The Crucial Role of Electrode Potential of a Working Anode in Dictating the Structural Evolution of Solid Electrolyte Interphase
The performance of rechargeable lithium (Li) batteries is highly correlated with the structure of solid electrolyte interphase (SEI). The properties of a working anode are vital factors in determining the structure of SEI; however, the correspondingly poor understanding hinders the rational regulati...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 61; no. 42; pp. e202208743 - n/a |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
17.10.2022
|
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The performance of rechargeable lithium (Li) batteries is highly correlated with the structure of solid electrolyte interphase (SEI). The properties of a working anode are vital factors in determining the structure of SEI; however, the correspondingly poor understanding hinders the rational regulation of SEI. Herein, the electrode potential and anode material, two critical properties of an anode, in dictating the structural evolution of SEI were investigated theoretically and experimentally. The anode potential is identified as a crucial role in dictating the SEI structure. The anode potential determines the reduction products in the electrolyte, ultimately giving rise to the mosaic and bilayer SEI structure at high and low potential, respectively. In contrast, the anode material does not cause a significant change in the SEI structure. This work discloses the crucial role of electrode potential in dictating SEI structure and provides rational guidance to regulate SEI structure.
The role of electrode potential and anode material, two critical properties of a working anode, in dictating the structural evolution of solid electrolyte interphase (SEI) was investigated theoretically and experimentally, which provides rational guidance to regulate SEI structure. |
---|---|
AbstractList | The performance of rechargeable lithium (Li) batteries is highly correlated with the structure of solid electrolyte interphase (SEI). The properties of a working anode are vital factors in determining the structure of SEI; however, the correspondingly poor understanding hinders the rational regulation of SEI. Herein, the electrode potential and anode material, two critical properties of an anode, in dictating the structural evolution of SEI were investigated theoretically and experimentally. The anode potential is identified as a crucial role in dictating the SEI structure. The anode potential determines the reduction products in the electrolyte, ultimately giving rise to the mosaic and bilayer SEI structure at high and low potential, respectively. In contrast, the anode material does not cause a significant change in the SEI structure. This work discloses the crucial role of electrode potential in dictating SEI structure and provides rational guidance to regulate SEI structure.
The role of electrode potential and anode material, two critical properties of a working anode, in dictating the structural evolution of solid electrolyte interphase (SEI) was investigated theoretically and experimentally, which provides rational guidance to regulate SEI structure. The performance of rechargeable lithium (Li) batteries is highly correlated with the structure of solid electrolyte interphase (SEI). The properties of a working anode are vital factors in determining the structure of SEI; however, the correspondingly poor understanding hinders the rational regulation of SEI. Herein, the electrode potential and anode material, two critical properties of an anode, in dictating the structural evolution of SEI were investigated theoretically and experimentally. The anode potential is identified as a crucial role in dictating the SEI structure. The anode potential determines the reduction products in the electrolyte, ultimately giving rise to the mosaic and bilayer SEI structure at high and low potential, respectively. In contrast, the anode material does not cause a significant change in the SEI structure. This work discloses the crucial role of electrode potential in dictating SEI structure and provides rational guidance to regulate SEI structure. The performance of rechargeable lithium (Li) batteries is highly correlated with the structure of solid electrolyte interphase (SEI). The properties of a working anode are vital factors in determining the structure of SEI; however, the correspondingly poor understanding hinders the rational regulation of SEI. Herein, the electrode potential and anode material, two critical properties of an anode, in dictating the structural evolution of SEI were investigated theoretically and experimentally. The anode potential is identified as a crucial role in dictating the SEI structure. The anode potential determines the reduction products in the electrolyte, ultimately giving rise to the mosaic and bilayer SEI structure at high and low potential, respectively. In contrast, the anode material does not cause a significant change in the SEI structure. This work discloses the crucial role of electrode potential in dictating SEI structure and provides rational guidance to regulate SEI structure.The performance of rechargeable lithium (Li) batteries is highly correlated with the structure of solid electrolyte interphase (SEI). The properties of a working anode are vital factors in determining the structure of SEI; however, the correspondingly poor understanding hinders the rational regulation of SEI. Herein, the electrode potential and anode material, two critical properties of an anode, in dictating the structural evolution of SEI were investigated theoretically and experimentally. The anode potential is identified as a crucial role in dictating the SEI structure. The anode potential determines the reduction products in the electrolyte, ultimately giving rise to the mosaic and bilayer SEI structure at high and low potential, respectively. In contrast, the anode material does not cause a significant change in the SEI structure. This work discloses the crucial role of electrode potential in dictating SEI structure and provides rational guidance to regulate SEI structure. |
Author | Jin, Cheng‐Bin Zhang, Qiang Li, Xi‐Yao Li, Bo‐Quan Yao, Nao Xie, Jin Zhou, Ming‐Yue Sun, Shu‐Yu Zhang, Xue‐Qiang Chen, Xiang |
Author_xml | – sequence: 1 givenname: Shu‐Yu surname: Sun fullname: Sun, Shu‐Yu organization: Tsinghua University – sequence: 2 givenname: Nao surname: Yao fullname: Yao, Nao organization: Tsinghua University – sequence: 3 givenname: Cheng‐Bin surname: Jin fullname: Jin, Cheng‐Bin organization: Tsinghua University – sequence: 4 givenname: Jin surname: Xie fullname: Xie, Jin organization: Tsinghua University – sequence: 5 givenname: Xi‐Yao surname: Li fullname: Li, Xi‐Yao organization: Tsinghua University – sequence: 6 givenname: Ming‐Yue surname: Zhou fullname: Zhou, Ming‐Yue organization: Tsinghua University – sequence: 7 givenname: Xiang surname: Chen fullname: Chen, Xiang organization: Tsinghua University – sequence: 8 givenname: Bo‐Quan surname: Li fullname: Li, Bo‐Quan organization: Beijing Institute of Technology – sequence: 9 givenname: Xue‐Qiang orcidid: 0000-0002-3929-1541 surname: Zhang fullname: Zhang, Xue‐Qiang email: zhangxq@bit.edu.cn organization: Beijing Institute of Technology – sequence: 10 givenname: Qiang surname: Zhang fullname: Zhang, Qiang email: zhang-qiang@mails.tsinghua.edu.cn organization: Tsinghua University |
BookMark | eNqFkctrGzEQh0VIIHGSa8-CXHKxq5d3tUfjuqkhtCEPclxU7SiRI0uupG3wrX96tbgPCASfJGa-78dIM0KHPnhA6AMlE0oI-6i8hQkjjBFZC36ATuiU0TGva35Y7oLzcS2n9BiNUloVXkpSnaBf98-A57HXVjl8GxzgYPDCgc4xdIBvQgafh14pK_wY4ov1T3jmh6b1-JPVWeWhlEvOXS5BuY8FX_wMrs82-EG8C852f1PdNgNe-gxx86wSnKEjo1yC8z_nKXr4vLiffxlff7tazmfXY81lGb0izHREcNCcGVBgGlMRrStuNDSN6lgDXIiG1pxrQTqqJBADndYCvhvOOn6KLne5mxh-9JByu7ZJg3PKQ-hTyySlTS0qSfajNWFUEjaVBb14g65CH315SKEYZ5LUDS2U2FE6hpQimFbb4duCz1FZ11LSDhtshw22_zZYtMkbbRPtWsXt-0KzE16tg-0eup19XS7-u78B9Lexzg |
CitedBy_id | crossref_primary_10_1002_anie_202414201 crossref_primary_10_1002_aenm_202303834 crossref_primary_10_1002_anie_202414524 crossref_primary_10_1016_j_cej_2023_147847 crossref_primary_10_1021_acsnano_4c15386 crossref_primary_10_1002_aenm_202302825 crossref_primary_10_1016_j_jechem_2022_12_044 crossref_primary_10_1002_idm2_12131 crossref_primary_10_1002_adfm_202311925 crossref_primary_10_1002_ange_202304339 crossref_primary_10_1021_acsnano_3c09853 crossref_primary_10_1016_j_ensm_2023_04_004 crossref_primary_10_1016_j_ensm_2023_03_009 crossref_primary_10_1016_j_carbon_2024_119452 crossref_primary_10_1039_D2TA07097A crossref_primary_10_1002_adfm_202313188 crossref_primary_10_1007_s12274_024_6764_5 crossref_primary_10_1002_anie_202413600 crossref_primary_10_1016_j_jechem_2024_01_069 crossref_primary_10_1021_acsami_4c03939 crossref_primary_10_1016_j_jechem_2023_02_048 crossref_primary_10_1016_j_cej_2025_160998 crossref_primary_10_1002_anie_202304339 crossref_primary_10_1002_ange_202412214 crossref_primary_10_1007_s11581_023_05367_3 crossref_primary_10_1016_j_esci_2024_100351 crossref_primary_10_1016_j_ensm_2024_103916 crossref_primary_10_1016_j_jechem_2023_05_020 crossref_primary_10_1007_s42864_023_00231_3 crossref_primary_10_1016_j_xcrp_2023_101324 crossref_primary_10_1021_acs_chemmater_3c02430 crossref_primary_10_1016_j_ensm_2022_10_054 crossref_primary_10_1002_aenm_202202874 crossref_primary_10_1007_s12274_023_5702_2 crossref_primary_10_1021_acsami_2c20616 crossref_primary_10_1038_s41557_024_01689_5 crossref_primary_10_1021_jacs_4c11012 crossref_primary_10_1039_D4EE00407H crossref_primary_10_1016_j_est_2023_110390 crossref_primary_10_1016_S1872_5805_23_60744_9 crossref_primary_10_1021_acsenergylett_3c02572 crossref_primary_10_1021_acsnano_4c03221 crossref_primary_10_1039_D3QM00759F crossref_primary_10_1002_ange_202414524 crossref_primary_10_1039_D4NJ03428G crossref_primary_10_1149_1945_7111_ad5621 crossref_primary_10_1016_j_apsusc_2023_156447 crossref_primary_10_1002_ange_202414201 crossref_primary_10_1021_acsami_3c00554 crossref_primary_10_1002_aenm_202302735 crossref_primary_10_1002_anie_202412214 crossref_primary_10_1016_j_joule_2024_07_007 crossref_primary_10_1002_adma_202205421 crossref_primary_10_1002_batt_202400118 crossref_primary_10_1039_D4EB00042K crossref_primary_10_1016_j_jcis_2024_06_086 crossref_primary_10_1021_acs_nanolett_3c00783 crossref_primary_10_1039_D4EB00034J crossref_primary_10_1002_ange_202413600 crossref_primary_10_3390_batteries9050242 crossref_primary_10_1021_acsenergylett_2c02659 crossref_primary_10_1002_adfm_202420170 crossref_primary_10_1039_D3EE03176D crossref_primary_10_1016_j_nanoen_2022_107993 crossref_primary_10_26599_NRE_2023_9120046 |
Cites_doi | 10.1002/adma.201700007 10.1039/C9TA12269A 10.1016/S0009-2614(99)01374-3 10.1021/acs.chemrev.1c00636 10.1002/anie.202115884 10.1002/aenm.202001257 10.1002/ange.202114671 10.1038/35104644 10.1016/j.jpowsour.2006.07.074 10.1038/s41467-018-06077-5 10.1038/s41560-021-00962-y 10.1038/s41560-019-0338-x 10.1021/acs.jpclett.5b01727 10.1038/s41560-022-01020-x 10.1021/acs.chemrev.8b00422 10.1002/adma.201908293 10.1039/D0CC05084A 10.1021/cm901452z 10.1038/s41563-021-01172-3 10.1038/s41467-021-26481-8 10.1039/D0CS01017K 10.1021/cr500003w 10.1149/2.0021409eel 10.1149/1945-7111/ac53d0 10.1002/anie.202114671 10.1039/c1ee01388b 10.1016/j.jpowsour.2007.06.050 10.1021/jp052474w 10.1016/j.joule.2019.09.022 10.1021/jp308929a 10.1002/admi.201701097 10.1002/adfm.201605989 10.1016/j.jpowsour.2011.10.085 10.1016/j.joule.2021.03.024 10.1021/nl404471v 10.1021/acsenergylett.9b00822 10.1038/s41578-021-00345-5 10.1002/adma.201800561 10.1016/j.ensm.2021.10.013 10.1002/advs.201500213 10.1021/acs.chemrev.7b00115 10.1002/ange.202115884 10.1016/j.ensm.2019.09.020 10.1002/aenm.202002297 10.1038/s41565-018-0284-y 10.1016/j.jpowsour.2013.12.099 10.1021/cr020731c 10.1021/jp0601522 10.1016/j.joule.2018.08.004 10.1016/j.electacta.2010.05.072 10.1149/1.1414946 10.1016/j.carbon.2016.04.008 10.1016/j.joule.2019.08.018 10.1038/nature11475 10.1149/2.1441707jes 10.1038/s41586-018-0397-3 10.1149/1.2409866 10.1021/ja0164529 10.1038/nenergy.2016.114 |
ContentType | Journal Article |
Copyright | 2022 Wiley‐VCH GmbH 2022 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2022 Wiley‐VCH GmbH – notice: 2022 Wiley-VCH GmbH. |
DBID | AAYXX CITATION 7TM K9. 7X8 7S9 L.6 |
DOI | 10.1002/anie.202208743 |
DatabaseName | CrossRef Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE - Academic ProQuest Health & Medical Complete (Alumni) CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | n/a |
ExternalDocumentID | 10_1002_anie_202208743 ANIE202208743 |
Genre | article |
GrantInformation_xml | – fundername: National Key Research and Development Program funderid: 2021YFB2500300; 2021YFB2400300 – fundername: National Natural Science Foundation of China funderid: 52103342, 22109007; U1801257 – fundername: Beijing Municipal Natural Science Foundation funderid: Z200011 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT UQL V2E VQA W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT AAYXX ABDBF ABJNI AEYWJ AGHNM AGYGG CITATION 7TM K9. 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c3833-602fd043ec32feaef9f60cc63fce99ad29e34491733c40d1a8e0fedcc4ebf32d3 |
IEDL.DBID | DR2 |
ISSN | 1433-7851 1521-3773 |
IngestDate | Fri Jul 11 18:35:09 EDT 2025 Fri Jul 11 07:02:23 EDT 2025 Fri Jul 25 10:34:35 EDT 2025 Tue Jul 01 01:18:27 EDT 2025 Thu Apr 24 23:09:42 EDT 2025 Wed Jan 22 16:23:21 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 42 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3833-602fd043ec32feaef9f60cc63fce99ad29e34491733c40d1a8e0fedcc4ebf32d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-3929-1541 |
PQID | 2723280791 |
PQPubID | 946352 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_2811974680 proquest_miscellaneous_2702180258 proquest_journals_2723280791 crossref_citationtrail_10_1002_anie_202208743 crossref_primary_10_1002_anie_202208743 wiley_primary_10_1002_anie_202208743_ANIE202208743 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | October 17, 2022 |
PublicationDateYYYYMMDD | 2022-10-17 |
PublicationDate_xml | – month: 10 year: 2022 text: October 17, 2022 day: 17 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Angewandte Chemie International Edition |
PublicationYear | 2022 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2018; 560 2010; 55 2012; 200 2019; 14 2016; 105 2020; 56 2022; 21 2020; 10 2012; 488 2014; 254 2017; 117 2022; 122 2020; 8 2010; 22 2018; 9 2022 2022; 61 134 2018; 2 2018; 5 2014; 3 2007; 174 2013; 117 2006; 162 2014; 14 2005; 109 2018; 30 2017; 164 2001; 414 2022; 169 2021; 6 2001; 123 2019; 4 2015; 6 2021; 5 2004; 104 2019; 3 2017; 27 2000; 317 2006; 110 2017; 29 2022; 44 2020; 32 2011; 4 2021; 50 2014; 114 2016; 1 2021; 12 2016; 3 2018; 118 2001; 4 2022; 7 2007; 154 2020; 25 e_1_2_7_5_2 e_1_2_7_3_2 e_1_2_7_9_2 e_1_2_7_7_1 e_1_2_7_19_2 e_1_2_7_60_1 e_1_2_7_17_2 e_1_2_7_62_1 e_1_2_7_15_2 e_1_2_7_1_1 e_1_2_7_13_2 e_1_2_7_41_2 e_1_2_7_43_1 e_1_2_7_11_2 (e_1_2_7_17_3) 2022; 134 e_1_2_7_64_2 e_1_2_7_45_1 e_1_2_7_68_1 e_1_2_7_66_2 (e_1_2_7_42_3) 2022; 134 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_2 e_1_2_7_28_2 e_1_2_7_50_1 e_1_2_7_71_1 e_1_2_7_25_2 e_1_2_7_52_1 e_1_2_7_23_2 e_1_2_7_31_2 e_1_2_7_54_2 e_1_2_7_73_2 e_1_2_7_21_2 e_1_2_7_33_2 e_1_2_7_56_2 e_1_2_7_35_2 e_1_2_7_58_2 e_1_2_7_37_2 e_1_2_7_39_2 e_1_2_7_4_2 e_1_2_7_2_2 e_1_2_7_8_2 e_1_2_7_6_2 e_1_2_7_18_1 e_1_2_7_16_2 e_1_2_7_61_1 e_1_2_7_14_2 e_1_2_7_40_2 e_1_2_7_63_2 e_1_2_7_42_2 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_65_1 e_1_2_7_10_2 e_1_2_7_67_2 e_1_2_7_46_1 e_1_2_7_69_2 e_1_2_7_48_2 e_1_2_7_27_2 e_1_2_7_29_2 e_1_2_7_72_2 e_1_2_7_51_1 e_1_2_7_70_2 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_24_2 e_1_2_7_32_2 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_20_2 e_1_2_7_55_2 e_1_2_7_36_2 e_1_2_7_38_1 e_1_2_7_59_2 |
References_xml | – volume: 10 year: 2020 publication-title: Adv. Energy Mater. – volume: 27 year: 2017 publication-title: Adv. Funct. Mater. – volume: 118 start-page: 11433 year: 2018 end-page: 11456 publication-title: Chem. Rev. – volume: 14 start-page: 1405 year: 2014 end-page: 1412 publication-title: Nano Lett. – volume: 55 start-page: 6332 year: 2010 end-page: 6341 publication-title: Electrochim. Acta – volume: 109 start-page: 17567 year: 2005 end-page: 17573 publication-title: J. Phys. Chem. B – volume: 123 start-page: 11708 year: 2001 end-page: 11718 publication-title: J. Am. Chem. Soc. – volume: 117 start-page: 1539 year: 2013 end-page: 1547 publication-title: J. Phys. Chem. C – volume: 3 year: 2016 publication-title: Adv. Sci. – volume: 104 start-page: 4271 year: 2004 end-page: 4302 publication-title: Chem. Rev. – volume: 6 start-page: 1036 year: 2021 end-page: 1052 publication-title: Nat. Rev. Mater. – volume: 50 start-page: 3178 year: 2021 end-page: 3210 publication-title: Chem. Soc. Rev. – volume: 14 start-page: 50 year: 2019 end-page: 56 publication-title: Nat. Nanotechnol. – volume: 44 start-page: 156 year: 2022 end-page: 167 publication-title: Energy Storage Mater. – volume: 56 start-page: 14570 year: 2020 end-page: 14584 publication-title: Chem. Commun. – volume: 254 start-page: 168 year: 2014 end-page: 182 publication-title: J. Power Sources – volume: 164 start-page: A1703 year: 2017 end-page: A1719 publication-title: J. Electrochem. Soc. – volume: 7 start-page: 94 year: 2022 end-page: 106 publication-title: Nat. Energy – volume: 7 start-page: 484 year: 2022 end-page: 494 publication-title: Nat. Energy – volume: 61 134 year: 2022 2022 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 9 start-page: 3656 year: 2018 publication-title: Nat. Commun. – volume: 169 year: 2022 publication-title: J. Electrochem. Soc. – volume: 105 start-page: 52 year: 2016 end-page: 76 publication-title: Carbon – volume: 29 year: 2017 publication-title: Adv. Mater. – volume: 3 start-page: 2647 year: 2019 end-page: 2661 publication-title: Joule – volume: 200 start-page: 83 year: 2012 end-page: 91 publication-title: J. Power Sources – volume: 414 start-page: 359 year: 2001 end-page: 367 publication-title: Nature – volume: 22 start-page: 587 year: 2010 end-page: 603 publication-title: Chem. Mater. – volume: 4 start-page: 3287 year: 2011 end-page: 3295 publication-title: Energy Environ. Sci. – volume: 117 start-page: 10403 year: 2017 end-page: 10473 publication-title: Chem. Rev. – volume: 21 start-page: 445 year: 2022 end-page: 454 publication-title: Nat. Mater. – volume: 4 start-page: 180 year: 2019 end-page: 186 publication-title: Nat. Energy – volume: 8 start-page: 4283 year: 2020 end-page: 4289 publication-title: J. Mater. Chem. A – volume: 114 start-page: 11503 year: 2014 end-page: 11618 publication-title: Chem. Rev. – volume: 25 start-page: 644 year: 2020 end-page: 678 publication-title: Energy Storage Mater. – volume: 5 year: 2018 publication-title: Adv. Mater. Interfaces – volume: 162 start-page: 1379 year: 2006 end-page: 1394 publication-title: J. Power Sources – volume: 317 start-page: 421 year: 2000 end-page: 429 publication-title: Chem. Phys. Lett. – volume: 6 start-page: 4653 year: 2015 end-page: 4672 publication-title: J. Phys. Chem. Lett. – volume: 12 start-page: 6240 year: 2021 publication-title: Nat. Commun. – volume: 122 start-page: 957 year: 2022 end-page: 999 publication-title: Chem. Rev. – volume: 1 start-page: 16114 year: 2016 publication-title: Nat. Energy – volume: 154 start-page: A162 year: 2007 end-page: A167 publication-title: J. Electrochem. Soc. – volume: 5 start-page: 1119 year: 2021 end-page: 1142 publication-title: Joule – volume: 174 start-page: 970 year: 2007 end-page: 975 publication-title: J. Power Sources – volume: 110 start-page: 7708 year: 2006 end-page: 7719 publication-title: J. Phys. Chem. B – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 560 start-page: 345 year: 2018 end-page: 349 publication-title: Nature – volume: 4 start-page: 1584 year: 2019 end-page: 1593 publication-title: ACS Energy Lett. – volume: 488 start-page: 294 year: 2012 end-page: 303 publication-title: Nature – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 3 start-page: 2322 year: 2019 end-page: 2333 publication-title: Joule – volume: 3 start-page: A91 year: 2014 end-page: A93 publication-title: ECS Electrochem. Lett. – volume: 4 start-page: A206 year: 2001 end-page: A208 publication-title: Electrochem. Solid-State Lett. – volume: 2 start-page: 2167 year: 2018 end-page: 2177 publication-title: Joule – ident: e_1_2_7_34_1 – ident: e_1_2_7_9_2 doi: 10.1002/adma.201700007 – ident: e_1_2_7_61_1 doi: 10.1039/C9TA12269A – ident: e_1_2_7_58_2 doi: 10.1016/S0009-2614(99)01374-3 – ident: e_1_2_7_16_2 doi: 10.1021/acs.chemrev.1c00636 – ident: e_1_2_7_42_2 doi: 10.1002/anie.202115884 – ident: e_1_2_7_45_1 doi: 10.1002/aenm.202001257 – volume: 134 start-page: e202114671 year: 2022 ident: e_1_2_7_17_3 publication-title: Angew. Chem. doi: 10.1002/ange.202114671 – ident: e_1_2_7_2_2 doi: 10.1038/35104644 – ident: e_1_2_7_56_2 doi: 10.1016/j.jpowsour.2006.07.074 – ident: e_1_2_7_47_1 – ident: e_1_2_7_44_1 doi: 10.1038/s41467-018-06077-5 – ident: e_1_2_7_72_2 doi: 10.1038/s41560-021-00962-y – ident: e_1_2_7_10_2 doi: 10.1038/s41560-019-0338-x – ident: e_1_2_7_30_1 – ident: e_1_2_7_38_1 – ident: e_1_2_7_25_2 doi: 10.1021/acs.jpclett.5b01727 – ident: e_1_2_7_41_2 doi: 10.1038/s41560-022-01020-x – ident: e_1_2_7_8_2 doi: 10.1021/acs.chemrev.8b00422 – ident: e_1_2_7_69_2 doi: 10.1002/adma.201908293 – ident: e_1_2_7_24_2 doi: 10.1039/D0CC05084A – ident: e_1_2_7_13_2 doi: 10.1021/cm901452z – ident: e_1_2_7_40_2 doi: 10.1038/s41563-021-01172-3 – ident: e_1_2_7_15_2 doi: 10.1038/s41467-021-26481-8 – ident: e_1_2_7_14_2 doi: 10.1039/D0CS01017K – ident: e_1_2_7_35_2 doi: 10.1021/cr500003w – ident: e_1_2_7_66_2 doi: 10.1149/2.0021409eel – ident: e_1_2_7_51_1 doi: 10.1149/1945-7111/ac53d0 – ident: e_1_2_7_57_1 – ident: e_1_2_7_65_1 – ident: e_1_2_7_17_2 doi: 10.1002/anie.202114671 – ident: e_1_2_7_6_2 doi: 10.1039/c1ee01388b – ident: e_1_2_7_68_1 – ident: e_1_2_7_27_2 doi: 10.1016/j.jpowsour.2007.06.050 – ident: e_1_2_7_54_2 doi: 10.1021/jp052474w – ident: e_1_2_7_33_2 doi: 10.1016/j.joule.2019.09.022 – ident: e_1_2_7_62_1 – ident: e_1_2_7_55_2 doi: 10.1021/jp308929a – ident: e_1_2_7_39_2 doi: 10.1002/admi.201701097 – ident: e_1_2_7_73_2 doi: 10.1002/adfm.201605989 – ident: e_1_2_7_50_1 doi: 10.1016/j.jpowsour.2011.10.085 – ident: e_1_2_7_46_1 doi: 10.1016/j.joule.2021.03.024 – ident: e_1_2_7_49_2 doi: 10.1021/nl404471v – ident: e_1_2_7_22_1 – ident: e_1_2_7_63_2 doi: 10.1021/acsenergylett.9b00822 – ident: e_1_2_7_21_2 doi: 10.1038/s41578-021-00345-5 – ident: e_1_2_7_71_1 – ident: e_1_2_7_3_2 doi: 10.1002/adma.201800561 – ident: e_1_2_7_1_1 – ident: e_1_2_7_7_1 – ident: e_1_2_7_52_1 doi: 10.1016/j.ensm.2021.10.013 – ident: e_1_2_7_36_2 doi: 10.1002/advs.201500213 – ident: e_1_2_7_19_2 doi: 10.1021/acs.chemrev.7b00115 – volume: 134 start-page: e202115884 year: 2022 ident: e_1_2_7_42_3 publication-title: Angew. Chem. doi: 10.1002/ange.202115884 – ident: e_1_2_7_29_2 doi: 10.1016/j.ensm.2019.09.020 – ident: e_1_2_7_31_2 doi: 10.1002/aenm.202002297 – ident: e_1_2_7_48_2 doi: 10.1038/s41565-018-0284-y – ident: e_1_2_7_28_2 doi: 10.1016/j.jpowsour.2013.12.099 – ident: e_1_2_7_5_2 doi: 10.1021/cr020731c – ident: e_1_2_7_67_2 doi: 10.1021/jp0601522 – ident: e_1_2_7_43_1 doi: 10.1016/j.joule.2018.08.004 – ident: e_1_2_7_32_2 doi: 10.1016/j.electacta.2010.05.072 – ident: e_1_2_7_60_1 doi: 10.1149/1.1414946 – ident: e_1_2_7_18_1 – ident: e_1_2_7_53_1 – ident: e_1_2_7_11_2 doi: 10.1016/j.carbon.2016.04.008 – ident: e_1_2_7_37_2 doi: 10.1016/j.joule.2019.08.018 – ident: e_1_2_7_4_2 doi: 10.1038/nature11475 – ident: e_1_2_7_20_2 doi: 10.1149/2.1441707jes – ident: e_1_2_7_70_2 doi: 10.1038/s41586-018-0397-3 – ident: e_1_2_7_26_1 – ident: e_1_2_7_64_2 doi: 10.1149/1.2409866 – ident: e_1_2_7_12_1 – ident: e_1_2_7_59_2 doi: 10.1021/ja0164529 – ident: e_1_2_7_23_2 doi: 10.1038/nenergy.2016.114 |
SSID | ssj0028806 |
Score | 2.6287951 |
Snippet | The performance of rechargeable lithium (Li) batteries is highly correlated with the structure of solid electrolyte interphase (SEI). The properties of a... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | e202208743 |
SubjectTerms | Anode/Electrolyte Interface Anodes Electrode materials Electrode Potential Electrode potentials Electrodes electrolytes Evolution Interphase Lithium Lithium Batteries Rechargeable batteries Solid Electrolyte Interphase Solid electrolytes Structure Evolution |
Title | The Crucial Role of Electrode Potential of a Working Anode in Dictating the Structural Evolution of Solid Electrolyte Interphase |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202208743 https://www.proquest.com/docview/2723280791 https://www.proquest.com/docview/2702180258 https://www.proquest.com/docview/2811974680 |
Volume | 61 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELYqLu2F0hbE8qiMVKkng9d2nOS42i4CDghBkbhFsT1WV6wSJJZK5cRPZyYvoFJbid6S-CEn_uz5HI-_YexLBI3M3gdhrc-EcS4TDrQRNsiA1ldB4hsv31N7dGlOrpKrZ6f4W32I4YcbjYxmvqYBXrrbgyfRUDqBjes7pWSGVhAnYXLYIlZ0PuhHKQRne7xIa0FR6HvVRqkOXhZ_aZWeqOZzwtpYnMP3rOzb2jqaXO_fLd2-v_9NxvF_XmaNrXZ0lE9a_Hxgb6D6yN5O-yhwn9gD4ohPEQCIU35eL4DXkc_a2DkB-Fm9JHcjTMPHJe9-vfNJRYnzin-be9rrx0dINPlFI1ZLQh989rPDPBW8qBfz0Ne6-LUE3vpC_kATu84uD2ffp0eii9ogPK52tbBSxSCNBq9VhBJiHq303uroIc_LoHLEgsFVotbeyDAuM5ARgvcGXNQq6A22UtUVbDLulU101NqpmBpIsDKZOBmxqEwgSd2Iib7XCt9JmlNkjUXRijGrgr5rMXzXEfs65L9pxTz-mHOnB0HRDerbQqVIPzOZ5uMR2xuSsT9oj6WsoL6jPESakEhmf8mT0d6tsZkcMdWg4h-tKSanx7Phbus1hbbZO7omqztOd9gK9jfsIp1aus_NkHkExAoY0Q |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagHMqF8hTbFjASEie3XttxkuNqu9UWygr1IXGLYnusrlglSN0iwYmf3pm8SpEACY7xS4n9OfPZHn_D2JsIGpm9D8JanwnjXCYcaCNskAGtr4LEN16-Czs_N-8-Jb03Id2FafUhhg03mhnN_5omOG1I79-ohtIVbFzgKSUzNIN32T0K692sqk4GBSmF8GwvGGktKA59r9so1f7t-rft0g3Z_JmyNjbncIu5_m1bV5PPe1drt-e__yLk-F-f85A96Bgpn7QQesTuQPWYbU77QHBP2A-EEp8iBhCq_KReAa8jn7XhcwLwj_WaPI4wD5NL3u2-80lFmcuKHyw9HfdjEnJNftro1ZLWB5997WBPFU_r1TL0ra6-rYG37pAXaGWfsvPD2dl0LrrADcLjglcLK1UM0mjwWkUoIebRSu-tjh7yvAwqRzgYXChq7Y0M4zIDGSF4b8BFrYJ-xjaquoLnjHtlEx21diqmBhJsTCZORqwqE0hSN2KiH7bCd6rmFFxjVbR6zKqgfi2Gfh2xt0P5L62ex29L7vYoKLp5fVmoFBloJtN8PGKvh2wcDzpmKSuor6gM8SbkktkfymR0fGtsJkdMNbD4y9sUk8XRbHja_pdKr9jm_OzDcXF8tHi_w-5TOhnhcbrLNnDs4QWyq7V72cyfa0OxHOw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1baxQxFA5aQX3xLq5WjSD4lDabZDIzj8teaFWW0lro2zBJTujiMlPotqBP_nTPmVtbQQV9nCQnzCRf5ny5fYex9xE0MnsfhLU-E8a5TDjQRtggA3pfBYlvTvku7d6x-XiSnFy7xd_qQwwLbjQymv81DfCzEHevREPpBjbO75SSGXrB2-yOsTIjXM8OBwEphehs7xdpLSgMfS_bKNXuTfubbumKa15nrI3LWTxkZf-y7UmTrzsXG7fjv_-i4_g_X_OIPej4KJ-0AHrMbkH1hN2b9mHgnrIfCCQ-RQQgUPlhvQZeRz5vg-cE4Af1hs4bYR4ml7xbe-eTijJXFZ-tPG32YxIyTX7UqNWS0gefX3agJ8Ojer0Kfa3rbxvg7WHIU_Sxz9jxYv5luie6sA3C43RXCytVDNJo8FpFKCHm0UrvrY4e8rwMKkcwGJwmau2NDOMyAxkheG_ARa2Cfs62qrqCF4x7ZRMdtXYqpgYSrEwmTkY0lQkkqRsx0fda4TtNcwqtsS5aNWZVULsWQ7uO2Ieh_Fmr5vHbkts9CIpuVJ8XKkX-mck0H4_YuyEb-4M2WcoK6gsqQ6wJmWT2hzIZbd4am8kRUw0q_vI2xWS5Px-eXv6L0Vt292C2KD7vLz-9YvcpmTzwON1mW9j18Bqp1ca9aUbPT_B6G6Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Crucial+Role+of+Electrode+Potential+of+a+Working+Anode+in+Dictating+the+Structural+Evolution+of+Solid+Electrolyte+Interphase&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Sun%2C+Shu%E2%80%90Yu&rft.au=Yao%2C+Nao&rft.au=Jin%2C+Cheng%E2%80%90Bin&rft.au=Xie%2C+Jin&rft.date=2022-10-17&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=61&rft.issue=42&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fanie.202208743&rft.externalDBID=10.1002%252Fanie.202208743&rft.externalDocID=ANIE202208743 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |