The Crucial Role of Electrode Potential of a Working Anode in Dictating the Structural Evolution of Solid Electrolyte Interphase

The performance of rechargeable lithium (Li) batteries is highly correlated with the structure of solid electrolyte interphase (SEI). The properties of a working anode are vital factors in determining the structure of SEI; however, the correspondingly poor understanding hinders the rational regulati...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 61; no. 42; pp. e202208743 - n/a
Main Authors Sun, Shu‐Yu, Yao, Nao, Jin, Cheng‐Bin, Xie, Jin, Li, Xi‐Yao, Zhou, Ming‐Yue, Chen, Xiang, Li, Bo‐Quan, Zhang, Xue‐Qiang, Zhang, Qiang
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 17.10.2022
EditionInternational ed. in English
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The performance of rechargeable lithium (Li) batteries is highly correlated with the structure of solid electrolyte interphase (SEI). The properties of a working anode are vital factors in determining the structure of SEI; however, the correspondingly poor understanding hinders the rational regulation of SEI. Herein, the electrode potential and anode material, two critical properties of an anode, in dictating the structural evolution of SEI were investigated theoretically and experimentally. The anode potential is identified as a crucial role in dictating the SEI structure. The anode potential determines the reduction products in the electrolyte, ultimately giving rise to the mosaic and bilayer SEI structure at high and low potential, respectively. In contrast, the anode material does not cause a significant change in the SEI structure. This work discloses the crucial role of electrode potential in dictating SEI structure and provides rational guidance to regulate SEI structure. The role of electrode potential and anode material, two critical properties of a working anode, in dictating the structural evolution of solid electrolyte interphase (SEI) was investigated theoretically and experimentally, which provides rational guidance to regulate SEI structure.
AbstractList The performance of rechargeable lithium (Li) batteries is highly correlated with the structure of solid electrolyte interphase (SEI). The properties of a working anode are vital factors in determining the structure of SEI; however, the correspondingly poor understanding hinders the rational regulation of SEI. Herein, the electrode potential and anode material, two critical properties of an anode, in dictating the structural evolution of SEI were investigated theoretically and experimentally. The anode potential is identified as a crucial role in dictating the SEI structure. The anode potential determines the reduction products in the electrolyte, ultimately giving rise to the mosaic and bilayer SEI structure at high and low potential, respectively. In contrast, the anode material does not cause a significant change in the SEI structure. This work discloses the crucial role of electrode potential in dictating SEI structure and provides rational guidance to regulate SEI structure. The role of electrode potential and anode material, two critical properties of a working anode, in dictating the structural evolution of solid electrolyte interphase (SEI) was investigated theoretically and experimentally, which provides rational guidance to regulate SEI structure.
The performance of rechargeable lithium (Li) batteries is highly correlated with the structure of solid electrolyte interphase (SEI). The properties of a working anode are vital factors in determining the structure of SEI; however, the correspondingly poor understanding hinders the rational regulation of SEI. Herein, the electrode potential and anode material, two critical properties of an anode, in dictating the structural evolution of SEI were investigated theoretically and experimentally. The anode potential is identified as a crucial role in dictating the SEI structure. The anode potential determines the reduction products in the electrolyte, ultimately giving rise to the mosaic and bilayer SEI structure at high and low potential, respectively. In contrast, the anode material does not cause a significant change in the SEI structure. This work discloses the crucial role of electrode potential in dictating SEI structure and provides rational guidance to regulate SEI structure.
The performance of rechargeable lithium (Li) batteries is highly correlated with the structure of solid electrolyte interphase (SEI). The properties of a working anode are vital factors in determining the structure of SEI; however, the correspondingly poor understanding hinders the rational regulation of SEI. Herein, the electrode potential and anode material, two critical properties of an anode, in dictating the structural evolution of SEI were investigated theoretically and experimentally. The anode potential is identified as a crucial role in dictating the SEI structure. The anode potential determines the reduction products in the electrolyte, ultimately giving rise to the mosaic and bilayer SEI structure at high and low potential, respectively. In contrast, the anode material does not cause a significant change in the SEI structure. This work discloses the crucial role of electrode potential in dictating SEI structure and provides rational guidance to regulate SEI structure.The performance of rechargeable lithium (Li) batteries is highly correlated with the structure of solid electrolyte interphase (SEI). The properties of a working anode are vital factors in determining the structure of SEI; however, the correspondingly poor understanding hinders the rational regulation of SEI. Herein, the electrode potential and anode material, two critical properties of an anode, in dictating the structural evolution of SEI were investigated theoretically and experimentally. The anode potential is identified as a crucial role in dictating the SEI structure. The anode potential determines the reduction products in the electrolyte, ultimately giving rise to the mosaic and bilayer SEI structure at high and low potential, respectively. In contrast, the anode material does not cause a significant change in the SEI structure. This work discloses the crucial role of electrode potential in dictating SEI structure and provides rational guidance to regulate SEI structure.
