An Ultraviolet–Visible and Near‐Infrared‐Responded Broadband NIR Phosphor and Its NIR Spectroscopy Application

High‐radiance near‐infrared (NIR) phosphor‐converted light‐emitting diodes (pc‐LEDs) are demanded for wearable biosensing devices and the properties of these pc‐LEDs are highly dependent on the performance of the NIR phosphor. An ultraviolet–visible and NIR‐responded broadband NIR NaScGe2O6:Cr3+ pho...

Full description

Saved in:
Bibliographic Details
Published inAdvanced optical materials Vol. 8; no. 8
Main Authors Zhou, Xufeng, Geng, Wanying, Li, Junyi, Wang, Yichao, Ding, Jianyan, Wang, Yuhua
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 01.04.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract High‐radiance near‐infrared (NIR) phosphor‐converted light‐emitting diodes (pc‐LEDs) are demanded for wearable biosensing devices and the properties of these pc‐LEDs are highly dependent on the performance of the NIR phosphor. An ultraviolet–visible and NIR‐responded broadband NIR NaScGe2O6:Cr3+ phosphor is reported. Under 490 nm excitation, NaScGe2O6:Cr3+ shows broad emission band from 700 to 1250 nm, which covers the first and second NIR windows. An NIR pc‐LED with radiant flux of 12.07 mW@350 mA is realized based on NaScGe2O6:Cr3+ and 450 nm blue LED chip. The ability of high‐power NIR light of the NIR pc‐LED to penetrate human tissues is observed successfully. Additionally, in NaScGe2O6:Cr3+, the luminescence performance of Cr3+ under 808 nm laser excitation is achieved for the first time. A broadband near‐infrared (NIR) emission phosphor NaScGe2O6:Cr3+ with super‐wide response range is developed. The high‐power NIR phosphor‐converted light‐emitting diode is prepared and the ability of the high‐power NIR light to penetrate human tissues is observed successfully. In addition, the luminescence performance of Cr3+ under 808 nm laser excitation is achieved for the first time in NaScGe2O6:Cr3+.
AbstractList High‐radiance near‐infrared (NIR) phosphor‐converted light‐emitting diodes (pc‐LEDs) are demanded for wearable biosensing devices and the properties of these pc‐LEDs are highly dependent on the performance of the NIR phosphor. An ultraviolet–visible and NIR‐responded broadband NIR NaScGe 2 O 6 :Cr 3+ phosphor is reported. Under 490 nm excitation, NaScGe 2 O 6 :Cr 3+ shows broad emission band from 700 to 1250 nm, which covers the first and second NIR windows. An NIR pc‐LED with radiant flux of 12.07 mW@350 mA is realized based on NaScGe 2 O 6 :Cr 3+ and 450 nm blue LED chip. The ability of high‐power NIR light of the NIR pc‐LED to penetrate human tissues is observed successfully. Additionally, in NaScGe 2 O 6 :Cr 3+ , the luminescence performance of Cr 3+ under 808 nm laser excitation is achieved for the first time.
High‐radiance near‐infrared (NIR) phosphor‐converted light‐emitting diodes (pc‐LEDs) are demanded for wearable biosensing devices and the properties of these pc‐LEDs are highly dependent on the performance of the NIR phosphor. An ultraviolet–visible and NIR‐responded broadband NIR NaScGe2O6:Cr3+ phosphor is reported. Under 490 nm excitation, NaScGe2O6:Cr3+ shows broad emission band from 700 to 1250 nm, which covers the first and second NIR windows. An NIR pc‐LED with radiant flux of 12.07 mW@350 mA is realized based on NaScGe2O6:Cr3+ and 450 nm blue LED chip. The ability of high‐power NIR light of the NIR pc‐LED to penetrate human tissues is observed successfully. Additionally, in NaScGe2O6:Cr3+, the luminescence performance of Cr3+ under 808 nm laser excitation is achieved for the first time. A broadband near‐infrared (NIR) emission phosphor NaScGe2O6:Cr3+ with super‐wide response range is developed. The high‐power NIR phosphor‐converted light‐emitting diode is prepared and the ability of the high‐power NIR light to penetrate human tissues is observed successfully. In addition, the luminescence performance of Cr3+ under 808 nm laser excitation is achieved for the first time in NaScGe2O6:Cr3+.
High‐radiance near‐infrared (NIR) phosphor‐converted light‐emitting diodes (pc‐LEDs) are demanded for wearable biosensing devices and the properties of these pc‐LEDs are highly dependent on the performance of the NIR phosphor. An ultraviolet–visible and NIR‐responded broadband NIR NaScGe2O6:Cr3+ phosphor is reported. Under 490 nm excitation, NaScGe2O6:Cr3+ shows broad emission band from 700 to 1250 nm, which covers the first and second NIR windows. An NIR pc‐LED with radiant flux of 12.07 mW@350 mA is realized based on NaScGe2O6:Cr3+ and 450 nm blue LED chip. The ability of high‐power NIR light of the NIR pc‐LED to penetrate human tissues is observed successfully. Additionally, in NaScGe2O6:Cr3+, the luminescence performance of Cr3+ under 808 nm laser excitation is achieved for the first time.
Author Li, Junyi
Ding, Jianyan
Geng, Wanying
Wang, Yichao
Zhou, Xufeng
Wang, Yuhua
Author_xml – sequence: 1
  givenname: Xufeng
  surname: Zhou
  fullname: Zhou, Xufeng
  organization: Lanzhou University
– sequence: 2
  givenname: Wanying
  surname: Geng
  fullname: Geng, Wanying
  organization: Lanzhou University
– sequence: 3
  givenname: Junyi
  surname: Li
  fullname: Li, Junyi
  organization: Lanzhou University
– sequence: 4
  givenname: Yichao
  surname: Wang
  fullname: Wang, Yichao
  organization: Lanzhou University
– sequence: 5
  givenname: Jianyan
  surname: Ding
  fullname: Ding, Jianyan
  organization: Lanzhou University
– sequence: 6
  givenname: Yuhua
  surname: Wang
  fullname: Wang, Yuhua
  email: wyh@lzu.edu.cn
  organization: Lanzhou University
BookMark eNqFkMtOwkAUhicGExHZum7iGjxzKbRLxBsJilFx20znEoaUTp0pGnY8golvyJNYilFjYlyd2_-dc_IfokZuc4XQMYYuBiCnXNpFlwCOgQDQPdQkOA47GPq48SM_QG3v5wBQFTRm_SYqB3kwzUrHX4zNVLlZvz8Zb9JMBTyXwa3ibrN-G-Xacadkld4rX9hcKhmcOctlWqtG98HdzPpiZl2NjUpfNx8KJUpnvbDFKhgURWYEL43Nj9C-5plX7c_YQtPLi8fhdWc8uRoNB-OOoBGlHRxprQShGoAJEjGmhe5FQFQqw7QHKaQ41YKJSMqoFzKGq0lMqZQxwYzKiLbQyW5v4ezzUvkymduly6uTCaExsAjCcKtiO5WoXvVO6USYsv6zssVkCYZka3GytTj5srjCur-wwpkFd6u_gXgHvJpMrf5RJ4Pzyc03-wEwypQ7
CitedBy_id crossref_primary_10_1002_ange_202204411
crossref_primary_10_1039_D4TC00004H
crossref_primary_10_1016_j_jlumin_2022_118887
crossref_primary_10_1039_D1QI01158H
crossref_primary_10_1021_acs_chemmater_2c03454
crossref_primary_10_1021_acssuschemeng_0c07946
crossref_primary_10_1039_D3QM00211J
crossref_primary_10_1016_j_cej_2021_128805
crossref_primary_10_1016_j_ceramint_2023_02_093
crossref_primary_10_1016_j_jlumin_2022_119293
crossref_primary_10_1002_adom_202302611
crossref_primary_10_1016_j_omx_2022_100136
crossref_primary_10_1016_j_arabjc_2024_105921
crossref_primary_10_1016_j_cej_2024_155598
crossref_primary_10_1039_D2QM00569G
crossref_primary_10_1021_acsaelm_4c01868
crossref_primary_10_1016_j_mtchem_2022_101258
crossref_primary_10_1016_j_ceramint_2022_11_169
crossref_primary_10_1016_j_mtchem_2024_102214
crossref_primary_10_1002_ange_202419910
crossref_primary_10_1039_D2DT03871D
crossref_primary_10_1039_D2TC01792J
crossref_primary_10_1016_j_jlumin_2023_120314
crossref_primary_10_1002_cjoc_202000529
crossref_primary_10_1016_j_materresbull_2023_112669
crossref_primary_10_1039_D2QI00794K
crossref_primary_10_1016_j_jallcom_2023_171311
crossref_primary_10_1016_j_ceramint_2022_10_001
crossref_primary_10_1039_D3TC01523H
crossref_primary_10_1360_TB_2023_0420
crossref_primary_10_1016_j_optmat_2024_116418
crossref_primary_10_1039_D4MH01157K
crossref_primary_10_1016_j_jlumin_2024_121032
crossref_primary_10_1007_s10854_024_13467_7
crossref_primary_10_1016_j_ceramint_2024_08_454
crossref_primary_10_1021_acs_jpclett_3c00089
crossref_primary_10_1039_D4QM00886C
crossref_primary_10_1038_s41377_022_00803_x
crossref_primary_10_1016_j_jallcom_2024_177826
crossref_primary_10_1016_j_jssc_2020_121408
crossref_primary_10_1016_j_jallcom_2023_170311
crossref_primary_10_1142_S0217984924503822
crossref_primary_10_1039_D1QM01540K
crossref_primary_10_1039_D3DT02602G
crossref_primary_10_1016_j_jlumin_2024_120831
crossref_primary_10_1002_adom_202102388
crossref_primary_10_1016_j_ceramint_2023_11_225
crossref_primary_10_1016_j_jallcom_2025_179966
crossref_primary_10_1002_ange_202103612
crossref_primary_10_1039_D1QI01082D
crossref_primary_10_1016_j_optmat_2024_116509
crossref_primary_10_1039_D4QI01274G
crossref_primary_10_1021_acs_inorgchem_2c00272
crossref_primary_10_1111_jace_18995
crossref_primary_10_1111_jace_17304
crossref_primary_10_1021_acsami_2c00200
crossref_primary_10_1016_j_infrared_2023_104697
crossref_primary_10_1111_jace_19728
crossref_primary_10_1142_S0217984922502074
crossref_primary_10_1039_D1TC05289F
crossref_primary_10_1016_j_mtchem_2022_101102
crossref_primary_10_1021_acsami_1c09421
crossref_primary_10_1039_D4TC05115G
crossref_primary_10_35848_1347_4065_ace670
crossref_primary_10_1016_j_ceramint_2021_05_256
crossref_primary_10_1016_j_jlumin_2023_120255
crossref_primary_10_1007_s12613_021_2363_6
crossref_primary_10_1002_adom_202102246
crossref_primary_10_1016_j_mtchem_2024_102305
crossref_primary_10_1016_j_ceramint_2020_09_149
crossref_primary_10_1002_lpor_202402226
crossref_primary_10_1002_adom_202202237
crossref_primary_10_1002_lpor_202401256
crossref_primary_10_1016_j_materresbull_2023_112222
crossref_primary_10_1111_jace_17887
crossref_primary_10_1002_lpor_202400966
crossref_primary_10_1002_adfm_202103743
crossref_primary_10_1039_D0TC04803H
crossref_primary_10_1039_D2QI02054H
crossref_primary_10_1016_j_ceramint_2023_09_164
crossref_primary_10_1016_j_ceramint_2023_12_294
crossref_primary_10_1002_adom_202301794
crossref_primary_10_3390_nano12183142
crossref_primary_10_1002_anie_202103612
crossref_primary_10_1002_smll_202309570
crossref_primary_10_1002_anie_202419910
crossref_primary_10_1039_D1TC03057D
crossref_primary_10_1002_adom_202202466
crossref_primary_10_1021_acsaom_3c00011
crossref_primary_10_1111_jace_17856
crossref_primary_10_1039_D1TC05680H
crossref_primary_10_1039_D3QI02120C
crossref_primary_10_3390_ma16041588
crossref_primary_10_1016_j_cej_2024_149086
crossref_primary_10_1002_adom_202100281
crossref_primary_10_1016_j_cej_2021_129271
crossref_primary_10_1016_j_mtchem_2024_101918
crossref_primary_10_1039_D4QI01418A
crossref_primary_10_1002_adom_202202458
crossref_primary_10_1002_ange_202307868
crossref_primary_10_1016_j_optmat_2024_116309
crossref_primary_10_1002_lpor_202100227
crossref_primary_10_1016_j_jeurceramsoc_2024_116990
crossref_primary_10_1039_D1QM00074H
crossref_primary_10_1002_adom_202102229
crossref_primary_10_1002_adfm_202401860
crossref_primary_10_1039_D1TC03763C
crossref_primary_10_1039_D3NJ03486K
crossref_primary_10_1016_j_ceramint_2023_10_235
crossref_primary_10_1039_D3TC01610B
crossref_primary_10_1002_adom_202302303
crossref_primary_10_1016_j_jallcom_2023_172544
crossref_primary_10_1016_j_saa_2021_120416
crossref_primary_10_1002_adom_202201076
crossref_primary_10_1016_j_ceramint_2023_03_298
crossref_primary_10_1039_D0QI01524E
crossref_primary_10_1002_lpor_202100459
crossref_primary_10_1016_j_jallcom_2025_178571
crossref_primary_10_1364_OE_547449
crossref_primary_10_1016_j_ceramint_2024_05_180
crossref_primary_10_1002_anie_202307868
crossref_primary_10_1021_acsaelm_1c01182
crossref_primary_10_1039_D2QI02201J
crossref_primary_10_1016_j_jlumin_2022_119211
crossref_primary_10_1021_acsaelm_5c00106
crossref_primary_10_1002_admt_202200320
crossref_primary_10_1039_D4QI01703J
crossref_primary_10_1039_D2QI00168C
crossref_primary_10_1002_adom_202200415
crossref_primary_10_1021_acs_inorgchem_1c01588
crossref_primary_10_1016_j_cej_2025_161473
crossref_primary_10_1039_D0DT03840G
crossref_primary_10_1016_j_ceramint_2025_03_183
crossref_primary_10_1016_j_optmat_2022_112218
crossref_primary_10_1002_adom_202102204
crossref_primary_10_1016_j_jlumin_2022_119204
crossref_primary_10_1002_adts_202200466
crossref_primary_10_1016_j_ceramint_2023_08_320
crossref_primary_10_1021_acs_chemmater_1c01325
crossref_primary_10_1002_adom_202302687
crossref_primary_10_1016_j_jallcom_2023_172126
crossref_primary_10_2139_ssrn_4167647
crossref_primary_10_1515_zna_2022_0219
crossref_primary_10_1002_adom_202201739
crossref_primary_10_1039_D1DT01244D
crossref_primary_10_1016_j_molstruc_2023_136682
crossref_primary_10_3390_app13010069
crossref_primary_10_1021_acs_inorgchem_3c01627
crossref_primary_10_1039_D1TC00521A
crossref_primary_10_1016_j_ceramint_2021_10_101
crossref_primary_10_1021_acs_inorgchem_4c05081
crossref_primary_10_1002_adom_202202382
crossref_primary_10_1007_s40843_021_1785_6
crossref_primary_10_1039_D1DT03480D
crossref_primary_10_1021_acs_inorgchem_0c02007
crossref_primary_10_1016_j_drudis_2024_104249
crossref_primary_10_1016_j_cej_2021_129886
crossref_primary_10_1021_acs_inorgchem_2c04112
crossref_primary_10_1002_lpor_202400541
crossref_primary_10_1021_acs_chemmater_2c02174
crossref_primary_10_1021_acs_inorgchem_2c00798
crossref_primary_10_1039_D1DT02088A
crossref_primary_10_1016_j_ceramint_2021_01_218
crossref_primary_10_1021_acsami_1c10490
crossref_primary_10_1016_j_ceramint_2023_10_165
crossref_primary_10_1002_adom_202201718
crossref_primary_10_1016_j_jallcom_2024_175914
crossref_primary_10_1002_advs_202305308
crossref_primary_10_1016_j_ceramint_2021_09_026
crossref_primary_10_1039_D2QI01093C
crossref_primary_10_1002_advs_202408927
crossref_primary_10_1002_lpor_202200380
crossref_primary_10_1016_j_jallcom_2024_178097
crossref_primary_10_1002_ange_202308420
crossref_primary_10_1016_j_jallcom_2024_174293
crossref_primary_10_1016_j_mtchem_2022_101050
crossref_primary_10_1021_acs_inorgchem_2c01477
crossref_primary_10_1021_acsami_3c03911
crossref_primary_10_1039_D2TC03150G
crossref_primary_10_1016_j_pnsc_2025_03_009
crossref_primary_10_1002_adom_202001660
crossref_primary_10_1364_OE_550136
crossref_primary_10_1007_s00339_024_07373_2
crossref_primary_10_1039_D4TC04175E
crossref_primary_10_1021_acs_chemmater_1c00441
crossref_primary_10_1002_adom_202302011
crossref_primary_10_1021_acs_chemmater_0c02814
crossref_primary_10_1039_D2DT02096C
crossref_primary_10_1016_j_mssp_2024_108527
crossref_primary_10_1016_j_ceramint_2022_08_346
crossref_primary_10_1021_acs_inorgchem_3c01330
crossref_primary_10_1016_j_ceramint_2023_07_258
crossref_primary_10_1021_acs_chemmater_1c02734
crossref_primary_10_1016_j_ceramint_2021_09_163
crossref_primary_10_1038_s41377_023_01283_3
crossref_primary_10_1002_inf2_12542
crossref_primary_10_1002_lpor_202300952
crossref_primary_10_1016_j_mtchem_2024_102288
crossref_primary_10_1016_j_jlumin_2023_119758
crossref_primary_10_1016_j_mssp_2023_107923
crossref_primary_10_1021_acsaom_4c00502
crossref_primary_10_1021_acs_inorgchem_3c02518
crossref_primary_10_1021_acs_jpcc_0c07240
crossref_primary_10_1016_j_jallcom_2023_171957
crossref_primary_10_1002_adom_202202061
crossref_primary_10_1021_acs_jpcc_4c04814
crossref_primary_10_1016_j_jlumin_2024_120598
crossref_primary_10_1021_acsaom_4c00070
crossref_primary_10_1021_acs_nanolett_1c02777
crossref_primary_10_1002_adom_202200676
crossref_primary_10_1002_anie_202308420
crossref_primary_10_1016_j_ceramint_2021_05_073
crossref_primary_10_1039_D3DT01113E
crossref_primary_10_1002_anie_202204411
crossref_primary_10_1016_j_jlumin_2022_119588
crossref_primary_10_1111_jace_18319
crossref_primary_10_1002_lpor_202200965
crossref_primary_10_1016_j_jlumin_2023_120189
crossref_primary_10_1002_lpor_202000410
crossref_primary_10_1039_D4TC03017F
crossref_primary_10_1021_acsami_2c14238
crossref_primary_10_1016_j_ceramint_2022_11_259
crossref_primary_10_1016_j_progsolidstchem_2024_100456
Cites_doi 10.1021/acs.chemmater.7b00087
10.1038/s41586-018-0691-0
10.1038/s41377-018-0055-4
10.1039/C6TC01049K
10.1002/adfm.201604992
10.1063/1.2800290
10.1016/j.aca.2018.04.004
10.1021/acs.chemmater.7b01184
10.1021/acsami.8b08129
10.1039/C7TC00133A
10.1002/adfm.201901480
10.1039/C7TA08809D
10.1002/pssc.201084059
10.1021/acs.chemmater.6b03625
10.1103/PhysRev.62.438
10.1021/acsenergylett.8b01643
10.1021/acs.jpcc.7b12826
10.1002/adom.201701161
10.1063/1.4985015
10.1002/adom.201700227
10.1038/s41565-018-0221-0
10.1002/anie.201813340
10.1143/JPSJ.11.864
10.1007/s10854-017-6699-7
10.1021/jacs.7b10997
10.1038/nphoton.2014.107
10.1002/adom.201400558
10.1002/adom.201900185
10.1002/advs.201500001
10.1039/C8TC01216D
10.1016/j.chemphys.2003.12.017
10.1002/adfm.201804150
10.1143/APEX.2.032102
10.1111/jace.16156
10.1016/j.ssc.2004.12.002
10.1016/0031-8914(67)90062-6
10.1143/JPSJ.9.753
10.1002/jor.23622
10.1002/ange.201903536
10.1016/j.foodchem.2015.05.112
10.1021/acs.chemmater.9b01587
10.1021/acsaem.7b00105
10.1016/j.jlumin.2018.05.035
ContentType Journal Article
Copyright 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
DBID AAYXX
CITATION
7SP
7U5
8FD
H8D
L7M
DOI 10.1002/adom.201902003
DatabaseName CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList CrossRef

Aerospace Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISSN 2195-1071
EndPage n/a
ExternalDocumentID 10_1002_adom_201902003
ADOM201902003
Genre article
GrantInformation_xml – fundername: Gansu Province Development and Reform Commission
  funderid: 51502122
– fundername: National Natural Science Funds of China
  funderid: 51672115
GroupedDBID 0R~
1OC
33P
8-1
A00
AAESR
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AAXRX
AAYCA
AAZKR
ABCUV
ABJNI
ACAHQ
ACCFJ
ACCZN
ACGFO
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADKYN
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFWVQ
AHBTC
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
AZFZN
AZVAB
BFHJK
BMXJE
BRXPI
D-B
DCZOG
DPXWK
EBS
G-S
HGLYW
HZ~
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MY~
O9-
P2W
R.K
ROL
SUPJJ
WBKPD
WOHZO
WXSBR
WYJ
ZZTAW
31~
AAYXX
ADMLS
AEYWJ
AGHNM
AGYGG
CITATION
EJD
GODZA
7SP
7U5
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
H8D
L7M
ID FETCH-LOGICAL-c3833-18ffec23f004c2844fcf6802ebd5b60b0b1bfc4c8dd8654412eb933dd92143d83
ISSN 2195-1071
IngestDate Fri Jul 25 11:52:59 EDT 2025
Thu Apr 24 23:10:33 EDT 2025
Tue Jul 01 02:47:34 EDT 2025
Wed Jan 22 16:33:58 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c3833-18ffec23f004c2844fcf6802ebd5b60b0b1bfc4c8dd8654412eb933dd92143d83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2390480558
PQPubID 2034581
PageCount 8
ParticipantIDs proquest_journals_2390480558
crossref_citationtrail_10_1002_adom_201902003
crossref_primary_10_1002_adom_201902003
wiley_primary_10_1002_adom_201902003_ADOM201902003
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-04-01
PublicationDateYYYYMMDD 2020-04-01
PublicationDate_xml – month: 04
  year: 2020
  text: 2020-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Advanced optical materials
PublicationYear 2020
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 5
1967 2005; 34 133
2019; 7
2019 2019; 29 131
2018; 122
1945 1954 1954 1956; 62 9 9 11
2004; 300
2019; 31
2017; 27
2019; 58
2009
2018 2019; 6 102
2009 2017 2011 2018; 2 28 8 202
2014 2018 2018; 8 7 13
2018; 3
2017 2018; 29 563
2018 2017; 140 5
2016 2015; 4 3
2015 2017 2018; 2 29 6
2016; 28
2018; 10
2016; 190
2007 2013; 91 7
2017 2018 2018; 110 1026 36
2018 2018; 28 1
e_1_2_7_4_3
e_1_2_7_6_1
e_1_2_7_4_2
e_1_2_7_5_1
e_1_2_7_2_3
e_1_2_7_4_1
e_1_2_7_1_3
e_1_2_7_2_2
e_1_2_7_3_1
e_1_2_7_8_3
e_1_2_7_8_2
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_4_4
e_1_2_7_7_1
Yukito T. (e_1_2_7_20_3) 1954; 9
e_1_2_7_19_1
e_1_2_7_17_2
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_15_2
e_1_2_7_16_1
e_1_2_7_1_2
e_1_2_7_2_1
e_1_2_7_14_2
e_1_2_7_15_1
e_1_2_7_1_1
e_1_2_7_14_1
e_1_2_7_13_1
e_1_2_7_10_2
e_1_2_7_11_1
e_1_2_7_10_1
e_1_2_7_26_1
e_1_2_7_26_2
Cho J. (e_1_2_7_24_2) 2013; 7
e_1_2_7_25_1
e_1_2_7_23_2
e_1_2_7_24_1
e_1_2_7_20_4
e_1_2_7_23_1
e_1_2_7_21_2
e_1_2_7_22_1
e_1_2_7_20_2
e_1_2_7_21_1
Yeh H. C. (e_1_2_7_12_1) 2009
e_1_2_7_20_1
References_xml – volume: 27
  year: 2017
  publication-title: Adv. Funct. Mater.
– year: 2009
– volume: 190
  start-page: 701
  year: 2016
  publication-title: Food Chem.
– volume: 28
  start-page: 8347
  year: 2016
  publication-title: Chem. Mater.
– volume: 29 563
  start-page: 4129 541
  year: 2017 2018
  publication-title: Chem. Mater. Nature
– volume: 58
  start-page: 2069
  year: 2019
  publication-title: Angew. Chem., Int. Ed.
– volume: 5
  start-page: 2844
  year: 2017
  publication-title: J. Mater. Chem. C
– volume: 8 7 13
  start-page: 448 51 941
  year: 2014 2018 2018
  publication-title: Nat. Photonics Light: Sci. Appl. Nat. Nanotechnol.
– volume: 34 133
  start-page: 149 445
  year: 1967 2005
  publication-title: Physica Solid State Commun.
– volume: 2 29 6
  start-page: 3938
  year: 2015 2017 2018
  publication-title: Adv. Sci. Chem. Mater. Adv. Opt. Mater.
– volume: 300
  start-page: 13
  year: 2004
  publication-title: Chem. Phys.
– volume: 31
  start-page: 5245
  year: 2019
  publication-title: Chem. Mater.
– volume: 140 5
  start-page: 1760
  year: 2018 2017
  publication-title: J. Am. Chem. Soc. J. Mater. Chem. A
– volume: 2 28 8 202
  start-page: 7157 2653 1
  year: 2009 2017 2011 2018
  publication-title: Appl. Phys. Express J. Mater. Sci.: Mater. Electron. Phys. Status Solidi C J. Lumin.
– volume: 110 1026 36
  start-page: 8 183
  year: 2017 2018 2018
  publication-title: Appl. Phys. Lett. Anal. Chim. Acta J. Orthop. Res.
– volume: 91 7
  start-page: 408
  year: 2007 2013
  publication-title: Appl. Phys. Lett. Appl. Phys. Lett.
– volume: 4 3
  start-page: 8795 546
  year: 2016 2015
  publication-title: J. Mater. Chem. C Adv. Opt. Mater.
– volume: 5
  year: 2017
  publication-title: Adv. Opt. Mater.
– volume: 29 131
  year: 2019 2019
  publication-title: Adv. Funct. Mater. Angew. Chem.
– volume: 28 1
  start-page: 928
  year: 2018 2018
  publication-title: Adv. Funct. Mater. ACS Appl. Energy Mater.
– volume: 6 102
  start-page: 4967 2727
  year: 2018 2019
  publication-title: J. Mater. Chem. C J. Am. Ceram. Soc.
– volume: 3
  start-page: 2679
  year: 2018
  publication-title: ACS Energy Lett.
– volume: 122
  start-page: 3567
  year: 2018
  publication-title: J. Phys. Chem. C
– volume: 62 9 9 11
  start-page: 438 753 7 864
  year: 1945 1954 1954 1956
  publication-title: Phys. Rev. J. Phys. Soc. Jpn. J. Phys. Soc. Jpn. J. Phys. Soc. Jpn.
– volume: 10
  year: 2018
  publication-title: ACS Appl. Mater. Interfaces
– volume: 7
  year: 2019
  publication-title: Adv. Opt. Mater.
– ident: e_1_2_7_8_2
  doi: 10.1021/acs.chemmater.7b00087
– ident: e_1_2_7_23_2
  doi: 10.1038/s41586-018-0691-0
– ident: e_1_2_7_1_2
  doi: 10.1038/s41377-018-0055-4
– ident: e_1_2_7_17_1
  doi: 10.1039/C6TC01049K
– ident: e_1_2_7_9_1
  doi: 10.1002/adfm.201604992
– ident: e_1_2_7_24_1
  doi: 10.1063/1.2800290
– ident: e_1_2_7_2_2
  doi: 10.1016/j.aca.2018.04.004
– ident: e_1_2_7_23_1
  doi: 10.1021/acs.chemmater.7b01184
– ident: e_1_2_7_18_1
  doi: 10.1021/acsami.8b08129
– volume: 9
  start-page: 7
  year: 1954
  ident: e_1_2_7_20_3
  publication-title: J. Phys. Soc. Jpn.
– ident: e_1_2_7_25_1
  doi: 10.1039/C7TC00133A
– ident: e_1_2_7_10_1
  doi: 10.1002/adfm.201901480
– ident: e_1_2_7_26_2
  doi: 10.1039/C7TA08809D
– ident: e_1_2_7_4_3
  doi: 10.1002/pssc.201084059
– ident: e_1_2_7_22_1
  doi: 10.1021/acs.chemmater.6b03625
– ident: e_1_2_7_20_1
  doi: 10.1103/PhysRev.62.438
– ident: e_1_2_7_6_1
  doi: 10.1021/acsenergylett.8b01643
– ident: e_1_2_7_11_1
  doi: 10.1021/acs.jpcc.7b12826
– ident: e_1_2_7_8_3
  doi: 10.1002/adom.201701161
– ident: e_1_2_7_2_1
  doi: 10.1063/1.4985015
– ident: e_1_2_7_13_1
  doi: 10.1002/adom.201700227
– ident: e_1_2_7_1_3
  doi: 10.1038/s41565-018-0221-0
– ident: e_1_2_7_19_1
  doi: 10.1002/anie.201813340
– ident: e_1_2_7_20_4
  doi: 10.1143/JPSJ.11.864
– ident: e_1_2_7_4_2
  doi: 10.1007/s10854-017-6699-7
– ident: e_1_2_7_26_1
  doi: 10.1021/jacs.7b10997
– ident: e_1_2_7_1_1
  doi: 10.1038/nphoton.2014.107
– ident: e_1_2_7_17_2
  doi: 10.1002/adom.201400558
– ident: e_1_2_7_7_1
  doi: 10.1002/adom.201900185
– ident: e_1_2_7_8_1
  doi: 10.1002/advs.201500001
– volume-title: Master Thesis
  year: 2009
  ident: e_1_2_7_12_1
– ident: e_1_2_7_14_1
  doi: 10.1039/C8TC01216D
– ident: e_1_2_7_16_1
  doi: 10.1016/j.chemphys.2003.12.017
– ident: e_1_2_7_15_1
  doi: 10.1002/adfm.201804150
– ident: e_1_2_7_4_1
  doi: 10.1143/APEX.2.032102
– volume: 7
  start-page: 408
  year: 2013
  ident: e_1_2_7_24_2
  publication-title: Appl. Phys. Lett.
– ident: e_1_2_7_14_2
  doi: 10.1111/jace.16156
– ident: e_1_2_7_21_2
  doi: 10.1016/j.ssc.2004.12.002
– ident: e_1_2_7_21_1
  doi: 10.1016/0031-8914(67)90062-6
– ident: e_1_2_7_20_2
  doi: 10.1143/JPSJ.9.753
– ident: e_1_2_7_2_3
  doi: 10.1002/jor.23622
– ident: e_1_2_7_10_2
  doi: 10.1002/ange.201903536
– ident: e_1_2_7_3_1
  doi: 10.1016/j.foodchem.2015.05.112
– ident: e_1_2_7_5_1
  doi: 10.1021/acs.chemmater.9b01587
– ident: e_1_2_7_15_2
  doi: 10.1021/acsaem.7b00105
– ident: e_1_2_7_4_4
  doi: 10.1016/j.jlumin.2018.05.035
SSID ssj0001073947
Score 2.6000347
Snippet High‐radiance near‐infrared (NIR) phosphor‐converted light‐emitting diodes (pc‐LEDs) are demanded for wearable biosensing devices and the properties of these...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms 808 nm excitation
Broadband
broadband near‐infrared emission
chromium doping
Excitation
Huang–Rhys factor
Human tissues
Infrared radiation
Light emitting diodes
Materials science
Optics
Phosphors
Radiance
Radiant flux
Trivalent chromium
Windows (computer programs)
Title An Ultraviolet–Visible and Near‐Infrared‐Responded Broadband NIR Phosphor and Its NIR Spectroscopy Application
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadom.201902003
https://www.proquest.com/docview/2390480558
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LbtNAFB2FdsOGNyKloFkgsagMzkzsjJcRBTWoKag0EFZW5qVGiuwocRaw6icg8Rd8Vr-EOw-PHVFe3VjW9dhR5p65j5kzdxB6psHuKp2yKJZSRH09oBEXgzRKFXh3nelZIs2K7vgkPZr0306Taafzo8Va2lT8hfh65b6S62gVZKBXs0v2PzQbPgoCuAf9whU0DNd_0vGwOJgsqtXMrq5XNW-BfpwDzhduXeAEkBwIDaNCrwzhPAhOLUNWQtAJ6fhMcvvG6PTg_Xm5Xp57fuWoWluhOaq-MsUvy-UXF72KRq11IduaUlAu3SQ5BMSuJ5oZ6nJj9DrdaOW9pqH_KGdzPoFtmjfi47nbOQLCZubftfxs-P5le9KCxC2ui7VtxBwRCZmnE6krZN44sxYGWctLBx_2iwtwJWVnsjR1BiDcMey7xtnVC_yhZfLntq408OG7cXh-A-0SSEnApu4OD8fHH5oZPbPoaU-0C_-krhIak5fbP7IdBTWpTTtBshHO2R10y6cmeOhwdhd1VHEP3fZpCvZOYH0fVcMCt2B3efHdAw4DWrAB3OXFtxpqcBtAhgPIMOAJ1yCzrwHIrLANMtwC2QM0efP67NVR5A_viARllEY9ZvhIhGoYrwJioL4WYBJiorhMeBrzmPe4Fn3BpGSpOQgPnmSUSpkRCOElow_RTlEW6hHCQkNMyWTc4wOTX7NMQVIykADmDLxREndRVHdmLnxle3PAyiJ3NblJbjo_D53fRc9D-6Wr6fLblvu1bnI_7tc5oZkpxJAkrIuI1ddfvpJv4WfvOi89RjebYbSPdqrVRj2BaLjiTz0MfwIolq81
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Ultraviolet%E2%80%93Visible+and+Near%E2%80%90Infrared%E2%80%90Responded+Broadband+NIR+Phosphor+and+Its+NIR+Spectroscopy+Application&rft.jtitle=Advanced+optical+materials&rft.au=Zhou%2C+Xufeng&rft.au=Geng%2C+Wanying&rft.au=Li%2C+Junyi&rft.au=Wang%2C+Yichao&rft.date=2020-04-01&rft.issn=2195-1071&rft.eissn=2195-1071&rft.volume=8&rft.issue=8&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadom.201902003&rft.externalDBID=10.1002%252Fadom.201902003&rft.externalDocID=ADOM201902003
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2195-1071&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2195-1071&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2195-1071&client=summon