Texture Exposure of Unconventional (101)Zn Facet: Enabling Dendrite‐Free Zn Deposition on Metallic Zinc Anodes

Texturing metallic zinc anodes (MZAs) for selective exposure of (002)Zn plane with high thermodynamical stability is an efficient scheme for dendrite‐free Zn electrodeposition. However, fundamental factors that influence Zn deposition morphology via surface crystallographic texture engineering are n...

Full description

Saved in:
Bibliographic Details
Published inAdvanced energy materials Vol. 14; no. 16
Main Authors Cheng, Zihai, Wang, Ke, Fu, Jimin, Mo, Funian, Lu, Peng, Gao, Jiantou, Ho, Derek, Li, Bo, Hu, Haibo
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 01.04.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Texturing metallic zinc anodes (MZAs) for selective exposure of (002)Zn plane with high thermodynamical stability is an efficient scheme for dendrite‐free Zn electrodeposition. However, fundamental factors that influence Zn deposition morphology via surface crystallographic texture engineering are not well understood. Herein, different from traditional cognition, MZAs with preferential exposure of (101)Zn facet are demonstrated to be equally effective in promoting dendrite‐free Zn deposition, which is enabled by introducing trace amount (0.01 m) of theophylline into ZnSO4 electrolyte. Experimental results and mathematical model corroborate, indicating mechanistically that the theophylline derived cations preferentially adsorb on the (002)Zn crystal plane due to higher adsorption energy, thereby accelerating its growth through increased binding affinity with Zn2+ ions. Consequently, this phenomenon facilitates the texture exposure of (101)Zn facet to achieve ordered surface crystallographic orientation of MZAs (101‐Zn), thus enabling electrodeposition/dissolution cycling over 650 h under a depth of discharge up to 40% and significantly boosting the rechargeability (76.7% capacity retention after 1000 cycles) of the 101‐Zn||carbon‐cloth@MnO2 full battery relative to counterpart without theophylline additive (36.3%). The work offers deep insights on the scientific links between the surface crystallographic orientation of MZAs and Zn deposition morphology, while opens up vast untapped opportunities to realize dendrite‐free MZAs. Dendrite‐free Zn deposition on metallic zinc anodes (MZAs) enabled by texture exposure of unconventional (101)Zn facet is demonstrated by introducing trace amount of theophylline into ZnSO4 electrolyte, which removes the prior believed constraint of realizing uniform Zn growth by preferential exposing conventional (002)Zn plane, thus significantly expanding the design space available for crystallographic texturing of Zn surface to overcome dendrites proliferation.
AbstractList Texturing metallic zinc anodes (MZAs) for selective exposure of (002)Zn plane with high thermodynamical stability is an efficient scheme for dendrite‐free Zn electrodeposition. However, fundamental factors that influence Zn deposition morphology via surface crystallographic texture engineering are not well understood. Herein, different from traditional cognition, MZAs with preferential exposure of (101)Zn facet are demonstrated to be equally effective in promoting dendrite‐free Zn deposition, which is enabled by introducing trace amount (0.01 m) of theophylline into ZnSO4 electrolyte. Experimental results and mathematical model corroborate, indicating mechanistically that the theophylline derived cations preferentially adsorb on the (002)Zn crystal plane due to higher adsorption energy, thereby accelerating its growth through increased binding affinity with Zn2+ ions. Consequently, this phenomenon facilitates the texture exposure of (101)Zn facet to achieve ordered surface crystallographic orientation of MZAs (101‐Zn), thus enabling electrodeposition/dissolution cycling over 650 h under a depth of discharge up to 40% and significantly boosting the rechargeability (76.7% capacity retention after 1000 cycles) of the 101‐Zn||carbon‐cloth@MnO2 full battery relative to counterpart without theophylline additive (36.3%). The work offers deep insights on the scientific links between the surface crystallographic orientation of MZAs and Zn deposition morphology, while opens up vast untapped opportunities to realize dendrite‐free MZAs.
Texturing metallic zinc anodes (MZAs) for selective exposure of (002) Zn plane with high thermodynamical stability is an efficient scheme for dendrite‐free Zn electrodeposition. However, fundamental factors that influence Zn deposition morphology via surface crystallographic texture engineering are not well understood. Herein, different from traditional cognition, MZAs with preferential exposure of (101) Zn facet are demonstrated to be equally effective in promoting dendrite‐free Zn deposition, which is enabled by introducing trace amount (0.01  m ) of theophylline into ZnSO 4 electrolyte. Experimental results and mathematical model corroborate, indicating mechanistically that the theophylline derived cations preferentially adsorb on the (002) Zn crystal plane due to higher adsorption energy, thereby accelerating its growth through increased binding affinity with Zn 2+ ions. Consequently, this phenomenon facilitates the texture exposure of (101) Zn facet to achieve ordered surface crystallographic orientation of MZAs (101‐Zn), thus enabling electrodeposition/dissolution cycling over 650 h under a depth of discharge up to 40% and significantly boosting the rechargeability (76.7% capacity retention after 1000 cycles) of the 101‐Zn||carbon‐cloth@MnO 2 full battery relative to counterpart without theophylline additive (36.3%). The work offers deep insights on the scientific links between the surface crystallographic orientation of MZAs and Zn deposition morphology, while opens up vast untapped opportunities to realize dendrite‐free MZAs.
Texturing metallic zinc anodes (MZAs) for selective exposure of (002)Zn plane with high thermodynamical stability is an efficient scheme for dendrite‐free Zn electrodeposition. However, fundamental factors that influence Zn deposition morphology via surface crystallographic texture engineering are not well understood. Herein, different from traditional cognition, MZAs with preferential exposure of (101)Zn facet are demonstrated to be equally effective in promoting dendrite‐free Zn deposition, which is enabled by introducing trace amount (0.01 m) of theophylline into ZnSO4 electrolyte. Experimental results and mathematical model corroborate, indicating mechanistically that the theophylline derived cations preferentially adsorb on the (002)Zn crystal plane due to higher adsorption energy, thereby accelerating its growth through increased binding affinity with Zn2+ ions. Consequently, this phenomenon facilitates the texture exposure of (101)Zn facet to achieve ordered surface crystallographic orientation of MZAs (101‐Zn), thus enabling electrodeposition/dissolution cycling over 650 h under a depth of discharge up to 40% and significantly boosting the rechargeability (76.7% capacity retention after 1000 cycles) of the 101‐Zn||carbon‐cloth@MnO2 full battery relative to counterpart without theophylline additive (36.3%). The work offers deep insights on the scientific links between the surface crystallographic orientation of MZAs and Zn deposition morphology, while opens up vast untapped opportunities to realize dendrite‐free MZAs. Dendrite‐free Zn deposition on metallic zinc anodes (MZAs) enabled by texture exposure of unconventional (101)Zn facet is demonstrated by introducing trace amount of theophylline into ZnSO4 electrolyte, which removes the prior believed constraint of realizing uniform Zn growth by preferential exposing conventional (002)Zn plane, thus significantly expanding the design space available for crystallographic texturing of Zn surface to overcome dendrites proliferation.
Author Cheng, Zihai
Ho, Derek
Fu, Jimin
Li, Bo
Gao, Jiantou
Wang, Ke
Hu, Haibo
Mo, Funian
Lu, Peng
Author_xml – sequence: 1
  givenname: Zihai
  surname: Cheng
  fullname: Cheng, Zihai
  organization: Anhui University
– sequence: 2
  givenname: Ke
  surname: Wang
  fullname: Wang, Ke
  organization: Chinese Academy of Sciences
– sequence: 3
  givenname: Jimin
  surname: Fu
  fullname: Fu, Jimin
  organization: The Hong Kong Polytechnic University
– sequence: 4
  givenname: Funian
  surname: Mo
  fullname: Mo, Funian
  email: mofunian@hit.edu.cn
  organization: Harbin Institute of Technology
– sequence: 5
  givenname: Peng
  surname: Lu
  fullname: Lu, Peng
  organization: Chinese Academy of Sciences
– sequence: 6
  givenname: Jiantou
  surname: Gao
  fullname: Gao, Jiantou
  organization: Chinese Academy of Sciences
– sequence: 7
  givenname: Derek
  surname: Ho
  fullname: Ho, Derek
  organization: Hong Kong Center for Cerebro‐Cardiovascular Health Engineering
– sequence: 8
  givenname: Bo
  surname: Li
  fullname: Li, Bo
  email: libo3@ime.ac.cn
  organization: Chinese Academy of Sciences
– sequence: 9
  givenname: Haibo
  orcidid: 0000-0001-7494-1469
  surname: Hu
  fullname: Hu, Haibo
  email: haibohu@ahu.edu.cn
  organization: Anhui University
BookMark eNqFkM9KAzEQxoMoWKtXzwEvemjNv253vRVtVWj10l56WbLZiaRsk5ps1d58BJ_RJzFLpYIgDgMzh-_3DfMdoX3rLCB0SkmXEsIuJdhllxHGiSCE76EWTajoJKkg-7uds0N0EsKCxBIZJZy30GoKb_XaAx6-rVxoFqfxzCpnX8DWxllZ4XNK6MXc4pFUUF_hoZVFZewTvgFbelPD5_vHyAPgKLmB6GIaDseeQC2ryig8N1bhgXUlhGN0oGUV4OR7ttFsNJxe33XGj7f314NxR_GU807BKNMMVMEB-n3KSKF5pktGgGnR0yIVhRKlyFhZCp5woCpLFZQ9EFpRnha8jc62vivvntcQ6nzh1j6-E_KYUcKT6NqPqu5WpbwLwYPOV94spd_klORNsHkTbL4LNgLiF6BMLZuHay9N9TeWbbFXU8HmnyP5YPgw-WG_ADo4kCk
CitedBy_id crossref_primary_10_1016_j_ensm_2025_104026
crossref_primary_10_1002_adfm_202421220
crossref_primary_10_1002_cnl2_168
crossref_primary_10_1002_smll_202403457
crossref_primary_10_1002_ange_202425487
crossref_primary_10_1039_D4CS00474D
crossref_primary_10_5796_electrochemistry_25_00030
crossref_primary_10_1016_j_ensm_2024_103923
crossref_primary_10_1016_j_ensm_2024_103967
crossref_primary_10_1002_slct_202405068
crossref_primary_10_1002_adfm_202424860
crossref_primary_10_1039_D4QI02605E
crossref_primary_10_1002_aenm_202401293
crossref_primary_10_1016_j_nanoen_2025_110725
crossref_primary_10_1021_acs_langmuir_4c04964
crossref_primary_10_1002_aenm_202402586
crossref_primary_10_1007_s12598_024_02927_y
crossref_primary_10_20517_microstructures_2024_114
crossref_primary_10_3390_coatings15020174
crossref_primary_10_1002_anie_202424255
crossref_primary_10_1016_j_coelec_2024_101538
crossref_primary_10_1002_adsu_202401048
crossref_primary_10_1016_j_mser_2024_100865
crossref_primary_10_1016_j_jcis_2024_12_221
crossref_primary_10_1002_ange_202414757
crossref_primary_10_1016_j_jcis_2024_09_051
crossref_primary_10_1039_D4LF00328D
crossref_primary_10_1016_j_coelec_2024_101571
crossref_primary_10_1002_cssc_202401166
crossref_primary_10_1021_jacs_4c10337
crossref_primary_10_1039_D4EE05498A
crossref_primary_10_1002_adma_202407145
crossref_primary_10_1002_smtd_202401499
crossref_primary_10_1002_adfm_202421363
crossref_primary_10_1002_adma_202411686
crossref_primary_10_1016_j_ensm_2024_103995
crossref_primary_10_1016_j_scib_2025_01_060
crossref_primary_10_1016_j_ensm_2025_104204
crossref_primary_10_1002_aenm_202404071
crossref_primary_10_1002_aenm_202405767
crossref_primary_10_1039_D4EE01993H
crossref_primary_10_1002_ange_202424255
crossref_primary_10_1002_anie_202407770
crossref_primary_10_1016_j_ensm_2024_103909
crossref_primary_10_1002_adfm_202413456
crossref_primary_10_1016_j_scib_2024_10_025
crossref_primary_10_1002_adma_202406145
crossref_primary_10_1016_j_chempr_2025_102411
crossref_primary_10_1039_D4TA05568C
crossref_primary_10_1002_anie_202414757
crossref_primary_10_1021_acsaem_4c03011
crossref_primary_10_1002_adfm_202420446
crossref_primary_10_1002_smtd_202401668
crossref_primary_10_1002_ange_202407770
crossref_primary_10_1016_j_ensm_2025_104012
crossref_primary_10_1002_aenm_202500593
crossref_primary_10_1002_anie_202425487
crossref_primary_10_1002_adfm_202415107
crossref_primary_10_1016_j_est_2024_114642
crossref_primary_10_1039_D4EE05028B
crossref_primary_10_1016_j_jpowsour_2024_235799
crossref_primary_10_1021_acssuschemeng_4c09979
crossref_primary_10_1002_adfm_202407895
crossref_primary_10_1016_j_ensm_2024_103856
crossref_primary_10_1016_j_cej_2024_157705
crossref_primary_10_1021_acsami_4c00659
Cites_doi 10.1039/D1EE02021H
10.1002/adfm.202106114
10.1021/acs.chemrev.9b00628
10.1002/anie.202215306
10.1002/adma.202100187
10.1002/aenm.202203203
10.1016/j.ensm.2022.08.046
10.1002/adma.202200677
10.1002/adfm.202209065
10.1002/adfm.202300914
10.1039/D3EE01098H
10.1002/eom2.12035
10.1002/adfm.202206695
10.1002/smll.201503527
10.1002/aenm.201801090
10.1039/C9EE02526J
10.1002/adma.202100445
10.1002/anie.202107378
10.1002/aenm.202203254
10.1002/adma.202205175
10.1039/D1EE01861B
10.1002/smtd.202101276
10.1002/aenm.202101299
10.1021/acsnano.1c08638
10.1002/aenm.202102707
10.1016/j.ensm.2021.10.004
10.1002/smll.202103345
10.1002/anie.202105756
10.1002/aenm.202103231
10.1002/anie.202218386
10.1126/science.aax6873
10.1021/acsenergylett.0c02371
10.1016/j.joule.2019.12.007
10.1002/adfm.202312506
10.1002/adma.202007388
10.1002/adma.201903675
10.1002/adma.202202552
10.1002/anie.202210979
10.1002/adma.202211498
10.1002/smll.202200131
10.1002/adfm.202103227
10.1039/D2EE02416K
10.1016/j.ensm.2023.102774
10.1002/adfm.202103514
10.1016/j.cej.2022.139363
10.1002/anie.202308017
10.1021/jacs.9b05029
10.1016/j.ensm.2022.12.030
10.1002/adma.202003425
10.1002/adfm.202105736
10.1021/acsnano.2c11357
10.1021/acsenergylett.0c01792
10.1016/j.ensm.2022.02.022
10.1002/anie.202215600
10.1016/j.nanoen.2022.107145
ContentType Journal Article
Copyright 2024 Wiley‐VCH GmbH
Copyright_xml – notice: 2024 Wiley‐VCH GmbH
DBID AAYXX
CITATION
7SP
7TB
8FD
F28
FR3
H8D
L7M
DOI 10.1002/aenm.202304003
DatabaseName CrossRef
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList Aerospace Database
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1614-6840
EndPage n/a
ExternalDocumentID 10_1002_aenm_202304003
AENM202304003
Genre article
GrantInformation_xml – fundername: Program of State Key Laboratory of Quantum Optics and Quantum Optics Devices
  funderid: KF202212
– fundername: Youth Innovation Promotion Association of the Chinese Academy of Sciences
  funderid: 2020119; 2023128
– fundername: Excellent Youth Fund of Anhui Province
  funderid: 2108085Y17
– fundername: Innovation and Entrepreneurship Support Plan of Anhui Province for Returned Personnels Studying Abroad
  funderid: 2022LCX001
– fundername: National Natural Science Foundation of China
  funderid: 12375281; 62374175; U22B2043; U2241221
– fundername: Hundred‐Talent Program of Anhui Province, Shenzhen Municipality under Shenzhen Science and Technology Program
  funderid: RCBS20221008093222009
– fundername: Project of Scientific Research Foundation for Returned Scholars
  funderid: DD11409018
GroupedDBID 05W
0R~
1OC
33P
4.4
50Y
5VS
8-0
8-1
AAESR
AAHQN
AAIHA
AAMMB
AAMNL
AANLZ
AAXRX
AAYCA
AAZKR
ABCUV
ABJNI
ACAHQ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADKYN
ADMLS
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFWVQ
AFZJQ
AGHNM
AGXDD
AGYGG
AHBTC
AIACR
AIDQK
AIDYY
AITYG
AIURR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
AZVAB
BDRZF
BFHJK
BMXJE
BRXPI
D-A
DCZOG
EBS
G-S
HGLYW
HZ~
KBYEO
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MY.
MY~
O9-
P2W
RNS
ROL
RX1
SUPJJ
WBKPD
WOHZO
WXSBR
ZZTAW
~S-
31~
AAHHS
AANHP
AASGY
AAYXX
ACBWZ
ACCFJ
ACRPL
ACYXJ
ADNMO
ADZOD
AEEZP
AEQDE
AGQPQ
AIWBW
AJBDE
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
GODZA
HVGLF
7SP
7TB
8FD
F28
FR3
H8D
L7M
ID FETCH-LOGICAL-c3833-b212f2ecb3ee77120bf39fd20e2f45f484bc4d492dd4363e1c98ced5e4fc138b3
ISSN 1614-6832
IngestDate Fri Jul 25 12:06:34 EDT 2025
Tue Jul 01 01:43:56 EDT 2025
Thu Apr 24 23:12:25 EDT 2025
Sun Jul 06 04:45:27 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 16
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c3833-b212f2ecb3ee77120bf39fd20e2f45f484bc4d492dd4363e1c98ced5e4fc138b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7494-1469
PQID 3046367717
PQPubID 886389
PageCount 16
ParticipantIDs proquest_journals_3046367717
crossref_primary_10_1002_aenm_202304003
crossref_citationtrail_10_1002_aenm_202304003
wiley_primary_10_1002_aenm_202304003_AENM202304003
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-04-01
PublicationDateYYYYMMDD 2024-04-01
PublicationDate_xml – month: 04
  year: 2024
  text: 2024-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Advanced energy materials
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2021; 6
2023; 35
2021; 43
2023; 13
2023; 33
2023; 55
2023; 17
2019; 31
2023; 59
2020; 120
2023; 16
2019; 12
2022; 47
2019; 366
2020; 32
2019; 141
2016; 12
2021; 14
2023; 62
2018; 8
2020; 5
2020; 4
2021; 31
2020; 2
2021; 33
2021; 11
2023
2022; 61
2022; 6
2023; 452
2022; 12
2022; 34
2022; 13
2022; 15
2022; 97
2022; 53
2022; 32
2021; 60
2022; 16
2022; 18
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_17_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_1_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
e_1_2_7_50_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_54_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_37_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_48_1
e_1_2_7_27_1
e_1_2_7_29_1
e_1_2_7_51_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_38_1
References_xml – volume: 12
  start-page: 3288
  year: 2019
  publication-title: Energy Environ. Sci.
– volume: 18
  year: 2022
  publication-title: Small
– volume: 32
  year: 2022
  publication-title: Adv. Funct. Mater.
– year: 2023
  publication-title: Adv. Funct. Mater.
– volume: 60
  year: 2021
  publication-title: Angew. Chem., Int. Ed.
– volume: 15
  start-page: 5017
  year: 2022
  publication-title: Energy Environ. Sci.
– volume: 366
  start-page: 645
  year: 2019
  publication-title: Science
– volume: 16
  start-page: 3381
  year: 2023
  publication-title: Energy Environ. Sci.
– volume: 6
  year: 2022
  publication-title: Small Methods
– volume: 120
  start-page: 7795
  year: 2020
  publication-title: Chem. Rev.
– volume: 47
  start-page: 319
  year: 2022
  publication-title: Energy Storage Mater.
– volume: 35
  year: 2023
  publication-title: Adv. Mater.
– volume: 97
  year: 2022
  publication-title: Nano Energy
– volume: 61
  year: 2022
  publication-title: Angew. Chem., Int. Ed.
– volume: 13
  year: 2023
  publication-title: Adv. Energy Mater.
– volume: 53
  start-page: 273
  year: 2022
  publication-title: Energy Storage Mater.
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 33
  year: 2023
  publication-title: Adv. Funct. Mater.
– volume: 34
  year: 2022
  publication-title: Adv. Mater.
– volume: 55
  start-page: 669
  year: 2023
  publication-title: Energy Storage Mater.
– volume: 4
  start-page: 69
  year: 2020
  publication-title: Joule
– volume: 62
  year: 2023
  publication-title: Angew. Chem., Int. Ed.
– volume: 8
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 33
  year: 2021
  publication-title: Adv. Mater.
– volume: 43
  start-page: 585
  year: 2021
  publication-title: Energy Storage Mater.
– volume: 17
  start-page: 1610
  year: 2023
  publication-title: ACS Nano
– volume: 14
  start-page: 5669
  year: 2021
  publication-title: Energy Environ. Sci.
– volume: 6
  start-page: 395
  year: 2021
  publication-title: ACS Energy Lett.
– volume: 59
  year: 2023
  publication-title: Energy Storage Mater.
– volume: 11
  year: 2021
  publication-title: Adv. Energy Mater.
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 31
  year: 2021
  publication-title: Adv. Funct. Mater.
– volume: 5
  start-page: 3012
  year: 2020
  publication-title: ACS Energy Lett.
– volume: 62
  year: 2023
  publication-title: Angew. Chem.
– volume: 12
  start-page: 3059
  year: 2016
  publication-title: Small
– volume: 16
  start-page: 1013
  year: 2022
  publication-title: ACS Nano
– volume: 141
  start-page: 9422
  year: 2019
  publication-title: J. Am. Chem. Soc.
– volume: 452
  year: 2023
  publication-title: Chem. Eng. J.
– volume: 2
  year: 2020
  publication-title: EcoMat
– volume: 13
  year: 2022
  publication-title: Adv. Energy Mater.
– volume: 12
  year: 2022
  publication-title: Adv. Energy Mater.
– volume: 14
  start-page: 5563
  year: 2021
  publication-title: Energy Environ. Sci.
– ident: e_1_2_7_1_1
  doi: 10.1039/D1EE02021H
– ident: e_1_2_7_20_1
  doi: 10.1002/adfm.202106114
– ident: e_1_2_7_25_1
  doi: 10.1021/acs.chemrev.9b00628
– ident: e_1_2_7_16_1
  doi: 10.1002/anie.202215306
– ident: e_1_2_7_24_1
  doi: 10.1002/adma.202100187
– ident: e_1_2_7_45_1
  doi: 10.1002/aenm.202203203
– ident: e_1_2_7_31_1
  doi: 10.1016/j.ensm.2022.08.046
– ident: e_1_2_7_34_1
  doi: 10.1002/adma.202200677
– ident: e_1_2_7_36_1
  doi: 10.1002/adfm.202209065
– ident: e_1_2_7_9_1
  doi: 10.1002/adfm.202300914
– ident: e_1_2_7_4_1
  doi: 10.1039/D3EE01098H
– ident: e_1_2_7_30_1
  doi: 10.1002/eom2.12035
– ident: e_1_2_7_40_1
  doi: 10.1002/adfm.202206695
– ident: e_1_2_7_55_1
  doi: 10.1002/smll.201503527
– ident: e_1_2_7_15_1
  doi: 10.1002/aenm.201801090
– ident: e_1_2_7_6_1
  doi: 10.1039/C9EE02526J
– ident: e_1_2_7_39_1
  doi: 10.1002/adma.202100445
– ident: e_1_2_7_13_1
  doi: 10.1002/anie.202107378
– ident: e_1_2_7_33_1
  doi: 10.1002/aenm.202203254
– ident: e_1_2_7_19_1
  doi: 10.1002/adma.202205175
– ident: e_1_2_7_8_1
  doi: 10.1039/D1EE01861B
– ident: e_1_2_7_54_1
  doi: 10.1002/smtd.202101276
– ident: e_1_2_7_29_1
  doi: 10.1002/aenm.202101299
– ident: e_1_2_7_14_1
  doi: 10.1021/acsnano.1c08638
– ident: e_1_2_7_5_1
  doi: 10.1002/aenm.202102707
– ident: e_1_2_7_26_1
  doi: 10.1016/j.ensm.2021.10.004
– ident: e_1_2_7_27_1
  doi: 10.1002/smll.202103345
– ident: e_1_2_7_38_1
  doi: 10.1002/anie.202105756
– ident: e_1_2_7_41_1
  doi: 10.1002/aenm.202103231
– ident: e_1_2_7_48_1
  doi: 10.1002/anie.202218386
– ident: e_1_2_7_32_1
  doi: 10.1126/science.aax6873
– ident: e_1_2_7_37_1
  doi: 10.1021/acsenergylett.0c02371
– ident: e_1_2_7_44_1
  doi: 10.1016/j.joule.2019.12.007
– ident: e_1_2_7_46_1
  doi: 10.1002/adfm.202312506
– ident: e_1_2_7_49_1
  doi: 10.1002/adma.202007388
– ident: e_1_2_7_50_1
  doi: 10.1002/adma.201903675
– ident: e_1_2_7_21_1
  doi: 10.1002/adma.202202552
– ident: e_1_2_7_47_1
  doi: 10.1002/anie.202210979
– ident: e_1_2_7_17_1
  doi: 10.1002/adma.202211498
– ident: e_1_2_7_22_1
  doi: 10.1002/smll.202200131
– ident: e_1_2_7_23_1
  doi: 10.1002/adfm.202103227
– ident: e_1_2_7_2_1
  doi: 10.1039/D2EE02416K
– ident: e_1_2_7_11_1
  doi: 10.1016/j.ensm.2023.102774
– ident: e_1_2_7_51_1
  doi: 10.1002/adfm.202103514
– ident: e_1_2_7_10_1
  doi: 10.1016/j.cej.2022.139363
– ident: e_1_2_7_42_1
  doi: 10.1002/anie.202308017
– ident: e_1_2_7_53_1
  doi: 10.1021/jacs.9b05029
– ident: e_1_2_7_12_1
  doi: 10.1016/j.ensm.2022.12.030
– ident: e_1_2_7_18_1
  doi: 10.1002/adma.202003425
– ident: e_1_2_7_35_1
  doi: 10.1002/adfm.202105736
– ident: e_1_2_7_43_1
  doi: 10.1021/acsnano.2c11357
– ident: e_1_2_7_52_1
  doi: 10.1021/acsenergylett.0c01792
– ident: e_1_2_7_3_1
  doi: 10.1016/j.ensm.2022.02.022
– ident: e_1_2_7_7_1
  doi: 10.1002/anie.202215600
– ident: e_1_2_7_28_1
  doi: 10.1016/j.nanoen.2022.107145
SSID ssj0000491033
Score 2.6386633
Snippet Texturing metallic zinc anodes (MZAs) for selective exposure of (002)Zn plane with high thermodynamical stability is an efficient scheme for dendrite‐free Zn...
Texturing metallic zinc anodes (MZAs) for selective exposure of (002) Zn plane with high thermodynamical stability is an efficient scheme for dendrite‐free Zn...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Anodes
Cognition
crystallographic texture
Crystallography
dendrite‐free
Electrodeposition
Exposure
Manganese dioxide
Morphology
orientation exposure
Surface layers
Texture
Texturing
Theophylline
Zinc
zinc metal anodes
Title Texture Exposure of Unconventional (101)Zn Facet: Enabling Dendrite‐Free Zn Deposition on Metallic Zinc Anodes
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faenm.202304003
https://www.proquest.com/docview/3046367717
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELbK7gUOiKcoLMgHJEBVILHz5FbRRitE98JWWvUSxc5YWwm5VWklxImfwJmfxy9hHMd5iPdKVVS500T2fBnPjMefCXmaKsnjUpqyQRF7oYzBK9MEvJiJrPR5Wsr6uLfFWXy6DN9eRBej0bde1dJhL17Kz7_cV3IVrWIb6tXskv0PzbY3xQb8jvrFK2oYr_-mY7SsZgFg_mm7MZk-4_kt9aCQ3PAwGZb8bKUneSmhzgTOzYYpkyOYga525oQ8V_KQ7wAmKDoDV81lVhMWgC66YcNerbWcTPWmaioPHX2tKyQAu5MQvWDb_a54AKxNWa0vy3WXxG8MTQuu_FCjypw01iKhzuXmB-1w3KQoWL-yxVpV9AG8OG0SmdBvs1xNrSkO-5CLe7NyO2f9ZPIthWwJ2vAKmBS37_NucnML-q1k9GdZSwU8P1u0v18jxwxDELShx9PZ4t37NoOHsVXg83oHh-ufYwX12avhQ4ZeTxfK9AOi2qM5v0VuNqEInVpc3SYj0HfIjR5B5V2ybRBGHcLoRtEhwuhzxNeLlaY1ul5Thy3qsPX9y1eDKooiHaoofhyqqEEVtai6R5b5_PzNqdec0eFJnnLuCXR9FAMpOECSBMwXimeqYj4wFUYqTEMhwyrMWFWFPOYQyCxFPEYQKhnwVPD75EhvNDwgNFAx55IlIlCGcYmnFQ8CFSWSK4yBWTYmnhvDQjYE9uYclQ-Fpd5mhRnzoh3zMXnWym8tdctvJU-cSorm9f5YWC497FMyJqxW01_uUgxg8_Aqf3pErnfvzwk52u8O8Bid3r140qDvByrvomc
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Texture+Exposure+of+Unconventional+%28101%29Zn+Facet%3A+Enabling+Dendrite%E2%80%90Free+Zn+Deposition+on+Metallic+Zinc+Anodes&rft.jtitle=Advanced+energy+materials&rft.au=Cheng%2C+Zihai&rft.au=Wang%2C+Ke&rft.au=Fu%2C+Jimin&rft.au=Mo%2C+Funian&rft.date=2024-04-01&rft.issn=1614-6832&rft.eissn=1614-6840&rft.volume=14&rft.issue=16&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Faenm.202304003&rft.externalDBID=10.1002%252Faenm.202304003&rft.externalDocID=AENM202304003
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1614-6832&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1614-6832&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1614-6832&client=summon