An Ultraviolet–Visible and Near‐Infrared‐Responded Broadband NIR Phosphor and Its NIR Spectroscopy Application
High‐radiance near‐infrared (NIR) phosphor‐converted light‐emitting diodes (pc‐LEDs) are demanded for wearable biosensing devices and the properties of these pc‐LEDs are highly dependent on the performance of the NIR phosphor. An ultraviolet–visible and NIR‐responded broadband NIR NaScGe2O6:Cr3+ pho...
Saved in:
Published in | Advanced optical materials Vol. 8; no. 8 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
01.04.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | High‐radiance near‐infrared (NIR) phosphor‐converted light‐emitting diodes (pc‐LEDs) are demanded for wearable biosensing devices and the properties of these pc‐LEDs are highly dependent on the performance of the NIR phosphor. An ultraviolet–visible and NIR‐responded broadband NIR NaScGe2O6:Cr3+ phosphor is reported. Under 490 nm excitation, NaScGe2O6:Cr3+ shows broad emission band from 700 to 1250 nm, which covers the first and second NIR windows. An NIR pc‐LED with radiant flux of 12.07 mW@350 mA is realized based on NaScGe2O6:Cr3+ and 450 nm blue LED chip. The ability of high‐power NIR light of the NIR pc‐LED to penetrate human tissues is observed successfully. Additionally, in NaScGe2O6:Cr3+, the luminescence performance of Cr3+ under 808 nm laser excitation is achieved for the first time.
A broadband near‐infrared (NIR) emission phosphor NaScGe2O6:Cr3+ with super‐wide response range is developed. The high‐power NIR phosphor‐converted light‐emitting diode is prepared and the ability of the high‐power NIR light to penetrate human tissues is observed successfully. In addition, the luminescence performance of Cr3+ under 808 nm laser excitation is achieved for the first time in NaScGe2O6:Cr3+. |
---|---|
AbstractList | High‐radiance near‐infrared (NIR) phosphor‐converted light‐emitting diodes (pc‐LEDs) are demanded for wearable biosensing devices and the properties of these pc‐LEDs are highly dependent on the performance of the NIR phosphor. An ultraviolet–visible and NIR‐responded broadband NIR NaScGe
2
O
6
:Cr
3+
phosphor is reported. Under 490 nm excitation, NaScGe
2
O
6
:Cr
3+
shows broad emission band from 700 to 1250 nm, which covers the first and second NIR windows. An NIR pc‐LED with radiant flux of 12.07 mW@350 mA is realized based on NaScGe
2
O
6
:Cr
3+
and 450 nm blue LED chip. The ability of high‐power NIR light of the NIR pc‐LED to penetrate human tissues is observed successfully. Additionally, in NaScGe
2
O
6
:Cr
3+
, the luminescence performance of Cr
3+
under 808 nm laser excitation is achieved for the first time. High‐radiance near‐infrared (NIR) phosphor‐converted light‐emitting diodes (pc‐LEDs) are demanded for wearable biosensing devices and the properties of these pc‐LEDs are highly dependent on the performance of the NIR phosphor. An ultraviolet–visible and NIR‐responded broadband NIR NaScGe2O6:Cr3+ phosphor is reported. Under 490 nm excitation, NaScGe2O6:Cr3+ shows broad emission band from 700 to 1250 nm, which covers the first and second NIR windows. An NIR pc‐LED with radiant flux of 12.07 mW@350 mA is realized based on NaScGe2O6:Cr3+ and 450 nm blue LED chip. The ability of high‐power NIR light of the NIR pc‐LED to penetrate human tissues is observed successfully. Additionally, in NaScGe2O6:Cr3+, the luminescence performance of Cr3+ under 808 nm laser excitation is achieved for the first time. A broadband near‐infrared (NIR) emission phosphor NaScGe2O6:Cr3+ with super‐wide response range is developed. The high‐power NIR phosphor‐converted light‐emitting diode is prepared and the ability of the high‐power NIR light to penetrate human tissues is observed successfully. In addition, the luminescence performance of Cr3+ under 808 nm laser excitation is achieved for the first time in NaScGe2O6:Cr3+. High‐radiance near‐infrared (NIR) phosphor‐converted light‐emitting diodes (pc‐LEDs) are demanded for wearable biosensing devices and the properties of these pc‐LEDs are highly dependent on the performance of the NIR phosphor. An ultraviolet–visible and NIR‐responded broadband NIR NaScGe2O6:Cr3+ phosphor is reported. Under 490 nm excitation, NaScGe2O6:Cr3+ shows broad emission band from 700 to 1250 nm, which covers the first and second NIR windows. An NIR pc‐LED with radiant flux of 12.07 mW@350 mA is realized based on NaScGe2O6:Cr3+ and 450 nm blue LED chip. The ability of high‐power NIR light of the NIR pc‐LED to penetrate human tissues is observed successfully. Additionally, in NaScGe2O6:Cr3+, the luminescence performance of Cr3+ under 808 nm laser excitation is achieved for the first time. |
Author | Li, Junyi Ding, Jianyan Geng, Wanying Wang, Yichao Zhou, Xufeng Wang, Yuhua |
Author_xml | – sequence: 1 givenname: Xufeng surname: Zhou fullname: Zhou, Xufeng organization: Lanzhou University – sequence: 2 givenname: Wanying surname: Geng fullname: Geng, Wanying organization: Lanzhou University – sequence: 3 givenname: Junyi surname: Li fullname: Li, Junyi organization: Lanzhou University – sequence: 4 givenname: Yichao surname: Wang fullname: Wang, Yichao organization: Lanzhou University – sequence: 5 givenname: Jianyan surname: Ding fullname: Ding, Jianyan organization: Lanzhou University – sequence: 6 givenname: Yuhua surname: Wang fullname: Wang, Yuhua email: wyh@lzu.edu.cn organization: Lanzhou University |
BookMark | eNqFkMtOwkAUhicGExHZum7iGjxzKbRLxBsJilFx20znEoaUTp0pGnY8golvyJNYilFjYlyd2_-dc_IfokZuc4XQMYYuBiCnXNpFlwCOgQDQPdQkOA47GPq48SM_QG3v5wBQFTRm_SYqB3kwzUrHX4zNVLlZvz8Zb9JMBTyXwa3ibrN-G-Xacadkld4rX9hcKhmcOctlWqtG98HdzPpiZl2NjUpfNx8KJUpnvbDFKhgURWYEL43Nj9C-5plX7c_YQtPLi8fhdWc8uRoNB-OOoBGlHRxprQShGoAJEjGmhe5FQFQqw7QHKaQ41YKJSMqoFzKGq0lMqZQxwYzKiLbQyW5v4ezzUvkymduly6uTCaExsAjCcKtiO5WoXvVO6USYsv6zssVkCYZka3GytTj5srjCur-wwpkFd6u_gXgHvJpMrf5RJ4Pzyc03-wEwypQ7 |
CitedBy_id | crossref_primary_10_1002_ange_202204411 crossref_primary_10_1039_D4TC00004H crossref_primary_10_1016_j_jlumin_2022_118887 crossref_primary_10_1039_D1QI01158H crossref_primary_10_1021_acs_chemmater_2c03454 crossref_primary_10_1021_acssuschemeng_0c07946 crossref_primary_10_1039_D3QM00211J crossref_primary_10_1016_j_cej_2021_128805 crossref_primary_10_1016_j_ceramint_2023_02_093 crossref_primary_10_1016_j_jlumin_2022_119293 crossref_primary_10_1002_adom_202302611 crossref_primary_10_1016_j_omx_2022_100136 crossref_primary_10_1016_j_arabjc_2024_105921 crossref_primary_10_1016_j_cej_2024_155598 crossref_primary_10_1039_D2QM00569G crossref_primary_10_1021_acsaelm_4c01868 crossref_primary_10_1016_j_mtchem_2022_101258 crossref_primary_10_1016_j_ceramint_2022_11_169 crossref_primary_10_1016_j_mtchem_2024_102214 crossref_primary_10_1002_ange_202419910 crossref_primary_10_1039_D2DT03871D crossref_primary_10_1039_D2TC01792J crossref_primary_10_1016_j_jlumin_2023_120314 crossref_primary_10_1002_cjoc_202000529 crossref_primary_10_1016_j_materresbull_2023_112669 crossref_primary_10_1039_D2QI00794K crossref_primary_10_1016_j_jallcom_2023_171311 crossref_primary_10_1016_j_ceramint_2022_10_001 crossref_primary_10_1039_D3TC01523H crossref_primary_10_1360_TB_2023_0420 crossref_primary_10_1016_j_optmat_2024_116418 crossref_primary_10_1039_D4MH01157K crossref_primary_10_1016_j_jlumin_2024_121032 crossref_primary_10_1007_s10854_024_13467_7 crossref_primary_10_1016_j_ceramint_2024_08_454 crossref_primary_10_1021_acs_jpclett_3c00089 crossref_primary_10_1039_D4QM00886C crossref_primary_10_1038_s41377_022_00803_x crossref_primary_10_1016_j_jallcom_2024_177826 crossref_primary_10_1016_j_jssc_2020_121408 crossref_primary_10_1016_j_jallcom_2023_170311 crossref_primary_10_1142_S0217984924503822 crossref_primary_10_1039_D1QM01540K crossref_primary_10_1039_D3DT02602G crossref_primary_10_1016_j_jlumin_2024_120831 crossref_primary_10_1002_adom_202102388 crossref_primary_10_1016_j_ceramint_2023_11_225 crossref_primary_10_1016_j_jallcom_2025_179966 crossref_primary_10_1002_ange_202103612 crossref_primary_10_1039_D1QI01082D crossref_primary_10_1016_j_optmat_2024_116509 crossref_primary_10_1039_D4QI01274G crossref_primary_10_1021_acs_inorgchem_2c00272 crossref_primary_10_1111_jace_18995 crossref_primary_10_1111_jace_17304 crossref_primary_10_1021_acsami_2c00200 crossref_primary_10_1016_j_infrared_2023_104697 crossref_primary_10_1111_jace_19728 crossref_primary_10_1142_S0217984922502074 crossref_primary_10_1039_D1TC05289F crossref_primary_10_1016_j_mtchem_2022_101102 crossref_primary_10_1021_acsami_1c09421 crossref_primary_10_1039_D4TC05115G crossref_primary_10_35848_1347_4065_ace670 crossref_primary_10_1016_j_ceramint_2021_05_256 crossref_primary_10_1016_j_jlumin_2023_120255 crossref_primary_10_1007_s12613_021_2363_6 crossref_primary_10_1002_adom_202102246 crossref_primary_10_1016_j_mtchem_2024_102305 crossref_primary_10_1016_j_ceramint_2020_09_149 crossref_primary_10_1002_lpor_202402226 crossref_primary_10_1002_adom_202202237 crossref_primary_10_1002_lpor_202401256 crossref_primary_10_1016_j_materresbull_2023_112222 crossref_primary_10_1111_jace_17887 crossref_primary_10_1002_lpor_202400966 crossref_primary_10_1002_adfm_202103743 crossref_primary_10_1039_D0TC04803H crossref_primary_10_1039_D2QI02054H crossref_primary_10_1016_j_ceramint_2023_09_164 crossref_primary_10_1016_j_ceramint_2023_12_294 crossref_primary_10_1002_adom_202301794 crossref_primary_10_3390_nano12183142 crossref_primary_10_1002_anie_202103612 crossref_primary_10_1002_smll_202309570 crossref_primary_10_1002_anie_202419910 crossref_primary_10_1039_D1TC03057D crossref_primary_10_1002_adom_202202466 crossref_primary_10_1021_acsaom_3c00011 crossref_primary_10_1111_jace_17856 crossref_primary_10_1039_D1TC05680H crossref_primary_10_1039_D3QI02120C crossref_primary_10_3390_ma16041588 crossref_primary_10_1016_j_cej_2024_149086 crossref_primary_10_1002_adom_202100281 crossref_primary_10_1016_j_cej_2021_129271 crossref_primary_10_1016_j_mtchem_2024_101918 crossref_primary_10_1039_D4QI01418A crossref_primary_10_1002_adom_202202458 crossref_primary_10_1002_ange_202307868 crossref_primary_10_1016_j_optmat_2024_116309 crossref_primary_10_1002_lpor_202100227 crossref_primary_10_1016_j_jeurceramsoc_2024_116990 crossref_primary_10_1039_D1QM00074H crossref_primary_10_1002_adom_202102229 crossref_primary_10_1002_adfm_202401860 crossref_primary_10_1039_D1TC03763C crossref_primary_10_1039_D3NJ03486K crossref_primary_10_1016_j_ceramint_2023_10_235 crossref_primary_10_1039_D3TC01610B crossref_primary_10_1002_adom_202302303 crossref_primary_10_1016_j_jallcom_2023_172544 crossref_primary_10_1016_j_saa_2021_120416 crossref_primary_10_1002_adom_202201076 crossref_primary_10_1016_j_ceramint_2023_03_298 crossref_primary_10_1039_D0QI01524E crossref_primary_10_1002_lpor_202100459 crossref_primary_10_1016_j_jallcom_2025_178571 crossref_primary_10_1364_OE_547449 crossref_primary_10_1016_j_ceramint_2024_05_180 crossref_primary_10_1002_anie_202307868 crossref_primary_10_1021_acsaelm_1c01182 crossref_primary_10_1039_D2QI02201J crossref_primary_10_1016_j_jlumin_2022_119211 crossref_primary_10_1021_acsaelm_5c00106 crossref_primary_10_1002_admt_202200320 crossref_primary_10_1039_D4QI01703J crossref_primary_10_1039_D2QI00168C crossref_primary_10_1002_adom_202200415 crossref_primary_10_1021_acs_inorgchem_1c01588 crossref_primary_10_1016_j_cej_2025_161473 crossref_primary_10_1039_D0DT03840G crossref_primary_10_1016_j_ceramint_2025_03_183 crossref_primary_10_1016_j_optmat_2022_112218 crossref_primary_10_1002_adom_202102204 crossref_primary_10_1016_j_jlumin_2022_119204 crossref_primary_10_1002_adts_202200466 crossref_primary_10_1016_j_ceramint_2023_08_320 crossref_primary_10_1021_acs_chemmater_1c01325 crossref_primary_10_1002_adom_202302687 crossref_primary_10_1016_j_jallcom_2023_172126 crossref_primary_10_2139_ssrn_4167647 crossref_primary_10_1515_zna_2022_0219 crossref_primary_10_1002_adom_202201739 crossref_primary_10_1039_D1DT01244D crossref_primary_10_1016_j_molstruc_2023_136682 crossref_primary_10_3390_app13010069 crossref_primary_10_1021_acs_inorgchem_3c01627 crossref_primary_10_1039_D1TC00521A crossref_primary_10_1016_j_ceramint_2021_10_101 crossref_primary_10_1021_acs_inorgchem_4c05081 crossref_primary_10_1002_adom_202202382 crossref_primary_10_1007_s40843_021_1785_6 crossref_primary_10_1039_D1DT03480D crossref_primary_10_1021_acs_inorgchem_0c02007 crossref_primary_10_1016_j_drudis_2024_104249 crossref_primary_10_1016_j_cej_2021_129886 crossref_primary_10_1021_acs_inorgchem_2c04112 crossref_primary_10_1002_lpor_202400541 crossref_primary_10_1021_acs_chemmater_2c02174 crossref_primary_10_1021_acs_inorgchem_2c00798 crossref_primary_10_1039_D1DT02088A crossref_primary_10_1016_j_ceramint_2021_01_218 crossref_primary_10_1021_acsami_1c10490 crossref_primary_10_1016_j_ceramint_2023_10_165 crossref_primary_10_1002_adom_202201718 crossref_primary_10_1016_j_jallcom_2024_175914 crossref_primary_10_1002_advs_202305308 crossref_primary_10_1016_j_ceramint_2021_09_026 crossref_primary_10_1039_D2QI01093C crossref_primary_10_1002_advs_202408927 crossref_primary_10_1002_lpor_202200380 crossref_primary_10_1016_j_jallcom_2024_178097 crossref_primary_10_1002_ange_202308420 crossref_primary_10_1016_j_jallcom_2024_174293 crossref_primary_10_1016_j_mtchem_2022_101050 crossref_primary_10_1021_acs_inorgchem_2c01477 crossref_primary_10_1021_acsami_3c03911 crossref_primary_10_1039_D2TC03150G crossref_primary_10_1016_j_pnsc_2025_03_009 crossref_primary_10_1002_adom_202001660 crossref_primary_10_1364_OE_550136 crossref_primary_10_1007_s00339_024_07373_2 crossref_primary_10_1039_D4TC04175E crossref_primary_10_1021_acs_chemmater_1c00441 crossref_primary_10_1002_adom_202302011 crossref_primary_10_1021_acs_chemmater_0c02814 crossref_primary_10_1039_D2DT02096C crossref_primary_10_1016_j_mssp_2024_108527 crossref_primary_10_1016_j_ceramint_2022_08_346 crossref_primary_10_1021_acs_inorgchem_3c01330 crossref_primary_10_1016_j_ceramint_2023_07_258 crossref_primary_10_1021_acs_chemmater_1c02734 crossref_primary_10_1016_j_ceramint_2021_09_163 crossref_primary_10_1038_s41377_023_01283_3 crossref_primary_10_1002_inf2_12542 crossref_primary_10_1002_lpor_202300952 crossref_primary_10_1016_j_mtchem_2024_102288 crossref_primary_10_1016_j_jlumin_2023_119758 crossref_primary_10_1016_j_mssp_2023_107923 crossref_primary_10_1021_acsaom_4c00502 crossref_primary_10_1021_acs_inorgchem_3c02518 crossref_primary_10_1021_acs_jpcc_0c07240 crossref_primary_10_1016_j_jallcom_2023_171957 crossref_primary_10_1002_adom_202202061 crossref_primary_10_1021_acs_jpcc_4c04814 crossref_primary_10_1016_j_jlumin_2024_120598 crossref_primary_10_1021_acsaom_4c00070 crossref_primary_10_1021_acs_nanolett_1c02777 crossref_primary_10_1002_adom_202200676 crossref_primary_10_1002_anie_202308420 crossref_primary_10_1016_j_ceramint_2021_05_073 crossref_primary_10_1039_D3DT01113E crossref_primary_10_1002_anie_202204411 crossref_primary_10_1016_j_jlumin_2022_119588 crossref_primary_10_1111_jace_18319 crossref_primary_10_1002_lpor_202200965 crossref_primary_10_1016_j_jlumin_2023_120189 crossref_primary_10_1002_lpor_202000410 crossref_primary_10_1039_D4TC03017F crossref_primary_10_1021_acsami_2c14238 crossref_primary_10_1016_j_ceramint_2022_11_259 crossref_primary_10_1016_j_progsolidstchem_2024_100456 |
Cites_doi | 10.1021/acs.chemmater.7b00087 10.1038/s41586-018-0691-0 10.1038/s41377-018-0055-4 10.1039/C6TC01049K 10.1002/adfm.201604992 10.1063/1.2800290 10.1016/j.aca.2018.04.004 10.1021/acs.chemmater.7b01184 10.1021/acsami.8b08129 10.1039/C7TC00133A 10.1002/adfm.201901480 10.1039/C7TA08809D 10.1002/pssc.201084059 10.1021/acs.chemmater.6b03625 10.1103/PhysRev.62.438 10.1021/acsenergylett.8b01643 10.1021/acs.jpcc.7b12826 10.1002/adom.201701161 10.1063/1.4985015 10.1002/adom.201700227 10.1038/s41565-018-0221-0 10.1002/anie.201813340 10.1143/JPSJ.11.864 10.1007/s10854-017-6699-7 10.1021/jacs.7b10997 10.1038/nphoton.2014.107 10.1002/adom.201400558 10.1002/adom.201900185 10.1002/advs.201500001 10.1039/C8TC01216D 10.1016/j.chemphys.2003.12.017 10.1002/adfm.201804150 10.1143/APEX.2.032102 10.1111/jace.16156 10.1016/j.ssc.2004.12.002 10.1016/0031-8914(67)90062-6 10.1143/JPSJ.9.753 10.1002/jor.23622 10.1002/ange.201903536 10.1016/j.foodchem.2015.05.112 10.1021/acs.chemmater.9b01587 10.1021/acsaem.7b00105 10.1016/j.jlumin.2018.05.035 |
ContentType | Journal Article |
Copyright | 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | AAYXX CITATION 7SP 7U5 8FD H8D L7M |
DOI | 10.1002/adom.201902003 |
DatabaseName | CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | CrossRef Aerospace Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences |
EISSN | 2195-1071 |
EndPage | n/a |
ExternalDocumentID | 10_1002_adom_201902003 ADOM201902003 |
Genre | article |
GrantInformation_xml | – fundername: Gansu Province Development and Reform Commission funderid: 51502122 – fundername: National Natural Science Funds of China funderid: 51672115 |
GroupedDBID | 0R~ 1OC 33P 8-1 A00 AAESR AAHHS AAHQN AAIHA AAMNL AANLZ AAXRX AAYCA AAZKR ABCUV ABJNI ACAHQ ACCFJ ACCZN ACGFO ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADKYN ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AENEX AEQDE AEUYR AFBPY AFFPM AFWVQ AHBTC AIACR AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB AZFZN AZVAB BFHJK BMXJE BRXPI D-B DCZOG DPXWK EBS G-S HGLYW HZ~ LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MY~ O9- P2W R.K ROL SUPJJ WBKPD WOHZO WXSBR WYJ ZZTAW 31~ AAYXX ADMLS AEYWJ AGHNM AGYGG CITATION EJD GODZA 7SP 7U5 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY H8D L7M |
ID | FETCH-LOGICAL-c3833-18ffec23f004c2844fcf6802ebd5b60b0b1bfc4c8dd8654412eb933dd92143d83 |
ISSN | 2195-1071 |
IngestDate | Fri Jul 25 11:52:59 EDT 2025 Thu Apr 24 23:10:33 EDT 2025 Tue Jul 01 02:47:34 EDT 2025 Wed Jan 22 16:33:58 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c3833-18ffec23f004c2844fcf6802ebd5b60b0b1bfc4c8dd8654412eb933dd92143d83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2390480558 |
PQPubID | 2034581 |
PageCount | 8 |
ParticipantIDs | proquest_journals_2390480558 crossref_citationtrail_10_1002_adom_201902003 crossref_primary_10_1002_adom_201902003 wiley_primary_10_1002_adom_201902003_ADOM201902003 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-04-01 |
PublicationDateYYYYMMDD | 2020-04-01 |
PublicationDate_xml | – month: 04 year: 2020 text: 2020-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Advanced optical materials |
PublicationYear | 2020 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017; 5 1967 2005; 34 133 2019; 7 2019 2019; 29 131 2018; 122 1945 1954 1954 1956; 62 9 9 11 2004; 300 2019; 31 2017; 27 2019; 58 2009 2018 2019; 6 102 2009 2017 2011 2018; 2 28 8 202 2014 2018 2018; 8 7 13 2018; 3 2017 2018; 29 563 2018 2017; 140 5 2016 2015; 4 3 2015 2017 2018; 2 29 6 2016; 28 2018; 10 2016; 190 2007 2013; 91 7 2017 2018 2018; 110 1026 36 2018 2018; 28 1 e_1_2_7_4_3 e_1_2_7_6_1 e_1_2_7_4_2 e_1_2_7_5_1 e_1_2_7_2_3 e_1_2_7_4_1 e_1_2_7_1_3 e_1_2_7_2_2 e_1_2_7_3_1 e_1_2_7_8_3 e_1_2_7_8_2 e_1_2_7_9_1 e_1_2_7_8_1 e_1_2_7_4_4 e_1_2_7_7_1 Yukito T. (e_1_2_7_20_3) 1954; 9 e_1_2_7_19_1 e_1_2_7_17_2 e_1_2_7_18_1 e_1_2_7_17_1 e_1_2_7_15_2 e_1_2_7_16_1 e_1_2_7_1_2 e_1_2_7_2_1 e_1_2_7_14_2 e_1_2_7_15_1 e_1_2_7_1_1 e_1_2_7_14_1 e_1_2_7_13_1 e_1_2_7_10_2 e_1_2_7_11_1 e_1_2_7_10_1 e_1_2_7_26_1 e_1_2_7_26_2 Cho J. (e_1_2_7_24_2) 2013; 7 e_1_2_7_25_1 e_1_2_7_23_2 e_1_2_7_24_1 e_1_2_7_20_4 e_1_2_7_23_1 e_1_2_7_21_2 e_1_2_7_22_1 e_1_2_7_20_2 e_1_2_7_21_1 Yeh H. C. (e_1_2_7_12_1) 2009 e_1_2_7_20_1 |
References_xml | – volume: 27 year: 2017 publication-title: Adv. Funct. Mater. – year: 2009 – volume: 190 start-page: 701 year: 2016 publication-title: Food Chem. – volume: 28 start-page: 8347 year: 2016 publication-title: Chem. Mater. – volume: 29 563 start-page: 4129 541 year: 2017 2018 publication-title: Chem. Mater. Nature – volume: 58 start-page: 2069 year: 2019 publication-title: Angew. Chem., Int. Ed. – volume: 5 start-page: 2844 year: 2017 publication-title: J. Mater. Chem. C – volume: 8 7 13 start-page: 448 51 941 year: 2014 2018 2018 publication-title: Nat. Photonics Light: Sci. Appl. Nat. Nanotechnol. – volume: 34 133 start-page: 149 445 year: 1967 2005 publication-title: Physica Solid State Commun. – volume: 2 29 6 start-page: 3938 year: 2015 2017 2018 publication-title: Adv. Sci. Chem. Mater. Adv. Opt. Mater. – volume: 300 start-page: 13 year: 2004 publication-title: Chem. Phys. – volume: 31 start-page: 5245 year: 2019 publication-title: Chem. Mater. – volume: 140 5 start-page: 1760 year: 2018 2017 publication-title: J. Am. Chem. Soc. J. Mater. Chem. A – volume: 2 28 8 202 start-page: 7157 2653 1 year: 2009 2017 2011 2018 publication-title: Appl. Phys. Express J. Mater. Sci.: Mater. Electron. Phys. Status Solidi C J. Lumin. – volume: 110 1026 36 start-page: 8 183 year: 2017 2018 2018 publication-title: Appl. Phys. Lett. Anal. Chim. Acta J. Orthop. Res. – volume: 91 7 start-page: 408 year: 2007 2013 publication-title: Appl. Phys. Lett. Appl. Phys. Lett. – volume: 4 3 start-page: 8795 546 year: 2016 2015 publication-title: J. Mater. Chem. C Adv. Opt. Mater. – volume: 5 year: 2017 publication-title: Adv. Opt. Mater. – volume: 29 131 year: 2019 2019 publication-title: Adv. Funct. Mater. Angew. Chem. – volume: 28 1 start-page: 928 year: 2018 2018 publication-title: Adv. Funct. Mater. ACS Appl. Energy Mater. – volume: 6 102 start-page: 4967 2727 year: 2018 2019 publication-title: J. Mater. Chem. C J. Am. Ceram. Soc. – volume: 3 start-page: 2679 year: 2018 publication-title: ACS Energy Lett. – volume: 122 start-page: 3567 year: 2018 publication-title: J. Phys. Chem. C – volume: 62 9 9 11 start-page: 438 753 7 864 year: 1945 1954 1954 1956 publication-title: Phys. Rev. J. Phys. Soc. Jpn. J. Phys. Soc. Jpn. J. Phys. Soc. Jpn. – volume: 10 year: 2018 publication-title: ACS Appl. Mater. Interfaces – volume: 7 year: 2019 publication-title: Adv. Opt. Mater. – ident: e_1_2_7_8_2 doi: 10.1021/acs.chemmater.7b00087 – ident: e_1_2_7_23_2 doi: 10.1038/s41586-018-0691-0 – ident: e_1_2_7_1_2 doi: 10.1038/s41377-018-0055-4 – ident: e_1_2_7_17_1 doi: 10.1039/C6TC01049K – ident: e_1_2_7_9_1 doi: 10.1002/adfm.201604992 – ident: e_1_2_7_24_1 doi: 10.1063/1.2800290 – ident: e_1_2_7_2_2 doi: 10.1016/j.aca.2018.04.004 – ident: e_1_2_7_23_1 doi: 10.1021/acs.chemmater.7b01184 – ident: e_1_2_7_18_1 doi: 10.1021/acsami.8b08129 – volume: 9 start-page: 7 year: 1954 ident: e_1_2_7_20_3 publication-title: J. Phys. Soc. Jpn. – ident: e_1_2_7_25_1 doi: 10.1039/C7TC00133A – ident: e_1_2_7_10_1 doi: 10.1002/adfm.201901480 – ident: e_1_2_7_26_2 doi: 10.1039/C7TA08809D – ident: e_1_2_7_4_3 doi: 10.1002/pssc.201084059 – ident: e_1_2_7_22_1 doi: 10.1021/acs.chemmater.6b03625 – ident: e_1_2_7_20_1 doi: 10.1103/PhysRev.62.438 – ident: e_1_2_7_6_1 doi: 10.1021/acsenergylett.8b01643 – ident: e_1_2_7_11_1 doi: 10.1021/acs.jpcc.7b12826 – ident: e_1_2_7_8_3 doi: 10.1002/adom.201701161 – ident: e_1_2_7_2_1 doi: 10.1063/1.4985015 – ident: e_1_2_7_13_1 doi: 10.1002/adom.201700227 – ident: e_1_2_7_1_3 doi: 10.1038/s41565-018-0221-0 – ident: e_1_2_7_19_1 doi: 10.1002/anie.201813340 – ident: e_1_2_7_20_4 doi: 10.1143/JPSJ.11.864 – ident: e_1_2_7_4_2 doi: 10.1007/s10854-017-6699-7 – ident: e_1_2_7_26_1 doi: 10.1021/jacs.7b10997 – ident: e_1_2_7_1_1 doi: 10.1038/nphoton.2014.107 – ident: e_1_2_7_17_2 doi: 10.1002/adom.201400558 – ident: e_1_2_7_7_1 doi: 10.1002/adom.201900185 – ident: e_1_2_7_8_1 doi: 10.1002/advs.201500001 – volume-title: Master Thesis year: 2009 ident: e_1_2_7_12_1 – ident: e_1_2_7_14_1 doi: 10.1039/C8TC01216D – ident: e_1_2_7_16_1 doi: 10.1016/j.chemphys.2003.12.017 – ident: e_1_2_7_15_1 doi: 10.1002/adfm.201804150 – ident: e_1_2_7_4_1 doi: 10.1143/APEX.2.032102 – volume: 7 start-page: 408 year: 2013 ident: e_1_2_7_24_2 publication-title: Appl. Phys. Lett. – ident: e_1_2_7_14_2 doi: 10.1111/jace.16156 – ident: e_1_2_7_21_2 doi: 10.1016/j.ssc.2004.12.002 – ident: e_1_2_7_21_1 doi: 10.1016/0031-8914(67)90062-6 – ident: e_1_2_7_20_2 doi: 10.1143/JPSJ.9.753 – ident: e_1_2_7_2_3 doi: 10.1002/jor.23622 – ident: e_1_2_7_10_2 doi: 10.1002/ange.201903536 – ident: e_1_2_7_3_1 doi: 10.1016/j.foodchem.2015.05.112 – ident: e_1_2_7_5_1 doi: 10.1021/acs.chemmater.9b01587 – ident: e_1_2_7_15_2 doi: 10.1021/acsaem.7b00105 – ident: e_1_2_7_4_4 doi: 10.1016/j.jlumin.2018.05.035 |
SSID | ssj0001073947 |
Score | 2.6000347 |
Snippet | High‐radiance near‐infrared (NIR) phosphor‐converted light‐emitting diodes (pc‐LEDs) are demanded for wearable biosensing devices and the properties of these... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | 808 nm excitation Broadband broadband near‐infrared emission chromium doping Excitation Huang–Rhys factor Human tissues Infrared radiation Light emitting diodes Materials science Optics Phosphors Radiance Radiant flux Trivalent chromium Windows (computer programs) |
Title | An Ultraviolet–Visible and Near‐Infrared‐Responded Broadband NIR Phosphor and Its NIR Spectroscopy Application |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadom.201902003 https://www.proquest.com/docview/2390480558 |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LbtNAFB2FdsOGNyKloFkgsagMzkzsjJcRBTWoKag0EFZW5qVGiuwocRaw6icg8Rd8Vr-EOw-PHVFe3VjW9dhR5p65j5kzdxB6psHuKp2yKJZSRH09oBEXgzRKFXh3nelZIs2K7vgkPZr0306Taafzo8Va2lT8hfh65b6S62gVZKBXs0v2PzQbPgoCuAf9whU0DNd_0vGwOJgsqtXMrq5XNW-BfpwDzhduXeAEkBwIDaNCrwzhPAhOLUNWQtAJ6fhMcvvG6PTg_Xm5Xp57fuWoWluhOaq-MsUvy-UXF72KRq11IduaUlAu3SQ5BMSuJ5oZ6nJj9DrdaOW9pqH_KGdzPoFtmjfi47nbOQLCZubftfxs-P5le9KCxC2ui7VtxBwRCZmnE6krZN44sxYGWctLBx_2iwtwJWVnsjR1BiDcMey7xtnVC_yhZfLntq408OG7cXh-A-0SSEnApu4OD8fHH5oZPbPoaU-0C_-krhIak5fbP7IdBTWpTTtBshHO2R10y6cmeOhwdhd1VHEP3fZpCvZOYH0fVcMCt2B3efHdAw4DWrAB3OXFtxpqcBtAhgPIMOAJ1yCzrwHIrLANMtwC2QM0efP67NVR5A_viARllEY9ZvhIhGoYrwJioL4WYBJiorhMeBrzmPe4Fn3BpGSpOQgPnmSUSpkRCOElow_RTlEW6hHCQkNMyWTc4wOTX7NMQVIykADmDLxREndRVHdmLnxle3PAyiJ3NblJbjo_D53fRc9D-6Wr6fLblvu1bnI_7tc5oZkpxJAkrIuI1ddfvpJv4WfvOi89RjebYbSPdqrVRj2BaLjiTz0MfwIolq81 |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Ultraviolet%E2%80%93Visible+and+Near%E2%80%90Infrared%E2%80%90Responded+Broadband+NIR+Phosphor+and+Its+NIR+Spectroscopy+Application&rft.jtitle=Advanced+optical+materials&rft.au=Zhou%2C+Xufeng&rft.au=Geng%2C+Wanying&rft.au=Li%2C+Junyi&rft.au=Wang%2C+Yichao&rft.date=2020-04-01&rft.issn=2195-1071&rft.eissn=2195-1071&rft.volume=8&rft.issue=8&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadom.201902003&rft.externalDBID=10.1002%252Fadom.201902003&rft.externalDocID=ADOM201902003 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2195-1071&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2195-1071&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2195-1071&client=summon |