Automatic differential analysis of NMR experiments in complex samples

Liquid state nuclear magnetic resonance (NMR) is a powerful tool for the analysis of complex mixtures of unknown molecules. This capacity has been used in many analytical approaches: metabolomics, identification of active compounds in natural extracts, and characterization of species, and such studi...

Full description

Saved in:
Bibliographic Details
Published inMagnetic resonance in chemistry Vol. 56; no. 6; pp. 469 - 479
Main Authors Margueritte, Laure, Markov, Petar, Chiron, Lionel, Starck, Jean‐Philippe, Vonthron‐Sénécheau, Catherine, Bourjot, Mélanie, Delsuc, Marc‐André
Format Journal Article
LanguageEnglish
Published England Wiley Subscription Services, Inc 01.06.2018
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Liquid state nuclear magnetic resonance (NMR) is a powerful tool for the analysis of complex mixtures of unknown molecules. This capacity has been used in many analytical approaches: metabolomics, identification of active compounds in natural extracts, and characterization of species, and such studies require the acquisition of many diverse NMR measurements on series of samples. Although acquisition can easily be performed automatically, the number of NMR experiments involved in these studies increases very rapidly, and this data avalanche requires to resort to automatic processing and analysis. We present here a program that allows the autonomous, unsupervised processing of a large corpus of 1D, 2D, and diffusion‐ordered spectroscopy experiments from a series of samples acquired in different conditions. The program provides all the signal processing steps, as well as peak‐picking and bucketing of 1D and 2D spectra, the program and its components are fully available. In an experiment mimicking the search of a bioactive species in a natural extract, we use it for the automatic detection of small amounts of artemisinin added to a series of plant extracts and for the generation of the spectral fingerprint of this molecule. This program called Plasmodesma is a novel tool that should be useful to decipher complex mixtures, particularly in the discovery of biologically active natural products from plants extracts but can also in drug discovery or metabolomics studies. Natural extracts studies require the acquisition of many NMR spectra on sample series, and the associated NMR data avalanche requires to resort to automatic processing and analysis. The Plasmodesma program allows the autonomous, unsupervised processing of a large corpus of 1D, 2D, and diffusion‐ordered spectroscopy experiments from such series and prepares for their automatic analysis. The automatic detection of artemisinin natural extracts presented here shows that this novel tool should be useful particularly in drug discovery or metabolomics studies.
AbstractList Liquid state nuclear magnetic resonance (NMR) is a powerful tool for the analysis of complex mixtures of unknown molecules. This capacity has been used in many analytical approaches: metabolomics, identification of active compounds in natural extracts, and characterization of species, and such studies require the acquisition of many diverse NMR measurements on series of samples. Although acquisition can easily be performed automatically, the number of NMR experiments involved in these studies increases very rapidly, and this data avalanche requires to resort to automatic processing and analysis. We present here a program that allows the autonomous, unsupervised processing of a large corpus of 1D, 2D, and diffusion‐ordered spectroscopy experiments from a series of samples acquired in different conditions. The program provides all the signal processing steps, as well as peak‐picking and bucketing of 1D and 2D spectra, the program and its components are fully available. In an experiment mimicking the search of a bioactive species in a natural extract, we use it for the automatic detection of small amounts of artemisinin added to a series of plant extracts and for the generation of the spectral fingerprint of this molecule. This program called Plasmodesma is a novel tool that should be useful to decipher complex mixtures, particularly in the discovery of biologically active natural products from plants extracts but can also in drug discovery or metabolomics studies. Natural extracts studies require the acquisition of many NMR spectra on sample series, and the associated NMR data avalanche requires to resort to automatic processing and analysis. The Plasmodesma program allows the autonomous, unsupervised processing of a large corpus of 1D, 2D, and diffusion‐ordered spectroscopy experiments from such series and prepares for their automatic analysis. The automatic detection of artemisinin natural extracts presented here shows that this novel tool should be useful particularly in drug discovery or metabolomics studies.
Liquid state nuclear magnetic resonance (NMR) is a powerful tool for the analysis of complex mixtures of unknown molecules. This capacity has been used in many analytical approaches: metabolomics, identification of active compounds in natural extracts, and characterization of species, and such studies require the acquisition of many diverse NMR measurements on series of samples. Although acquisition can easily be performed automatically, the number of NMR experiments involved in these studies increases very rapidly, and this data avalanche requires to resort to automatic processing and analysis. We present here a program that allows the autonomous, unsupervised processing of a large corpus of 1D, 2D, and diffusion-ordered spectroscopy experiments from a series of samples acquired in different conditions. The program provides all the signal processing steps, as well as peak-picking and bucketing of 1D and 2D spectra, the program and its components are fully available. In an experiment mimicking the search of a bioactive species in a natural extract, we use it for the automatic detection of small amounts of artemisinin added to a series of plant extracts and for the generation of the spectral fingerprint of this molecule. This program called Plasmodesma is a novel tool that should be useful to decipher complex mixtures, particularly in the discovery of biologically active natural products from plants extracts but can also in drug discovery or metabolomics studies.
Liquid state nuclear magnetic resonance (NMR) is a powerful tool for the analysis of complex mixtures of unknown molecules. This capacity has been used in many analytical approaches: metabolomics, identification of active compounds in natural extracts, and characterization of species, and such studies require the acquisition of many diverse NMR measurements on series of samples. Although acquisition can easily be performed automatically, the number of NMR experiments involved in these studies increases very rapidly, and this data avalanche requires to resort to automatic processing and analysis. We present here a program that allows the autonomous, unsupervised processing of a large corpus of 1D, 2D, and diffusion‐ordered spectroscopy experiments from a series of samples acquired in different conditions. The program provides all the signal processing steps, as well as peak‐picking and bucketing of 1D and 2D spectra, the program and its components are fully available. In an experiment mimicking the search of a bioactive species in a natural extract, we use it for the automatic detection of small amounts of artemisinin added to a series of plant extracts and for the generation of the spectral fingerprint of this molecule. This program called Plasmodesma is a novel tool that should be useful to decipher complex mixtures, particularly in the discovery of biologically active natural products from plants extracts but can also in drug discovery or metabolomics studies.
Author Bourjot, Mélanie
Markov, Petar
Chiron, Lionel
Starck, Jean‐Philippe
Margueritte, Laure
Vonthron‐Sénécheau, Catherine
Delsuc, Marc‐André
Author_xml – sequence: 1
  givenname: Laure
  surname: Margueritte
  fullname: Margueritte, Laure
  organization: Université de Strasbourg
– sequence: 2
  givenname: Petar
  surname: Markov
  fullname: Markov, Petar
  organization: Cardiff University
– sequence: 3
  givenname: Lionel
  surname: Chiron
  fullname: Chiron, Lionel
– sequence: 4
  givenname: Jean‐Philippe
  surname: Starck
  fullname: Starck, Jean‐Philippe
– sequence: 5
  givenname: Catherine
  surname: Vonthron‐Sénécheau
  fullname: Vonthron‐Sénécheau, Catherine
  organization: Université de Strasbourg
– sequence: 6
  givenname: Mélanie
  surname: Bourjot
  fullname: Bourjot, Mélanie
  organization: Université de Strasbourg
– sequence: 7
  givenname: Marc‐André
  orcidid: 0000-0002-1400-5326
  surname: Delsuc
  fullname: Delsuc, Marc‐André
  email: delsuc@igbmc.fr
  organization: Université de Strasbourg
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29152789$$D View this record in MEDLINE/PubMed
https://hal.science/hal-02367426$$DView record in HAL
BookMark eNp1kctKAzEUhoMo9qLgE8iAG11MPbnMJctSqhVahdKFu5DJJJgyM6mTjrZv79TWCoKrA-d8fPycv4dOK1dphK4wDDAAuS9rNWBxSk9QFwNPQhalr6eoCwnjIY5S3EE975cAwHlCz1GHcByRJOVdNB42a1fKtVVBbo3Rta7WVhaBrGSx9dYHzgTPs3mgNytd27K9-sBWgXLlqtCbwMvd9BfozMjC68vD7KPFw3gxmoTTl8en0XAaKppSGjLIGAdjJMvzFHMTSaKkinSGscowowQS0BnPOAYCEc6zmOVUpTJSmTQKaB_d7bVvshCrNo6st8JJKybDqdjtgNA4YST-wC17u2dXtXtvtF-L0nqli0JW2jVeYB7HjKaMkRa9-YMuXVO3D_CCAEsoITGPf4Wqdt7X2hwTYBC7FkTbgti10KLXB2GTlTo_gj9vb4FwD3zaQm__FYnZfPQt_AK8T5EL
CitedBy_id crossref_primary_10_1186_s13568_022_01346_5
crossref_primary_10_1016_j_trac_2024_117711
crossref_primary_10_1039_D1RA03008F
crossref_primary_10_1039_D1NP00023C
crossref_primary_10_1002_ansa_202000041
crossref_primary_10_1002_pca_2932
crossref_primary_10_1021_acs_analchem_8b05112
crossref_primary_10_1039_C8FD00242H
crossref_primary_10_1016_j_talanta_2019_120475
crossref_primary_10_1002_mrc_4971
crossref_primary_10_1016_j_aca_2019_04_038
Cites_doi 10.1021/ja00225a006
10.1109/MCSE.2011.37
10.1007/s00216-012-6422-8
10.1007/s12298-017-0432-0
10.1016/j.fct.2017.03.050
10.1186/1475-2875-12-279
10.1021/ac403223f
10.1007/BF00228146
10.1073/pnas.1306700111
10.1039/C6AN01902A
10.3390/md9060922
10.1021/acs.jnatprod.6b01063
10.1021/ac504075g
10.1021/np50034a027
10.1016/j.jmr.2007.05.023
10.1016/j.aca.2014.07.009
10.1016/0009-2614(87)80367-6
10.1016/j.chroma.2014.10.091
10.1007/s11306-012-0490-9
ContentType Journal Article
Copyright Copyright © 2017 John Wiley & Sons, Ltd.
Copyright © 2018 John Wiley & Sons, Ltd.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: Copyright © 2017 John Wiley & Sons, Ltd.
– notice: Copyright © 2018 John Wiley & Sons, Ltd.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID NPM
AAYXX
CITATION
7SR
7U5
8BQ
8FD
JG9
JQ2
K9.
L7M
7X8
1XC
DOI 10.1002/mrc.4683
DatabaseName PubMed
CrossRef
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Advanced Technologies Database with Aerospace
MEDLINE - Academic
Hyper Article en Ligne (HAL)
DatabaseTitle PubMed
CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
DatabaseTitleList
PubMed
Materials Research Database
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1097-458X
EndPage 479
ExternalDocumentID oai_HAL_hal_02367426v1
10_1002_mrc_4683
29152789
MRC4683
Genre article
Journal Article
GroupedDBID ---
-~X
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABIJN
ABJNI
ABPVW
ABTAH
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
AQPKS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
G8K
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LH5
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M6K
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OHT
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RNS
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
TUS
TWZ
UB1
V2E
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WRJ
WXSBR
WYISQ
XG1
XPP
XV2
YNT
YQT
ZCG
ZY4
ZZTAW
~IA
~WT
NPM
AAYXX
CITATION
7SR
7U5
8BQ
8FD
JG9
JQ2
K9.
L7M
7X8
1XC
ID FETCH-LOGICAL-c3833-40b490ffa4dd819f5a2cac5eb11cb1432070eb9b9102051db64d3c8a5cbafc03
IEDL.DBID DR2
ISSN 0749-1581
IngestDate Fri Oct 18 06:52:24 EDT 2024
Sat Aug 17 02:22:24 EDT 2024
Thu Oct 10 16:44:42 EDT 2024
Fri Aug 23 01:20:05 EDT 2024
Sat Sep 28 08:38:17 EDT 2024
Sat Aug 24 00:58:28 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords automatic processing
mixture analysis
recursive feature elimination
spectral fingerprint
Language English
License Copyright © 2017 John Wiley & Sons, Ltd.
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3833-40b490ffa4dd819f5a2cac5eb11cb1432070eb9b9102051db64d3c8a5cbafc03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-1400-5326
PMID 29152789
PQID 2047322696
PQPubID 1016392
PageCount 11
ParticipantIDs hal_primary_oai_HAL_hal_02367426v1
proquest_miscellaneous_1966438442
proquest_journals_2047322696
crossref_primary_10_1002_mrc_4683
pubmed_primary_29152789
wiley_primary_10_1002_mrc_4683_MRC4683
PublicationCentury 2000
PublicationDate June 2018
2018-06-00
20180601
2018-06
PublicationDateYYYYMMDD 2018-06-01
PublicationDate_xml – month: 06
  year: 2018
  text: June 2018
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Bognor Regis
PublicationSubtitle MRC
PublicationTitle Magnetic resonance in chemistry
PublicationTitleAlternate Magn Reson Chem
PublicationYear 2018
Publisher Wiley Subscription Services, Inc
Wiley
Publisher_xml – name: Wiley Subscription Services, Inc
– name: Wiley
References 2017; 80
2015; 6
1984; 47
2013; 405
2007; 188
2017; 23
2011; 13
2011; 12
2002
2014; 111
2013; 9
2014; 86
2011; 9
2014; 846
1987; 138
2001
2013; 12
2015; 87
2016
1988; 110
2014
2017; 142
2015; 1382
1996; 8
2017; 105
e_1_2_8_28_1
e_1_2_8_29_1
e_1_2_8_24_1
e_1_2_8_25_1
e_1_2_8_26_1
e_1_2_8_27_1
Chiron L. (e_1_2_8_11_1) 2016
e_1_2_8_3_1
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_4_1
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_21_1
e_1_2_8_22_1
e_1_2_8_23_1
Pedregosa F. (e_1_2_8_20_1) 2011; 12
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_14_1
e_1_2_8_15_1
e_1_2_8_16_1
Mahrous E. (e_1_2_8_8_1) 2015; 6
e_1_2_8_10_1
e_1_2_8_12_1
References_xml – volume: 9
  start-page: 922
  year: 2011
  publication-title: Mar. Drugs
– volume: 13
  start-page: 22
  year: 2011
  publication-title: Comput. Sci. Eng.
– volume: 12
  start-page: 279
  issue: 1
  year: 2013
  publication-title: Malaria Journal
– volume: 87
  start-page: 133
  issue: 1
  year: 2015
  publication-title: Anal. Chem.
– year: 2001
– start-page: 1608.06777
  year: 2016
  publication-title: arXiv
– volume: 47
  start-page: 715
  issue: 4
  year: 1984
  publication-title: J. Nat. Products
– volume: 105
  start-page: 52
  year: 2017
  publication-title: Food Chem. Toxicol.
– volume: 110
  start-page: 5625
  issue: 17
  year: 1988
  publication-title: J. Am. Chem. Soc.
– volume: 8
  start-page: 445
  year: 1996
  publication-title: J. Biomol. NMR
– volume: 80
  start-page: 1387
  issue: 5
  year: 2017
  publication-title: J. Nat. Prod.
– volume: 9
  start-page: 558
  issue: 3
  year: 2013
  publication-title: Metabolomics
– year: 2016
– volume: 138
  start-page: 195
  issue: 2
  year: 1987
  publication-title: Chem. Phys. Let.
– year: 2014
– volume: 111
  start-page: 1385
  issue: 4
  year: 2014
  publication-title: Proc. Natl. Acad. Sci. (USA)
– volume: 12
  start-page: 2825
  year: 2011
  publication-title: J. Machine Learning Res.
– year: 2002
– volume: 86
  start-page: 2955
  issue: 6
  year: 2014
– volume: 142
  start-page: 772
  issue: 5
  year: 2017
  publication-title: Analyst
– volume: 6
  issue: 315
  year: 2015
  publication-title: J. Adv. Research
– volume: 23
  start-page: 369
  issue: 2
  year: 2017
  publication-title: Physiol. Mol. Biol. Plants
– volume: 846
  start-page: 60
  year: 2014
  publication-title: Anal. Chim. Acta.
– volume: 188
  start-page: 56
  issue: 1
  year: 2007
  publication-title: J. Magn. Reson.
– volume: 1382
  start-page: 136
  year: 2015
  publication-title: J. Chromatogr. A.
– volume: 405
  start-page: 51
  year: 2013
  publication-title: Anal. Bioanal. Chem.
– ident: e_1_2_8_15_1
  doi: 10.1021/ja00225a006
– ident: e_1_2_8_17_1
  doi: 10.1109/MCSE.2011.37
– ident: e_1_2_8_16_1
  doi: 10.1007/s00216-012-6422-8
– ident: e_1_2_8_22_1
– volume: 12
  start-page: 2825
  year: 2011
  ident: e_1_2_8_20_1
  publication-title: J. Machine Learning Res.
  contributor:
    fullname: Pedregosa F.
– ident: e_1_2_8_4_1
  doi: 10.1007/s12298-017-0432-0
– ident: e_1_2_8_3_1
  doi: 10.1016/j.fct.2017.03.050
– ident: e_1_2_8_21_1
– ident: e_1_2_8_27_1
  doi: 10.1186/1475-2875-12-279
– ident: e_1_2_8_10_1
– ident: e_1_2_8_5_1
  doi: 10.1021/ac403223f
– ident: e_1_2_8_12_1
  doi: 10.1007/BF00228146
– ident: e_1_2_8_23_1
  doi: 10.1073/pnas.1306700111
– ident: e_1_2_8_19_1
– ident: e_1_2_8_24_1
  doi: 10.1039/C6AN01902A
– ident: e_1_2_8_25_1
  doi: 10.3390/md9060922
– volume: 6
  issue: 315
  year: 2015
  ident: e_1_2_8_8_1
  publication-title: J. Adv. Research
  contributor:
    fullname: Mahrous E.
– ident: e_1_2_8_18_1
– ident: e_1_2_8_2_1
  doi: 10.1021/acs.jnatprod.6b01063
– start-page: 1608.06777
  year: 2016
  ident: e_1_2_8_11_1
  publication-title: arXiv
  contributor:
    fullname: Chiron L.
– ident: e_1_2_8_7_1
  doi: 10.1021/ac504075g
– ident: e_1_2_8_26_1
  doi: 10.1021/np50034a027
– ident: e_1_2_8_13_1
  doi: 10.1016/j.jmr.2007.05.023
– ident: e_1_2_8_29_1
– ident: e_1_2_8_6_1
  doi: 10.1016/j.aca.2014.07.009
– ident: e_1_2_8_14_1
  doi: 10.1016/0009-2614(87)80367-6
– ident: e_1_2_8_9_1
  doi: 10.1016/j.chroma.2014.10.091
– ident: e_1_2_8_28_1
  doi: 10.1007/s11306-012-0490-9
SSID ssj0009973
Score 2.2938602
Snippet Liquid state nuclear magnetic resonance (NMR) is a powerful tool for the analysis of complex mixtures of unknown molecules. This capacity has been used in many...
SourceID hal
proquest
crossref
pubmed
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 469
SubjectTerms Analytical chemistry
automatic processing
Avalanches
Chemical Sciences
Experiments
Life Sciences
Medicinal Chemistry
mixture analysis
Molecular chains
Natural products
NMR
Nuclear magnetic resonance
Pharmaceutical sciences
Plants (botany)
recursive feature elimination
Signal processing
Software
spectral fingerprint
Spectrum analysis
Title Automatic differential analysis of NMR experiments in complex samples
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrc.4683
https://www.ncbi.nlm.nih.gov/pubmed/29152789
https://www.proquest.com/docview/2047322696
https://search.proquest.com/docview/1966438442
https://hal.science/hal-02367426
Volume 56
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4VLuUCbXmF0sogxC1L7DjZ-Ljaglaoy2EFEhIHy3YcgWiziOwi1F_fmTx2BRVSxSlSnMSOxzP-xh5_A3DEbc5x6s5DScd6ZBzL0HDHQ-G8qw9O8oIW9McX6ehKnl8n121UJZ2FafghFgtupBm1vSYFN7Y6WZKG_n50Pfw-EX3yuE_RXD8mS-YopfotA6cKeZLxjnc2Eifdiy9mopVbioP8F2S-xKz1pHO2ATddc5tYk_vefGZ77s8rJsf3_c8nWG-xKBs0g-czfPDlF_g47FLAbcLpYD6b1pyurEukggbhFzMtkwmbFuxiPGHLNAEVuytZHabun1ll6FptweXZ6eVwFLZ5F0KH_mqMLqWVKioKI_McAUORGOGMS9Cqc2cRXwk0E94qi0hDoE7nNpV57DKTOGsKF8XbsFpOS78LLCeLEHnpIqdk5pXxtIuKJgFxFTo-SQAHnQj0Q8OuoRseZaGxPzT1RwCHKJtFMdFhjwY_Nd0j9nt07dMnHsB-JzrdKmGlRST7aK9SlWI9i2LsQtoTMaWfziuNBggxWSalCGCnEfmiKqEo52-mAjiuBfdmE_V4MqTr3v8--BXWEHhlTcjZPqzOHuf-G4Kbmf1eD-O_Owvy_A
link.rule.ids 230,315,783,787,888,1378,27936,27937,46306,46730
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED9t42G8jI_BFhhgEOItXew4WSyeqrKpG20fqiLtAcmyHUebgBQt7TTtr99dPlptCAnxZClOZMfnO__OPv8O4CO3OcelOw8lXeuRcSxDwx0PhfOuvjjJC9rQH0_S4Td5dp6cb8Dn7i5Mww-x2nAjzajtNSk4bUgfrllDf125HjYQb8Ij1PaY8jZ8ma65o5Q6ajk4VciTjHfMs5E47L68txZtXlAk5J8w8z5qrZedkyfwvetwE23yo7dc2J67fcDl-J9_9BR2WjjK-s38eQYbvnwO24MuC9wuHPeXi3lN68q6XCpoE34y05KZsHnBJuMpW2cKqNhlyepIdX_DKkNl9QJmJ8ezwTBsUy-EDl3WGL1KK1VUFEbmOWKGIjHCGZegYefOIsQSaCm8VRbBhkC1zm0q89hlJnHWFC6KX8JWOS_9PrCcjELkpYuckplXxtNBKloFhFbo-yQBvO9koH83BBu6oVIWGsdD03gE8AGFs6omRuxhf6TpGRHgo3efXvMADjrZ6VYPKy0ieYQmK1UptrOqxiGkYxFT-vmy0miDEJZlUooA9hqZr5oSitL-ZiqAT7Xk_tpFPZ4OqHz1ry--g-3hbDzSo9PJ19fwGHFY1kSgHcDW4mrp3yDWWdi39Zy-A2HR9xQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9swED8NJm17YewDFgabN017S4kdJ8SPVUfVbbSaKiYh7cGyHUcgthSRFiH-eu7y0YpNkxBPkeIkdny-8-_s8-8APnGbc5y681DSsR4ZxzI03PFQOO_qg5O8oAX98SQd_ZTfTpKTNqqSzsI0_BDLBTfSjNpek4Jf5MX-ijT0z6Xr4ffjNXgsUwS-BIimK-oopQ5aCk4V8iTjHfFsJPa7N-9MRWunFAj5L8q8C1rrWWf4HH517W2CTc57i7ntuZu_qBwf9kObsNGCUdZvRs8LeOTLl_B00OWAewWH_cV8VpO6si6TClqE38y0VCZsVrDJeMpWeQIqdlayOk7dX7PK0LV6DcfDw-PBKGwTL4QOHdYYfUorVVQURuY5IoYiMcIZl6BZ584iwBJoJ7xVFqGGQKXObSrz2GUmcdYULoq3YL2clf4NsJxMQuSli5ySmVfG0zYq2gQEVuj5JAF86ESgLxp6Dd0QKQuN_aGpPwL4iLJZFhMf9qh_pOke0d-jb59e8QB2O9HpVgsrLSJ5gAYrVSnWsyzGLqRNEVP62aLSaIEQlGVSigC2G5EvqxKKkv5mKoDPteD-20Q9ng7ounPfB9_Dkx9fhvro6-T7W3iGICxrws92YX1-ufB7CHTm9l09om8Bhgn1ww
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automatic+differential+analysis+of+NMR+experiments+in+complex+samples&rft.jtitle=Magnetic+resonance+in+chemistry&rft.au=Margueritte%2C+Laure&rft.au=Markov%2C+Petar&rft.au=Chiron%2C+Lionel&rft.au=Starck%2C+Jean-Philippe&rft.date=2018-06-01&rft.eissn=1097-458X&rft.volume=56&rft.issue=6&rft.spage=469&rft.epage=479&rft_id=info:doi/10.1002%2Fmrc.4683&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0749-1581&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0749-1581&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0749-1581&client=summon