Author Jin, Cheng‐Bin
Zhang, Qiang
Li, Xi‐Yao
Li, Bo‐Quan
Yao, Nao
Xie, Jin
Zhou, Ming‐Yue
Sun, Shu‐Yu
Zhang, Xue‐Qiang
Chen, Xiang
Author_xml – sequence: 1
  givenname: Shu‐Yu
  surname: Sun
  fullname: Sun, Shu‐Yu
  organization: Tsinghua University
– sequence: 2
  givenname: Nao
  surname: Yao
  fullname: Yao, Nao
  organization: Tsinghua University
– sequence: 3
  givenname: Cheng‐Bin
  surname: Jin
  fullname: Jin, Cheng‐Bin
  organization: Tsinghua University
– sequence: 4
  givenname: Jin
  surname: Xie
  fullname: Xie, Jin
  organization: Tsinghua University
– sequence: 5
  givenname: Xi‐Yao
  surname: Li
  fullname: Li, Xi‐Yao
  organization: Tsinghua University
– sequence: 6
  givenname: Ming‐Yue
  surname: Zhou
  fullname: Zhou, Ming‐Yue
  organization: Tsinghua University
– sequence: 7
  givenname: Xiang
  surname: Chen
  fullname: Chen, Xiang
  organization: Tsinghua University
– sequence: 8
  givenname: Bo‐Quan
  surname: Li
  fullname: Li, Bo‐Quan
  organization: Beijing Institute of Technology
– sequence: 9
  givenname: Xue‐Qiang
  orcidid: 0000-0002-3929-1541
  surname: Zhang
  fullname: Zhang, Xue‐Qiang
  email: zhangxq@bit.edu.cn
  organization: Beijing Institute of Technology
– sequence: 10
  givenname: Qiang
  surname: Zhang
  fullname: Zhang, Qiang
  email: zhang-qiang@mails.tsinghua.edu.cn
  organization: Tsinghua University
BookMark eNqFkctrGzEQh0VIIHGSa8-CXHKxq5d3tUfjuqkhtCEPclxU7SiRI0uupG3wrX96tbgPCASfJGa-78dIM0KHPnhA6AMlE0oI-6i8hQkjjBFZC36ATuiU0TGva35Y7oLzcS2n9BiNUloVXkpSnaBf98-A57HXVjl8GxzgYPDCgc4xdIBvQgafh14pK_wY4ov1T3jmh6b1-JPVWeWhlEvOXS5BuY8FX_wMrs82-EG8C852f1PdNgNe-gxx86wSnKEjo1yC8z_nKXr4vLiffxlff7tazmfXY81lGb0izHREcNCcGVBgGlMRrStuNDSN6lgDXIiG1pxrQTqqJBADndYCvhvOOn6KLne5mxh-9JByu7ZJg3PKQ-hTyySlTS0qSfajNWFUEjaVBb14g65CH315SKEYZ5LUDS2U2FE6hpQimFbb4duCz1FZ11LSDhtshw22_zZYtMkbbRPtWsXt-0KzE16tg-0eup19XS7-u78B9Lexzg
CitedBy_id crossref_primary_10_1002_anie_202414201
crossref_primary_10_1002_aenm_202303834
crossref_primary_10_1002_anie_202414524
crossref_primary_10_1016_j_cej_2023_147847
crossref_primary_10_1021_acsnano_4c15386
crossref_primary_10_1002_aenm_202302825
crossref_primary_10_1016_j_jechem_2022_12_044
crossref_primary_10_1002_idm2_12131
crossref_primary_10_1002_adfm_202311925
crossref_primary_10_1002_ange_202304339
crossref_primary_10_1021_acsnano_3c09853
crossref_primary_10_1016_j_ensm_2023_04_004
crossref_primary_10_1016_j_ensm_2023_03_009
crossref_primary_10_1016_j_carbon_2024_119452
crossref_primary_10_1039_D2TA07097A
crossref_primary_10_1002_adfm_202313188
crossref_primary_10_1007_s12274_024_6764_5
crossref_primary_10_1002_anie_202413600
crossref_primary_10_1016_j_jechem_2024_01_069
crossref_primary_10_1021_acsami_4c03939
crossref_primary_10_1016_j_jechem_2023_02_048
crossref_primary_10_1016_j_cej_2025_160998
crossref_primary_10_1002_anie_202304339
crossref_primary_10_1002_ange_202412214
crossref_primary_10_1007_s11581_023_05367_3
crossref_primary_10_1016_j_esci_2024_100351
crossref_primary_10_1016_j_ensm_2024_103916
crossref_primary_10_1016_j_jechem_2023_05_020
crossref_primary_10_1007_s42864_023_00231_3
crossref_primary_10_1016_j_xcrp_2023_101324
crossref_primary_10_1021_acs_chemmater_3c02430
crossref_primary_10_1016_j_ensm_2022_10_054
crossref_primary_10_1002_aenm_202202874
crossref_primary_10_1007_s12274_023_5702_2
crossref_primary_10_1021_acsami_2c20616
crossref_primary_10_1038_s41557_024_01689_5
crossref_primary_10_1021_jacs_4c11012
crossref_primary_10_1039_D4EE00407H
crossref_primary_10_1016_j_est_2023_110390
crossref_primary_10_1016_S1872_5805_23_60744_9
crossref_primary_10_1021_acsenergylett_3c02572
crossref_primary_10_1021_acsnano_4c03221
crossref_primary_10_1039_D3QM00759F
crossref_primary_10_1002_ange_202414524
crossref_primary_10_1039_D4NJ03428G
crossref_primary_10_1149_1945_7111_ad5621
crossref_primary_10_1016_j_apsusc_2023_156447
crossref_primary_10_1002_ange_202414201
crossref_primary_10_1021_acsami_3c00554
crossref_primary_10_1002_aenm_202302735
crossref_primary_10_1002_anie_202412214
crossref_primary_10_1016_j_joule_2024_07_007
crossref_primary_10_1002_adma_202205421
crossref_primary_10_1002_batt_202400118
crossref_primary_10_1039_D4EB00042K
crossref_primary_10_1016_j_jcis_2024_06_086
crossref_primary_10_1021_acs_nanolett_3c00783
crossref_primary_10_1039_D4EB00034J
crossref_primary_10_1002_ange_202413600
crossref_primary_10_3390_batteries9050242
crossref_primary_10_1021_acsenergylett_2c02659
crossref_primary_10_1002_adfm_202420170
crossref_primary_10_1039_D3EE03176D
crossref_primary_10_1016_j_nanoen_2022_107993
crossref_primary_10_26599_NRE_2023_9120046
Cites_doi 10.1002/adma.201700007
10.1039/C9TA12269A
10.1016/S0009-2614(99)01374-3
10.1021/acs.chemrev.1c00636
10.1002/anie.202115884
10.1002/aenm.202001257
10.1002/ange.202114671
10.1038/35104644
10.1016/j.jpowsour.2006.07.074
10.1038/s41467-018-06077-5
10.1038/s41560-021-00962-y
10.1038/s41560-019-0338-x
10.1021/acs.jpclett.5b01727
10.1038/s41560-022-01020-x
10.1021/acs.chemrev.8b00422
10.1002/adma.201908293
10.1039/D0CC05084A
10.1021/cm901452z
10.1038/s41563-021-01172-3
10.1038/s41467-021-26481-8
10.1039/D0CS01017K
10.1021/cr500003w
10.1149/2.0021409eel
10.1149/1945-7111/ac53d0
10.1002/anie.202114671
10.1039/c1ee01388b
10.1016/j.jpowsour.2007.06.050
10.1021/jp052474w
10.1016/j.joule.2019.09.022
10.1021/jp308929a
10.1002/admi.201701097
10.1002/adfm.201605989
10.1016/j.jpowsour.2011.10.085
10.1016/j.joule.2021.03.024
10.1021/nl404471v
10.1021/acsenergylett.9b00822
10.1038/s41578-021-00345-5
10.1002/adma.201800561
10.1016/j.ensm.2021.10.013
10.1002/advs.201500213
10.1021/acs.chemrev.7b00115
10.1002/ange.202115884
10.1016/j.ensm.2019.09.020
10.1002/aenm.202002297
10.1038/s41565-018-0284-y
10.1016/j.jpowsour.2013.12.099
10.1021/cr020731c
10.1021/jp0601522
10.1016/j.joule.2018.08.004
10.1016/j.electacta.2010.05.072
10.1149/1.1414946
10.1016/j.carbon.2016.04.008
10.1016/j.joule.2019.08.018
10.1038/nature11475
10.1149/2.1441707jes
10.1038/s41586-018-0397-3
10.1149/1.2409866
10.1021/ja0164529
10.1038/nenergy.2016.114
ContentType Journal Article
Copyright 2022 Wiley‐VCH GmbH
2022 Wiley-VCH GmbH.
Copyright_xml – notice: 2022 Wiley‐VCH GmbH
– notice: 2022 Wiley-VCH GmbH.
DBID AAYXX
CITATION
7TM
K9.
7X8
7S9
L.6
DOI 10.1002/anie.202208743
DatabaseName CrossRef
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
MEDLINE - Academic
ProQuest Health & Medical Complete (Alumni)
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage n/a
ExternalDocumentID 10_1002_anie_202208743
ANIE202208743
Genre article
GrantInformation_xml – fundername: National Key Research and Development Program
  funderid: 2021YFB2500300; 2021YFB2400300
– fundername: National Natural Science Foundation of China
  funderid: 52103342, 22109007; U1801257
– fundername: Beijing Municipal Natural Science Foundation
  funderid: Z200011
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
M53
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
UQL
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
AAYXX
ABDBF
ABJNI
AEYWJ
AGHNM
AGYGG
CITATION
7TM
K9.
7X8
7S9
L.6
ID FETCH-LOGICAL-c3833-602fd043ec32feaef9f60cc63fce99ad29e34491733c40d1a8e0fedcc4ebf32d3
IEDL.DBID DR2
ISSN 1433-7851
1521-3773
IngestDate Fri Jul 11 18:35:09 EDT 2025
Fri Jul 11 07:02:23 EDT 2025
Fri Jul 25 10:34:35 EDT 2025
Tue Jul 01 01:18:27 EDT 2025
Thu Apr 24 23:09:42 EDT 2025
Wed Jan 22 16:23:21 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 42
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3833-602fd043ec32feaef9f60cc63fce99ad29e34491733c40d1a8e0fedcc4ebf32d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-3929-1541
PQID 2723280791
PQPubID 946352
PageCount 8
ParticipantIDs proquest_miscellaneous_2811974680
proquest_miscellaneous_2702180258
proquest_journals_2723280791
crossref_citationtrail_10_1002_anie_202208743
crossref_primary_10_1002_anie_202208743
wiley_primary_10_1002_anie_202208743_ANIE202208743
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate October 17, 2022
PublicationDateYYYYMMDD 2022-10-17
PublicationDate_xml – month: 10
  year: 2022
  text: October 17, 2022
  day: 17
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Angewandte Chemie International Edition
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2018; 560
2010; 55
2012; 200
2019; 14
2016; 105
2020; 56
2022; 21
2020; 10
2012; 488
2014; 254
2017; 117
2022; 122
2020; 8
2010; 22
2018; 9
2022 2022; 61 134
2018; 2
2018; 5
2014; 3
2007; 174
2013; 117
2006; 162
2014; 14
2005; 109
2018; 30
2017; 164
2001; 414
2022; 169
2021; 6
2001; 123
2019; 4
2015; 6
2021; 5
2004; 104
2019; 3
2017; 27
2000; 317
2006; 110
2017; 29
2022; 44
2020; 32
2011; 4
2021; 50
2014; 114
2016; 1
2021; 12
2016; 3
2018; 118
2001; 4
2022; 7
2007; 154
2020; 25
e_1_2_7_5_2
e_1_2_7_3_2
e_1_2_7_9_2
e_1_2_7_7_1
e_1_2_7_19_2
e_1_2_7_60_1
e_1_2_7_17_2
e_1_2_7_62_1
e_1_2_7_15_2
e_1_2_7_1_1
e_1_2_7_13_2
e_1_2_7_41_2
e_1_2_7_43_1
e_1_2_7_11_2
(e_1_2_7_17_3) 2022; 134
e_1_2_7_64_2
e_1_2_7_45_1
e_1_2_7_68_1
e_1_2_7_66_2
(e_1_2_7_42_3) 2022; 134
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_2
e_1_2_7_28_2
e_1_2_7_50_1
e_1_2_7_71_1
e_1_2_7_25_2
e_1_2_7_52_1
e_1_2_7_23_2
e_1_2_7_31_2
e_1_2_7_54_2
e_1_2_7_73_2
e_1_2_7_21_2
e_1_2_7_33_2
e_1_2_7_56_2
e_1_2_7_35_2
e_1_2_7_58_2
e_1_2_7_37_2
e_1_2_7_39_2
e_1_2_7_4_2
e_1_2_7_2_2
e_1_2_7_8_2
e_1_2_7_6_2
e_1_2_7_18_1
e_1_2_7_16_2
e_1_2_7_61_1
e_1_2_7_14_2
e_1_2_7_40_2
e_1_2_7_63_2
e_1_2_7_42_2
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_65_1
e_1_2_7_10_2
e_1_2_7_67_2
e_1_2_7_46_1
e_1_2_7_69_2
e_1_2_7_48_2
e_1_2_7_27_2
e_1_2_7_29_2
e_1_2_7_72_2
e_1_2_7_51_1
e_1_2_7_70_2
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_24_2
e_1_2_7_32_2
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_20_2
e_1_2_7_55_2
e_1_2_7_36_2
e_1_2_7_38_1
e_1_2_7_59_2
References_xml – volume: 10
  year: 2020
  publication-title: Adv. Energy Mater.
– volume: 27
  year: 2017
  publication-title: Adv. Funct. Mater.
– volume: 118
  start-page: 11433
  year: 2018
  end-page: 11456
  publication-title: Chem. Rev.
– volume: 14
  start-page: 1405
  year: 2014
  end-page: 1412
  publication-title: Nano Lett.
– volume: 55
  start-page: 6332
  year: 2010
  end-page: 6341
  publication-title: Electrochim. Acta
– volume: 109
  start-page: 17567
  year: 2005
  end-page: 17573
  publication-title: J. Phys. Chem. B
– volume: 123
  start-page: 11708
  year: 2001
  end-page: 11718
  publication-title: J. Am. Chem. Soc.
– volume: 117
  start-page: 1539
  year: 2013
  end-page: 1547
  publication-title: J. Phys. Chem. C
– volume: 3
  year: 2016
  publication-title: Adv. Sci.
– volume: 104
  start-page: 4271
  year: 2004
  end-page: 4302
  publication-title: Chem. Rev.
– volume: 6
  start-page: 1036
  year: 2021
  end-page: 1052
  publication-title: Nat. Rev. Mater.
– volume: 50
  start-page: 3178
  year: 2021
  end-page: 3210
  publication-title: Chem. Soc. Rev.
– volume: 14
  start-page: 50
  year: 2019
  end-page: 56
  publication-title: Nat. Nanotechnol.
– volume: 44
  start-page: 156
  year: 2022
  end-page: 167
  publication-title: Energy Storage Mater.
– volume: 56
  start-page: 14570
  year: 2020
  end-page: 14584
  publication-title: Chem. Commun.
– volume: 254
  start-page: 168
  year: 2014
  end-page: 182
  publication-title: J. Power Sources
– volume: 164
  start-page: A1703
  year: 2017
  end-page: A1719
  publication-title: J. Electrochem. Soc.
– volume: 7
  start-page: 94
  year: 2022
  end-page: 106
  publication-title: Nat. Energy
– volume: 7
  start-page: 484
  year: 2022
  end-page: 494
  publication-title: Nat. Energy
– volume: 61 134
  year: 2022 2022
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 9
  start-page: 3656
  year: 2018
  publication-title: Nat. Commun.
– volume: 169
  year: 2022
  publication-title: J. Electrochem. Soc.
– volume: 105
  start-page: 52
  year: 2016
  end-page: 76
  publication-title: Carbon
– volume: 29
  year: 2017
  publication-title: Adv. Mater.
– volume: 3
  start-page: 2647
  year: 2019
  end-page: 2661
  publication-title: Joule
– volume: 200
  start-page: 83
  year: 2012
  end-page: 91
  publication-title: J. Power Sources
– volume: 414
  start-page: 359
  year: 2001
  end-page: 367
  publication-title: Nature
– volume: 22
  start-page: 587
  year: 2010
  end-page: 603
  publication-title: Chem. Mater.
– volume: 4
  start-page: 3287
  year: 2011
  end-page: 3295
  publication-title: Energy Environ. Sci.
– volume: 117
  start-page: 10403
  year: 2017
  end-page: 10473
  publication-title: Chem. Rev.
– volume: 21
  start-page: 445
  year: 2022
  end-page: 454
  publication-title: Nat. Mater.
– volume: 4
  start-page: 180
  year: 2019
  end-page: 186
  publication-title: Nat. Energy
– volume: 8
  start-page: 4283
  year: 2020
  end-page: 4289
  publication-title: J. Mater. Chem. A
– volume: 114
  start-page: 11503
  year: 2014
  end-page: 11618
  publication-title: Chem. Rev.
– volume: 25
  start-page: 644
  year: 2020
  end-page: 678
  publication-title: Energy Storage Mater.
– volume: 5
  year: 2018
  publication-title: Adv. Mater. Interfaces
– volume: 162
  start-page: 1379
  year: 2006
  end-page: 1394
  publication-title: J. Power Sources
– volume: 317
  start-page: 421
  year: 2000
  end-page: 429
  publication-title: Chem. Phys. Lett.
– volume: 6
  start-page: 4653
  year: 2015
  end-page: 4672
  publication-title: J. Phys. Chem. Lett.
– volume: 12
  start-page: 6240
  year: 2021
  publication-title: Nat. Commun.
– volume: 122
  start-page: 957
  year: 2022
  end-page: 999
  publication-title: Chem. Rev.
– volume: 1
  start-page: 16114
  year: 2016
  publication-title: Nat. Energy
– volume: 154
  start-page: A162
  year: 2007
  end-page: A167
  publication-title: J. Electrochem. Soc.
– volume: 5
  start-page: 1119
  year: 2021
  end-page: 1142
  publication-title: Joule
– volume: 174
  start-page: 970
  year: 2007
  end-page: 975
  publication-title: J. Power Sources
– volume: 110
  start-page: 7708
  year: 2006
  end-page: 7719
  publication-title: J. Phys. Chem. B
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 560
  start-page: 345
  year: 2018
  end-page: 349
  publication-title: Nature
– volume: 4
  start-page: 1584
  year: 2019
  end-page: 1593
  publication-title: ACS Energy Lett.
– volume: 488
  start-page: 294
  year: 2012
  end-page: 303
  publication-title: Nature
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 3
  start-page: 2322
  year: 2019
  end-page: 2333
  publication-title: Joule
– volume: 3
  start-page: A91
  year: 2014
  end-page: A93
  publication-title: ECS Electrochem. Lett.
– volume: 4
  start-page: A206
  year: 2001
  end-page: A208
  publication-title: Electrochem. Solid-State Lett.
– volume: 2
  start-page: 2167
  year: 2018
  end-page: 2177
  publication-title: Joule
– ident: e_1_2_7_34_1
– ident: e_1_2_7_9_2
  doi: 10.1002/adma.201700007
– ident: e_1_2_7_61_1
  doi: 10.1039/C9TA12269A
– ident: e_1_2_7_58_2
  doi: 10.1016/S0009-2614(99)01374-3
– ident: e_1_2_7_16_2
  doi: 10.1021/acs.chemrev.1c00636
– ident: e_1_2_7_42_2
  doi: 10.1002/anie.202115884
– ident: e_1_2_7_45_1
  doi: 10.1002/aenm.202001257
– volume: 134
  start-page: e202114671
  year: 2022
  ident: e_1_2_7_17_3
  publication-title: Angew. Chem.
  doi: 10.1002/ange.202114671
– ident: e_1_2_7_2_2
  doi: 10.1038/35104644
– ident: e_1_2_7_56_2
  doi: 10.1016/j.jpowsour.2006.07.074
– ident: e_1_2_7_47_1
– ident: e_1_2_7_44_1
  doi: 10.1038/s41467-018-06077-5
– ident: e_1_2_7_72_2
  doi: 10.1038/s41560-021-00962-y
– ident: e_1_2_7_10_2
  doi: 10.1038/s41560-019-0338-x
– ident: e_1_2_7_30_1
– ident: e_1_2_7_38_1
– ident: e_1_2_7_25_2
  doi: 10.1021/acs.jpclett.5b01727
– ident: e_1_2_7_41_2
  doi: 10.1038/s41560-022-01020-x
– ident: e_1_2_7_8_2
  doi: 10.1021/acs.chemrev.8b00422
– ident: e_1_2_7_69_2
  doi: 10.1002/adma.201908293
– ident: e_1_2_7_24_2
  doi: 10.1039/D0CC05084A
– ident: e_1_2_7_13_2
  doi: 10.1021/cm901452z
– ident: e_1_2_7_40_2
  doi: 10.1038/s41563-021-01172-3
– ident: e_1_2_7_15_2
  doi: 10.1038/s41467-021-26481-8
– ident: e_1_2_7_14_2
  doi: 10.1039/D0CS01017K
– ident: e_1_2_7_35_2
  doi: 10.1021/cr500003w
– ident: e_1_2_7_66_2
  doi: 10.1149/2.0021409eel
– ident: e_1_2_7_51_1
  doi: 10.1149/1945-7111/ac53d0
– ident: e_1_2_7_57_1
– ident: e_1_2_7_65_1
– ident: e_1_2_7_17_2
  doi: 10.1002/anie.202114671
– ident: e_1_2_7_6_2
  doi: 10.1039/c1ee01388b
– ident: e_1_2_7_68_1
– ident: e_1_2_7_27_2
  doi: 10.1016/j.jpowsour.2007.06.050
– ident: e_1_2_7_54_2
  doi: 10.1021/jp052474w
– ident: e_1_2_7_33_2
  doi: 10.1016/j.joule.2019.09.022
– ident: e_1_2_7_62_1
– ident: e_1_2_7_55_2
  doi: 10.1021/jp308929a
– ident: e_1_2_7_39_2
  doi: 10.1002/admi.201701097
– ident: e_1_2_7_73_2
  doi: 10.1002/adfm.201605989
– ident: e_1_2_7_50_1
  doi: 10.1016/j.jpowsour.2011.10.085
– ident: e_1_2_7_46_1
  doi: 10.1016/j.joule.2021.03.024
– ident: e_1_2_7_49_2
  doi: 10.1021/nl404471v
– ident: e_1_2_7_22_1
– ident: e_1_2_7_63_2
  doi: 10.1021/acsenergylett.9b00822
– ident: e_1_2_7_21_2
  doi: 10.1038/s41578-021-00345-5
– ident: e_1_2_7_71_1
– ident: e_1_2_7_3_2
  doi: 10.1002/adma.201800561
– ident: e_1_2_7_1_1
– ident: e_1_2_7_7_1
– ident: e_1_2_7_52_1
  doi: 10.1016/j.ensm.2021.10.013
– ident: e_1_2_7_36_2
  doi: 10.1002/advs.201500213
– ident: e_1_2_7_19_2
  doi: 10.1021/acs.chemrev.7b00115
– volume: 134
  start-page: e202115884
  year: 2022
  ident: e_1_2_7_42_3
  publication-title: Angew. Chem.
  doi: 10.1002/ange.202115884
– ident: e_1_2_7_29_2
  doi: 10.1016/j.ensm.2019.09.020
– ident: e_1_2_7_31_2
  doi: 10.1002/aenm.202002297
– ident: e_1_2_7_48_2
  doi: 10.1038/s41565-018-0284-y
– ident: e_1_2_7_28_2
  doi: 10.1016/j.jpowsour.2013.12.099
– ident: e_1_2_7_5_2
  doi: 10.1021/cr020731c
– ident: e_1_2_7_67_2
  doi: 10.1021/jp0601522
– ident: e_1_2_7_43_1
  doi: 10.1016/j.joule.2018.08.004
– ident: e_1_2_7_32_2
  doi: 10.1016/j.electacta.2010.05.072
– ident: e_1_2_7_60_1
  doi: 10.1149/1.1414946
– ident: e_1_2_7_18_1
– ident: e_1_2_7_53_1
– ident: e_1_2_7_11_2
  doi: 10.1016/j.carbon.2016.04.008
– ident: e_1_2_7_37_2
  doi: 10.1016/j.joule.2019.08.018
– ident: e_1_2_7_4_2
  doi: 10.1038/nature11475
– ident: e_1_2_7_20_2
  doi: 10.1149/2.1441707jes
– ident: e_1_2_7_70_2
  doi: 10.1038/s41586-018-0397-3
– ident: e_1_2_7_26_1
– ident: e_1_2_7_64_2
  doi: 10.1149/1.2409866
– ident: e_1_2_7_12_1
– ident: e_1_2_7_59_2
  doi: 10.1021/ja0164529
– ident: e_1_2_7_23_2
  doi: 10.1038/nenergy.2016.114
SSID ssj0028806
Score 2.6287951
Snippet The performance of rechargeable lithium (Li) batteries is highly correlated with the structure of solid electrolyte interphase (SEI). The properties of a...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage e202208743
SubjectTerms Anode/Electrolyte Interface
Anodes
Electrode materials
Electrode Potential
Electrode potentials
Electrodes
electrolytes
Evolution
Interphase
Lithium
Lithium Batteries
Rechargeable batteries
Solid Electrolyte Interphase
Solid electrolytes
Structure Evolution
Title The Crucial Role of Electrode Potential of a Working Anode in Dictating the Structural Evolution of Solid Electrolyte Interphase
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202208743
https://www.proquest.com/docview/2723280791
https://www.proquest.com/docview/2702180258
https://www.proquest.com/docview/2811974680
Volume 61
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELYqLu2F0hbE8qiMVKkng9d2nOS42i4CDghBkbhFsT1WV6wSJJZK5cRPZyYvoFJbid6S-CEn_uz5HI-_YexLBI3M3gdhrc-EcS4TDrQRNsiA1ldB4hsv31N7dGlOrpKrZ6f4W32I4YcbjYxmvqYBXrrbgyfRUDqBjes7pWSGVhAnYXLYIlZ0PuhHKQRne7xIa0FR6HvVRqkOXhZ_aZWeqOZzwtpYnMP3rOzb2jqaXO_fLd2-v_9NxvF_XmaNrXZ0lE9a_Hxgb6D6yN5O-yhwn9gD4ohPEQCIU35eL4DXkc_a2DkB-Fm9JHcjTMPHJe9-vfNJRYnzin-be9rrx0dINPlFI1ZLQh989rPDPBW8qBfz0Ne6-LUE3vpC_kATu84uD2ffp0eii9ogPK52tbBSxSCNBq9VhBJiHq303uroIc_LoHLEgsFVotbeyDAuM5ARgvcGXNQq6A22UtUVbDLulU101NqpmBpIsDKZOBmxqEwgSd2Iib7XCt9JmlNkjUXRijGrgr5rMXzXEfs65L9pxTz-mHOnB0HRDerbQqVIPzOZ5uMR2xuSsT9oj6WsoL6jPESakEhmf8mT0d6tsZkcMdWg4h-tKSanx7Phbus1hbbZO7omqztOd9gK9jfsIp1aus_NkHkExAoY0Q
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagHMqF8hTbFjASEie3XttxkuNqu9UWygr1IXGLYnusrlglSN0iwYmf3pm8SpEACY7xS4n9OfPZHn_D2JsIGpm9D8JanwnjXCYcaCNskAGtr4LEN16-Czs_N-8-Jb03Id2FafUhhg03mhnN_5omOG1I79-ohtIVbFzgKSUzNIN32T0K692sqk4GBSmF8GwvGGktKA59r9so1f7t-rft0g3Z_JmyNjbncIu5_m1bV5PPe1drt-e__yLk-F-f85A96Bgpn7QQesTuQPWYbU77QHBP2A-EEp8iBhCq_KReAa8jn7XhcwLwj_WaPI4wD5NL3u2-80lFmcuKHyw9HfdjEnJNftro1ZLWB5997WBPFU_r1TL0ra6-rYG37pAXaGWfsvPD2dl0LrrADcLjglcLK1UM0mjwWkUoIebRSu-tjh7yvAwqRzgYXChq7Y0M4zIDGSF4b8BFrYJ-xjaquoLnjHtlEx21diqmBhJsTCZORqwqE0hSN2KiH7bCd6rmFFxjVbR6zKqgfi2Gfh2xt0P5L62ex29L7vYoKLp5fVmoFBloJtN8PGKvh2wcDzpmKSuor6gM8SbkktkfymR0fGtsJkdMNbD4y9sUk8XRbHja_pdKr9jm_OzDcXF8tHi_w-5TOhnhcbrLNnDs4QWyq7V72cyfa0OxHOw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1baxQxFA5aQX3xLq5WjSD4lDabZDIzj8teaFWW0lro2zBJTujiMlPotqBP_nTPmVtbQQV9nCQnzCRf5ny5fYex9xE0MnsfhLU-E8a5TDjQRtggA3pfBYlvTvku7d6x-XiSnFy7xd_qQwwLbjQymv81DfCzEHevREPpBjbO75SSGXrB2-yOsTIjXM8OBwEphehs7xdpLSgMfS_bKNXuTfubbumKa15nrI3LWTxkZf-y7UmTrzsXG7fjv_-i4_g_X_OIPej4KJ-0AHrMbkH1hN2b9mHgnrIfCCQ-RQQgUPlhvQZeRz5vg-cE4Af1hs4bYR4ml7xbe-eTijJXFZ-tPG32YxIyTX7UqNWS0gefX3agJ8Ojer0Kfa3rbxvg7WHIU_Sxz9jxYv5luie6sA3C43RXCytVDNJo8FpFKCHm0UrvrY4e8rwMKkcwGJwmau2NDOMyAxkheG_ARa2Cfs62qrqCF4x7ZRMdtXYqpgYSrEwmTkY0lQkkqRsx0fda4TtNcwqtsS5aNWZVULsWQ7uO2Ieh_Fmr5vHbkts9CIpuVJ8XKkX-mck0H4_YuyEb-4M2WcoK6gsqQ6wJmWT2hzIZbd4am8kRUw0q_vI2xWS5Px-eXv6L0Vt292C2KD7vLz-9YvcpmTzwON1mW9j18Bqp1ca9aUbPT_B6G6Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Crucial+Role+of+Electrode+Potential+of+a+Working+Anode+in+Dictating+the+Structural+Evolution+of+Solid+Electrolyte+Interphase&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Sun%2C+Shu%E2%80%90Yu&rft.au=Yao%2C+Nao&rft.au=Jin%2C+Cheng%E2%80%90Bin&rft.au=Xie%2C+Jin&rft.date=2022-10-17&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=61&rft.issue=42&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fanie.202208743&rft.externalDBID=10.1002%252Fanie.202208743&rft.externalDocID=ANIE202208743
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon