Texture Exposure of Unconventional (101)Zn Facet: Enabling Dendrite‐Free Zn Deposition on Metallic Zinc Anodes
Texturing metallic zinc anodes (MZAs) for selective exposure of (002)Zn plane with high thermodynamical stability is an efficient scheme for dendrite‐free Zn electrodeposition. However, fundamental factors that influence Zn deposition morphology via surface crystallographic texture engineering are n...
Saved in:
Published in | Advanced energy materials Vol. 14; no. 16 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
01.04.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Texturing metallic zinc anodes (MZAs) for selective exposure of (002)Zn plane with high thermodynamical stability is an efficient scheme for dendrite‐free Zn electrodeposition. However, fundamental factors that influence Zn deposition morphology via surface crystallographic texture engineering are not well understood. Herein, different from traditional cognition, MZAs with preferential exposure of (101)Zn facet are demonstrated to be equally effective in promoting dendrite‐free Zn deposition, which is enabled by introducing trace amount (0.01 m) of theophylline into ZnSO4 electrolyte. Experimental results and mathematical model corroborate, indicating mechanistically that the theophylline derived cations preferentially adsorb on the (002)Zn crystal plane due to higher adsorption energy, thereby accelerating its growth through increased binding affinity with Zn2+ ions. Consequently, this phenomenon facilitates the texture exposure of (101)Zn facet to achieve ordered surface crystallographic orientation of MZAs (101‐Zn), thus enabling electrodeposition/dissolution cycling over 650 h under a depth of discharge up to 40% and significantly boosting the rechargeability (76.7% capacity retention after 1000 cycles) of the 101‐Zn||carbon‐cloth@MnO2 full battery relative to counterpart without theophylline additive (36.3%). The work offers deep insights on the scientific links between the surface crystallographic orientation of MZAs and Zn deposition morphology, while opens up vast untapped opportunities to realize dendrite‐free MZAs.
Dendrite‐free Zn deposition on metallic zinc anodes (MZAs) enabled by texture exposure of unconventional (101)Zn facet is demonstrated by introducing trace amount of theophylline into ZnSO4 electrolyte, which removes the prior believed constraint of realizing uniform Zn growth by preferential exposing conventional (002)Zn plane, thus significantly expanding the design space available for crystallographic texturing of Zn surface to overcome dendrites proliferation. |
---|---|
AbstractList | Texturing metallic zinc anodes (MZAs) for selective exposure of (002)Zn plane with high thermodynamical stability is an efficient scheme for dendrite‐free Zn electrodeposition. However, fundamental factors that influence Zn deposition morphology via surface crystallographic texture engineering are not well understood. Herein, different from traditional cognition, MZAs with preferential exposure of (101)Zn facet are demonstrated to be equally effective in promoting dendrite‐free Zn deposition, which is enabled by introducing trace amount (0.01 m) of theophylline into ZnSO4 electrolyte. Experimental results and mathematical model corroborate, indicating mechanistically that the theophylline derived cations preferentially adsorb on the (002)Zn crystal plane due to higher adsorption energy, thereby accelerating its growth through increased binding affinity with Zn2+ ions. Consequently, this phenomenon facilitates the texture exposure of (101)Zn facet to achieve ordered surface crystallographic orientation of MZAs (101‐Zn), thus enabling electrodeposition/dissolution cycling over 650 h under a depth of discharge up to 40% and significantly boosting the rechargeability (76.7% capacity retention after 1000 cycles) of the 101‐Zn||carbon‐cloth@MnO2 full battery relative to counterpart without theophylline additive (36.3%). The work offers deep insights on the scientific links between the surface crystallographic orientation of MZAs and Zn deposition morphology, while opens up vast untapped opportunities to realize dendrite‐free MZAs. Texturing metallic zinc anodes (MZAs) for selective exposure of (002) Zn plane with high thermodynamical stability is an efficient scheme for dendrite‐free Zn electrodeposition. However, fundamental factors that influence Zn deposition morphology via surface crystallographic texture engineering are not well understood. Herein, different from traditional cognition, MZAs with preferential exposure of (101) Zn facet are demonstrated to be equally effective in promoting dendrite‐free Zn deposition, which is enabled by introducing trace amount (0.01 m ) of theophylline into ZnSO 4 electrolyte. Experimental results and mathematical model corroborate, indicating mechanistically that the theophylline derived cations preferentially adsorb on the (002) Zn crystal plane due to higher adsorption energy, thereby accelerating its growth through increased binding affinity with Zn 2+ ions. Consequently, this phenomenon facilitates the texture exposure of (101) Zn facet to achieve ordered surface crystallographic orientation of MZAs (101‐Zn), thus enabling electrodeposition/dissolution cycling over 650 h under a depth of discharge up to 40% and significantly boosting the rechargeability (76.7% capacity retention after 1000 cycles) of the 101‐Zn||carbon‐cloth@MnO 2 full battery relative to counterpart without theophylline additive (36.3%). The work offers deep insights on the scientific links between the surface crystallographic orientation of MZAs and Zn deposition morphology, while opens up vast untapped opportunities to realize dendrite‐free MZAs. Texturing metallic zinc anodes (MZAs) for selective exposure of (002)Zn plane with high thermodynamical stability is an efficient scheme for dendrite‐free Zn electrodeposition. However, fundamental factors that influence Zn deposition morphology via surface crystallographic texture engineering are not well understood. Herein, different from traditional cognition, MZAs with preferential exposure of (101)Zn facet are demonstrated to be equally effective in promoting dendrite‐free Zn deposition, which is enabled by introducing trace amount (0.01 m) of theophylline into ZnSO4 electrolyte. Experimental results and mathematical model corroborate, indicating mechanistically that the theophylline derived cations preferentially adsorb on the (002)Zn crystal plane due to higher adsorption energy, thereby accelerating its growth through increased binding affinity with Zn2+ ions. Consequently, this phenomenon facilitates the texture exposure of (101)Zn facet to achieve ordered surface crystallographic orientation of MZAs (101‐Zn), thus enabling electrodeposition/dissolution cycling over 650 h under a depth of discharge up to 40% and significantly boosting the rechargeability (76.7% capacity retention after 1000 cycles) of the 101‐Zn||carbon‐cloth@MnO2 full battery relative to counterpart without theophylline additive (36.3%). The work offers deep insights on the scientific links between the surface crystallographic orientation of MZAs and Zn deposition morphology, while opens up vast untapped opportunities to realize dendrite‐free MZAs. Dendrite‐free Zn deposition on metallic zinc anodes (MZAs) enabled by texture exposure of unconventional (101)Zn facet is demonstrated by introducing trace amount of theophylline into ZnSO4 electrolyte, which removes the prior believed constraint of realizing uniform Zn growth by preferential exposing conventional (002)Zn plane, thus significantly expanding the design space available for crystallographic texturing of Zn surface to overcome dendrites proliferation. |
Author | Cheng, Zihai Ho, Derek Fu, Jimin Li, Bo Gao, Jiantou Wang, Ke Hu, Haibo Mo, Funian Lu, Peng |
Author_xml | – sequence: 1 givenname: Zihai surname: Cheng fullname: Cheng, Zihai organization: Anhui University – sequence: 2 givenname: Ke surname: Wang fullname: Wang, Ke organization: Chinese Academy of Sciences – sequence: 3 givenname: Jimin surname: Fu fullname: Fu, Jimin organization: The Hong Kong Polytechnic University – sequence: 4 givenname: Funian surname: Mo fullname: Mo, Funian email: mofunian@hit.edu.cn organization: Harbin Institute of Technology – sequence: 5 givenname: Peng surname: Lu fullname: Lu, Peng organization: Chinese Academy of Sciences – sequence: 6 givenname: Jiantou surname: Gao fullname: Gao, Jiantou organization: Chinese Academy of Sciences – sequence: 7 givenname: Derek surname: Ho fullname: Ho, Derek organization: Hong Kong Center for Cerebro‐Cardiovascular Health Engineering – sequence: 8 givenname: Bo surname: Li fullname: Li, Bo email: libo3@ime.ac.cn organization: Chinese Academy of Sciences – sequence: 9 givenname: Haibo orcidid: 0000-0001-7494-1469 surname: Hu fullname: Hu, Haibo email: haibohu@ahu.edu.cn organization: Anhui University |
BookMark | eNqFkM9KAzEQxoMoWKtXzwEvemjNv253vRVtVWj10l56WbLZiaRsk5ps1d58BJ_RJzFLpYIgDgMzh-_3DfMdoX3rLCB0SkmXEsIuJdhllxHGiSCE76EWTajoJKkg-7uds0N0EsKCxBIZJZy30GoKb_XaAx6-rVxoFqfxzCpnX8DWxllZ4XNK6MXc4pFUUF_hoZVFZewTvgFbelPD5_vHyAPgKLmB6GIaDseeQC2ryig8N1bhgXUlhGN0oGUV4OR7ttFsNJxe33XGj7f314NxR_GU807BKNMMVMEB-n3KSKF5pktGgGnR0yIVhRKlyFhZCp5woCpLFZQ9EFpRnha8jc62vivvntcQ6nzh1j6-E_KYUcKT6NqPqu5WpbwLwYPOV94spd_klORNsHkTbL4LNgLiF6BMLZuHay9N9TeWbbFXU8HmnyP5YPgw-WG_ADo4kCk |
CitedBy_id | crossref_primary_10_1016_j_ensm_2025_104026 crossref_primary_10_1002_adfm_202421220 crossref_primary_10_1002_cnl2_168 crossref_primary_10_1002_smll_202403457 crossref_primary_10_1002_ange_202425487 crossref_primary_10_1039_D4CS00474D crossref_primary_10_5796_electrochemistry_25_00030 crossref_primary_10_1016_j_ensm_2024_103923 crossref_primary_10_1016_j_ensm_2024_103967 crossref_primary_10_1002_slct_202405068 crossref_primary_10_1002_adfm_202424860 crossref_primary_10_1039_D4QI02605E crossref_primary_10_1002_aenm_202401293 crossref_primary_10_1016_j_nanoen_2025_110725 crossref_primary_10_1021_acs_langmuir_4c04964 crossref_primary_10_1002_aenm_202402586 crossref_primary_10_1007_s12598_024_02927_y crossref_primary_10_20517_microstructures_2024_114 crossref_primary_10_3390_coatings15020174 crossref_primary_10_1002_anie_202424255 crossref_primary_10_1016_j_coelec_2024_101538 crossref_primary_10_1002_adsu_202401048 crossref_primary_10_1016_j_mser_2024_100865 crossref_primary_10_1016_j_jcis_2024_12_221 crossref_primary_10_1002_ange_202414757 crossref_primary_10_1016_j_jcis_2024_09_051 crossref_primary_10_1039_D4LF00328D crossref_primary_10_1016_j_coelec_2024_101571 crossref_primary_10_1002_cssc_202401166 crossref_primary_10_1021_jacs_4c10337 crossref_primary_10_1039_D4EE05498A crossref_primary_10_1002_adma_202407145 crossref_primary_10_1002_smtd_202401499 crossref_primary_10_1002_adfm_202421363 crossref_primary_10_1002_adma_202411686 crossref_primary_10_1016_j_ensm_2024_103995 crossref_primary_10_1016_j_scib_2025_01_060 crossref_primary_10_1016_j_ensm_2025_104204 crossref_primary_10_1002_aenm_202404071 crossref_primary_10_1002_aenm_202405767 crossref_primary_10_1039_D4EE01993H crossref_primary_10_1002_ange_202424255 crossref_primary_10_1002_anie_202407770 crossref_primary_10_1016_j_ensm_2024_103909 crossref_primary_10_1002_adfm_202413456 crossref_primary_10_1016_j_scib_2024_10_025 crossref_primary_10_1002_adma_202406145 crossref_primary_10_1016_j_chempr_2025_102411 crossref_primary_10_1039_D4TA05568C crossref_primary_10_1002_anie_202414757 crossref_primary_10_1021_acsaem_4c03011 crossref_primary_10_1002_adfm_202420446 crossref_primary_10_1002_smtd_202401668 crossref_primary_10_1002_ange_202407770 crossref_primary_10_1016_j_ensm_2025_104012 crossref_primary_10_1002_aenm_202500593 crossref_primary_10_1002_anie_202425487 crossref_primary_10_1002_adfm_202415107 crossref_primary_10_1016_j_est_2024_114642 crossref_primary_10_1039_D4EE05028B crossref_primary_10_1016_j_jpowsour_2024_235799 crossref_primary_10_1021_acssuschemeng_4c09979 crossref_primary_10_1002_adfm_202407895 crossref_primary_10_1016_j_ensm_2024_103856 crossref_primary_10_1016_j_cej_2024_157705 crossref_primary_10_1021_acsami_4c00659 |
Cites_doi | 10.1039/D1EE02021H 10.1002/adfm.202106114 10.1021/acs.chemrev.9b00628 10.1002/anie.202215306 10.1002/adma.202100187 10.1002/aenm.202203203 10.1016/j.ensm.2022.08.046 10.1002/adma.202200677 10.1002/adfm.202209065 10.1002/adfm.202300914 10.1039/D3EE01098H 10.1002/eom2.12035 10.1002/adfm.202206695 10.1002/smll.201503527 10.1002/aenm.201801090 10.1039/C9EE02526J 10.1002/adma.202100445 10.1002/anie.202107378 10.1002/aenm.202203254 10.1002/adma.202205175 10.1039/D1EE01861B 10.1002/smtd.202101276 10.1002/aenm.202101299 10.1021/acsnano.1c08638 10.1002/aenm.202102707 10.1016/j.ensm.2021.10.004 10.1002/smll.202103345 10.1002/anie.202105756 10.1002/aenm.202103231 10.1002/anie.202218386 10.1126/science.aax6873 10.1021/acsenergylett.0c02371 10.1016/j.joule.2019.12.007 10.1002/adfm.202312506 10.1002/adma.202007388 10.1002/adma.201903675 10.1002/adma.202202552 10.1002/anie.202210979 10.1002/adma.202211498 10.1002/smll.202200131 10.1002/adfm.202103227 10.1039/D2EE02416K 10.1016/j.ensm.2023.102774 10.1002/adfm.202103514 10.1016/j.cej.2022.139363 10.1002/anie.202308017 10.1021/jacs.9b05029 10.1016/j.ensm.2022.12.030 10.1002/adma.202003425 10.1002/adfm.202105736 10.1021/acsnano.2c11357 10.1021/acsenergylett.0c01792 10.1016/j.ensm.2022.02.022 10.1002/anie.202215600 10.1016/j.nanoen.2022.107145 |
ContentType | Journal Article |
Copyright | 2024 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2024 Wiley‐VCH GmbH |
DBID | AAYXX CITATION 7SP 7TB 8FD F28 FR3 H8D L7M |
DOI | 10.1002/aenm.202304003 |
DatabaseName | CrossRef Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering |
DatabaseTitleList | Aerospace Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1614-6840 |
EndPage | n/a |
ExternalDocumentID | 10_1002_aenm_202304003 AENM202304003 |
Genre | article |
GrantInformation_xml | – fundername: Program of State Key Laboratory of Quantum Optics and Quantum Optics Devices funderid: KF202212 – fundername: Youth Innovation Promotion Association of the Chinese Academy of Sciences funderid: 2020119; 2023128 – fundername: Excellent Youth Fund of Anhui Province funderid: 2108085Y17 – fundername: Innovation and Entrepreneurship Support Plan of Anhui Province for Returned Personnels Studying Abroad funderid: 2022LCX001 – fundername: National Natural Science Foundation of China funderid: 12375281; 62374175; U22B2043; U2241221 – fundername: Hundred‐Talent Program of Anhui Province, Shenzhen Municipality under Shenzhen Science and Technology Program funderid: RCBS20221008093222009 – fundername: Project of Scientific Research Foundation for Returned Scholars funderid: DD11409018 |
GroupedDBID | 05W 0R~ 1OC 33P 4.4 50Y 5VS 8-0 8-1 AAESR AAHQN AAIHA AAMMB AAMNL AANLZ AAXRX AAYCA AAZKR ABCUV ABJNI ACAHQ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADKYN ADMLS ADOZA ADXAS ADZMN AEFGJ AEIGN AENEX AEUYR AEYWJ AFBPY AFFPM AFWVQ AFZJQ AGHNM AGXDD AGYGG AHBTC AIACR AIDQK AIDYY AITYG AIURR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB AZVAB BDRZF BFHJK BMXJE BRXPI D-A DCZOG EBS G-S HGLYW HZ~ KBYEO LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MY. MY~ O9- P2W RNS ROL RX1 SUPJJ WBKPD WOHZO WXSBR ZZTAW ~S- 31~ AAHHS AANHP AASGY AAYXX ACBWZ ACCFJ ACRPL ACYXJ ADNMO ADZOD AEEZP AEQDE AGQPQ AIWBW AJBDE ASPBG AVWKF AZFZN CITATION EJD FEDTE GODZA HVGLF 7SP 7TB 8FD F28 FR3 H8D L7M |
ID | FETCH-LOGICAL-c3833-b212f2ecb3ee77120bf39fd20e2f45f484bc4d492dd4363e1c98ced5e4fc138b3 |
ISSN | 1614-6832 |
IngestDate | Fri Jul 25 12:06:34 EDT 2025 Tue Jul 01 01:43:56 EDT 2025 Thu Apr 24 23:12:25 EDT 2025 Sun Jul 06 04:45:27 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 16 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c3833-b212f2ecb3ee77120bf39fd20e2f45f484bc4d492dd4363e1c98ced5e4fc138b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-7494-1469 |
PQID | 3046367717 |
PQPubID | 886389 |
PageCount | 16 |
ParticipantIDs | proquest_journals_3046367717 crossref_primary_10_1002_aenm_202304003 crossref_citationtrail_10_1002_aenm_202304003 wiley_primary_10_1002_aenm_202304003_AENM202304003 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-04-01 |
PublicationDateYYYYMMDD | 2024-04-01 |
PublicationDate_xml | – month: 04 year: 2024 text: 2024-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Advanced energy materials |
PublicationYear | 2024 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2021; 6 2023; 35 2021; 43 2023; 13 2023; 33 2023; 55 2023; 17 2019; 31 2023; 59 2020; 120 2023; 16 2019; 12 2022; 47 2019; 366 2020; 32 2019; 141 2016; 12 2021; 14 2023; 62 2018; 8 2020; 5 2020; 4 2021; 31 2020; 2 2021; 33 2021; 11 2023 2022; 61 2022; 6 2023; 452 2022; 12 2022; 34 2022; 13 2022; 15 2022; 97 2022; 53 2022; 32 2021; 60 2022; 16 2022; 18 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_17_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_1_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 e_1_2_7_50_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_54_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_37_1 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_48_1 e_1_2_7_27_1 e_1_2_7_29_1 e_1_2_7_51_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_38_1 |
References_xml | – volume: 12 start-page: 3288 year: 2019 publication-title: Energy Environ. Sci. – volume: 18 year: 2022 publication-title: Small – volume: 32 year: 2022 publication-title: Adv. Funct. Mater. – year: 2023 publication-title: Adv. Funct. Mater. – volume: 60 year: 2021 publication-title: Angew. Chem., Int. Ed. – volume: 15 start-page: 5017 year: 2022 publication-title: Energy Environ. Sci. – volume: 366 start-page: 645 year: 2019 publication-title: Science – volume: 16 start-page: 3381 year: 2023 publication-title: Energy Environ. Sci. – volume: 6 year: 2022 publication-title: Small Methods – volume: 120 start-page: 7795 year: 2020 publication-title: Chem. Rev. – volume: 47 start-page: 319 year: 2022 publication-title: Energy Storage Mater. – volume: 35 year: 2023 publication-title: Adv. Mater. – volume: 97 year: 2022 publication-title: Nano Energy – volume: 61 year: 2022 publication-title: Angew. Chem., Int. Ed. – volume: 13 year: 2023 publication-title: Adv. Energy Mater. – volume: 53 start-page: 273 year: 2022 publication-title: Energy Storage Mater. – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 33 year: 2023 publication-title: Adv. Funct. Mater. – volume: 34 year: 2022 publication-title: Adv. Mater. – volume: 55 start-page: 669 year: 2023 publication-title: Energy Storage Mater. – volume: 4 start-page: 69 year: 2020 publication-title: Joule – volume: 62 year: 2023 publication-title: Angew. Chem., Int. Ed. – volume: 8 year: 2018 publication-title: Adv. Energy Mater. – volume: 33 year: 2021 publication-title: Adv. Mater. – volume: 43 start-page: 585 year: 2021 publication-title: Energy Storage Mater. – volume: 17 start-page: 1610 year: 2023 publication-title: ACS Nano – volume: 14 start-page: 5669 year: 2021 publication-title: Energy Environ. Sci. – volume: 6 start-page: 395 year: 2021 publication-title: ACS Energy Lett. – volume: 59 year: 2023 publication-title: Energy Storage Mater. – volume: 11 year: 2021 publication-title: Adv. Energy Mater. – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 31 year: 2021 publication-title: Adv. Funct. Mater. – volume: 5 start-page: 3012 year: 2020 publication-title: ACS Energy Lett. – volume: 62 year: 2023 publication-title: Angew. Chem. – volume: 12 start-page: 3059 year: 2016 publication-title: Small – volume: 16 start-page: 1013 year: 2022 publication-title: ACS Nano – volume: 141 start-page: 9422 year: 2019 publication-title: J. Am. Chem. Soc. – volume: 452 year: 2023 publication-title: Chem. Eng. J. – volume: 2 year: 2020 publication-title: EcoMat – volume: 13 year: 2022 publication-title: Adv. Energy Mater. – volume: 12 year: 2022 publication-title: Adv. Energy Mater. – volume: 14 start-page: 5563 year: 2021 publication-title: Energy Environ. Sci. – ident: e_1_2_7_1_1 doi: 10.1039/D1EE02021H – ident: e_1_2_7_20_1 doi: 10.1002/adfm.202106114 – ident: e_1_2_7_25_1 doi: 10.1021/acs.chemrev.9b00628 – ident: e_1_2_7_16_1 doi: 10.1002/anie.202215306 – ident: e_1_2_7_24_1 doi: 10.1002/adma.202100187 – ident: e_1_2_7_45_1 doi: 10.1002/aenm.202203203 – ident: e_1_2_7_31_1 doi: 10.1016/j.ensm.2022.08.046 – ident: e_1_2_7_34_1 doi: 10.1002/adma.202200677 – ident: e_1_2_7_36_1 doi: 10.1002/adfm.202209065 – ident: e_1_2_7_9_1 doi: 10.1002/adfm.202300914 – ident: e_1_2_7_4_1 doi: 10.1039/D3EE01098H – ident: e_1_2_7_30_1 doi: 10.1002/eom2.12035 – ident: e_1_2_7_40_1 doi: 10.1002/adfm.202206695 – ident: e_1_2_7_55_1 doi: 10.1002/smll.201503527 – ident: e_1_2_7_15_1 doi: 10.1002/aenm.201801090 – ident: e_1_2_7_6_1 doi: 10.1039/C9EE02526J – ident: e_1_2_7_39_1 doi: 10.1002/adma.202100445 – ident: e_1_2_7_13_1 doi: 10.1002/anie.202107378 – ident: e_1_2_7_33_1 doi: 10.1002/aenm.202203254 – ident: e_1_2_7_19_1 doi: 10.1002/adma.202205175 – ident: e_1_2_7_8_1 doi: 10.1039/D1EE01861B – ident: e_1_2_7_54_1 doi: 10.1002/smtd.202101276 – ident: e_1_2_7_29_1 doi: 10.1002/aenm.202101299 – ident: e_1_2_7_14_1 doi: 10.1021/acsnano.1c08638 – ident: e_1_2_7_5_1 doi: 10.1002/aenm.202102707 – ident: e_1_2_7_26_1 doi: 10.1016/j.ensm.2021.10.004 – ident: e_1_2_7_27_1 doi: 10.1002/smll.202103345 – ident: e_1_2_7_38_1 doi: 10.1002/anie.202105756 – ident: e_1_2_7_41_1 doi: 10.1002/aenm.202103231 – ident: e_1_2_7_48_1 doi: 10.1002/anie.202218386 – ident: e_1_2_7_32_1 doi: 10.1126/science.aax6873 – ident: e_1_2_7_37_1 doi: 10.1021/acsenergylett.0c02371 – ident: e_1_2_7_44_1 doi: 10.1016/j.joule.2019.12.007 – ident: e_1_2_7_46_1 doi: 10.1002/adfm.202312506 – ident: e_1_2_7_49_1 doi: 10.1002/adma.202007388 – ident: e_1_2_7_50_1 doi: 10.1002/adma.201903675 – ident: e_1_2_7_21_1 doi: 10.1002/adma.202202552 – ident: e_1_2_7_47_1 doi: 10.1002/anie.202210979 – ident: e_1_2_7_17_1 doi: 10.1002/adma.202211498 – ident: e_1_2_7_22_1 doi: 10.1002/smll.202200131 – ident: e_1_2_7_23_1 doi: 10.1002/adfm.202103227 – ident: e_1_2_7_2_1 doi: 10.1039/D2EE02416K – ident: e_1_2_7_11_1 doi: 10.1016/j.ensm.2023.102774 – ident: e_1_2_7_51_1 doi: 10.1002/adfm.202103514 – ident: e_1_2_7_10_1 doi: 10.1016/j.cej.2022.139363 – ident: e_1_2_7_42_1 doi: 10.1002/anie.202308017 – ident: e_1_2_7_53_1 doi: 10.1021/jacs.9b05029 – ident: e_1_2_7_12_1 doi: 10.1016/j.ensm.2022.12.030 – ident: e_1_2_7_18_1 doi: 10.1002/adma.202003425 – ident: e_1_2_7_35_1 doi: 10.1002/adfm.202105736 – ident: e_1_2_7_43_1 doi: 10.1021/acsnano.2c11357 – ident: e_1_2_7_52_1 doi: 10.1021/acsenergylett.0c01792 – ident: e_1_2_7_3_1 doi: 10.1016/j.ensm.2022.02.022 – ident: e_1_2_7_7_1 doi: 10.1002/anie.202215600 – ident: e_1_2_7_28_1 doi: 10.1016/j.nanoen.2022.107145 |
SSID | ssj0000491033 |
Score | 2.6386633 |
Snippet | Texturing metallic zinc anodes (MZAs) for selective exposure of (002)Zn plane with high thermodynamical stability is an efficient scheme for dendrite‐free Zn... Texturing metallic zinc anodes (MZAs) for selective exposure of (002) Zn plane with high thermodynamical stability is an efficient scheme for dendrite‐free Zn... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Anodes Cognition crystallographic texture Crystallography dendrite‐free Electrodeposition Exposure Manganese dioxide Morphology orientation exposure Surface layers Texture Texturing Theophylline Zinc zinc metal anodes |
Title | Texture Exposure of Unconventional (101)Zn Facet: Enabling Dendrite‐Free Zn Deposition on Metallic Zinc Anodes |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faenm.202304003 https://www.proquest.com/docview/3046367717 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELbK7gUOiKcoLMgHJEBVILHz5FbRRitE98JWWvUSxc5YWwm5VWklxImfwJmfxy9hHMd5iPdKVVS500T2fBnPjMefCXmaKsnjUpqyQRF7oYzBK9MEvJiJrPR5Wsr6uLfFWXy6DN9eRBej0bde1dJhL17Kz7_cV3IVrWIb6tXskv0PzbY3xQb8jvrFK2oYr_-mY7SsZgFg_mm7MZk-4_kt9aCQ3PAwGZb8bKUneSmhzgTOzYYpkyOYga525oQ8V_KQ7wAmKDoDV81lVhMWgC66YcNerbWcTPWmaioPHX2tKyQAu5MQvWDb_a54AKxNWa0vy3WXxG8MTQuu_FCjypw01iKhzuXmB-1w3KQoWL-yxVpV9AG8OG0SmdBvs1xNrSkO-5CLe7NyO2f9ZPIthWwJ2vAKmBS37_NucnML-q1k9GdZSwU8P1u0v18jxwxDELShx9PZ4t37NoOHsVXg83oHh-ufYwX12avhQ4ZeTxfK9AOi2qM5v0VuNqEInVpc3SYj0HfIjR5B5V2ybRBGHcLoRtEhwuhzxNeLlaY1ul5Thy3qsPX9y1eDKooiHaoofhyqqEEVtai6R5b5_PzNqdec0eFJnnLuCXR9FAMpOECSBMwXimeqYj4wFUYqTEMhwyrMWFWFPOYQyCxFPEYQKhnwVPD75EhvNDwgNFAx55IlIlCGcYmnFQ8CFSWSK4yBWTYmnhvDQjYE9uYclQ-Fpd5mhRnzoh3zMXnWym8tdctvJU-cSorm9f5YWC497FMyJqxW01_uUgxg8_Aqf3pErnfvzwk52u8O8Bid3r140qDvByrvomc |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Texture+Exposure+of+Unconventional+%28101%29Zn+Facet%3A+Enabling+Dendrite%E2%80%90Free+Zn+Deposition+on+Metallic+Zinc+Anodes&rft.jtitle=Advanced+energy+materials&rft.au=Cheng%2C+Zihai&rft.au=Wang%2C+Ke&rft.au=Fu%2C+Jimin&rft.au=Mo%2C+Funian&rft.date=2024-04-01&rft.issn=1614-6832&rft.eissn=1614-6840&rft.volume=14&rft.issue=16&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Faenm.202304003&rft.externalDBID=10.1002%252Faenm.202304003&rft.externalDocID=AENM202304003 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1614-6832&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1614-6832&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1614-6832&client=summon |