Experimental validation of manipulability optimization control of a 7‐DoF serial manipulator for robot‐assisted surgery

Purpose Both safety and accuracy are of vital importance for surgical operation procedures. An efficient way to avoid the singularity of the surgical robot concerning safety issues is to maximize its manipulability in robot‐assisted surgery. The goal of this work was to validate a dynamic neural net...

Full description

Saved in:
Bibliographic Details
Published inThe international journal of medical robotics + computer assisted surgery Vol. 17; no. 1; pp. 1 - 11
Main Authors Su, Hang, Danioni, Andrea, Mira, Robert Mihai, Ungari, Matteo, Zhou, Xuanyi, Li, Jiehao, Hu, Yingbai, Ferrigno, Giancarlo, De Momi, Elena
Format Journal Article
LanguageEnglish
Published England Wiley Subscription Services, Inc 01.02.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Purpose Both safety and accuracy are of vital importance for surgical operation procedures. An efficient way to avoid the singularity of the surgical robot concerning safety issues is to maximize its manipulability in robot‐assisted surgery. The goal of this work was to validate a dynamic neural network optimization method for manipulability optimization control of a 7‐degree of freedom (DoF) robot in a surgical operation. Methods Three different paths, a circle, a sinusoid and a spiral were chosen to simulate typical surgical tasks. The dynamic neural network‐based manipulability optimization control was implemented on a 7‐DoF robot manipulator. During the surgical operation procedures, the manipulability of the robot manipulator and the accuracy of the surgical operation are recorded for performance validation. Results By comparison, the dynamic neural network‐based manipulability optimization control achieved optimized manipulability but with a loss of the accuracy of trajectory tracking (the global error was 1 mm compare to the 0.5 mm error of non‐optimized method). Conclusions The method validated in this work achieved optimized manipulability with a loss of error. Future works should be introduced to improve the accuracy of the surgical operation.
AbstractList Abstract Purpose Both safety and accuracy are of vital importance for surgical operation procedures. An efficient way to avoid the singularity of the surgical robot concerning safety issues is to maximize its manipulability in robot‐assisted surgery. The goal of this work was to validate a dynamic neural network optimization method for manipulability optimization control of a 7‐degree of freedom (DoF) robot in a surgical operation. Methods Three different paths, a circle, a sinusoid and a spiral were chosen to simulate typical surgical tasks. The dynamic neural network‐based manipulability optimization control was implemented on a 7‐DoF robot manipulator. During the surgical operation procedures, the manipulability of the robot manipulator and the accuracy of the surgical operation are recorded for performance validation. Results By comparison, the dynamic neural network‐based manipulability optimization control achieved optimized manipulability but with a loss of the accuracy of trajectory tracking (the global error was 1 mm compare to the 0.5 mm error of non‐optimized method). Conclusions The method validated in this work achieved optimized manipulability with a loss of error. Future works should be introduced to improve the accuracy of the surgical operation.
PurposeBoth safety and accuracy are of vital importance for surgical operation procedures. An efficient way to avoid the singularity of the surgical robot concerning safety issues is to maximize its manipulability in robot‐assisted surgery. The goal of this work was to validate a dynamic neural network optimization method for manipulability optimization control of a 7‐degree of freedom (DoF) robot in a surgical operation.MethodsThree different paths, a circle, a sinusoid and a spiral were chosen to simulate typical surgical tasks. The dynamic neural network‐based manipulability optimization control was implemented on a 7‐DoF robot manipulator. During the surgical operation procedures, the manipulability of the robot manipulator and the accuracy of the surgical operation are recorded for performance validation.ResultsBy comparison, the dynamic neural network‐based manipulability optimization control achieved optimized manipulability but with a loss of the accuracy of trajectory tracking (the global error was 1 mm compare to the 0.5 mm error of non‐optimized method).ConclusionsThe method validated in this work achieved optimized manipulability with a loss of error. Future works should be introduced to improve the accuracy of the surgical operation.
Both safety and accuracy are of vital importance for surgical operation procedures. An efficient way to avoid the singularity of the surgical robot concerning safety issues is to maximize its manipulability in robot-assisted surgery. The goal of this work was to validate a dynamic neural network optimization method for manipulability optimization control of a 7-degree of freedom (DoF) robot in a surgical operation. Three different paths, a circle, a sinusoid and a spiral were chosen to simulate typical surgical tasks. The dynamic neural network-based manipulability optimization control was implemented on a 7-DoF robot manipulator. During the surgical operation procedures, the manipulability of the robot manipulator and the accuracy of the surgical operation are recorded for performance validation. By comparison, the dynamic neural network-based manipulability optimization control achieved optimized manipulability but with a loss of the accuracy of trajectory tracking (the global error was 1 mm compare to the 0.5 mm error of non-optimized method). The method validated in this work achieved optimized manipulability with a loss of error. Future works should be introduced to improve the accuracy of the surgical operation.
Purpose Both safety and accuracy are of vital importance for surgical operation procedures. An efficient way to avoid the singularity of the surgical robot concerning safety issues is to maximize its manipulability in robot‐assisted surgery. The goal of this work was to validate a dynamic neural network optimization method for manipulability optimization control of a 7‐degree of freedom (DoF) robot in a surgical operation. Methods Three different paths, a circle, a sinusoid and a spiral were chosen to simulate typical surgical tasks. The dynamic neural network‐based manipulability optimization control was implemented on a 7‐DoF robot manipulator. During the surgical operation procedures, the manipulability of the robot manipulator and the accuracy of the surgical operation are recorded for performance validation. Results By comparison, the dynamic neural network‐based manipulability optimization control achieved optimized manipulability but with a loss of the accuracy of trajectory tracking (the global error was 1 mm compare to the 0.5 mm error of non‐optimized method). Conclusions The method validated in this work achieved optimized manipulability with a loss of error. Future works should be introduced to improve the accuracy of the surgical operation.
Author Mira, Robert Mihai
Hu, Yingbai
Ferrigno, Giancarlo
Danioni, Andrea
Li, Jiehao
Ungari, Matteo
De Momi, Elena
Su, Hang
Zhou, Xuanyi
Author_xml – sequence: 1
  givenname: Hang
  orcidid: 0000-0002-6877-6783
  surname: Su
  fullname: Su, Hang
  organization: Politecnico di Milano Piazza Leonardo da Vinci
– sequence: 2
  givenname: Andrea
  surname: Danioni
  fullname: Danioni, Andrea
  organization: Politecnico di Milano Piazza Leonardo da Vinci
– sequence: 3
  givenname: Robert Mihai
  surname: Mira
  fullname: Mira, Robert Mihai
  organization: Politecnico di Milano Piazza Leonardo da Vinci
– sequence: 4
  givenname: Matteo
  surname: Ungari
  fullname: Ungari, Matteo
  organization: Politecnico di Milano Piazza Leonardo da Vinci
– sequence: 5
  givenname: Xuanyi
  orcidid: 0000-0001-9584-9426
  surname: Zhou
  fullname: Zhou, Xuanyi
  organization: Central South University Changsha
– sequence: 6
  givenname: Jiehao
  surname: Li
  fullname: Li, Jiehao
  organization: Beijing Institute of Technology
– sequence: 7
  givenname: Yingbai
  surname: Hu
  fullname: Hu, Yingbai
  email: yingbai.hu@tum.de
  organization: Technical University of Munich
– sequence: 8
  givenname: Giancarlo
  surname: Ferrigno
  fullname: Ferrigno, Giancarlo
  organization: Politecnico di Milano Piazza Leonardo da Vinci
– sequence: 9
  givenname: Elena
  surname: De Momi
  fullname: De Momi, Elena
  organization: Politecnico di Milano Piazza Leonardo da Vinci
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33113264$$D View this record in MEDLINE/PubMed
BookMark eNp1kc1KHTEUx4NY_IY-QRlw42ZsvjOzlFutglCoLtwNmcwZiWQm0yTT9urGR-gz-iTm9qqFgouQwPnlxznnv4s2Rz8CQh8JPiYY08_BxGNKaraBdghXVSlqebP59hZkG-3GeIcxF1zyLbTNGCGMSr6DHk5_TxDsAGPSrvipne10sn4sfF8MerTT7HRrnU3Lwk_JDvZ-XTZ-TMG7FaYL9fT454s_K2I2Zcvrv-RD0ecTfOtTRnSMNiboijiHWwjLffSh1y7Cwcu9h67OTq8X5-Xlt68Xi5PL0rCKsVLKPFlPQVSVUpp3fWu6XlGjjSRgdMsEUCk7AVga6JTg2tSibmmHKeQx99DR2joF_2OGmJrBRgPO6RH8HBvKhai4xExl9PA_9M7PYcy9ZUrVSvKKin9CE3yMAfpmygvUYdkQ3KziaHIczSqOjH56Ec7tAN0b-Lr_DJRr4Jd1sHxX1HxfXP0VPgMquJoY
CitedBy_id crossref_primary_10_2139_ssrn_4156183
crossref_primary_10_1177_0020294021997483
crossref_primary_10_1002_rcs_2579
crossref_primary_10_3390_app14083384
crossref_primary_10_1016_j_cmpb_2022_107202
crossref_primary_10_1002_rcs_2440
Cites_doi 10.1016/j.rcim.2010.09.004
10.2991/jrnal.2018.5.2.16
10.5999/aps.2018.00052
10.1109/TIE.2017.2674624
10.1007/s10846-015-0212-4
10.1007/s12652-020-01913-3
10.1016/j.robot.2011.07.014
10.21037/acs.2016.03.13
10.1109/ACCESS.2019.2899370
10.1016/j.amjsurg.2004.08.025
10.1109/TIE.2018.2884240
10.1109/TRO.2009.2037252
10.1109/TIE.2019.2920619
10.4103/iju.IJU_355_17
10.1109/ACCESS.2019.2937380
10.1016/j.neunet.2020.07.033
10.1109/LRA.2019.2897145
10.1109/TNNLS.2016.2516565
10.1108/AA-08-2019-0148
10.1007/s11548-019-01976-4
10.1177/1729881418814695
10.1177/0278364917743319
10.1016/j.jcms.2005.09.004
10.1007/s10439-014-1049-x
10.1016/j.robot.2018.03.012
10.1001/archfaci.5.3.259
10.1007/s00595-013-0722-2
10.21037/jovs.2018.05.20
10.1007/s00268-013-2066-x
10.1097/SCS.0000000000001374
10.15586/jkcvhl.2015.23
10.1109/LRA.2020.2974445
10.1016/j.neucom.2020.05.091
ContentType Journal Article
Copyright 2020 John Wiley & Sons Ltd.
2021 John Wiley & Sons Ltd.
Copyright_xml – notice: 2020 John Wiley & Sons Ltd.
– notice: 2021 John Wiley & Sons Ltd.
DBID NPM
AAYXX
CITATION
7SC
7SP
7TB
8FD
F28
FR3
JQ2
K9.
L7M
L~C
L~D
7X8
DOI 10.1002/rcs.2193
DatabaseName PubMed
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle PubMed
CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList CrossRef
Technology Research Database
PubMed
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1478-596X
EndPage 11
ExternalDocumentID 10_1002_rcs_2193
33113264
RCS2193
Genre article
Journal Article
GrantInformation_xml – fundername: European Unions Horizon 2020 research and innovation program under SMARTsurg project
  funderid: 732515
– fundername: Zhejiang Lab's International Talent Fund for Young Professionals.
– fundername: European Unions Horizon 2020 research and innovation program under SMARTsurg project
  grantid: 732515
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OC
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AHMBA
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
H.X
HBH
HF~
HGLYW
HVGLF
HZ~
IX1
J0M
JPC
KBYEO
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
NF~
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
ROL
RWI
RX1
RYL
SJN
SUPJJ
SV3
TEORI
UB1
W8V
W99
WBKPD
WHWMO
WIH
WIJ
WIK
WOHZO
WQJ
WRC
WVDHM
WXI
WXSBR
XG1
XV2
ZZTAW
~IA
~WT
NPM
AAYXX
CITATION
7SC
7SP
7TB
8FD
F28
FR3
JQ2
K9.
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-c3833-66193f2e58877a4dfbcdf72cac61ecab35e266d5e06ced754ac959b2d02e113
IEDL.DBID DR2
ISSN 1478-5951
IngestDate Fri Aug 16 00:54:41 EDT 2024
Thu Oct 10 19:06:33 EDT 2024
Fri Aug 23 02:15:47 EDT 2024
Sat Sep 28 08:36:12 EDT 2024
Sat Aug 24 01:04:45 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords accuracy
robot-assisted surgery
manipulability
redundant robot
trajectory tracking
Language English
License 2020 John Wiley & Sons Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3833-66193f2e58877a4dfbcdf72cac61ecab35e266d5e06ced754ac959b2d02e113
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-9584-9426
0000-0002-6877-6783
OpenAccessLink https://re.public.polimi.it/bitstream/11311/1156743/1/ijcras_manipulability2_0.pdf
PMID 33113264
PQID 2479764825
PQPubID 1026349
PageCount 11
ParticipantIDs proquest_miscellaneous_2455846037
proquest_journals_2479764825
crossref_primary_10_1002_rcs_2193
pubmed_primary_33113264
wiley_primary_10_1002_rcs_2193_RCS2193
PublicationCentury 2000
PublicationDate February 2021
2021-Feb
2021-02-00
20210201
PublicationDateYYYYMMDD 2021-02-01
PublicationDate_xml – month: 02
  year: 2021
  text: February 2021
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Hamilton
PublicationTitle The international journal of medical robotics + computer assisted surgery
PublicationTitleAlternate Int J Med Robot
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2015; 2
2004; 188
2019; 7
2012; 60
2015; 12
2017; 64
2019; 4
2006; 34
2018; 105
2020; 40
2019; 11
2019; 14
2015; 80
2018; 66
2014; 44
2014; 42
2016; 5
2015; 26
2020; 5
2013; 37
2010; 26
2018; 5
2018; 4
2016; 3
2017; 36
2020; 131
2020
2019; 46
2019; 67
2014; 16
2003; 5
2020; 410
2018; 34
2011; 27
2016; 28
2018; 15
e_1_2_8_28_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_26_1
e_1_2_8_27_1
Chang N (e_1_2_8_38_1) 2015; 12
e_1_2_8_3_1
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_4_1
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_21_1
e_1_2_8_22_1
e_1_2_8_23_1
Kwok K (e_1_2_8_30_1) 2014; 16
e_1_2_8_40_1
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_15_1
e_1_2_8_37_1
Zhang Z (e_1_2_8_16_1) 2020
Burke JF (e_1_2_8_33_1) 2019; 11
Li J (e_1_2_8_24_1) 2020
De Momi E (e_1_2_8_31_1) 2016; 3
e_1_2_8_32_1
e_1_2_8_10_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_12_1
References_xml – volume: 15
  start-page: 1729881418814695
  issue: 6
  year: 2018
  article-title: Online human‐like redundancy optimization for tele‐operated anthropomorphic manipulators
  publication-title: Int J Adv Robotic Syst
– volume: 46
  start-page: 79
  issue: 1
  year: 2019
  article-title: Early experiences with robot‐assisted prosthetic breast reconstruction
  publication-title: Archives Plastic Surg
– volume: 7
  start-page: 23570
  year: 2019
  end-page: 23578
  article-title: Development of trajectories through the Kalman algorithm and application to an industrial robot in the automotive industry
  publication-title: IEEE Access
– volume: 12
  start-page: 1
  issue: 7
  year: 2015
  article-title: A modular control scheme for hyper‐redundant robots
  publication-title: Int J Adv Robotic Syst
– start-page: 1
  year: 2020
  end-page: 10
  article-title: Neural approximation‐based model predictive tracking control of non‐holonomic wheel‐legged robots
  publication-title: Int J Control, Automation Syst
– volume: 16
  start-page: 1
  issue: 1
  year: 2014
  end-page: 3
  article-title: MRI‐based visual and haptic catheter feedback: simulating a novel system's contribution to efficient and safe MRI‐guided cardiac electrophysiology procedures
  publication-title: J Cardiovasc Magnetic Reson
– volume: 64
  start-page: 4710
  issue: 6
  year: 2017
  end-page: 4720
  article-title: Manipulability optimization of redundant manipulators using dynamic neural networks
  publication-title: IEEE Trans Industrial Electron
– volume: 37
  start-page: 2800
  issue: 12
  year: 2013
  end-page: 2811
  article-title: Application of fluorescence in robotic general surgery: review of the literature and state of the art
  publication-title: World J Surg
– volume: 4
  start-page: 115
  year: 2018
– volume: 26
  start-page: 166
  issue: 1
  year: 2010
  end-page: 173
  article-title: Kinematic‐sensitivity indices for dimensionally nonhomogeneous jacobian matrices
  publication-title: IEEE Trans Robot
– volume: 5
  start-page: 2943
  issue: 2
  year: 2020
  end-page: 2949
  article-title: Deep neural network approach in robot tool dynamics identification for bilateral teleoperation
  publication-title: IEEE Robot Autom Lett
– volume: 11
  start-page: 1
  issue: 2
  year: 2019
  end-page: 6
  article-title: In situ cranioplasty for renal cell skull metastasis: Technical note
  publication-title: Cureus
– volume: 40
  start-page: 675
  issue: 5
  year: 2020
  end-page: 687
  article-title: Parallel structure of six wheel‐legged robot trajectory tracking control with heavy payload under uncertain physical interaction
  publication-title: Assem Autom
– volume: 14
  start-page: 1365
  issue: 8
  year: 2019
  end-page: 1377
  article-title: Wire‐driven flexible manipulator with constrained spherical joints for minimally invasive surgery
  publication-title: Int J Comput Assist Radiol Surg
– volume: 28
  start-page: 415
  issue: 2
  year: 2016
  end-page: 426
  article-title: Distributed recurrent neural networks for cooperative control of manipulators: a game‐theoretic perspective
  publication-title: IEEE Trans Neural Netw Learn Syst
– volume: 131
  start-page: 291
  year: 2020
  end-page: 299
  article-title: Improved recurrent neural network‐based manipulator control with remote center of motion constraints: experimental results
  publication-title: Neural Networks
– year: 2020
  article-title: A novel muscle‐computer interface for hand gesture recognition using depth vision
  publication-title: J Ambient Intell Humaniz Comput
– volume: 105
  start-page: 121
  year: 2018
  end-page: 137
  article-title: Online optimal trajectory generation for robot table tennis
  publication-title: Robotics Aut Syst
– volume: 66
  start-page: 7788
  issue: 10
  year: 2018
  end-page: 7799
  article-title: Evolution strategies learning with variable impedance control for grasping under uncertainty
  publication-title: IEEE Trans Industrial Electron
– volume: 5
  start-page: 144
  issue: 2
  year: 2018
  end-page: 148
  article-title: Automated open wound suturing: detection and planning algorithm
  publication-title: JRNAL
– volume: 7
  start-page: 124207
  year: 2019
  end-page: 124216
  article-title: Deep Neural Network Approach in Human‐like Redundancy Optimization for Anthropomorphic Manipulators
  publication-title: IEEE Access
– volume: 5
  start-page: 573
  issue: 6
  year: 2016
  article-title: Robotic mitral valve surgery: current limitations and future directions
  publication-title: Ann Cardiothorac Surg
– volume: 34
  start-page: 182
  issue: 3
  year: 2006
  end-page: 185
  article-title: Coronal incision for treating zygomatic complex fractures
  publication-title: J Cranio‐Maxillofacial Surg
– volume: 34
  start-page: 101
  issue: 2
  year: 2018
  end-page: 109
  article-title: The current status of robot‐assisted cystectomy
  publication-title: Indian J Urol
– volume: 5
  start-page: 259
  issue: 3
  year: 2003
  end-page: 262
  article-title: The coronal incision: sinusoidal, sawtooth, and postauricular techniques
  publication-title: Archives Facial plastic Surg
– volume: 410
  start-page: 342
  year: 2020
  end-page: 353
  article-title: Neural fuzzy approximation enhanced autonomous tracking control of the wheel‐legged robot under uncertain physical interaction
  publication-title: Neurocomputing
– volume: 2
  start-page: 30
  issue: 2
  year: 2015
  end-page: 44
  article-title: Review of robot‐assisted partial nephrectomy in modern practice
  publication-title: J Kidney Cancer VHL
– volume: 44
  start-page: 1470
  issue: 8
  year: 2014
  end-page: 1475
  article-title: Clinical comparison of four types of skin incisions for skin‐sparing mastectomy and immediate breast reconstruction
  publication-title: Surg Today
– volume: 42
  start-page: 1823
  issue: 9
  year: 2014
  end-page: 1833
  article-title: An MR‐conditional high‐torque pneumatic stepper motor for MRI‐guided and robot‐assisted intervention
  publication-title: Ann Biomed Eng
– volume: 188
  start-page: 2
  issue: 4
  year: 2004
  end-page: 15
  article-title: Robotic technology in surgery: past, present, and future
  publication-title: Am J Surg
– start-page: 1
  year: 2020
  end-page: 15
  article-title: Mutual‐collision‐avoidance scheme synthesized by neural networks for dual redundant robot manipulators executing cooperative tasks
  publication-title: IEEE Trans Neural Netw Learn Syst
– volume: 27
  start-page: 434
  issue: 2
  year: 2011
  end-page: 449
  article-title: The power manipulability–A new homogeneous performance index of robot manipulators
  publication-title: Robotics Computer‐Integrated Manuf
– volume: 67
  start-page: 3955
  issue: 5
  year: 2019
  end-page: 3966
  article-title: Sliding mode control for nonlinear stochastic semi‐Markov switching systems with application to SRMM
  publication-title: IEEE Trans Industrial Electron
– volume: 26
  start-page: 243
  issue: 1
  year: 2015
  end-page: 244
  article-title: The posterior coronal incision
  publication-title: J Craniofacial Surg
– volume: 3
  start-page: 34
  issue: 3
  year: 2016
  end-page: 34
  article-title: A neural network‐based approach for trajectory planning in robot–human handover tasks
  publication-title: Front Robot AI
– volume: 60
  start-page: 337
  issue: 3
  year: 2012
  end-page: 346
  article-title: On the manipulability ellipsoids of underactuated robotic hands with compliance
  publication-title: Robotics Aut Syst
– volume: 36
  start-page: 1595
  issue: 13–14
  year: 2017
  end-page: 1618
  article-title: Transition state clustering: unsupervised surgical trajectory segmentation for robot learning
  publication-title: Int J Robotics Res
– volume: 4
  start-page: 1447
  issue: 2
  year: 2019
  end-page: 1453
  article-title: Improved human–robot collaborative control of redundant robot for teleoperated minimally invasive surgery
  publication-title: IEEE Robot Autom Lett
– volume: 80
  start-page: 99
  issue: 1
  year: 2015
  end-page: 119
  article-title: Predicting redundancy of a 7 dof upper limb exoskeleton toward improved transparency between human and robot
  publication-title: J Intelligent Robotic Syst
– ident: e_1_2_8_25_1
  doi: 10.1016/j.rcim.2010.09.004
– ident: e_1_2_8_21_1
  doi: 10.2991/jrnal.2018.5.2.16
– start-page: 1
  year: 2020
  ident: e_1_2_8_24_1
  article-title: Neural approximation‐based model predictive tracking control of non‐holonomic wheel‐legged robots
  publication-title: Int J Control, Automation Syst
  contributor:
    fullname: Li J
– ident: e_1_2_8_10_1
  doi: 10.5999/aps.2018.00052
– ident: e_1_2_8_39_1
  doi: 10.1109/TIE.2017.2674624
– ident: e_1_2_8_2_1
  doi: 10.1007/s10846-015-0212-4
– ident: e_1_2_8_22_1
  doi: 10.1007/s12652-020-01913-3
– volume: 16
  start-page: 1
  issue: 1
  year: 2014
  ident: e_1_2_8_30_1
  article-title: MRI‐based visual and haptic catheter feedback: simulating a novel system's contribution to efficient and safe MRI‐guided cardiac electrophysiology procedures
  publication-title: J Cardiovasc Magnetic Reson
  contributor:
    fullname: Kwok K
– volume: 12
  start-page: 1
  issue: 7
  year: 2015
  ident: e_1_2_8_38_1
  article-title: A modular control scheme for hyper‐redundant robots
  publication-title: Int J Adv Robotic Syst
  contributor:
    fullname: Chang N
– ident: e_1_2_8_27_1
  doi: 10.1016/j.robot.2011.07.014
– ident: e_1_2_8_6_1
  doi: 10.21037/acs.2016.03.13
– ident: e_1_2_8_28_1
  doi: 10.1109/ACCESS.2019.2899370
– ident: e_1_2_8_3_1
  doi: 10.1016/j.amjsurg.2004.08.025
– ident: e_1_2_8_32_1
  doi: 10.1109/TIE.2018.2884240
– ident: e_1_2_8_23_1
  doi: 10.1109/TRO.2009.2037252
– ident: e_1_2_8_12_1
  doi: 10.1109/TIE.2019.2920619
– ident: e_1_2_8_9_1
  doi: 10.4103/iju.IJU_355_17
– ident: e_1_2_8_15_1
  doi: 10.1109/ACCESS.2019.2937380
– ident: e_1_2_8_18_1
  doi: 10.1016/j.neunet.2020.07.033
– ident: e_1_2_8_13_1
  doi: 10.1109/LRA.2019.2897145
– ident: e_1_2_8_26_1
  doi: 10.1109/TNNLS.2016.2516565
– ident: e_1_2_8_19_1
  doi: 10.1108/AA-08-2019-0148
– volume: 11
  start-page: 1
  issue: 2
  year: 2019
  ident: e_1_2_8_33_1
  article-title: In situ cranioplasty for renal cell skull metastasis: Technical note
  publication-title: Cureus
  contributor:
    fullname: Burke JF
– ident: e_1_2_8_40_1
  doi: 10.1007/s11548-019-01976-4
– ident: e_1_2_8_14_1
  doi: 10.1177/1729881418814695
– ident: e_1_2_8_37_1
  doi: 10.1177/0278364917743319
– ident: e_1_2_8_20_1
  doi: 10.1016/j.jcms.2005.09.004
– ident: e_1_2_8_17_1
  doi: 10.1007/s10439-014-1049-x
– ident: e_1_2_8_29_1
  doi: 10.1016/j.robot.2018.03.012
– ident: e_1_2_8_35_1
  doi: 10.1001/archfaci.5.3.259
– ident: e_1_2_8_34_1
  doi: 10.1007/s00595-013-0722-2
– ident: e_1_2_8_7_1
  doi: 10.21037/jovs.2018.05.20
– start-page: 1
  year: 2020
  ident: e_1_2_8_16_1
  article-title: Mutual‐collision‐avoidance scheme synthesized by neural networks for dual redundant robot manipulators executing cooperative tasks
  publication-title: IEEE Trans Neural Netw Learn Syst
  contributor:
    fullname: Zhang Z
– ident: e_1_2_8_5_1
  doi: 10.1007/s00268-013-2066-x
– ident: e_1_2_8_36_1
  doi: 10.1097/SCS.0000000000001374
– volume: 3
  start-page: 34
  issue: 3
  year: 2016
  ident: e_1_2_8_31_1
  article-title: A neural network‐based approach for trajectory planning in robot–human handover tasks
  publication-title: Front Robot AI
  contributor:
    fullname: De Momi E
– ident: e_1_2_8_8_1
  doi: 10.15586/jkcvhl.2015.23
– ident: e_1_2_8_11_1
  doi: 10.1109/LRA.2020.2974445
– ident: e_1_2_8_4_1
  doi: 10.1016/j.neucom.2020.05.091
SSID ssj0045464
Score 2.3195634
Snippet Purpose Both safety and accuracy are of vital importance for surgical operation procedures. An efficient way to avoid the singularity of the surgical robot...
Both safety and accuracy are of vital importance for surgical operation procedures. An efficient way to avoid the singularity of the surgical robot concerning...
Abstract Purpose Both safety and accuracy are of vital importance for surgical operation procedures. An efficient way to avoid the singularity of the surgical...
PurposeBoth safety and accuracy are of vital importance for surgical operation procedures. An efficient way to avoid the singularity of the surgical robot...
PURPOSEBoth safety and accuracy are of vital importance for surgical operation procedures. An efficient way to avoid the singularity of the surgical robot...
SourceID proquest
crossref
pubmed
wiley
SourceType Aggregation Database
Index Database
Publisher
StartPage 1
SubjectTerms Accuracy
Degrees of freedom
Errors
manipulability
Manipulators
Network management systems
Neural networks
Optimization
redundant robot
Robot arms
Robotic surgery
Robots
robot‐assisted surgery
Safety
Sine waves
trajectory tracking
Title Experimental validation of manipulability optimization control of a 7‐DoF serial manipulator for robot‐assisted surgery
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Frcs.2193
https://www.ncbi.nlm.nih.gov/pubmed/33113264
https://www.proquest.com/docview/2479764825
https://search.proquest.com/docview/2455846037
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZQJxh4PwoFGQmxpc3DjtsRlVYVA0MLUiWGyHYcCSEa1KYDsPAT-I38Eu7iJLQgJMSUwefY8d3Z3znnz4ScSdEOO6EInFCYjsNgCXHaWjOHhUxpT_qa6Zzt8zoc3LKrMR8XWZV4FsbyQ1QbbugZ-XyNDi7VrPVFGjrVsya4GxJ9Io8e4qFhxRzFOMuZozwGQRIHFFHyzrp-q6y4vBL9gJfLaDVfbvob5K7sqM0yeWjOM9XUL984HP_3JZtkvUCh9MKazRZZMZNtsrbATbhDXnsL3P8U7PHe3r5E04QiZwbe-5Un1j7TFKadx-I8Jy1y31FMUvHx9n6Z9qm186oexPkUwDKdpirNQAQAPFpbTGf2kPYuGfV7N92BU9zU4GiIcEHREIYFiW84TFlCsjhROk6Er6UOPaOlCrgBIBBz44baxIIzqTu8o_zY9Y3nBXukNkkn5oBQl8eKKcmMCQ1ADQEiChAokvh7LOZunZyWOoueLB1HZImX_QiGMcJhrJNGqcyocEgoYAKAF4N4GF5RFYMr4f8ROTHpHGU4wjE3EHWyb42gaiQIoJ8AHuvkPFflr61Hw-4In4d_FTwiqz7myeSZ4A1Sy6ZzcwxAJ1MnuUl_An0R_gc
link.rule.ids 315,786,790,1382,27955,27956,46327,46751
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwEB2VcgAO7EtZjYS4pc1ix1ScUBeV9cAicUCKbMeVEKJBXQ7AhU_gG_kSxnESNiEhTjl4HDueGfuNM34G2BF8L6yHPHBCrusOxSXE2VOKOjSkUnnCV1SlbJ9nYeeKHl2z6xLs52dhLD9EseFmPCOdr42Dmw3p2gdraF8NquhvwRiMo7cz45XN84I7ijKackd5FMMkhjgiZ551_Vpe8-ta9ANgfsWr6YLTnoGbvKs2z-SuOhrKqnr6xuL4z2-ZhekMiJIDazlzUNK9eZj6RE-4AM-tT_T_BE3y1l7ARJIuMbQZ5uqvNLf2kSQ489xnRzpJlv5uxAThby-vzaRNrKkX9TDUJ4iXST-RyRBFEMMbg4vJwJ7TXoSLduuy0XGyyxochUEu6hojsaDra4azFhc07koVd7mvhAo9rYQMmEYsEDPthkrHnFGh6qwu_dj1tecFS1DuJT29AsRlsaRSUK1DjWiDo4hEEGp4_D0aM7cC27nSogfLyBFZ7mU_wmGMzDBWYD3XZpT5JBZQjtiLYkiMryiK0ZvMLxLR08nIyDCDyNyAV2DZWkHRSBBgPxE_VmA31eWvrUfnjQvzXP2r4BZMdC5PT6KTw7PjNZj0TdpMmhi-DuVhf6Q3EPcM5WZq3-9QZAI2
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwEB6VVkJwKL-FLQWMhLhlm9hju3usul21gCrUglSJQ-S_SAixqba7B-ilj9Bn7JN0HCehBVVCnHLwOHY8M_Y3zvgzwFujt9RIaZEpHUYZ0hKSbTmHGSq0rjDcoWvYPg_U3hd8fyyP26zKeBYm8UP0G27RM5r5Ojr4ia82f5OGztzpkNxN3IEVVILHwGt82FNHocSGOqpAipIkwYiOeDbnm13Nm0vRX_jyJlxt1pvJA_ja9TSlmXwfLuZ26H79QeL4f5_yEFZbGMq2k908gqUwfQz3r5ETPoGz3Wvk_4wM8lu6fonVFYukGfHiryaz9ierad750R7oZG3yexQzTF-eX4zrCUuG3tejQJ8RWmaz2tZzEiEEH83Ns9N0SvspHE12P-_sZe1VDZmjEJc0TXGYqHiQNGdpg76yzleaO-NUEZyxQgZCAl6GXLngtUTjRnJkuc95KAqxBsvTehqeA8ult2gNhqACYQ1NIpYgaGTxL9DLfABvOp2VJ4mPo0zMy7ykYSzjMA5go1Nm2XokFaAm5IUUENMr-mLypfiDxExDvYgyMuKxXOgBPEtG0DciBPWT0OMA3jWqvLX18nDnKD7X_1XwNdz9NJ6UH_cPPryAezzmzDRZ4RuwPJ8twksCPXP7qrHuK1wZAOU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Experimental+validation+of+manipulability+optimization+control+of+a+7%E2%80%90DoF+serial+manipulator+for+robot%E2%80%90assisted+surgery&rft.jtitle=The+international+journal+of+medical+robotics+%2B+computer+assisted+surgery&rft.au=Su%2C+Hang&rft.au=Danioni%2C+Andrea&rft.au=Mira%2C+Robert+Mihai&rft.au=Ungari%2C+Matteo&rft.date=2021-02-01&rft.issn=1478-5951&rft.eissn=1478-596X&rft.volume=17&rft.issue=1&rft.spage=1&rft.epage=11&rft_id=info:doi/10.1002%2Frcs.2193&rft.externalDBID=10.1002%252Frcs.2193&rft.externalDocID=RCS2193
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1478-5951&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1478-5951&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1478-5951&client=summon