eurpolymj_2023_112333 crossref_primary_10_1021_acs_nanolett_4c00163 crossref_primary_10_1002_ange_202318203 crossref_primary_10_1039_D3DT03674J crossref_primary_10_1002_anie_202318203 crossref_primary_10_1021_acs_macromol_4c02670 crossref_primary_10_1039_D3MH00274H crossref_primary_10_1021_acsapm_4c03723 crossref_primary_10_1021_acs_macromol_4c00819 crossref_primary_10_1021_acscatal_3c05011 crossref_primary_10_1021_acsami_4c10680 crossref_primary_10_1021_acs_organomet_4c00416 |
Cites_doi | 10.1002/polc.5070260107 10.1002/adma.201706846 10.1038/nmat3713 10.1021/acs.chemrev.5b00310 10.1002/anie.202111161 10.1002/ange.200705120 10.1038/s41467-022-29084-z 10.1002/anie.201104011 10.1021/jacs.1c10455 10.1038/s41427-021-00349-1 10.1038/s41467-020-14911-y 10.1002/anie.201910002 10.1038/nmat1934 10.1038/nchem.1314 10.1038/s41578-020-0202-4 10.1002/pol.1980.180180614 10.1126/science.1065879 10.1126/science.aat2975 10.1021/ma051098a 10.1002/anie.200604348 10.1126/science.aam7588 10.1126/science.267.5195.217 10.1126/science.aah5744 10.1021/ma60056a031 10.1007/s11426-021-1157-9 10.1038/nature06669 10.1038/nchem.2492 10.1002/ange.202000848 10.1007/BF02086052 10.1126/science.1125268 10.1021/ja208129t 10.1002/ange.200604348 10.1021/acs.macromol.6b01567 10.1002/anie.202000848 10.1021/jacs.8b13316 10.1038/35057232 10.1021/acs.chemrev.0c00938 10.1038/s41467-022-30364-x 10.1002/anie.200705120 10.1002/anie.201915760 10.1039/b708534f 10.1016/j.chempr.2018.06.001 10.1002/app.1964.070080202 10.1126/science.1167391 10.1016/j.progpolymsci.2015.06.001 10.1002/ange.202111161 10.1126/sciadv.1701011 10.1038/nature09963 10.1021/jacs.9b04275 10.1002/ange.201104011 10.1021/ja9056213 10.1021/ja055397r 10.1002/ange.201910002 10.1038/s41467-020-15949-8 10.1038/nchem.595 10.1038/nature21002 10.1002/ange.201915760 |
ContentType | Journal Article |
Copyright | 2022 Wiley‐VCH GmbH 2022 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2022 Wiley‐VCH GmbH – notice: 2022 Wiley-VCH GmbH. |
DBID | AAYXX CITATION 7TM K9. 7X8 7S9 L.6 |
DOI | 10.1002/anie.202210023 |
DatabaseName | CrossRef Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | ProQuest Health & Medical Complete (Alumni) AGRICOLA CrossRef MEDLINE - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | n/a |
ExternalDocumentID | 10_1002_anie_202210023 ANIE202210023 |
Genre | article |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT UQL V2E VQA W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT AAYXX ABDBF ABJNI AEYWJ AGHNM AGYGG CITATION 7TM K9. 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c3833-f05885ec4f13e90be87d208586fd7cf4a925d4f95f0331cef580bf1dc6ca1c63 |
IEDL.DBID | DR2 |
ISSN | 1433-7851 1521-3773 |
IngestDate | Fri Jul 11 18:27:05 EDT 2025 Fri Jul 11 06:02:52 EDT 2025 Sun Jul 13 05:36:07 EDT 2025 Thu Apr 24 23:04:46 EDT 2025 Tue Jul 01 01:18:28 EDT 2025 Wed Jan 22 16:23:21 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 42 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3833-f05885ec4f13e90be87d208586fd7cf4a925d4f95f0331cef580bf1dc6ca1c63 |
Notes | These authors contributed equally to this work. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-3041-8593 0000-0003-2841-5120 0000-0001-7136-1127 0000-0002-1032-4661 0000-0003-2748-9814 0000-0002-9104-1726 |
PQID | 2723275931 |
PQPubID | 946352 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_2811974905 proquest_miscellaneous_2709016692 proquest_journals_2723275931 crossref_citationtrail_10_1002_anie_202210023 crossref_primary_10_1002_anie_202210023 wiley_primary_10_1002_anie_202210023_ANIE202210023 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | October 17, 2022 |
PublicationDateYYYYMMDD | 2022-10-17 |
PublicationDate_xml | – month: 10 year: 2022 text: October 17, 2022 day: 17 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Angewandte Chemie International Edition |
PublicationYear | 2022 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2018; 362 2015; 49–50 2017; 3 1964; 8 2002; 295 2006; 39 2020 2020; 59 132 2016; 540 2007 2001; 409 2020; 11 2022; 65 2021; 121 2008 2008; 47 120 2009; 131 2019; 141 2017; 355 2011; 133 2006; 312 2011; 472 2022; 144 2020; 5 2018; 4 1980; 18 2018; 359 2013; 12 2005; 127 2007 2007; 46 119 2019 2022; 13 2021 2021; 60 133 2007; 6 2022; 14 2018; 30 2016; 116 2011 2011; 50 123 1969; 26 1977; 10 1995; 267 1967; 220 2010; 2 2008; 451 2012; 4 2016; 49 2009; 323 2016; 8 e_1_2_7_5_2 e_1_2_7_9_2 e_1_2_7_7_2 e_1_2_7_19_2 e_1_2_7_17_2 e_1_2_7_15_2 e_1_2_7_1_1 e_1_2_7_13_2 e_1_2_7_41_2 e_1_2_7_11_2 e_1_2_7_43_2 e_1_2_7_43_3 e_1_2_7_45_2 e_1_2_7_45_3 e_1_2_7_47_1 e_1_2_7_26_2 e_1_2_7_49_1 e_1_2_7_28_1 e_1_2_7_50_1 e_1_2_7_25_2 e_1_2_7_52_1 e_1_2_7_23_2 e_1_2_7_31_2 e_1_2_7_54_2 e_1_2_7_21_3 e_1_2_7_21_2 e_1_2_7_33_2 e_1_2_7_56_2 e_1_2_7_33_3 e_1_2_7_35_1 e_1_2_7_58_2 e_1_2_7_37_2 e_1_2_7_39_1 e_1_2_7_4_1 e_1_2_7_2_2 e_1_2_7_8_1 e_1_2_7_6_2 e_1_2_7_18_2 e_1_2_7_16_2 e_1_2_7_14_2 e_1_2_7_40_2 e_1_2_7_12_2 e_1_2_7_42_2 e_1_2_7_42_3 e_1_2_7_10_2 e_1_2_7_44_2 e_1_2_7_46_1 e_1_2_7_48_1 e_1_2_7_27_2 e_1_2_7_29_2 Sesto B. (e_1_2_7_3_2) 2019 e_1_2_7_51_1 e_1_2_7_53_1 e_1_2_7_24_2 e_1_2_7_30_2 e_1_2_7_22_2 e_1_2_7_32_2 e_1_2_7_20_3 e_1_2_7_20_2 e_1_2_7_34_2 e_1_2_7_55_2 e_1_2_7_36_2 e_1_2_7_57_2 e_1_2_7_38_2 e_1_2_7_38_3 |
References_xml | – volume: 355 start-page: 814 year: 2017 end-page: 816 publication-title: Science – volume: 5 start-page: 562 year: 2020 end-page: 583 publication-title: Nat. Rev. Mater. – volume: 8 start-page: 618 year: 2016 end-page: 624 publication-title: Nat. Chem. – volume: 14 start-page: 10 year: 2022 publication-title: NPG Asia Mater. – volume: 10 start-page: 384 year: 1977 end-page: 405 publication-title: Macromolecules – volume: 39 start-page: 667 year: 2006 end-page: 677 publication-title: Macromolecules – volume: 50 123 start-page: 12012 12218 year: 2011 2011 end-page: 12015 12221 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 4 start-page: 467 year: 2012 end-page: 472 publication-title: Nat. Chem. – volume: 312 start-page: 714 year: 2006 end-page: 719 publication-title: Science – volume: 362 start-page: 220 year: 2018 end-page: 225 publication-title: Science – volume: 13 start-page: 2633 year: 2022 publication-title: Nat. Commun. – volume: 409 start-page: 794 year: 2001 end-page: 797 publication-title: Nature – volume: 131 start-page: 13870 year: 2009 end-page: 13882 publication-title: J. Am. Chem. Soc. – volume: 46 119 start-page: 1909 1941 year: 2007 2007 end-page: 1913 1945 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 323 start-page: 1458 year: 2009 end-page: 1460 publication-title: Science – volume: 451 start-page: 977 year: 2008 end-page: 980 publication-title: Nature – volume: 3 year: 2017 publication-title: Sci. Adv. – volume: 11 start-page: 1028 year: 2020 publication-title: Nat. Commun. – volume: 59 132 start-page: 395 403 year: 2020 2020 end-page: 402 410 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – year: 2019 – volume: 295 start-page: 1698 year: 2002 end-page: 1702 publication-title: Science – volume: 26 start-page: 99 year: 1969 end-page: 115 publication-title: J. Polym. Sci. Part C – volume: 12 start-page: 932 year: 2013 end-page: 937 publication-title: Nat. Mater. – start-page: 4137 year: 2007 end-page: 4139 publication-title: Chem. Commun. – volume: 49–50 start-page: 34 year: 2015 end-page: 59 publication-title: Prog. Polym. Sci. – volume: 267 start-page: 217 year: 1995 end-page: 219 publication-title: Science – volume: 11 start-page: 2037 year: 2020 publication-title: Nat. Commun. – volume: 116 start-page: 1398 year: 2016 end-page: 1433 publication-title: Chem. Rev. – volume: 2 start-page: 257 year: 2010 end-page: 268 publication-title: Nat. Chem. – volume: 220 start-page: 19 year: 1967 end-page: 24 publication-title: Kolloid Z. Z. Polym. – volume: 359 start-page: 72 year: 2018 end-page: 76 publication-title: Science – volume: 59 132 start-page: 7953 8027 year: 2020 2020 end-page: 7959 8033 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 65 start-page: 363 year: 2022 end-page: 372 publication-title: Sci. China Chem. – volume: 121 start-page: 1716 year: 2021 end-page: 1745 publication-title: Chem. Rev. – volume: 59 132 start-page: 7173 7240 year: 2020 2020 end-page: 7177 7244 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 8 start-page: 555 year: 1964 end-page: 564 publication-title: J. Appl. Polym. Sci. – volume: 472 start-page: 334 year: 2011 end-page: 337 publication-title: Nature – volume: 49 start-page: 6743 year: 2016 end-page: 6751 publication-title: Macromolecules – volume: 47 120 start-page: 2642 2682 year: 2008 2008 end-page: 2645 2685 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 13 start-page: 1338 year: 2022 publication-title: Nat. Commun. – volume: 127 start-page: 14562 year: 2005 end-page: 14563 publication-title: J. Am. Chem. Soc. – volume: 141 start-page: 3249 year: 2019 end-page: 3257 publication-title: J. Am. Chem. Soc. – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 133 start-page: 18086 year: 2011 end-page: 18089 publication-title: J. Am. Chem. Soc. – volume: 4 start-page: 1928 year: 2018 end-page: 1936 publication-title: Chem – volume: 60 133 start-page: 26192 26396 year: 2021 2021 end-page: 26198 26402 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 141 start-page: 12624 year: 2019 end-page: 12633 publication-title: J. Am. Chem. Soc. – volume: 144 start-page: 436 year: 2022 end-page: 445 publication-title: J. Am. Chem. Soc. – volume: 18 start-page: 1343 year: 1980 end-page: 1359 publication-title: J. Polym. Sci. Polym. Phys. Ed. – volume: 540 start-page: 363 year: 2016 end-page: 370 publication-title: Nature – volume: 6 start-page: 581 year: 2007 end-page: 585 publication-title: Nat. Mater. – ident: e_1_2_7_49_1 doi: 10.1002/polc.5070260107 – ident: e_1_2_7_19_2 doi: 10.1002/adma.201706846 – ident: e_1_2_7_16_2 doi: 10.1038/nmat3713 – ident: e_1_2_7_2_2 doi: 10.1021/acs.chemrev.5b00310 – ident: e_1_2_7_33_2 doi: 10.1002/anie.202111161 – ident: e_1_2_7_43_3 doi: 10.1002/ange.200705120 – ident: e_1_2_7_34_2 doi: 10.1038/s41467-022-29084-z – ident: e_1_2_7_45_2 doi: 10.1002/anie.201104011 – ident: e_1_2_7_24_2 doi: 10.1021/jacs.1c10455 – ident: e_1_2_7_26_2 doi: 10.1038/s41427-021-00349-1 – ident: e_1_2_7_32_2 doi: 10.1038/s41467-020-14911-y – ident: e_1_2_7_21_2 doi: 10.1002/anie.201910002 – ident: e_1_2_7_11_2 doi: 10.1038/nmat1934 – ident: e_1_2_7_4_1 – ident: e_1_2_7_39_1 – ident: e_1_2_7_8_1 – ident: e_1_2_7_15_2 doi: 10.1038/nchem.1314 – ident: e_1_2_7_7_2 doi: 10.1038/s41578-020-0202-4 – ident: e_1_2_7_52_1 doi: 10.1002/pol.1980.180180614 – ident: e_1_2_7_10_2 doi: 10.1126/science.1065879 – ident: e_1_2_7_30_2 doi: 10.1126/science.aat2975 – ident: e_1_2_7_55_2 doi: 10.1021/ma051098a – ident: e_1_2_7_42_2 doi: 10.1002/anie.200604348 – ident: e_1_2_7_35_1 – ident: e_1_2_7_18_2 doi: 10.1126/science.aam7588 – ident: e_1_2_7_54_2 doi: 10.1126/science.267.5195.217 – ident: e_1_2_7_58_2 doi: 10.1126/science.aah5744 – ident: e_1_2_7_50_1 doi: 10.1021/ma60056a031 – ident: e_1_2_7_27_2 doi: 10.1007/s11426-021-1157-9 – ident: e_1_2_7_12_2 doi: 10.1038/nature06669 – ident: e_1_2_7_17_2 doi: 10.1038/nchem.2492 – ident: e_1_2_7_20_3 doi: 10.1002/ange.202000848 – ident: e_1_2_7_51_1 doi: 10.1007/BF02086052 – ident: e_1_2_7_56_2 doi: 10.1126/science.1125268 – ident: e_1_2_7_46_1 doi: 10.1021/ja208129t – ident: e_1_2_7_42_3 doi: 10.1002/ange.200604348 – ident: e_1_2_7_57_2 doi: 10.1021/acs.macromol.6b01567 – ident: e_1_2_7_20_2 doi: 10.1002/anie.202000848 – ident: e_1_2_7_28_1 – ident: e_1_2_7_31_2 doi: 10.1021/jacs.8b13316 – ident: e_1_2_7_9_2 doi: 10.1038/35057232 – ident: e_1_2_7_23_2 doi: 10.1021/acs.chemrev.0c00938 – ident: e_1_2_7_25_2 doi: 10.1038/s41467-022-30364-x – ident: e_1_2_7_43_2 doi: 10.1002/anie.200705120 – ident: e_1_2_7_1_1 – ident: e_1_2_7_38_2 doi: 10.1002/anie.201915760 – ident: e_1_2_7_47_1 doi: 10.1039/b708534f – ident: e_1_2_7_29_2 doi: 10.1016/j.chempr.2018.06.001 – ident: e_1_2_7_48_1 doi: 10.1002/app.1964.070080202 – ident: e_1_2_7_13_2 doi: 10.1126/science.1167391 – ident: e_1_2_7_5_2 doi: 10.1016/j.progpolymsci.2015.06.001 – ident: e_1_2_7_33_3 doi: 10.1002/ange.202111161 – ident: e_1_2_7_36_2 doi: 10.1126/sciadv.1701011 – ident: e_1_2_7_14_2 doi: 10.1038/nature09963 – ident: e_1_2_7_37_2 doi: 10.1021/jacs.9b04275 – ident: e_1_2_7_45_3 doi: 10.1002/ange.201104011 – ident: e_1_2_7_53_1 – ident: e_1_2_7_44_2 doi: 10.1021/ja9056213 – ident: e_1_2_7_41_2 doi: 10.1021/ja055397r – ident: e_1_2_7_21_3 doi: 10.1002/ange.201910002 – ident: e_1_2_7_22_2 doi: 10.1038/s41467-020-15949-8 – ident: e_1_2_7_40_2 doi: 10.1038/nchem.595 – ident: e_1_2_7_6_2 doi: 10.1038/nature21002 – ident: e_1_2_7_38_3 doi: 10.1002/ange.201915760 – volume-title: Chemical Economics Handbook year: 2019 ident: e_1_2_7_3_2 |
SSID | ssj0028806 |
Score | 2.5088983 |
Snippet | The creation of self‐healing polymers from commodity olefins is of great interest and importance but has remained a challenge to date. We report here for the... The creation of self-healing polymers from commodity olefins is of great interest and importance but has remained a challenge to date. We report here for the... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | e202210023 |
SubjectTerms | Alkenes Catalysts Chemical synthesis Commodities Commodity Monomer Elastomers Healing Isoprene Microstructure Polyisoprenes Polymerization Polymers Polyolefins Rare-Earth Catalysts Scandium Segments Self-Healing Materials |
Title | Making Polyisoprene Self‐Healable through Microstructure Regulation by Rare‐Earth Catalysts |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202210023 https://www.proquest.com/docview/2723275931 https://www.proquest.com/docview/2709016692 https://www.proquest.com/docview/2811974905 |
Volume | 61 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA7iRS--xfVFBMFTtXm1zVGWlVVQZFXwVpI0QXHZFbt7WE_-BH-jv8RMX6uCCnpr6aSkmZnmSzLzDUL7jjInNJGBpFEWcM5YoBTPAm2Ji3UmPUYtoi0uou4NP7sVtx-y-Et-iGbDDTyj-F-DgyudH01JQyED26_vKIV7oPuEgC1ARb2GP4p64yzTi3wXoAp9zdoY0qPPzT_PSlOo-RGwFjPOySJSdV_LQJOHw_FIH5rnLzSO__mYJbRQwVF8XNrPMpqxgxU0166rwK2i9LwoV4Uvh_3JfT4sGDDxle27t5dXSGGCzCtcFfvB5xDdVzLSjp8s7pV17r3msZ7gnnqyvlHH2-odbsOu0SQf5Wvo-qRz3e4GVVGGwPjFLAtcKJJEWMMdYVaG2iZxBnU-k8hlsXFcSSoy7qRwIWPEWCeSUDuSmcgoYiK2jmYHw4HdQFhaZolURhu_JssoVf6dkVPeqqgwTvEWCmqdpKYiLIe6Gf20pFqmKYxa2oxaCx008o8lVce3ktu1itPKZfOUxh5cxkIy0kJ7zWM_2nCCogZ2OAaZ0OOnKJL0B5kETma5DEUL0ULnv_QmPb447TR3m39ptIXm4RrmVBJvo1mvaLvjwdJI7xYO8Q7qTQ8Q |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbhMxEB6VciiX8i8CBYwE4rTt2l7vrg89VGmqhDYRCkHqzfJ6bVo1SlA3EQonHoFH6avwCjwJnv0rRQIkpB44etf2ej0z9vhnvg_gpWPciYzKQLI4D6KI80DrKA8yS12S5dL7qOVti1Hcfx-9ORbHa3DRxMJU-BDthhtaRjleo4HjhvTOJWoohmD7BR5jmG74qw_t6pNftRW7g30v4leMHfQm3X5QEwsExi_IeOBCkabCmshRbmWY2TTJkasyjV2eGBdpyUQeOSlcyDk11ok0zBzNTWw0NTH31d6Am8gijmj9--MWsIp5a6jimfxXkPa-gYkM2c7V5l6dBi9925895HKKO7gN35rOqW62nG0vF9m2-fwLbuT_1Ht3YLP2t8leZSB3Yc3O7sFGt6G5uw9qWPJxkbfz6eq0mJcQn-SdnbrvX75ijBaGlpGazYgM8fpiBbm7PLdkbD_U7GckW5GxPre-UM8b4wnp4rbYqlgUD2ByHb_3ENZn85l9BERabqnUJjN-0Zkzpn2dsdPebJgwTkcdCBodUKZGZEdikKmqsKSZQiGpVkgdeN3m_1hhkfw251ajUqoekwrFEu89J0Jy2oEX7Wvf23hEpGd2vsQ8oXcQ41iyP-RJ8eg5kqHoACt17C-tUXujQa9NPf6XQs9hoz8ZHqmjwejwCdzC5-hA0GQL1r3Q7VPvGS6yZ6UxElDXrL4_APQsbQQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFL0qRQI2lFfVgQJGArFKG7-SeMGimoc6lI6qoUjdWbZjQ8VopmpmhIYVn9A_6a_wDf0S7LxKkQAJqQuWTmzHse-177V9zwF46Qh1XGMRCZLkEWOURkqxPNIWu1Tnwtuo5W2LUbL7gb094kcrcN7EwlT4EO2GW9CMcr4OCn6Su-1L0NAQge39O0JCuqGv3rPLL95pK94Me36EXxEy6B92d6OaVyAy3h-jkYt5lnFrmMPUiljbLM0DVWWWuDw1jilBeM6c4C6mFBvreBZrh3OTGIVNQn21N-AmS2IRuCJ64xavinhlqMKZ_FcC632DEhmT7avNvboKXpq2PxvI5Qo3WIPvTd9UF1s-by3mest8_QU28j_qvHtwt7a20U6lHvdhxU4fwO1uQ3L3EOR-ycaFDmaT5XExKwE-0Xs7cRffzkKEVggsQzWXEdoPlxcrwN3FqUVj-7HmPkN6icbq1PpCfa-Kn1A3bIoti3nxCA6v4_fWYXU6m9oNQMJSi4Uy2niXMydE-ToTp7zSEG6cYh2IGhGQpsZjD7QgE1khSRMZBkm2g9SB123-kwqJ5Lc5NxuJkvWMVEiSets55YLiDrxoX_veDgdEampni5DHizROEkH-kCcLB89MxLwDpBSxv7RG7oyG_Tb1-F8KPYdbB72BfDcc7T2BO-FxsB5wugmrfsztU28WzvWzUhURyGuW3h8tL2uz |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Making+Polyisoprene+Self%E2%80%90Healable+through+Microstructure+Regulation+by+Rare%E2%80%90Earth+Catalysts&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Wang%2C+Haobing&rft.au=Yang%2C+Yang&rft.au=Nishiura%2C+Masayoshi&rft.au=You%E2%80%90lee+Hong&rft.date=2022-10-17&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=61&rft.issue=42&rft_id=info:doi/10.1002%2Fanie.202210023&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |