Automatic differential analysis of NMR experiments in complex samples
Liquid state nuclear magnetic resonance (NMR) is a powerful tool for the analysis of complex mixtures of unknown molecules. This capacity has been used in many analytical approaches: metabolomics, identification of active compounds in natural extracts, and characterization of species, and such studi...
Saved in:
Published in | Magnetic resonance in chemistry Vol. 56; no. 6; pp. 469 - 479 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Wiley Subscription Services, Inc
01.06.2018
Wiley |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Liquid state nuclear magnetic resonance (NMR) is a powerful tool for the analysis of complex mixtures of unknown molecules. This capacity has been used in many analytical approaches: metabolomics, identification of active compounds in natural extracts, and characterization of species, and such studies require the acquisition of many diverse NMR measurements on series of samples.
Although acquisition can easily be performed automatically, the number of NMR experiments involved in these studies increases very rapidly, and this data avalanche requires to resort to automatic processing and analysis.
We present here a program that allows the autonomous, unsupervised processing of a large corpus of 1D, 2D, and diffusion‐ordered spectroscopy experiments from a series of samples acquired in different conditions. The program provides all the signal processing steps, as well as peak‐picking and bucketing of 1D and 2D spectra, the program and its components are fully available. In an experiment mimicking the search of a bioactive species in a natural extract, we use it for the automatic detection of small amounts of artemisinin added to a series of plant extracts and for the generation of the spectral fingerprint of this molecule.
This program called Plasmodesma is a novel tool that should be useful to decipher complex mixtures, particularly in the discovery of biologically active natural products from plants extracts but can also in drug discovery or metabolomics studies.
Natural extracts studies require the acquisition of many NMR spectra on sample series, and the associated NMR data avalanche requires to resort to automatic processing and analysis.
The Plasmodesma program allows the autonomous, unsupervised processing of a large corpus of 1D, 2D, and diffusion‐ordered spectroscopy experiments from such series and prepares for their automatic analysis.
The automatic detection of artemisinin natural extracts presented here shows that this novel tool should be useful particularly in drug discovery or metabolomics studies. |
---|---|
AbstractList | Liquid state nuclear magnetic resonance (NMR) is a powerful tool for the analysis of complex mixtures of unknown molecules. This capacity has been used in many analytical approaches: metabolomics, identification of active compounds in natural extracts, and characterization of species, and such studies require the acquisition of many diverse NMR measurements on series of samples.
Although acquisition can easily be performed automatically, the number of NMR experiments involved in these studies increases very rapidly, and this data avalanche requires to resort to automatic processing and analysis.
We present here a program that allows the autonomous, unsupervised processing of a large corpus of 1D, 2D, and diffusion‐ordered spectroscopy experiments from a series of samples acquired in different conditions. The program provides all the signal processing steps, as well as peak‐picking and bucketing of 1D and 2D spectra, the program and its components are fully available. In an experiment mimicking the search of a bioactive species in a natural extract, we use it for the automatic detection of small amounts of artemisinin added to a series of plant extracts and for the generation of the spectral fingerprint of this molecule.
This program called Plasmodesma is a novel tool that should be useful to decipher complex mixtures, particularly in the discovery of biologically active natural products from plants extracts but can also in drug discovery or metabolomics studies.
Natural extracts studies require the acquisition of many NMR spectra on sample series, and the associated NMR data avalanche requires to resort to automatic processing and analysis.
The Plasmodesma program allows the autonomous, unsupervised processing of a large corpus of 1D, 2D, and diffusion‐ordered spectroscopy experiments from such series and prepares for their automatic analysis.
The automatic detection of artemisinin natural extracts presented here shows that this novel tool should be useful particularly in drug discovery or metabolomics studies. Liquid state nuclear magnetic resonance (NMR) is a powerful tool for the analysis of complex mixtures of unknown molecules. This capacity has been used in many analytical approaches: metabolomics, identification of active compounds in natural extracts, and characterization of species, and such studies require the acquisition of many diverse NMR measurements on series of samples. Although acquisition can easily be performed automatically, the number of NMR experiments involved in these studies increases very rapidly, and this data avalanche requires to resort to automatic processing and analysis. We present here a program that allows the autonomous, unsupervised processing of a large corpus of 1D, 2D, and diffusion-ordered spectroscopy experiments from a series of samples acquired in different conditions. The program provides all the signal processing steps, as well as peak-picking and bucketing of 1D and 2D spectra, the program and its components are fully available. In an experiment mimicking the search of a bioactive species in a natural extract, we use it for the automatic detection of small amounts of artemisinin added to a series of plant extracts and for the generation of the spectral fingerprint of this molecule. This program called Plasmodesma is a novel tool that should be useful to decipher complex mixtures, particularly in the discovery of biologically active natural products from plants extracts but can also in drug discovery or metabolomics studies. Liquid state nuclear magnetic resonance (NMR) is a powerful tool for the analysis of complex mixtures of unknown molecules. This capacity has been used in many analytical approaches: metabolomics, identification of active compounds in natural extracts, and characterization of species, and such studies require the acquisition of many diverse NMR measurements on series of samples. Although acquisition can easily be performed automatically, the number of NMR experiments involved in these studies increases very rapidly, and this data avalanche requires to resort to automatic processing and analysis. We present here a program that allows the autonomous, unsupervised processing of a large corpus of 1D, 2D, and diffusion‐ordered spectroscopy experiments from a series of samples acquired in different conditions. The program provides all the signal processing steps, as well as peak‐picking and bucketing of 1D and 2D spectra, the program and its components are fully available. In an experiment mimicking the search of a bioactive species in a natural extract, we use it for the automatic detection of small amounts of artemisinin added to a series of plant extracts and for the generation of the spectral fingerprint of this molecule. This program called Plasmodesma is a novel tool that should be useful to decipher complex mixtures, particularly in the discovery of biologically active natural products from plants extracts but can also in drug discovery or metabolomics studies. |
Author | Bourjot, Mélanie Markov, Petar Chiron, Lionel Starck, Jean‐Philippe Margueritte, Laure Vonthron‐Sénécheau, Catherine Delsuc, Marc‐André |
Author_xml | – sequence: 1 givenname: Laure surname: Margueritte fullname: Margueritte, Laure organization: Université de Strasbourg – sequence: 2 givenname: Petar surname: Markov fullname: Markov, Petar organization: Cardiff University – sequence: 3 givenname: Lionel surname: Chiron fullname: Chiron, Lionel – sequence: 4 givenname: Jean‐Philippe surname: Starck fullname: Starck, Jean‐Philippe – sequence: 5 givenname: Catherine surname: Vonthron‐Sénécheau fullname: Vonthron‐Sénécheau, Catherine organization: Université de Strasbourg – sequence: 6 givenname: Mélanie surname: Bourjot fullname: Bourjot, Mélanie organization: Université de Strasbourg – sequence: 7 givenname: Marc‐André orcidid: 0000-0002-1400-5326 surname: Delsuc fullname: Delsuc, Marc‐André email: delsuc@igbmc.fr organization: Université de Strasbourg |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29152789$$D View this record in MEDLINE/PubMed https://hal.science/hal-02367426$$DView record in HAL |
BookMark | eNp1kctKAzEUhoMo9qLgE8iAG11MPbnMJctSqhVahdKFu5DJJJgyM6mTjrZv79TWCoKrA-d8fPycv4dOK1dphK4wDDAAuS9rNWBxSk9QFwNPQhalr6eoCwnjIY5S3EE975cAwHlCz1GHcByRJOVdNB42a1fKtVVBbo3Rta7WVhaBrGSx9dYHzgTPs3mgNytd27K9-sBWgXLlqtCbwMvd9BfozMjC68vD7KPFw3gxmoTTl8en0XAaKppSGjLIGAdjJMvzFHMTSaKkinSGscowowQS0BnPOAYCEc6zmOVUpTJSmTQKaB_d7bVvshCrNo6st8JJKybDqdjtgNA4YST-wC17u2dXtXtvtF-L0nqli0JW2jVeYB7HjKaMkRa9-YMuXVO3D_CCAEsoITGPf4Wqdt7X2hwTYBC7FkTbgti10KLXB2GTlTo_gj9vb4FwD3zaQm__FYnZfPQt_AK8T5EL |
CitedBy_id | crossref_primary_10_1186_s13568_022_01346_5 crossref_primary_10_1016_j_trac_2024_117711 crossref_primary_10_1039_D1RA03008F crossref_primary_10_1039_D1NP00023C crossref_primary_10_1002_ansa_202000041 crossref_primary_10_1002_pca_2932 crossref_primary_10_1021_acs_analchem_8b05112 crossref_primary_10_1039_C8FD00242H crossref_primary_10_1016_j_talanta_2019_120475 crossref_primary_10_1002_mrc_4971 crossref_primary_10_1016_j_aca_2019_04_038 |
Cites_doi | 10.1021/ja00225a006 10.1109/MCSE.2011.37 10.1007/s00216-012-6422-8 10.1007/s12298-017-0432-0 10.1016/j.fct.2017.03.050 10.1186/1475-2875-12-279 10.1021/ac403223f 10.1007/BF00228146 10.1073/pnas.1306700111 10.1039/C6AN01902A 10.3390/md9060922 10.1021/acs.jnatprod.6b01063 10.1021/ac504075g 10.1021/np50034a027 10.1016/j.jmr.2007.05.023 10.1016/j.aca.2014.07.009 10.1016/0009-2614(87)80367-6 10.1016/j.chroma.2014.10.091 10.1007/s11306-012-0490-9 |
ContentType | Journal Article |
Copyright | Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2018 John Wiley & Sons, Ltd. Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: Copyright © 2017 John Wiley & Sons, Ltd. – notice: Copyright © 2018 John Wiley & Sons, Ltd. – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | NPM AAYXX CITATION 7SR 7U5 8BQ 8FD JG9 JQ2 K9. L7M 7X8 1XC |
DOI | 10.1002/mrc.4683 |
DatabaseName | PubMed CrossRef Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Advanced Technologies Database with Aerospace MEDLINE - Academic Hyper Article en Ligne (HAL) |
DatabaseTitle | PubMed CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX MEDLINE - Academic |
DatabaseTitleList | PubMed Materials Research Database CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1097-458X |
EndPage | 479 |
ExternalDocumentID | oai_HAL_hal_02367426v1 10_1002_mrc_4683 29152789 MRC4683 |
Genre | article Journal Article |
GroupedDBID | --- -~X .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 31~ 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABDBF ABEML ABIJN ABJNI ABPVW ABTAH ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB AQPKS ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM DU5 EBD EBS EJD F00 F01 F04 F5P FEDTE G-S G.N G8K GNP GODZA H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LH5 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M6K MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OHT OIG P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RIWAO RNS ROL RWI RX1 RYL SAMSI SUPJJ TUS TWZ UB1 V2E W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WRJ WXSBR WYISQ XG1 XPP XV2 YNT YQT ZCG ZY4 ZZTAW ~IA ~WT NPM AAYXX CITATION 7SR 7U5 8BQ 8FD JG9 JQ2 K9. L7M 7X8 1XC |
ID | FETCH-LOGICAL-c3833-40b490ffa4dd819f5a2cac5eb11cb1432070eb9b9102051db64d3c8a5cbafc03 |
IEDL.DBID | DR2 |
ISSN | 0749-1581 |
IngestDate | Fri Oct 18 06:52:24 EDT 2024 Sat Aug 17 02:22:24 EDT 2024 Thu Oct 10 16:44:42 EDT 2024 Fri Aug 23 01:20:05 EDT 2024 Sat Sep 28 08:38:17 EDT 2024 Sat Aug 24 00:58:28 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | automatic processing mixture analysis recursive feature elimination spectral fingerprint |
Language | English |
License | Copyright © 2017 John Wiley & Sons, Ltd. Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3833-40b490ffa4dd819f5a2cac5eb11cb1432070eb9b9102051db64d3c8a5cbafc03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-1400-5326 |
PMID | 29152789 |
PQID | 2047322696 |
PQPubID | 1016392 |
PageCount | 11 |
ParticipantIDs | hal_primary_oai_HAL_hal_02367426v1 proquest_miscellaneous_1966438442 proquest_journals_2047322696 crossref_primary_10_1002_mrc_4683 pubmed_primary_29152789 wiley_primary_10_1002_mrc_4683_MRC4683 |
PublicationCentury | 2000 |
PublicationDate | June 2018 2018-06-00 20180601 2018-06 |
PublicationDateYYYYMMDD | 2018-06-01 |
PublicationDate_xml | – month: 06 year: 2018 text: June 2018 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Bognor Regis |
PublicationSubtitle | MRC |
PublicationTitle | Magnetic resonance in chemistry |
PublicationTitleAlternate | Magn Reson Chem |
PublicationYear | 2018 |
Publisher | Wiley Subscription Services, Inc Wiley |
Publisher_xml | – name: Wiley Subscription Services, Inc – name: Wiley |
References | 2017; 80 2015; 6 1984; 47 2013; 405 2007; 188 2017; 23 2011; 13 2011; 12 2002 2014; 111 2013; 9 2014; 86 2011; 9 2014; 846 1987; 138 2001 2013; 12 2015; 87 2016 1988; 110 2014 2017; 142 2015; 1382 1996; 8 2017; 105 e_1_2_8_28_1 e_1_2_8_29_1 e_1_2_8_24_1 e_1_2_8_25_1 e_1_2_8_26_1 e_1_2_8_27_1 Chiron L. (e_1_2_8_11_1) 2016 e_1_2_8_3_1 e_1_2_8_2_1 e_1_2_8_5_1 e_1_2_8_4_1 e_1_2_8_7_1 e_1_2_8_6_1 e_1_2_8_9_1 e_1_2_8_21_1 e_1_2_8_22_1 e_1_2_8_23_1 Pedregosa F. (e_1_2_8_20_1) 2011; 12 e_1_2_8_17_1 e_1_2_8_18_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_14_1 e_1_2_8_15_1 e_1_2_8_16_1 Mahrous E. (e_1_2_8_8_1) 2015; 6 e_1_2_8_10_1 e_1_2_8_12_1 |
References_xml | – volume: 9 start-page: 922 year: 2011 publication-title: Mar. Drugs – volume: 13 start-page: 22 year: 2011 publication-title: Comput. Sci. Eng. – volume: 12 start-page: 279 issue: 1 year: 2013 publication-title: Malaria Journal – volume: 87 start-page: 133 issue: 1 year: 2015 publication-title: Anal. Chem. – year: 2001 – start-page: 1608.06777 year: 2016 publication-title: arXiv – volume: 47 start-page: 715 issue: 4 year: 1984 publication-title: J. Nat. Products – volume: 105 start-page: 52 year: 2017 publication-title: Food Chem. Toxicol. – volume: 110 start-page: 5625 issue: 17 year: 1988 publication-title: J. Am. Chem. Soc. – volume: 8 start-page: 445 year: 1996 publication-title: J. Biomol. NMR – volume: 80 start-page: 1387 issue: 5 year: 2017 publication-title: J. Nat. Prod. – volume: 9 start-page: 558 issue: 3 year: 2013 publication-title: Metabolomics – year: 2016 – volume: 138 start-page: 195 issue: 2 year: 1987 publication-title: Chem. Phys. Let. – year: 2014 – volume: 111 start-page: 1385 issue: 4 year: 2014 publication-title: Proc. Natl. Acad. Sci. (USA) – volume: 12 start-page: 2825 year: 2011 publication-title: J. Machine Learning Res. – year: 2002 – volume: 86 start-page: 2955 issue: 6 year: 2014 – volume: 142 start-page: 772 issue: 5 year: 2017 publication-title: Analyst – volume: 6 issue: 315 year: 2015 publication-title: J. Adv. Research – volume: 23 start-page: 369 issue: 2 year: 2017 publication-title: Physiol. Mol. Biol. Plants – volume: 846 start-page: 60 year: 2014 publication-title: Anal. Chim. Acta. – volume: 188 start-page: 56 issue: 1 year: 2007 publication-title: J. Magn. Reson. – volume: 1382 start-page: 136 year: 2015 publication-title: J. Chromatogr. A. – volume: 405 start-page: 51 year: 2013 publication-title: Anal. Bioanal. Chem. – ident: e_1_2_8_15_1 doi: 10.1021/ja00225a006 – ident: e_1_2_8_17_1 doi: 10.1109/MCSE.2011.37 – ident: e_1_2_8_16_1 doi: 10.1007/s00216-012-6422-8 – ident: e_1_2_8_22_1 – volume: 12 start-page: 2825 year: 2011 ident: e_1_2_8_20_1 publication-title: J. Machine Learning Res. contributor: fullname: Pedregosa F. – ident: e_1_2_8_4_1 doi: 10.1007/s12298-017-0432-0 – ident: e_1_2_8_3_1 doi: 10.1016/j.fct.2017.03.050 – ident: e_1_2_8_21_1 – ident: e_1_2_8_27_1 doi: 10.1186/1475-2875-12-279 – ident: e_1_2_8_10_1 – ident: e_1_2_8_5_1 doi: 10.1021/ac403223f – ident: e_1_2_8_12_1 doi: 10.1007/BF00228146 – ident: e_1_2_8_23_1 doi: 10.1073/pnas.1306700111 – ident: e_1_2_8_19_1 – ident: e_1_2_8_24_1 doi: 10.1039/C6AN01902A – ident: e_1_2_8_25_1 doi: 10.3390/md9060922 – volume: 6 issue: 315 year: 2015 ident: e_1_2_8_8_1 publication-title: J. Adv. Research contributor: fullname: Mahrous E. – ident: e_1_2_8_18_1 – ident: e_1_2_8_2_1 doi: 10.1021/acs.jnatprod.6b01063 – start-page: 1608.06777 year: 2016 ident: e_1_2_8_11_1 publication-title: arXiv contributor: fullname: Chiron L. – ident: e_1_2_8_7_1 doi: 10.1021/ac504075g – ident: e_1_2_8_26_1 doi: 10.1021/np50034a027 – ident: e_1_2_8_13_1 doi: 10.1016/j.jmr.2007.05.023 – ident: e_1_2_8_29_1 – ident: e_1_2_8_6_1 doi: 10.1016/j.aca.2014.07.009 – ident: e_1_2_8_14_1 doi: 10.1016/0009-2614(87)80367-6 – ident: e_1_2_8_9_1 doi: 10.1016/j.chroma.2014.10.091 – ident: e_1_2_8_28_1 doi: 10.1007/s11306-012-0490-9 |
SSID | ssj0009973 |
Score | 2.2938602 |
Snippet | Liquid state nuclear magnetic resonance (NMR) is a powerful tool for the analysis of complex mixtures of unknown molecules. This capacity has been used in many... |
SourceID | hal proquest crossref pubmed wiley |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 469 |
SubjectTerms | Analytical chemistry automatic processing Avalanches Chemical Sciences Experiments Life Sciences Medicinal Chemistry mixture analysis Molecular chains Natural products NMR Nuclear magnetic resonance Pharmaceutical sciences Plants (botany) recursive feature elimination Signal processing Software spectral fingerprint Spectrum analysis |
Title | Automatic differential analysis of NMR experiments in complex samples |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrc.4683 https://www.ncbi.nlm.nih.gov/pubmed/29152789 https://www.proquest.com/docview/2047322696 https://search.proquest.com/docview/1966438442 https://hal.science/hal-02367426 |
Volume | 56 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4VLuUCbXmF0sogxC1L7DjZ-Ljaglaoy2EFEhIHy3YcgWiziOwi1F_fmTx2BRVSxSlSnMSOxzP-xh5_A3DEbc5x6s5DScd6ZBzL0HDHQ-G8qw9O8oIW9McX6ehKnl8n121UJZ2FafghFgtupBm1vSYFN7Y6WZKG_n50Pfw-EX3yuE_RXD8mS-YopfotA6cKeZLxjnc2Eifdiy9mopVbioP8F2S-xKz1pHO2ATddc5tYk_vefGZ77s8rJsf3_c8nWG-xKBs0g-czfPDlF_g47FLAbcLpYD6b1pyurEukggbhFzMtkwmbFuxiPGHLNAEVuytZHabun1ll6FptweXZ6eVwFLZ5F0KH_mqMLqWVKioKI_McAUORGOGMS9Cqc2cRXwk0E94qi0hDoE7nNpV57DKTOGsKF8XbsFpOS78LLCeLEHnpIqdk5pXxtIuKJgFxFTo-SQAHnQj0Q8OuoRseZaGxPzT1RwCHKJtFMdFhjwY_Nd0j9nt07dMnHsB-JzrdKmGlRST7aK9SlWI9i2LsQtoTMaWfziuNBggxWSalCGCnEfmiKqEo52-mAjiuBfdmE_V4MqTr3v8--BXWEHhlTcjZPqzOHuf-G4Kbmf1eD-O_Owvy_A |
link.rule.ids | 230,315,783,787,888,1378,27936,27937,46306,46730 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED9t42G8jI_BFhhgEOItXew4WSyeqrKpG20fqiLtAcmyHUebgBQt7TTtr99dPlptCAnxZClOZMfnO__OPv8O4CO3OcelOw8lXeuRcSxDwx0PhfOuvjjJC9rQH0_S4Td5dp6cb8Dn7i5Mww-x2nAjzajtNSk4bUgfrllDf125HjYQb8Ij1PaY8jZ8ma65o5Q6ajk4VciTjHfMs5E47L68txZtXlAk5J8w8z5qrZedkyfwvetwE23yo7dc2J67fcDl-J9_9BR2WjjK-s38eQYbvnwO24MuC9wuHPeXi3lN68q6XCpoE34y05KZsHnBJuMpW2cKqNhlyepIdX_DKkNl9QJmJ8ezwTBsUy-EDl3WGL1KK1VUFEbmOWKGIjHCGZegYefOIsQSaCm8VRbBhkC1zm0q89hlJnHWFC6KX8JWOS_9PrCcjELkpYuckplXxtNBKloFhFbo-yQBvO9koH83BBu6oVIWGsdD03gE8AGFs6omRuxhf6TpGRHgo3efXvMADjrZ6VYPKy0ieYQmK1UptrOqxiGkYxFT-vmy0miDEJZlUooA9hqZr5oSitL-ZiqAT7Xk_tpFPZ4OqHz1ry--g-3hbDzSo9PJ19fwGHFY1kSgHcDW4mrp3yDWWdi39Zy-A2HR9xQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9swED8NJm17YewDFgabN017S4kdJ8SPVUfVbbSaKiYh7cGyHUcgthSRFiH-eu7y0YpNkxBPkeIkdny-8-_s8-8APnGbc5y681DSsR4ZxzI03PFQOO_qg5O8oAX98SQd_ZTfTpKTNqqSzsI0_BDLBTfSjNpek4Jf5MX-ijT0z6Xr4ffjNXgsUwS-BIimK-oopQ5aCk4V8iTjHfFsJPa7N-9MRWunFAj5L8q8C1rrWWf4HH517W2CTc57i7ntuZu_qBwf9kObsNGCUdZvRs8LeOTLl_B00OWAewWH_cV8VpO6si6TClqE38y0VCZsVrDJeMpWeQIqdlayOk7dX7PK0LV6DcfDw-PBKGwTL4QOHdYYfUorVVQURuY5IoYiMcIZl6BZ584iwBJoJ7xVFqGGQKXObSrz2GUmcdYULoq3YL2clf4NsJxMQuSli5ySmVfG0zYq2gQEVuj5JAF86ESgLxp6Dd0QKQuN_aGpPwL4iLJZFhMf9qh_pOke0d-jb59e8QB2O9HpVgsrLSJ5gAYrVSnWsyzGLqRNEVP62aLSaIEQlGVSigC2G5EvqxKKkv5mKoDPteD-20Q9ng7ounPfB9_Dkx9fhvro6-T7W3iGICxrws92YX1-ufB7CHTm9l09om8Bhgn1ww |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automatic+differential+analysis+of+NMR+experiments+in+complex+samples&rft.jtitle=Magnetic+resonance+in+chemistry&rft.au=Margueritte%2C+Laure&rft.au=Markov%2C+Petar&rft.au=Chiron%2C+Lionel&rft.au=Starck%2C+Jean-Philippe&rft.date=2018-06-01&rft.eissn=1097-458X&rft.volume=56&rft.issue=6&rft.spage=469&rft.epage=479&rft_id=info:doi/10.1002%2Fmrc.4683&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0749-1581&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0749-1581&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0749-1581&client=summon |